os.cpp revision 11869:03762a0cf7e1
1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "gc/shared/vmGCOperations.hpp"
34#include "interpreter/interpreter.hpp"
35#include "logging/log.hpp"
36#include "logging/logStream.inline.hpp"
37#include "memory/allocation.inline.hpp"
38#ifdef ASSERT
39#include "memory/guardedMemory.hpp"
40#endif
41#include "memory/resourceArea.hpp"
42#include "oops/oop.inline.hpp"
43#include "prims/jvm.h"
44#include "prims/jvm_misc.hpp"
45#include "prims/privilegedStack.hpp"
46#include "runtime/arguments.hpp"
47#include "runtime/atomic.hpp"
48#include "runtime/frame.inline.hpp"
49#include "runtime/interfaceSupport.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/os.inline.hpp"
54#include "runtime/stubRoutines.hpp"
55#include "runtime/thread.inline.hpp"
56#include "runtime/vm_version.hpp"
57#include "services/attachListener.hpp"
58#include "services/mallocTracker.hpp"
59#include "services/memTracker.hpp"
60#include "services/nmtCommon.hpp"
61#include "services/threadService.hpp"
62#include "utilities/defaultStream.hpp"
63#include "utilities/events.hpp"
64
65# include <signal.h>
66# include <errno.h>
67
68OSThread*         os::_starting_thread    = NULL;
69address           os::_polling_page       = NULL;
70volatile int32_t* os::_mem_serialize_page = NULL;
71uintptr_t         os::_serialize_page_mask = 0;
72long              os::_rand_seed          = 1;
73int               os::_processor_count    = 0;
74int               os::_initial_active_processor_count = 0;
75size_t            os::_page_sizes[os::page_sizes_max];
76
77#ifndef PRODUCT
78julong os::num_mallocs = 0;         // # of calls to malloc/realloc
79julong os::alloc_bytes = 0;         // # of bytes allocated
80julong os::num_frees = 0;           // # of calls to free
81julong os::free_bytes = 0;          // # of bytes freed
82#endif
83
84static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
85
86void os_init_globals() {
87  // Called from init_globals().
88  // See Threads::create_vm() in thread.cpp, and init.cpp.
89  os::init_globals();
90}
91
92// Fill in buffer with current local time as an ISO-8601 string.
93// E.g., yyyy-mm-ddThh:mm:ss-zzzz.
94// Returns buffer, or NULL if it failed.
95// This would mostly be a call to
96//     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
97// except that on Windows the %z behaves badly, so we do it ourselves.
98// Also, people wanted milliseconds on there,
99// and strftime doesn't do milliseconds.
100char* os::iso8601_time(char* buffer, size_t buffer_length) {
101  // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
102  //                                      1         2
103  //                             12345678901234567890123456789
104  // format string: "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d"
105  static const size_t needed_buffer = 29;
106
107  // Sanity check the arguments
108  if (buffer == NULL) {
109    assert(false, "NULL buffer");
110    return NULL;
111  }
112  if (buffer_length < needed_buffer) {
113    assert(false, "buffer_length too small");
114    return NULL;
115  }
116  // Get the current time
117  jlong milliseconds_since_19700101 = javaTimeMillis();
118  const int milliseconds_per_microsecond = 1000;
119  const time_t seconds_since_19700101 =
120    milliseconds_since_19700101 / milliseconds_per_microsecond;
121  const int milliseconds_after_second =
122    milliseconds_since_19700101 % milliseconds_per_microsecond;
123  // Convert the time value to a tm and timezone variable
124  struct tm time_struct;
125  if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
126    assert(false, "Failed localtime_pd");
127    return NULL;
128  }
129#if defined(_ALLBSD_SOURCE)
130  const time_t zone = (time_t) time_struct.tm_gmtoff;
131#else
132  const time_t zone = timezone;
133#endif
134
135  // If daylight savings time is in effect,
136  // we are 1 hour East of our time zone
137  const time_t seconds_per_minute = 60;
138  const time_t minutes_per_hour = 60;
139  const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
140  time_t UTC_to_local = zone;
141  if (time_struct.tm_isdst > 0) {
142    UTC_to_local = UTC_to_local - seconds_per_hour;
143  }
144  // Compute the time zone offset.
145  //    localtime_pd() sets timezone to the difference (in seconds)
146  //    between UTC and and local time.
