os.cpp revision 12257:abb2824d2dfd
1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "gc/shared/vmGCOperations.hpp"
34#include "interpreter/interpreter.hpp"
35#include "logging/log.hpp"
36#include "logging/logStream.inline.hpp"
37#include "memory/allocation.inline.hpp"
38#ifdef ASSERT
39#include "memory/guardedMemory.hpp"
40#endif
41#include "memory/resourceArea.hpp"
42#include "oops/oop.inline.hpp"
43#include "prims/jvm.h"
44#include "prims/jvm_misc.hpp"
45#include "prims/privilegedStack.hpp"
46#include "runtime/arguments.hpp"
47#include "runtime/atomic.hpp"
48#include "runtime/frame.inline.hpp"
49#include "runtime/interfaceSupport.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/os.inline.hpp"
54#include "runtime/stubRoutines.hpp"
55#include "runtime/thread.inline.hpp"
56#include "runtime/vm_version.hpp"
57#include "services/attachListener.hpp"
58#include "services/mallocTracker.hpp"
59#include "services/memTracker.hpp"
60#include "services/nmtCommon.hpp"
61#include "services/threadService.hpp"
62#include "utilities/defaultStream.hpp"
63#include "utilities/events.hpp"
64
65# include <signal.h>
66# include <errno.h>
67
68OSThread*         os::_starting_thread    = NULL;
69address           os::_polling_page       = NULL;
70volatile int32_t* os::_mem_serialize_page = NULL;
71uintptr_t         os::_serialize_page_mask = 0;
72long              os::_rand_seed          = 1;
73int               os::_processor_count    = 0;
74int               os::_initial_active_processor_count = 0;
75size_t            os::_page_sizes[os::page_sizes_max];
76
77#ifndef PRODUCT
78julong os::num_mallocs = 0;         // # of calls to malloc/realloc
79julong os::alloc_bytes = 0;         // # of bytes allocated
80julong os::num_frees = 0;           // # of calls to free
81julong os::free_bytes = 0;          // # of bytes freed
82#endif
83
84static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
85
86void os_init_globals() {
87  // Called from init_globals().
88  // See Threads::create_vm() in thread.cpp, and init.cpp.
89  os::init_globals();
90}
91
92// Fill in buffer with current local time as an ISO-8601 string.
93// E.g., yyyy-mm-ddThh:mm:ss-zzzz.
94// Returns buffer, or NULL if it failed.
95// This would mostly be a call to
96//     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
97// except that on Windows the %z behaves badly, so we do it ourselves.
98// Also, people wanted milliseconds on there,
99// and strftime doesn't do milliseconds.
100char* os::iso8601_time(char* buffer, size_t buffer_length, bool utc) {
101  // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
102  //                                      1         2
103  //                             12345678901234567890123456789
104  // format string: "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d"
105  static const size_t needed_buffer = 29;
106
107  // Sanity check the arguments
108  if (buffer == NULL) {
109    assert(false, "NULL buffer");
110    return NULL;
111  }
112  if (buffer_length < needed_buffer) {
113    assert(false, "buffer_length too small");
114    return NULL;
115  }
116  // Get the current time
117  jlong milliseconds_since_19700101 = javaTimeMillis();
118  const int milliseconds_per_microsecond = 1000;
119  const time_t seconds_since_19700101 =
120    milliseconds_since_19700101 / milliseconds_per_microsecond;
121  const int milliseconds_after_second =
122    milliseconds_since_19700101 % milliseconds_per_microsecond;
123  // Convert the time value to a tm and timezone variable
124  struct tm time_struct;
125  if (utc) {
126    if (gmtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
127      assert(false, "Failed gmtime_pd");
128      return NULL;
129    }
130  } else {
131    if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
132      assert(false, "Failed localtime_pd");
133      return NULL;
134    }
135  }
136#if defined(_ALLBSD_SOURCE)
137  const time_t zone = (time_t) time_struct.tm_gmtoff;
138#else
139  const time_t zone = timezone;
140#endif
141
142  // If daylight savings time is in effect,
143  // we are 1 hour East of our time zone
144  const time_t seconds_per_minute = 60;
145  const time_t minutes_per_hour = 60;
146  const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
147  time_t UTC_to_local = zone;
148  if (time_struct.tm_isdst > 0) {
149    UTC_to_local = UTC_to_local - seconds_per_hour;
150  }
151
152  // No offset when dealing with UTC
153  if (utc) {
154    UTC_to_local = 0;
155  }
156
157  // Compute the time zone offset.
158  //    localtime_pd() sets timezone to the difference (in seconds)
159  //    between UTC and and local time.
160  //    ISO 8601 says we need the difference between local time and UTC,
161  //    we change the sign of the localtime_pd() result.
162  const time_t local_to_UTC = -(UTC_to_local);
163  // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
164  char sign_local_to_UTC = '+';
165  time_t abs_local_to_UTC = local_to_UTC;
166  if (local_to_UTC < 0) {
167    sign_local_to_UTC = '-';
168    abs_local_to_UTC = -(abs_local_to_UTC);
169  }
170  // Convert time zone offset seconds to hours and minutes.
171  const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
172  const time_t zone_min =
173    ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
174
175  // Print an ISO 8601 date and time stamp into the buffer
176  const int year = 1900 + time_struct.tm_year;
177  const int month = 1 + time_struct.tm_mon;
178  const int printed = jio_snprintf(buffer, buffer_length,
179                                   "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d",
180                                   year,
181                                   month,
182                                   time_struct.tm_mday,
183                                   time_struct.tm_hour,
184                                   time_struct.tm_min,
185                                   time_struct.tm_sec,
186                                   milliseconds_after_second,
187                                   sign_local_to_UTC,
188                                   zone_hours,
189                                   zone_min);
190  if (printed == 0) {
191    assert(false, "Failed jio_printf");
192    return NULL;
193  }
194  return buffer;
195}
196
197OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
198#ifdef ASSERT
199  if (!(!thread->is_Java_thread() ||
200         Thread::current() == thread  ||
201         Threads_lock->owned_by_self()
202         || thread->is_Compiler_thread()
203        )) {
204    assert(false, "possibility of dangling Thread pointer");
205  }
206#endif
207
208  if (p >= MinPriority && p <= MaxPriority) {
209    int priority = java_to_os_priority[p];
210    return set_native_priority(thread, priority);
211  } else {
212    assert(false, "Should not happen");
213    return OS_ERR;
214  }
215}
216
217// The mapping from OS priority back to Java priority may be inexact because
218// Java priorities can map M:1 with native priorities. If you want the definite
219// Java priority then use JavaThread::java_priority()
220OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
221  int p;
222  int os_prio;
223  OSReturn ret = get_native_priority(thread, &os_prio);
224  if (ret != OS_OK) return ret;
225
226  if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
227    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
228  } else {
229    // niceness values are in reverse order
230    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
231  }
232  priority = (ThreadPriority)p;
233  return OS_OK;
234}
235
236
237// --------------------- sun.misc.Signal (optional) ---------------------
238
239
240// SIGBREAK is sent by the keyboard to query the VM state
241#ifndef SIGBREAK
242#define SIGBREAK SIGQUIT
243#endif
244
245// sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
246
247
248static void signal_thread_entry(JavaThread* thread, TRAPS) {
249  os::set_priority(thread, NearMaxPriority);
250  while (true) {
251    int sig;
252    {
253      // FIXME : Currently we have not decided what should be the status
254      //         for this java thread blocked here. Once we decide about
255      //         that we should fix this.