147  //    ISO 8601 says we need the difference between local time and UTC,
148  //    we change the sign of the localtime_pd() result.
149  const time_t local_to_UTC = -(UTC_to_local);
150  // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
151  char sign_local_to_UTC = '+';
152  time_t abs_local_to_UTC = local_to_UTC;
153  if (local_to_UTC < 0) {
154    sign_local_to_UTC = '-';
155    abs_local_to_UTC = -(abs_local_to_UTC);
156  }
157  // Convert time zone offset seconds to hours and minutes.
158  const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
159  const time_t zone_min =
160    ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
161
162  // Print an ISO 8601 date and time stamp into the buffer
163  const int year = 1900 + time_struct.tm_year;
164  const int month = 1 + time_struct.tm_mon;
165  const int printed = jio_snprintf(buffer, buffer_length,
166                                   "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d",
167                                   year,
168                                   month,
169                                   time_struct.tm_mday,
170                                   time_struct.tm_hour,
171                                   time_struct.tm_min,
172                                   time_struct.tm_sec,
173                                   milliseconds_after_second,
174                                   sign_local_to_UTC,
175                                   zone_hours,
176                                   zone_min);
177  if (printed == 0) {
178    assert(false, "Failed jio_printf");
179    return NULL;
180  }
181  return buffer;
182}
183
184OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
185#ifdef ASSERT
186  if (!(!thread->is_Java_thread() ||
187         Thread::current() == thread  ||
188         Threads_lock->owned_by_self()
189         || thread->is_Compiler_thread()
190        )) {
191    assert(false, "possibility of dangling Thread pointer");
192  }
193#endif
194
195  if (p >= MinPriority && p <= MaxPriority) {
196    int priority = java_to_os_priority[p];
197    return set_native_priority(thread, priority);
198  } else {
199    assert(false, "Should not happen");
200    return OS_ERR;
201  }
202}
203
204// The mapping from OS priority back to Java priority may be inexact because
205// Java priorities can map M:1 with native priorities. If you want the definite
206// Java priority then use JavaThread::java_priority()
207OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
208  int p;
209  int os_prio;
210  OSReturn ret = get_native_priority(thread, &os_prio);
211  if (ret != OS_OK) return ret;
212
213  if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
214    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
215  } else {
216    // niceness values are in reverse order
217    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
218  }
219  priority = (ThreadPriority)p;
220  return OS_OK;
221}
222
223
224// --------------------- sun.misc.Signal (optional) ---------------------
225
226
227// SIGBREAK is sent by the keyboard to query the VM state
228#ifndef SIGBREAK
229#define SIGBREAK SIGQUIT
230#endif
231
232// sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
233
234
235static void signal_thread_entry(JavaThread* thread, TRAPS) {
236  os::set_priority(thread, NearMaxPriority);
237  while (true) {
238    int sig;
239    {
240      // FIXME : Currently we have not decided what should be the status
241      //         for this java thread blocked here. Once we decide about
242      //         that we should fix this.
243      sig = os::signal_wait();
244    }
245    if (sig == os::sigexitnum_pd()) {
246       // Terminate the signal thread
247       return;
248    }
249
250    switch (sig) {
251      case SIGBREAK: {
252        // Check if the signal is a trigger to start the Attach Listener - in that
253        // case don't print stack traces.
254        if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
255          continue;
256        }
257        // Print stack traces
258        // Any SIGBREAK operations added here should make sure to flush
259        // the output stream (e.g. tty->flush()) after output.  See 4803766.
260        // Each module also prints an extra carriage return after its output.
261        VM_PrintThreads op;
262        VMThread::execute(&op);
263        VM_PrintJNI jni_op;
264        VMThread::execute(&jni_op);
265        VM_FindDeadlocks op1(tty);
266        VMThread::execute(&op1);
267        Universe::print_heap_at_SIGBREAK();
268        if (PrintClassHistogram) {
269          VM_GC_HeapInspection op1(tty, true /* force full GC before heap inspection */);
270          VMThread::execute(&op1);
271        }
272        if (JvmtiExport::should_post_data_dump()) {
273          JvmtiExport::post_data_dump();
274        }
275        break;
276      }
277      default: {
278        // Dispatch the signal to java
279        HandleMark hm(THREAD);
280        Klass* k = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_misc_Signal(), THREAD);
281        KlassHandle klass (THREAD, k);
282        if (klass.not_null()) {
283          JavaValue result(T_VOID);
284          JavaCallArguments args;
285          args.push_int(sig);
286          JavaCalls::call_static(
287            &result,
288            klass,
289            vmSymbols::dispatch_name(),
290            vmSymbols::int_void_signature(),
291            &args,
292            THREAD
293          );
294        }
295        if (HAS_PENDING_EXCEPTION) {
296          // tty is initialized early so we don't expect it to be null, but
297          // if it is we can't risk doing an initialization that might
298          // trigger additional out-of-memory conditions
299          if (tty != NULL) {
300            char klass_name[256];
301            char tmp_sig_name[16];
302            const char* sig_name = "UNKNOWN";
303            InstanceKlass::cast(PENDING_EXCEPTION->klass())->
304              name()->as_klass_external_name(klass_name, 256);
305            if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
306              sig_name = tmp_sig_name;
307            warning("Exception %s occurred dispatching signal %s to handler"
308                    "- the VM may need to be forcibly terminated",
309                    klass_name, sig_name );
310          }
311          CLEAR_PENDING_EXCEPTION;
312        }
313      }
314    }
315  }
316}
317
318void os::init_before_ergo() {
319  initialize_initial_active_processor_count();
320  // We need to initialize large page support here because ergonomics takes some
321  // decisions depending on large page support and the calculated large page size.
322  large_page_init();
323
324  // We need to adapt the configured number of stack protection pages given
325  // in 4K pages to the actual os page size. We must do this before setting
326  // up minimal stack sizes etc. in os::init_2().
327  JavaThread::set_stack_red_zone_size     (align_size_up(StackRedPages      * 4 * K, vm_page_size()));
328  JavaThread::set_stack_yellow_zone_size  (align_size_up(StackYellowPages   * 4 * K, vm_page_size()));
329  JavaThread::set_stack_reserved_zone_size(align_size_up(StackReservedPages * 4 * K, vm_page_size()));
330  JavaThread::set_stack_shadow_zone_size  (align_size_up(StackShadowPages   * 4 * K, vm_page_size()));
331
332  // VM version initialization identifies some characteristics of the
333  // platform that are used during ergonomic decisions.
334  VM_Version::init_before_ergo();
335}
336
337void os::signal_init() {
338  if (!ReduceSignalUsage) {
339    // Setup JavaThread for processing signals
340    EXCEPTION_MARK;
341    Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
342    instanceKlassHandle klass (THREAD, k);
343    instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
344
345    const char thread_name[] = "Signal Dispatcher";
346    Handle string = java_lang_String::create_from_str(thread_name, CHECK);
347
348    // Initialize thread_oop to put it into the system threadGroup
349    Handle thread_group (THREAD, Universe::system_thread_group());
350    JavaValue result(T_VOID);
351    JavaCalls::call_special(&result, thread_oop,
352                           klass,
353                           vmSymbols::object_initializer_name(),
354                           vmSymbols::threadgroup_string_void_signature(),
355                           thread_group,
356                           string,
357                           CHECK);
358
359    KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
360    JavaCalls::call_special(&result,
361                            thread_group,
362                            group,
363                            vmSymbols::add_method_name(),
364                            vmSymbols::thread_void_signature(),
365                            thread_oop,         // ARG 1
366                            CHECK);
367
368    os::signal_init_pd();
369
370    { MutexLocker mu(Threads_lock);
371      JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
372
373      // At this point it may be possible that no osthread was created for the
374      // JavaThread due to lack of memory. We would have to throw an exception
375      // in that case. However, since this must work and we do not allow
376      // exceptions anyway, check and abort if this fails.
377      if (signal_thread == NULL || signal_thread->osthread() == NULL) {
378        vm_exit_during_initialization("java.lang.OutOfMemoryError",
379                                      os::native_thread_creation_failed_msg());
380      }
381
382      java_lang_Thread::set_thread(thread_oop(), signal_thread);
383      java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
384      java_lang_Thread::set_daemon(thread_oop());
385
386      signal_thread->set_threadObj(thread_oop());
387      Threads::add(signal_thread);
388      Thread::start(signal_thread);
389    }
390    // Handle ^BREAK
391    os::signal(SIGBREAK, os::user_handler());
392  }
393}
394
395
396void os::terminate_signal_thread() {
397  if (!ReduceSignalUsage)
398    signal_notify(sigexitnum_pd());
399}
400
401
402// --------------------- loading libraries ---------------------
403
404typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
405extern struct JavaVM_ main_vm;
406
407static void* _native_java_library = NULL;
408
409void* os::native_java_library() {
410  if (_native_java_library == NULL) {
411    char buffer[JVM_MAXPATHLEN];
412    char ebuf[1024];
413
414    // Try to load verify dll first. In 1.3 java dll depends on it and is not
415    // always able to find it when the loading executable is outside the JDK.