256      sig = os::signal_wait();
257    }
258    if (sig == os::sigexitnum_pd()) {
259       // Terminate the signal thread
260       return;
261    }
262
263    switch (sig) {
264      case SIGBREAK: {
265        // Check if the signal is a trigger to start the Attach Listener - in that
266        // case don't print stack traces.
267        if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
268          continue;
269        }
270        // Print stack traces
271        // Any SIGBREAK operations added here should make sure to flush
272        // the output stream (e.g. tty->flush()) after output.  See 4803766.
273        // Each module also prints an extra carriage return after its output.
274        VM_PrintThreads op;
275        VMThread::execute(&op);
276        VM_PrintJNI jni_op;
277        VMThread::execute(&jni_op);
278        VM_FindDeadlocks op1(tty);
279        VMThread::execute(&op1);
280        Universe::print_heap_at_SIGBREAK();
281        if (PrintClassHistogram) {
282          VM_GC_HeapInspection op1(tty, true /* force full GC before heap inspection */);
283          VMThread::execute(&op1);
284        }
285        if (JvmtiExport::should_post_data_dump()) {
286          JvmtiExport::post_data_dump();
287        }
288        break;
289      }
290      default: {
291        // Dispatch the signal to java
292        HandleMark hm(THREAD);
293        Klass* k = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_misc_Signal(), THREAD);
294        KlassHandle klass (THREAD, k);
295        if (klass.not_null()) {
296          JavaValue result(T_VOID);
297          JavaCallArguments args;
298          args.push_int(sig);
299          JavaCalls::call_static(
300            &result,
301            klass,
302            vmSymbols::dispatch_name(),
303            vmSymbols::int_void_signature(),
304            &args,
305            THREAD
306          );
307        }
308        if (HAS_PENDING_EXCEPTION) {
309          // tty is initialized early so we don't expect it to be null, but
310          // if it is we can't risk doing an initialization that might
311          // trigger additional out-of-memory conditions
312          if (tty != NULL) {
313            char klass_name[256];
314            char tmp_sig_name[16];
315            const char* sig_name = "UNKNOWN";
316            InstanceKlass::cast(PENDING_EXCEPTION->klass())->
317              name()->as_klass_external_name(klass_name, 256);
318            if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
319              sig_name = tmp_sig_name;
320            warning("Exception %s occurred dispatching signal %s to handler"
321                    "- the VM may need to be forcibly terminated",
322                    klass_name, sig_name );
323          }
324          CLEAR_PENDING_EXCEPTION;
325        }
326      }
327    }
328  }
329}
330
331void os::init_before_ergo() {
332  initialize_initial_active_processor_count();
333  // We need to initialize large page support here because ergonomics takes some
334  // decisions depending on large page support and the calculated large page size.
335  large_page_init();
336
337  // We need to adapt the configured number of stack protection pages given
338  // in 4K pages to the actual os page size. We must do this before setting
339  // up minimal stack sizes etc. in os::init_2().
340  JavaThread::set_stack_red_zone_size     (align_size_up(StackRedPages      * 4 * K, vm_page_size()));
341  JavaThread::set_stack_yellow_zone_size  (align_size_up(StackYellowPages   * 4 * K, vm_page_size()));
342  JavaThread::set_stack_reserved_zone_size(align_size_up(StackReservedPages * 4 * K, vm_page_size()));
343  JavaThread::set_stack_shadow_zone_size  (align_size_up(StackShadowPages   * 4 * K, vm_page_size()));
344
345  // VM version initialization identifies some characteristics of the
346  // platform that are used during ergonomic decisions.
347  VM_Version::init_before_ergo();
348}
349
350void os::signal_init() {
351  if (!ReduceSignalUsage) {
352    // Setup JavaThread for processing signals
353    EXCEPTION_MARK;
354    Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
355    instanceKlassHandle klass (THREAD, k);
356    instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
357
358    const char thread_name[] = "Signal Dispatcher";
359    Handle string = java_lang_String::create_from_str(thread_name, CHECK);
360
361    // Initialize thread_oop to put it into the system threadGroup
362    Handle thread_group (THREAD, Universe::system_thread_group());
363    JavaValue result(T_VOID);
364    JavaCalls::call_special(&result, thread_oop,
365                           klass,
366                           vmSymbols::object_initializer_name(),
367                           vmSymbols::threadgroup_string_void_signature(),
368                           thread_group,
369                           string,
370                           CHECK);
371
372    KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
373    JavaCalls::call_special(&result,
374                            thread_group,
375                            group,
376                            vmSymbols::add_method_name(),
377                            vmSymbols::thread_void_signature(),
378                            thread_oop,         // ARG 1
379                            CHECK);
380
381    os::signal_init_pd();
382
383    { MutexLocker mu(Threads_lock);
384      JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
385
386      // At this point it may be possible that no osthread was created for the
387      // JavaThread due to lack of memory. We would have to throw an exception
388      // in that case. However, since this must work and we do not allow
389      // exceptions anyway, check and abort if this fails.
390      if (signal_thread == NULL || signal_thread->osthread() == NULL) {
391        vm_exit_during_initialization("java.lang.OutOfMemoryError",
392                                      os::native_thread_creation_failed_msg());
393      }
394
395      java_lang_Thread::set_thread(thread_oop(), signal_thread);
396      java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
397      java_lang_Thread::set_daemon(thread_oop());
398
399      signal_thread->set_threadObj(thread_oop());
400      Threads::add(signal_thread);
401      Thread::start(signal_thread);
402    }
403    // Handle ^BREAK
404    os::signal(SIGBREAK, os::user_handler());
405  }
406}
407
408
409void os::terminate_signal_thread() {
410  if (!ReduceSignalUsage)
411    signal_notify(sigexitnum_pd());
412}
413
414
415// --------------------- loading libraries ---------------------
416
417typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
418extern struct JavaVM_ main_vm;
419
420static void* _native_java_library = NULL;
421
422void* os::native_java_library() {
423  if (_native_java_library == NULL) {
424    char buffer[JVM_MAXPATHLEN];
425    char ebuf[1024];
426
427    // Try to load verify dll first. In 1.3 java dll depends on it and is not
428    // always able to find it when the loading executable is outside the JDK.
429    // In order to keep working with 1.2 we ignore any loading errors.
430    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
431                       "verify")) {
432      dll_load(buffer, ebuf, sizeof(ebuf));
433    }
434
435    // Load java dll
436    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
437                       "java")) {
438      _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
439    }
440    if (_native_java_library == NULL) {
441      vm_exit_during_initialization("Unable to load native library", ebuf);
442    }
443
444#if defined(__OpenBSD__)
445    // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
446    // ignore errors
447    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
448                       "net")) {
449      dll_load(buffer, ebuf, sizeof(ebuf));
450    }
451#endif
452  }
453  return _native_java_library;
454}
455
456/*
457 * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
458 * If check_lib == true then we are looking for an
459 * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
460 * this library is statically linked into the image.
461 * If check_lib == false then we will look for the appropriate symbol in the
462 * executable if agent_lib->is_static_lib() == true or in the shared library
463 * referenced by 'handle'.
464 */
465void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
466                              const char *syms[], size_t syms_len) {
467  assert(agent_lib != NULL, "sanity check");
468  const char *lib_name;
469  void *handle = agent_lib->os_lib();
470  void *entryName = NULL;
471  char *agent_function_name;
472  size_t i;
473
474  // If checking then use the agent name otherwise test is_static_lib() to
475  // see how to process this lookup
476  lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
477  for (i = 0; i < syms_len; i++) {
478    agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
479    if (agent_function_name == NULL) {
480      break;
481    }
482    entryName = dll_lookup(handle, agent_function_name);
483    FREE_C_HEAP_ARRAY(char, agent_function_name);
484    if (entryName != NULL) {
485      break;
486    }
487  }
488  return entryName;
489}
490
491// See if the passed in agent is statically linked into the VM image.
492bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
493                            size_t syms_len) {
494  void *ret;
495  void *proc_handle;
496  void *save_handle;
497
498  assert(agent_lib != NULL, "sanity check");
499  if (agent_lib->name() == NULL) {
500    return false;
501  }
502  proc_handle = get_default_process_handle();
503  // Check for Agent_OnLoad/Attach_lib_name function
504  save_handle = agent_lib->os_lib();
505  // We want to look in this process' symbol table.
506  agent_lib->set_os_lib(proc_handle);
507  ret = find_agent_function(agent_lib, true, syms, syms_len);
508  if (ret != NULL) {
509    // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
510    agent_lib->set_valid();
511    agent_lib->set_static_lib(true);
512    return true;
513  }
514  agent_lib->set_os_lib(save_handle);
515  return false;
516}
517
518// --------------------- heap allocation utilities ---------------------
519
520char *os::strdup(const char *str, MEMFLAGS flags) {
521  size_t size = strlen(str);
522  char *dup_str = (char *)malloc(size + 1, flags);
523  if (dup_str == NULL) return NULL;
524  strcpy(dup_str, str);
525  return dup_str;
526}
527
528char* os::strdup_check_oom(const char* str, MEMFLAGS flags) {
529  char* p = os::strdup(str, flags);
530  if (p == NULL) {
531    vm_exit_out_of_memory(strlen(str) + 1, OOM_MALLOC_ERROR, "os::strdup_check_oom");
532  }
533  return p;
534}
535
536
537#define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
538
539#ifdef ASSERT
540
541static void verify_memory(void* ptr) {
542  GuardedMemory guarded(ptr);
543  if (!guarded.verify_guards()) {
544    tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
545    tty->print_cr("## memory stomp:");
546    guarded.print_on(tty);
547    fatal("memory stomping error");
548  }
549}
550
551#endif
552
553//
554// This function supports testing of the malloc out of memory
555// condition without really running the system out of memory.
556//
557static bool has_reached_max_malloc_test_peak(size_t alloc_size) {
558  if (MallocMaxTestWords > 0) {
559    jint words = (jint)(alloc_size / BytesPerWord);
560
561    if ((cur_malloc_words + words) > MallocMaxTestWords) {
562      return true;
563    }
564    Atomic::add(words, (volatile jint *)&cur_malloc_words);
565  }
566  return false;
567}
568
569void* os::malloc(size_t size, MEMFLAGS flags) {
570  return os::malloc(size, flags, CALLER_PC);
571}
572
573void* os::malloc(size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
574  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
575  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
576
577#ifdef ASSERT
578  // checking for the WatcherThread and crash_protection first
579  // since os::malloc can be called when the libjvm.{dll,so} is
580  // first loaded and we don't have a thread yet.
581  // try to find the thread after we see that the watcher thread
582  // exists and has crash protection.
583  WatcherThread *wt = WatcherThread::watcher_thread();
584  if (wt != NULL && wt->has_crash_protection()) {
585    Thread* thread = Thread::current_or_null();
586    if (thread == wt) {
587      assert(!wt->has_crash_protection(),
588          "Can't malloc with crash protection from WatcherThread");
589    }
590  }
591#endif
592
593  if (size == 0) {
594    // return a valid pointer if size is zero
595    // if NULL is returned the calling functions assume out of memory.
596    size = 1;
597  }
598
599  // NMT support
600  NMT_TrackingLevel level = MemTracker::tracking_level();
601  size_t            nmt_header_size = MemTracker::malloc_header_size(level);
602
603#ifndef ASSERT
604  const size_t alloc_size = size + nmt_header_size;
605#else
606  const size_t alloc_size = GuardedMemory::get_total_size(size + nmt_header_size);
607  if (size + nmt_header_size > alloc_size) { // Check for rollover.
608    return NULL;
609  }
610#endif
611
612  // For the test flag -XX:MallocMaxTestWords
613  if (has_reached_max_malloc_test_peak(size)) {
614    return NULL;
615  }
616
617  u_char* ptr;
618  ptr = (u_char*)::malloc(alloc_size);
619
620#ifdef ASSERT
621  if (ptr == NULL) {
622    return NULL;
623  }
624  // Wrap memory with guard
625  GuardedMemory guarded(ptr, size + nmt_header_size);
626  ptr = guarded.get_user_ptr();
627#endif
628  if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
629    tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
630    breakpoint();
631  }
632  debug_only(if (paranoid) verify_memory(ptr));
633  if (PrintMalloc && tty != NULL) {
634    tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
635  }
636
637  // we do not track guard memory
638  return MemTracker::record_malloc((address)ptr, size, memflags, stack, level);
639}
640
641void* os::realloc(void *memblock, size_t size, MEMFLAGS flags) {
642  return os::realloc(memblock, size, flags, CALLER_PC);
643}
644
645void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
646
647  // For the test flag -XX:MallocMaxTestWords
648  if (has_reached_max_malloc_test_peak(size)) {
649    return NULL;
650  }
651
652#ifndef ASSERT
653  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
654  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
655   // NMT support
656  void* membase = MemTracker::record_free(memblock);
657  NMT_TrackingLevel level = MemTracker::tracking_level();
658  size_t  nmt_header_size = MemTracker::malloc_header_size(level);
659  void* ptr = ::realloc(membase, size + nmt_header_size);
660  return MemTracker::record_malloc(ptr, size, memflags, stack, level);
661#else
662  if (memblock == NULL) {
663    return os::malloc(size, memflags, stack);
664  }
665  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
666    tty->print_cr("os::realloc caught " PTR_FORMAT, p2i(memblock));
667    breakpoint();
668  }
669  // NMT support
670  void* membase = MemTracker::malloc_base(memblock);
671  verify_memory(membase);
672  if (size == 0) {
673    return NULL;
674  }
675  // always move the block
676  void* ptr = os::malloc(size, memflags, stack);
677  if (PrintMalloc && tty != NULL) {
678    tty->print_cr("os::realloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, p2i(memblock), p2i(ptr));
679  }
680  // Copy to new memory if malloc didn't fail
681  if ( ptr != NULL ) {
682    GuardedMemory guarded(MemTracker::malloc_base(memblock));
683    // Guard's user data contains NMT header
684    size_t memblock_size = guarded.get_user_size() - MemTracker::malloc_header_size(memblock);
685    memcpy(ptr, memblock, MIN2(size, memblock_size));
686    if (paranoid) verify_memory(MemTracker::malloc_base(ptr));
687    if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
688      tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
689      breakpoint();
690    }
691    os::free(memblock);
692  }
693  return ptr;
694#endif
695}
696
697
698void  os::free(void *memblock) {
699  NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
700#ifdef ASSERT
701  if (memblock == NULL) return;
702  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
703    if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, p2i(memblock));
704    breakpoint();
705  }
706  void* membase = MemTracker::record_free(memblock);
707  verify_memory(membase);
708
709  GuardedMemory guarded(membase);
710  size_t size = guarded.get_user_size();
711  inc_stat_counter(&free_bytes, size);
712  membase = guarded.release_for_freeing();
713  if (PrintMalloc && tty != NULL) {
714      fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)membase);
715  }
716  ::free(membase);
717#else
718  void* membase = MemTracker::record_free(memblock);
719  ::free(membase);
720#endif
721}
722
723void os::init_random(long initval) {
724  _rand_seed = initval;
725}
726
727
728long os::random() {
729  /* standard, well-known linear congruential random generator with
730   * next_rand = (16807*seed) mod (2**31-1)
731   * see
732   * (1) "Random Number Generators: Good Ones Are Hard to Find",
733   *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
734   * (2) "Two Fast Implementations of the 'Minimal Standard' Random
735   *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
736  */
737  const long a = 16807;
738  const unsigned long m = 2147483647;
739  const long q = m / a;        assert(q == 127773, "weird math");
740  const long r = m % a;        assert(r == 2836, "weird math");
741
742  // compute az=2^31p+q
743  unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
744  unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
745  lo += (hi & 0x7FFF) << 16;
746
747  // if q overflowed, ignore the overflow and increment q
748  if (lo > m) {
749    lo &= m;
750    ++lo;
751  }
752  lo += hi >> 15;
753
754  // if (p+q) overflowed, ignore the overflow and increment (p+q)
755  if (lo > m) {
756    lo &= m;
757    ++lo;
758  }
759  return (_rand_seed = lo);
760}
761
762// The INITIALIZED state is distinguished from the SUSPENDED state because the
763// conditions in which a thread is first started are different from those in which
764// a suspension is resumed.  These differences make it hard for us to apply the
765// tougher checks when starting threads that we want to do when resuming them.