416    // In order to keep working with 1.2 we ignore any loading errors.
417    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
418                       "verify")) {
419      dll_load(buffer, ebuf, sizeof(ebuf));
420    }
421
422    // Load java dll
423    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
424                       "java")) {
425      _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
426    }
427    if (_native_java_library == NULL) {
428      vm_exit_during_initialization("Unable to load native library", ebuf);
429    }
430
431#if defined(__OpenBSD__)
432    // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
433    // ignore errors
434    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
435                       "net")) {
436      dll_load(buffer, ebuf, sizeof(ebuf));
437    }
438#endif
439  }
440  return _native_java_library;
441}
442
443/*
444 * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
445 * If check_lib == true then we are looking for an
446 * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
447 * this library is statically linked into the image.
448 * If check_lib == false then we will look for the appropriate symbol in the
449 * executable if agent_lib->is_static_lib() == true or in the shared library
450 * referenced by 'handle'.
451 */
452void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
453                              const char *syms[], size_t syms_len) {
454  assert(agent_lib != NULL, "sanity check");
455  const char *lib_name;
456  void *handle = agent_lib->os_lib();
457  void *entryName = NULL;
458  char *agent_function_name;
459  size_t i;
460
461  // If checking then use the agent name otherwise test is_static_lib() to
462  // see how to process this lookup
463  lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
464  for (i = 0; i < syms_len; i++) {
465    agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
466    if (agent_function_name == NULL) {
467      break;
468    }
469    entryName = dll_lookup(handle, agent_function_name);
470    FREE_C_HEAP_ARRAY(char, agent_function_name);
471    if (entryName != NULL) {
472      break;
473    }
474  }
475  return entryName;
476}
477
478// See if the passed in agent is statically linked into the VM image.
479bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
480                            size_t syms_len) {
481  void *ret;
482  void *proc_handle;
483  void *save_handle;
484
485  assert(agent_lib != NULL, "sanity check");
486  if (agent_lib->name() == NULL) {
487    return false;
488  }
489  proc_handle = get_default_process_handle();
490  // Check for Agent_OnLoad/Attach_lib_name function
491  save_handle = agent_lib->os_lib();
492  // We want to look in this process' symbol table.
493  agent_lib->set_os_lib(proc_handle);
494  ret = find_agent_function(agent_lib, true, syms, syms_len);
495  if (ret != NULL) {
496    // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
497    agent_lib->set_valid();
498    agent_lib->set_static_lib(true);
499    return true;
500  }
501  agent_lib->set_os_lib(save_handle);
502  return false;
503}
504
505// --------------------- heap allocation utilities ---------------------
506
507char *os::strdup(const char *str, MEMFLAGS flags) {
508  size_t size = strlen(str);
509  char *dup_str = (char *)malloc(size + 1, flags);
510  if (dup_str == NULL) return NULL;
511  strcpy(dup_str, str);
512  return dup_str;
513}
514
515char* os::strdup_check_oom(const char* str, MEMFLAGS flags) {
516  char* p = os::strdup(str, flags);
517  if (p == NULL) {
518    vm_exit_out_of_memory(strlen(str) + 1, OOM_MALLOC_ERROR, "os::strdup_check_oom");
519  }
520  return p;
521}
522
523
524#define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
525
526#ifdef ASSERT
527
528static void verify_memory(void* ptr) {
529  GuardedMemory guarded(ptr);
530  if (!guarded.verify_guards()) {
531    tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
532    tty->print_cr("## memory stomp:");
533    guarded.print_on(tty);
534    fatal("memory stomping error");
535  }
536}
537
538#endif
539
540//
541// This function supports testing of the malloc out of memory
542// condition without really running the system out of memory.