766// However, when start_thread is called as a result of Thread.start, on a Java
767// thread, the operation is synchronized on the Java Thread object.  So there
768// cannot be a race to start the thread and hence for the thread to exit while
769// we are working on it.  Non-Java threads that start Java threads either have
770// to do so in a context in which races are impossible, or should do appropriate
771// locking.
772
773void os::start_thread(Thread* thread) {
774  // guard suspend/resume
775  MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
776  OSThread* osthread = thread->osthread();
777  osthread->set_state(RUNNABLE);
778  pd_start_thread(thread);
779}
780
781void os::abort(bool dump_core) {
782  abort(dump_core && CreateCoredumpOnCrash, NULL, NULL);
783}
784
785//---------------------------------------------------------------------------
786// Helper functions for fatal error handler
787
788void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
789  assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
790
791  int cols = 0;
792  int cols_per_line = 0;
793  switch (unitsize) {
794    case 1: cols_per_line = 16; break;
795    case 2: cols_per_line = 8;  break;
796    case 4: cols_per_line = 4;  break;
797    case 8: cols_per_line = 2;  break;
798    default: return;
799  }
800
801  address p = start;
802  st->print(PTR_FORMAT ":   ", p2i(start));
803  while (p < end) {
804    switch (unitsize) {
805      case 1: st->print("%02x", *(u1*)p); break;
806      case 2: st->print("%04x", *(u2*)p); break;
807      case 4: st->print("%08x", *(u4*)p); break;
808      case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
809    }
810    p += unitsize;
811    cols++;
812    if (cols >= cols_per_line && p < end) {
813       cols = 0;
814       st->cr();
815       st->print(PTR_FORMAT ":   ", p2i(p));
816    } else {
817       st->print(" ");
818    }
819  }
820  st->cr();
821}
822
823void os::print_environment_variables(outputStream* st, const char** env_list) {
824  if (env_list) {
825    st->print_cr("Environment Variables:");
826
827    for (int i = 0; env_list[i] != NULL; i++) {
828      char *envvar = ::getenv(env_list[i]);
829      if (envvar != NULL) {
830        st->print("%s", env_list[i]);
831        st->print("=");
832        st->print_cr("%s", envvar);
833      }
834    }
835  }
836}
837
838void os::print_cpu_info(outputStream* st, char* buf, size_t buflen) {
839  // cpu
840  st->print("CPU:");
841  st->print("total %d", os::processor_count());
842  // It's not safe to query number of active processors after crash
843  // st->print("(active %d)", os::active_processor_count()); but we can
844  // print the initial number of active processors.
845  // We access the raw value here because the assert in the accessor will
846  // fail if the crash occurs before initialization of this value.
847  st->print(" (initial active %d)", _initial_active_processor_count);
848  st->print(" %s", VM_Version::features_string());
849  st->cr();
850  pd_print_cpu_info(st, buf, buflen);
851}
852
853// Print a one line string summarizing the cpu, number of cores, memory, and operating system version
854void os::print_summary_info(outputStream* st, char* buf, size_t buflen) {
855  st->print("Host: ");
856#ifndef PRODUCT
857  if (get_host_name(buf, buflen)) {
858    st->print("%s, ", buf);
859  }
860#endif // PRODUCT
861  get_summary_cpu_info(buf, buflen);
862  st->print("%s, ", buf);
863  size_t mem = physical_memory()/G;
864  if (mem == 0) {  // for low memory systems
865    mem = physical_memory()/M;
866    st->print("%d cores, " SIZE_FORMAT "M, ", processor_count(), mem);
867  } else {
868    st->print("%d cores, " SIZE_FORMAT "G, ", processor_count(), mem);
869  }
870  get_summary_os_info(buf, buflen);
871  st->print_raw(buf);
872  st->cr();
873}
874
875void os::print_date_and_time(outputStream *st, char* buf, size_t buflen) {
876  const int secs_per_day  = 86400;
877  const int secs_per_hour = 3600;
878  const int secs_per_min  = 60;
879
880  time_t tloc;
881  (void)time(&tloc);
882  char* timestring = ctime(&tloc);  // ctime adds newline.
883  // edit out the newline
884  char* nl = strchr(timestring, '\n');
885  if (nl != NULL) {
886    *nl = '\0';
887  }
888
889  struct tm tz;
890  if (localtime_pd(&tloc, &tz) != NULL) {
891    ::strftime(buf, buflen, "%Z", &tz);
892    st->print("Time: %s %s", timestring, buf);
893  } else {
894    st->print("Time: %s", timestring);
895  }
896
897  double t = os::elapsedTime();
898  // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
899  //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
900  //       before printf. We lost some precision, but who cares?
901  int eltime = (int)t;  // elapsed time in seconds
902
903  // print elapsed time in a human-readable format:
904  int eldays = eltime / secs_per_day;
905  int day_secs = eldays * secs_per_day;
906  int elhours = (eltime - day_secs) / secs_per_hour;
907  int hour_secs = elhours * secs_per_hour;
908  int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
909  int minute_secs = elmins * secs_per_min;
910  int elsecs = (eltime - day_secs - hour_secs - minute_secs);
911  st->print_cr(" elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
912}
913
914// moved from debug.cpp (used to be find()) but still called from there
915// The verbose parameter is only set by the debug code in one case
916void os::print_location(outputStream* st, intptr_t x, bool verbose) {
917  address addr = (address)x;
918  CodeBlob* b = CodeCache::find_blob_unsafe(addr);
919  if (b != NULL) {
920    if (b->is_buffer_blob()) {
921      // the interpreter is generated into a buffer blob
922      InterpreterCodelet* i = Interpreter::codelet_containing(addr);
923      if (i != NULL) {
924        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", p2i(addr), (int)(addr - i->code_begin()));
925        i->print_on(st);
926        return;
927      }
928      if (Interpreter::contains(addr)) {
929        st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
930                     " (not bytecode specific)", p2i(addr));
931        return;
932      }
933      //
934      if (AdapterHandlerLibrary::contains(b)) {
935        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", p2i(addr), (int)(addr - b->code_begin()));
936        AdapterHandlerLibrary::print_handler_on(st, b);
937      }
938      // the stubroutines are generated into a buffer blob
939      StubCodeDesc* d = StubCodeDesc::desc_for(addr);
940      if (d != NULL) {
941        st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", p2i(addr), (int)(addr - d->begin()));
942        d->print_on(st);
943        st->cr();
944        return;
945      }
946      if (StubRoutines::contains(addr)) {
947        st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) stub routine", p2i(addr));
948        return;
949      }
950      // the InlineCacheBuffer is using stubs generated into a buffer blob
951      if (InlineCacheBuffer::contains(addr)) {
952        st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", p2i(addr));
953        return;
954      }
955      VtableStub* v = VtableStubs::stub_containing(addr);
956      if (v != NULL) {
957        st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", p2i(addr), (int)(addr - v->entry_point()));
958        v->print_on(st);
959        st->cr();
960        return;
961      }
962    }
963    nmethod* nm = b->as_nmethod_or_null();
964    if (nm != NULL) {
965      ResourceMark rm;
966      st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
967                p2i(addr), (int)(addr - nm->entry_point()), p2i(nm));
968      if (verbose) {
969        st->print(" for ");
970        nm->method()->print_value_on(st);
971      }
972      st->cr();
973      nm->print_nmethod(verbose);
974      return;
975    }
976    st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", p2i(addr), (int)(addr - b->code_begin()));
977    b->print_on(st);
978    return;
979  }
980
981  if (Universe::heap()->is_in(addr)) {
982    HeapWord* p = Universe::heap()->block_start(addr);
983    bool print = false;
984    // If we couldn't find it it just may mean that heap wasn't parsable
985    // See if we were just given an oop directly
986    if (p != NULL && Universe::heap()->block_is_obj(p)) {
987      print = true;
988    } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
989      p = (HeapWord*) addr;
990      print = true;
991    }
992    if (print) {
993      if (p == (HeapWord*) addr) {
994        st->print_cr(INTPTR_FORMAT " is an oop", p2i(addr));
995      } else {
996        st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, p2i(addr), p2i(p));
997      }
998      oop(p)->print_on(st);
999      return;
1000    }
1001  } else {
1002    if (Universe::heap()->is_in_reserved(addr)) {
1003      st->print_cr(INTPTR_FORMAT " is an unallocated location "
1004                   "in the heap", p2i(addr));
1005      return;
1006    }
1007  }
1008  if (JNIHandles::is_global_handle((jobject) addr)) {
1009    st->print_cr(INTPTR_FORMAT " is a global jni handle", p2i(addr));
1010    return;
1011  }
1012  if (JNIHandles::is_weak_global_handle((jobject) addr)) {
1013    st->print_cr(INTPTR_FORMAT " is a weak global jni handle", p2i(addr));
1014    return;
1015  }
1016#ifndef PRODUCT
1017  // we don't keep the block list in product mode
1018  if (JNIHandleBlock::any_contains((jobject) addr)) {
1019    st->print_cr(INTPTR_FORMAT " is a local jni handle", p2i(addr));
1020    return;
1021  }
1022#endif
1023
1024  for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
1025    // Check for privilege stack
1026    if (thread->privileged_stack_top() != NULL &&
1027        thread->privileged_stack_top()->contains(addr)) {
1028      st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
1029                   "for thread: " INTPTR_FORMAT, p2i(addr), p2i(thread));
1030      if (verbose) thread->print_on(st);
1031      return;
1032    }
1033    // If the addr is a java thread print information about that.
1034    if (addr == (address)thread) {
1035      if (verbose) {
1036        thread->print_on(st);
1037      } else {
1038        st->print_cr(INTPTR_FORMAT " is a thread", p2i(addr));
1039      }
1040      return;
1041    }
1042    // If the addr is in the stack region for this thread then report that
1043    // and print thread info
1044    if (thread->on_local_stack(addr)) {
1045      st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
1046                   INTPTR_FORMAT, p2i(addr), p2i(thread));
1047      if (verbose) thread->print_on(st);
1048      return;
1049    }
1050
1051  }
1052
1053  // Check if in metaspace and print types that have vptrs (only method now)
1054  if (Metaspace::contains(addr)) {
1055    if (Method::has_method_vptr((const void*)addr)) {
1056      ((Method*)addr)->print_value_on(st);
1057      st->cr();
1058    } else {
1059      // Use addr->print() from the debugger instead (not here)
1060      st->print_cr(INTPTR_FORMAT " is pointing into metadata", p2i(addr));
1061    }
1062    return;
1063  }
1064
1065  // Try an OS specific find
1066  if (os::find(addr, st)) {
1067    return;
1068  }
1069
1070  st->print_cr(INTPTR_FORMAT " is an unknown value", p2i(addr));
1071}
1072
1073// Looks like all platforms except IA64 can use the same function to check
1074// if C stack is walkable beyond current frame. The check for fp() is not
1075// necessary on Sparc, but it's harmless.
1076bool os::is_first_C_frame(frame* fr) {
1077#if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
1078  // On IA64 we have to check if the callers bsp is still valid
1079  // (i.e. within the register stack bounds).
1080  // Notice: this only works for threads created by the VM and only if
1081  // we walk the current stack!!! If we want to be able to walk
1082  // arbitrary other threads, we'll have to somehow store the thread
1083  // object in the frame.
1084  Thread *thread = Thread::current();
1085  if ((address)fr->fp() <=
1086      thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1087    // This check is a little hacky, because on Linux the first C
1088    // frame's ('start_thread') register stack frame starts at
1089    // "register_stack_base + 0x48" while on HPUX, the first C frame's
1090    // ('__pthread_bound_body') register stack frame seems to really
1091    // start at "register_stack_base".
1092    return true;
1093  } else {
1094    return false;
1095  }
1096#elif defined(IA64) && defined(_WIN32)
1097  return true;
1098#else
1099  // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1100  // Check usp first, because if that's bad the other accessors may fault
1101  // on some architectures.  Ditto ufp second, etc.
1102  uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1103  // sp on amd can be 32 bit aligned.
1104  uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1105
1106  uintptr_t usp    = (uintptr_t)fr->sp();
1107  if ((usp & sp_align_mask) != 0) return true;
1108
1109  uintptr_t ufp    = (uintptr_t)fr->fp();
1110  if ((ufp & fp_align_mask) != 0) return true;
1111
1112  uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1113  if ((old_sp & sp_align_mask) != 0) return true;
1114  if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1115
1116  uintptr_t old_fp = (uintptr_t)fr->link();
1117  if ((old_fp & fp_align_mask) != 0) return true;
1118  if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1119
1120  // stack grows downwards; if old_fp is below current fp or if the stack
1121  // frame is too large, either the stack is corrupted or fp is not saved
1122  // on stack (i.e. on x86, ebp may be used as general register). The stack
1123  // is not walkable beyond current frame.
1124  if (old_fp < ufp) return true;
1125  if (old_fp - ufp > 64 * K) return true;
1126
1127  return false;
1128#endif
1129}
1130
1131#ifdef ASSERT
1132extern "C" void test_random() {
1133  const double m = 2147483647;
1134  double mean = 0.0, variance = 0.0, t;
1135  long reps = 10000;
1136  unsigned long seed = 1;
1137
1138  tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1139  os::init_random(seed);
1140  long num;
1141  for (int k = 0; k < reps; k++) {
1142    num = os::random();
1143    double u = (double)num / m;
1144    assert(u >= 0.0 && u <= 1.0, "bad random number!");
1145
1146    // calculate mean and variance of the random sequence
1147    mean += u;
1148    variance += (u*u);
1149  }
1150  mean /= reps;
1151  variance /= (reps - 1);
1152
1153  assert(num == 1043618065, "bad seed");
1154  tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1155  tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1156  const double eps = 0.0001;
1157  t = fabsd(mean - 0.5018);
1158  assert(t < eps, "bad mean");
1159  t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1160  assert(t < eps, "bad variance");
1161}
1162#endif
1163
1164
1165// Set up the boot classpath.