543//
544static bool has_reached_max_malloc_test_peak(size_t alloc_size) {
545  if (MallocMaxTestWords > 0) {
546    jint words = (jint)(alloc_size / BytesPerWord);
547
548    if ((cur_malloc_words + words) > MallocMaxTestWords) {
549      return true;
550    }
551    Atomic::add(words, (volatile jint *)&cur_malloc_words);
552  }
553  return false;
554}
555
556void* os::malloc(size_t size, MEMFLAGS flags) {
557  return os::malloc(size, flags, CALLER_PC);
558}
559
560void* os::malloc(size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
561  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
562  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
563
564#ifdef ASSERT
565  // checking for the WatcherThread and crash_protection first
566  // since os::malloc can be called when the libjvm.{dll,so} is
567  // first loaded and we don't have a thread yet.
568  // try to find the thread after we see that the watcher thread
569  // exists and has crash protection.
570  WatcherThread *wt = WatcherThread::watcher_thread();
571  if (wt != NULL && wt->has_crash_protection()) {
572    Thread* thread = Thread::current_or_null();
573    if (thread == wt) {
574      assert(!wt->has_crash_protection(),
575          "Can't malloc with crash protection from WatcherThread");
576    }
577  }
578#endif
579
580  if (size == 0) {
581    // return a valid pointer if size is zero
582    // if NULL is returned the calling functions assume out of memory.
583    size = 1;
584  }
585
586  // NMT support
587  NMT_TrackingLevel level = MemTracker::tracking_level();
588  size_t            nmt_header_size = MemTracker::malloc_header_size(level);
589
590#ifndef ASSERT
591  const size_t alloc_size = size + nmt_header_size;
592#else
593  const size_t alloc_size = GuardedMemory::get_total_size(size + nmt_header_size);
594  if (size + nmt_header_size > alloc_size) { // Check for rollover.
595    return NULL;
596  }
597#endif
598
599  // For the test flag -XX:MallocMaxTestWords
600  if (has_reached_max_malloc_test_peak(size)) {
601    return NULL;
602  }
603
604  u_char* ptr;
605  ptr = (u_char*)::malloc(alloc_size);
606
607#ifdef ASSERT
608  if (ptr == NULL) {
609    return NULL;
610  }
611  // Wrap memory with guard
612  GuardedMemory guarded(ptr, size + nmt_header_size);
613  ptr = guarded.get_user_ptr();
614#endif
615  if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
616    tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
617    breakpoint();
618  }
619  debug_only(if (paranoid) verify_memory(ptr));
620  if (PrintMalloc && tty != NULL) {
621    tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
622  }
623
624  // we do not track guard memory
625  return MemTracker::record_malloc((address)ptr, size, memflags, stack, level);
626}
627
628void* os::realloc(void *memblock, size_t size, MEMFLAGS flags) {
629  return os::realloc(memblock, size, flags, CALLER_PC);
630}
631
632void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
633
634  // For the test flag -XX:MallocMaxTestWords
635  if (has_reached_max_malloc_test_peak(size)) {
636    return NULL;
637  }
638
639#ifndef ASSERT
640  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
641  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
642   // NMT support
643  void* membase = MemTracker::record_free(memblock);
644  NMT_TrackingLevel level = MemTracker::tracking_level();
645  size_t  nmt_header_size = MemTracker::malloc_header_size(level);
646  void* ptr = ::realloc(membase, size + nmt_header_size);
647  return MemTracker::record_malloc(ptr, size, memflags, stack, level);
648#else
649  if (memblock == NULL) {
650    return os::malloc(size, memflags, stack);
651  }
652  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
653    tty->print_cr("os::realloc caught " PTR_FORMAT, p2i(memblock));
654    breakpoint();
655  }
656  // NMT support
657  void* membase = MemTracker::malloc_base(memblock);
658  verify_memory(membase);
659  if (size == 0) {
660    return NULL;
661  }
662  // always move the block
663  void* ptr = os::malloc(size, memflags, stack);
664  if (PrintMalloc && tty != NULL) {
665    tty->print_cr("os::realloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, p2i(memblock), p2i(ptr));
666  }
667  // Copy to new memory if malloc didn't fail
668  if ( ptr != NULL ) {
669    GuardedMemory guarded(MemTracker::malloc_base(memblock));
670    // Guard's user data contains NMT header
671    size_t memblock_size = guarded.get_user_size() - MemTracker::malloc_header_size(memblock);
672    memcpy(ptr, memblock, MIN2(size, memblock_size));
673    if (paranoid) verify_memory(MemTracker::malloc_base(ptr));
674    if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
675      tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
676      breakpoint();