1166
1167char* os::format_boot_path(const char* format_string,
1168                           const char* home,
1169                           int home_len,
1170                           char fileSep,
1171                           char pathSep) {
1172    assert((fileSep == '/' && pathSep == ':') ||
1173           (fileSep == '\\' && pathSep == ';'), "unexpected separator chars");
1174
1175    // Scan the format string to determine the length of the actual
1176    // boot classpath, and handle platform dependencies as well.
1177    int formatted_path_len = 0;
1178    const char* p;
1179    for (p = format_string; *p != 0; ++p) {
1180        if (*p == '%') formatted_path_len += home_len - 1;
1181        ++formatted_path_len;
1182    }
1183
1184    char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1185    if (formatted_path == NULL) {
1186        return NULL;
1187    }
1188
1189    // Create boot classpath from format, substituting separator chars and
1190    // java home directory.
1191    char* q = formatted_path;
1192    for (p = format_string; *p != 0; ++p) {
1193        switch (*p) {
1194        case '%':
1195            strcpy(q, home);
1196            q += home_len;
1197            break;
1198        case '/':
1199            *q++ = fileSep;
1200            break;
1201        case ':':
1202            *q++ = pathSep;
1203            break;
1204        default:
1205            *q++ = *p;
1206        }
1207    }
1208    *q = '\0';
1209
1210    assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1211    return formatted_path;
1212}
1213
1214bool os::set_boot_path(char fileSep, char pathSep) {
1215  const char* home = Arguments::get_java_home();
1216  int home_len = (int)strlen(home);
1217
1218  struct stat st;
1219
1220  // modular image if "modules" jimage exists
1221  char* jimage = format_boot_path("%/lib/" MODULES_IMAGE_NAME, home, home_len, fileSep, pathSep);
1222  if (jimage == NULL) return false;
1223  bool has_jimage = (os::stat(jimage, &st) == 0);
1224  if (has_jimage) {
1225    Arguments::set_sysclasspath(jimage, true);
1226    FREE_C_HEAP_ARRAY(char, jimage);
1227    return true;
1228  }
1229  FREE_C_HEAP_ARRAY(char, jimage);
1230
1231  // check if developer build with exploded modules
1232  char* base_classes = format_boot_path("%/modules/java.base", home, home_len, fileSep, pathSep);
1233  if (base_classes == NULL) return false;
1234  if (os::stat(base_classes, &st) == 0) {
1235    Arguments::set_sysclasspath(base_classes, false);
1236    FREE_C_HEAP_ARRAY(char, base_classes);
1237    return true;
1238  }
1239  FREE_C_HEAP_ARRAY(char, base_classes);
1240
1241  return false;
1242}
1243
1244/*
1245 * Splits a path, based on its separator, the number of
1246 * elements is returned back in n.
1247 * It is the callers responsibility to:
1248 *   a> check the value of n, and n may be 0.
1249 *   b> ignore any empty path elements
1250 *   c> free up the data.
1251 */
1252char** os::split_path(const char* path, int* n) {
1253  *n = 0;
1254  if (path == NULL || strlen(path) == 0) {
1255    return NULL;
1256  }
1257  const char psepchar = *os::path_separator();
1258  char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1259  if (inpath == NULL) {
1260    return NULL;
1261  }
1262  strcpy(inpath, path);
1263  int count = 1;
1264  char* p = strchr(inpath, psepchar);
1265  // Get a count of elements to allocate memory
1266  while (p != NULL) {
1267    count++;
1268    p++;
1269    p = strchr(p, psepchar);
1270  }
1271  char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1272  if (opath == NULL) {
1273    return NULL;
1274  }
1275
1276  // do the actual splitting
1277  p = inpath;
1278  for (int i = 0 ; i < count ; i++) {
1279    size_t len = strcspn(p, os::path_separator());
1280    if (len > JVM_MAXPATHLEN) {
1281      return NULL;
1282    }
1283    // allocate the string and add terminator storage
1284    char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1285    if (s == NULL) {
1286      return NULL;
1287    }
1288    strncpy(s, p, len);
1289    s[len] = '\0';
1290    opath[i] = s;
1291    p += len + 1;
1292  }
1293  FREE_C_HEAP_ARRAY(char, inpath);
1294  *n = count;
1295  return opath;
1296}
1297
1298void os::set_memory_serialize_page(address page) {
1299  int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1300  _mem_serialize_page = (volatile int32_t *)page;
1301  // We initialize the serialization page shift count here
1302  // We assume a cache line size of 64 bytes
1303  assert(SerializePageShiftCount == count, "JavaThread size changed; "
1304         "SerializePageShiftCount constant should be %d", count);
1305  set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1306}
1307
1308static volatile intptr_t SerializePageLock = 0;
1309
1310// This method is called from signal handler when SIGSEGV occurs while the current
1311// thread tries to store to the "read-only" memory serialize page during state
1312// transition.
1313void os::block_on_serialize_page_trap() {
1314  log_debug(safepoint)("Block until the serialize page permission restored");
1315
1316  // When VMThread is holding the SerializePageLock during modifying the
1317  // access permission of the memory serialize page, the following call
1318  // will block until the permission of that page is restored to rw.
1319  // Generally, it is unsafe to manipulate locks in signal handlers, but in
1320  // this case, it's OK as the signal is synchronous and we know precisely when
1321  // it can occur.
1322  Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1323  Thread::muxRelease(&SerializePageLock);
1324}
1325
1326// Serialize all thread state variables
1327void os::serialize_thread_states() {
1328  // On some platforms such as Solaris & Linux, the time duration of the page
1329  // permission restoration is observed to be much longer than expected  due to
1330  // scheduler starvation problem etc. To avoid the long synchronization
1331  // time and expensive page trap spinning, 'SerializePageLock' is used to block
1332  // the mutator thread if such case is encountered. See bug 6546278 for details.
1333  Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1334  os::protect_memory((char *)os::get_memory_serialize_page(),
1335                     os::vm_page_size(), MEM_PROT_READ);
1336  os::protect_memory((char *)os::get_memory_serialize_page(),
1337                     os::vm_page_size(), MEM_PROT_RW);
1338  Thread::muxRelease(&SerializePageLock);
1339}
1340
1341// Returns true if the current stack pointer is above the stack shadow
1342// pages, false otherwise.
1343bool os::stack_shadow_pages_available(Thread *thread, const methodHandle& method, address sp) {
1344  if (!thread->is_Java_thread()) return false;
1345  // Check if we have StackShadowPages above the yellow zone.  This parameter
1346  // is dependent on the depth of the maximum VM call stack possible from
1347  // the handler for stack overflow.  'instanceof' in the stack overflow
1348  // handler or a println uses at least 8k stack of VM and native code
1349  // respectively.
1350  const int framesize_in_bytes =
1351    Interpreter::size_top_interpreter_activation(method()) * wordSize;
1352
1353  address limit = ((JavaThread*)thread)->stack_end() +
1354                  (JavaThread::stack_guard_zone_size() + JavaThread::stack_shadow_zone_size());
1355
1356  return sp > (limit + framesize_in_bytes);
1357}
1358
1359size_t os::page_size_for_region(size_t region_size, size_t min_pages, bool must_be_aligned) {
1360  assert(min_pages > 0, "sanity");
1361  if (UseLargePages) {
1362    const size_t max_page_size = region_size / min_pages;
1363
1364    for (size_t i = 0; _page_sizes[i] != 0; ++i) {
1365      const size_t page_size = _page_sizes[i];
1366      if (page_size <= max_page_size) {
1367        if (!must_be_aligned || is_size_aligned(region_size, page_size)) {
1368          return page_size;
1369        }
1370      }
1371    }
1372  }
1373
1374  return vm_page_size();
1375}
1376
1377size_t os::page_size_for_region_aligned(size_t region_size, size_t min_pages) {
1378  return page_size_for_region(region_size, min_pages, true);
1379}
1380
1381size_t os::page_size_for_region_unaligned(size_t region_size, size_t min_pages) {
1382  return page_size_for_region(region_size, min_pages, false);
1383}
1384
1385static const char* errno_to_string (int e, bool short_text) {
1386  #define ALL_SHARED_ENUMS(X) \
1387    X(E2BIG, "Argument list too long") \
1388    X(EACCES, "Permission denied") \
1389    X(EADDRINUSE, "Address in use") \
1390    X(EADDRNOTAVAIL, "Address not available") \
1391    X(EAFNOSUPPORT, "Address family not supported") \
1392    X(EAGAIN, "Resource unavailable, try again") \
1393    X(EALREADY, "Connection already in progress") \
1394    X(EBADF, "Bad file descriptor") \
1395    X(EBADMSG, "Bad message") \
1396    X(EBUSY, "Device or resource busy") \
1397    X(ECANCELED, "Operation canceled") \
1398    X(ECHILD, "No child processes") \
1399    X(ECONNABORTED, "Connection aborted") \
1400    X(ECONNREFUSED, "Connection refused") \
1401    X(ECONNRESET, "Connection reset") \
1402    X(EDEADLK, "Resource deadlock would occur") \
1403    X(EDESTADDRREQ, "Destination address required") \
1404    X(EDOM, "Mathematics argument out of domain of function") \
1405    X(EEXIST, "File exists") \
1406    X(EFAULT, "Bad address") \
1407    X(EFBIG, "File too large") \
1408    X(EHOSTUNREACH, "Host is unreachable") \
1409    X(EIDRM, "Identifier removed") \
1410    X(EILSEQ, "Illegal byte sequence") \
1411    X(EINPROGRESS, "Operation in progress") \
1412    X(EINTR, "Interrupted function") \
1413    X(EINVAL, "Invalid argument") \
1414    X(EIO, "I/O error") \
1415    X(EISCONN, "Socket is connected") \
1416    X(EISDIR, "Is a directory") \
1417    X(ELOOP, "Too many levels of symbolic links") \
1418    X(EMFILE, "Too many open files") \
1419    X(EMLINK, "Too many links") \
1420    X(EMSGSIZE, "Message too large") \
1421    X(ENAMETOOLONG, "Filename too long") \
1422    X(ENETDOWN, "Network is down") \
1423    X(ENETRESET, "Connection aborted by network") \
1424    X(ENETUNREACH, "Network unreachable") \
1425    X(ENFILE, "Too many files open in system") \
1426    X(ENOBUFS, "No buffer space available") \
1427    X(ENODATA, "No message is available on the STREAM head read queue") \
1428    X(ENODEV, "No such device") \
1429    X(ENOENT, "No such file or directory") \
1430    X(ENOEXEC, "Executable file format error") \
1431    X(ENOLCK, "No locks available") \
1432    X(ENOLINK, "Reserved") \
1433    X(ENOMEM, "Not enough space") \
1434    X(ENOMSG, "No message of the desired type") \
1435    X(ENOPROTOOPT, "Protocol not available") \
1436    X(ENOSPC, "No space left on device") \
1437    X(ENOSR, "No STREAM resources") \
1438    X(ENOSTR, "Not a STREAM") \
1439    X(ENOSYS, "Function not supported") \
1440    X(ENOTCONN, "The socket is not connected") \
1441    X(ENOTDIR, "Not a directory") \
1442    X(ENOTEMPTY, "Directory not empty") \
1443    X(ENOTSOCK, "Not a socket") \
1444    X(ENOTSUP, "Not supported") \
1445    X(ENOTTY, "Inappropriate I/O control operation") \
1446    X(ENXIO, "No such device or address") \
1447    X(EOPNOTSUPP, "Operation not supported on socket") \
1448    X(EOVERFLOW, "Value too large to be stored in data type") \
1449    X(EPERM, "Operation not permitted") \
1450    X(EPIPE, "Broken pipe") \
1451    X(EPROTO, "Protocol error") \
1452    X(EPROTONOSUPPORT, "Protocol not supported") \
1453    X(EPROTOTYPE, "Protocol wrong type for socket") \
1454    X(ERANGE, "Result too large") \
1455    X(EROFS, "Read-only file system") \
1456    X(ESPIPE, "Invalid seek") \
1457    X(ESRCH, "No such process") \
1458    X(ETIME, "Stream ioctl() timeout") \
1459    X(ETIMEDOUT, "Connection timed out") \
1460    X(ETXTBSY, "Text file busy") \
1461    X(EWOULDBLOCK, "Operation would block") \
1462    X(EXDEV, "Cross-device link")
1463
1464  #define DEFINE_ENTRY(e, text) { e, #e, text },
1465
1466  static const struct {
1467    int v;
1468    const char* short_text;
1469    const char* long_text;
1470  } table [] = {
1471
1472    ALL_SHARED_ENUMS(DEFINE_ENTRY)
1473
1474    // The following enums are not defined on all platforms.
1475    #ifdef ESTALE
1476    DEFINE_ENTRY(ESTALE, "Reserved")
1477    #endif
1478    #ifdef EDQUOT
1479    DEFINE_ENTRY(EDQUOT, "Reserved")
1480    #endif
1481    #ifdef EMULTIHOP
1482    DEFINE_ENTRY(EMULTIHOP, "Reserved")
1483    #endif
1484
1485    // End marker.
1486    { -1, "Unknown errno", "Unknown error" }
1487
1488  };
1489
1490  #undef DEFINE_ENTRY
1491  #undef ALL_FLAGS
1492
1493  int i = 0;
1494  while (table[i].v != -1 && table[i].v != e) {
1495    i ++;
1496  }
1497
1498  return short_text ? table[i].short_text : table[i].long_text;
1499
1500}
1501
1502const char* os::strerror(int e) {
1503  return errno_to_string(e, false);
1504}
1505
1506const char* os::errno_name(int e) {
1507  return errno_to_string(e, true);
1508}
1509
1510void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count) {
1511  LogTarget(Info, pagesize) log;
1512  if (log.is_enabled()) {
1513    LogStreamCHeap out(log);
1514
1515    out.print("%s: ", str);
1516    for (int i = 0; i < count; ++i) {
1517      out.print(" " SIZE_FORMAT, page_sizes[i]);
1518    }
1519    out.cr();
1520  }
1521}
1522
1523#define trace_page_size_params(size) byte_size_in_exact_unit(size), exact_unit_for_byte_size(size)
1524
1525void os::trace_page_sizes(const char* str,
1526                          const size_t region_min_size,
1527                          const size_t region_max_size,
1528                          const size_t page_size,
1529                          const char* base,
1530                          const size_t size) {
1531
1532  log_info(pagesize)("%s: "
1533                     " min=" SIZE_FORMAT "%s"
1534                     " max=" SIZE_FORMAT "%s"
1535                     " base=" PTR_FORMAT
1536                     " page_size=" SIZE_FORMAT "%s"
1537                     " size=" SIZE_FORMAT "%s",
1538                     str,
1539                     trace_page_size_params(region_min_size),
1540                     trace_page_size_params(region_max_size),
1541                     p2i(base),
1542                     trace_page_size_params(page_size),
1543                     trace_page_size_params(size));
1544}
1545
1546void os::trace_page_sizes_for_requested_size(const char* str,
1547                                             const size_t requested_size,
1548                                             const size_t page_size,
1549                                             const size_t alignment,
1550                                             const char* base,
1551                                             const size_t size) {
1552
1553  log_info(pagesize)("%s:"
1554                     " req_size=" SIZE_FORMAT "%s"
1555                     " base=" PTR_FORMAT
1556                     " page_size=" SIZE_FORMAT "%s"
1557                     " alignment=" SIZE_FORMAT "%s"
1558                     " size=" SIZE_FORMAT "%s",
1559                     str,
1560                     trace_page_size_params(requested_size),
1561                     p2i(base),
1562                     trace_page_size_params(page_size),
1563                     trace_page_size_params(alignment),
1564                     trace_page_size_params(size));
1565}
1566
1567
1568// This is the working definition of a server class machine:
1569// >= 2 physical CPU's and >=2GB of memory, with some fuzz
1570// because the graphics memory (?) sometimes masks physical memory.
1571// If you want to change the definition of a server class machine
1572// on some OS or platform, e.g., >=4GB on Windows platforms,
1573// then you'll have to parameterize this method based on that state,
1574// as was done for logical processors here, or replicate and
1575// specialize this method for each platform.  (Or fix os to have
1576// some inheritance structure and use subclassing.  Sigh.)
1577// If you want some platform to always or never behave as a server
1578// class machine, change the setting of AlwaysActAsServerClassMachine
1579// and NeverActAsServerClassMachine in globals*.hpp.
1580bool os::is_server_class_machine() {
1581  // First check for the early returns
1582  if (NeverActAsServerClassMachine) {
1583    return false;
1584  }
1585  if (AlwaysActAsServerClassMachine) {
1586    return true;
1587  }
1588  // Then actually look at the machine
1589  bool         result            = false;
1590  const unsigned int    server_processors = 2;
1591  const julong server_memory     = 2UL * G;
1592  // We seem not to get our full complement of memory.
1593  //     We allow some part (1/8?) of the memory to be "missing",
1594  //     based on the sizes of DIMMs, and maybe graphics cards.
1595  const julong missing_memory   = 256UL * M;
1596
1597  /* Is this a server class machine? */
1598  if ((os::active_processor_count() >= (int)server_processors) &&
1599      (os::physical_memory() >= (server_memory - missing_memory))) {
1600    const unsigned int logical_processors =
1601      VM_Version::logical_processors_per_package();
1602    if (logical_processors > 1) {
1603      const unsigned int physical_packages =
1604        os::active_processor_count() / logical_processors;
1605      if (physical_packages >= server_processors) {
1606        result = true;
1607      }
1608    } else {
1609      result = true;
1610    }
1611  }
1612  return result;
1613}
1614
1615void os::initialize_initial_active_processor_count() {
1616  assert(_initial_active_processor_count == 0, "Initial active processor count already set.");
1617  _initial_active_processor_count = active_processor_count();
1618  log_debug(os)("Initial active processor count set to %d" , _initial_active_processor_count);
1619}
1620
1621void os::SuspendedThreadTask::run() {
1622  assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1623  internal_do_task();
1624  _done = true;
1625}
1626
1627bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1628  return os::pd_create_stack_guard_pages(addr, bytes);
1629}
1630
1631char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1632  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1633  if (result != NULL) {
1634    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1635  }
1636
1637  return result;
1638}
1639
1640char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1641   MEMFLAGS flags) {
1642  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1643  if (result != NULL) {
1644    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1645    MemTracker::record_virtual_memory_type((address)result, flags);
1646  }
1647
1648  return result;
1649}
1650
1651char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1652  char* result = pd_attempt_reserve_memory_at(bytes, addr);
1653  if (result != NULL) {
1654    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1655  }
1656  return result;
1657}
1658
1659void os::split_reserved_memory(char *base, size_t size,
1660                                 size_t split, bool realloc) {
1661  pd_split_reserved_memory(base, size, split, realloc);
1662}
1663
1664bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1665  bool res = pd_commit_memory(addr, bytes, executable);
1666  if (res) {
1667    MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1668  }
1669  return res;
1670}
1671
1672bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1673                              bool executable) {
1674  bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1675  if (res) {
1676    MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1677  }
1678  return res;
1679}
1680
1681void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1682                               const char* mesg) {
1683  pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1684  MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1685}
1686
1687void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1688                               bool executable, const char* mesg) {
1689  os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1690  MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1691}
1692
1693bool os::uncommit_memory(char* addr, size_t bytes) {
1694  bool res;
1695  if (MemTracker::tracking_level() > NMT_minimal) {
1696    Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
1697    res = pd_uncommit_memory(addr, bytes);
1698    if (res) {
1699      tkr.record((address)addr, bytes);
1700    }
1701  } else {
1702    res = pd_uncommit_memory(addr, bytes);
1703  }
1704  return res;
1705}
1706
1707bool os::release_memory(char* addr, size_t bytes) {
1708  bool res;
1709  if (MemTracker::tracking_level() > NMT_minimal) {
1710    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1711    res = pd_release_memory(addr, bytes);
1712    if (res) {
1713      tkr.record((address)addr, bytes);
1714    }
1715  } else {
1716    res = pd_release_memory(addr, bytes);
1717  }
1718  return res;
1719}
1720
1721void os::pretouch_memory(void* start, void* end, size_t page_size) {
1722  for (volatile char *p = (char*)start; p < (char*)end; p += page_size) {
1723    *p = 0;
1724  }
1725}
1726
1727char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1728                           char *addr, size_t bytes, bool read_only,
1729                           bool allow_exec) {
1730  char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1731  if (result != NULL) {
1732    MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
1733  }
1734  return result;
1735}
1736
1737char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1738                             char *addr, size_t bytes, bool read_only,
1739                             bool allow_exec) {
1740  return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1741                    read_only, allow_exec);
1742}
1743
1744bool os::unmap_memory(char *addr, size_t bytes) {
1745  bool result;
1746  if (MemTracker::tracking_level() > NMT_minimal) {
1747    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1748    result = pd_unmap_memory(addr, bytes);
1749    if (result) {
1750      tkr.record((address)addr, bytes);
1751    }
1752  } else {
1753    result = pd_unmap_memory(addr, bytes);
1754  }
1755  return result;
1756}
1757
1758void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1759  pd_free_memory(addr, bytes, alignment_hint);
1760}
1761
1762void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1763  pd_realign_memory(addr, bytes, alignment_hint);
1764}
1765
1766#ifndef _WINDOWS
1767/* try to switch state from state "from" to state "to"
1768 * returns the state set after the method is complete
1769 */
1770os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1771                                                         os::SuspendResume::State to)
1772{
1773  os::SuspendResume::State result =
1774    (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1775  if (result == from) {
1776    // success
1777    return to;
1778  }
1779  return result;
1780}
1781#endif
1782