677    }
678    os::free(memblock);
679  }
680  return ptr;
681#endif
682}
683
684
685void  os::free(void *memblock) {
686  NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
687#ifdef ASSERT
688  if (memblock == NULL) return;
689  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
690    if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, p2i(memblock));
691    breakpoint();
692  }
693  void* membase = MemTracker::record_free(memblock);
694  verify_memory(membase);
695
696  GuardedMemory guarded(membase);
697  size_t size = guarded.get_user_size();
698  inc_stat_counter(&free_bytes, size);
699  membase = guarded.release_for_freeing();
700  if (PrintMalloc && tty != NULL) {
701      fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)membase);
702  }
703  ::free(membase);
704#else
705  void* membase = MemTracker::record_free(memblock);
706  ::free(membase);
707#endif
708}
709
710void os::init_random(long initval) {
711  _rand_seed = initval;
712}
713
714
715long os::random() {
716  /* standard, well-known linear congruential random generator with
717   * next_rand = (16807*seed) mod (2**31-1)
718   * see
719   * (1) "Random Number Generators: Good Ones Are Hard to Find",
720   *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
721   * (2) "Two Fast Implementations of the 'Minimal Standard' Random
722   *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
723  */
724  const long a = 16807;
725  const unsigned long m = 2147483647;
726  const long q = m / a;        assert(q == 127773, "weird math");
727  const long r = m % a;        assert(r == 2836, "weird math");
728
729  // compute az=2^31p+q
730  unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
731  unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
732  lo += (hi & 0x7FFF) << 16;
733
734  // if q overflowed, ignore the overflow and increment q
735  if (lo > m) {
736    lo &= m;
737    ++lo;
738  }
739  lo += hi >> 15;
740
741  // if (p+q) overflowed, ignore the overflow and increment (p+q)
742  if (lo > m) {
743    lo &= m;
744    ++lo;
745  }
746  return (_rand_seed = lo);
747}
748
749// The INITIALIZED state is distinguished from the SUSPENDED state because the
750// conditions in which a thread is first started are different from those in which
751// a suspension is resumed.  These differences make it hard for us to apply the
752// tougher checks when starting threads that we want to do when resuming them.
753// However, when start_thread is called as a result of Thread.start, on a Java
754// thread, the operation is synchronized on the Java Thread object.  So there
755// cannot be a race to start the thread and hence for the thread to exit while
756// we are working on it.  Non-Java threads that start Java threads either have
757// to do so in a context in which races are impossible, or should do appropriate
758// locking.
759
760void os::start_thread(Thread* thread) {
761  // guard suspend/resume
762  MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
763  OSThread* osthread = thread->osthread();
764  osthread->set_state(RUNNABLE);
765  pd_start_thread(thread);
766}
767
768void os::abort(bool dump_core) {
769  abort(dump_core && CreateCoredumpOnCrash, NULL, NULL);
770}
771
772//---------------------------------------------------------------------------
773// Helper functions for fatal error handler
774
775void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
776  assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
777
778  int cols = 0;
779  int cols_per_line = 0;
780  switch (unitsize) {
781    case 1: cols_per_line = 16; break;
782    case 2: cols_per_line = 8;  break;
783    case 4: cols_per_line = 4;  break;
784    case 8: cols_per_line = 2;  break;
785    default: return;
786  }
787
788  address p = start;
789  st->print(PTR_FORMAT ":   ", p2i(start));
790  while (p < end) {
791    switch (unitsize) {
792      case 1: st->print("%02x", *(u1*)p); break;
793      case 2: st->print("%04x", *(u2*)p); break;
794      case 4: st->print("%08x", *(u4*)p); break;
795      case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
796    }
797    p += unitsize;
798    cols++;
799    if (cols >= cols_per_line && p < end) {
800       cols = 0;
801       st->cr();
802       st->print(PTR_FORMAT ":   ", p2i(p));
803    } else {
804       st->print(" ");
805    }
806  }
807  st->cr();
808}
809
810void os::print_environment_variables(outputStream* st, const char** env_list) {
811  if (env_list) {
812    st->print_cr("Environment Variables:");
813
814    for (int i = 0; env_list[i] != NULL; i++) {
815      char *envvar = ::getenv(env_list[i]);
816      if (envvar != NULL) {
817        st->print("%s", env_list[i]);
818        st->print("=");
819        st->print_cr("%s", envvar);
820      }
821    }
822  }
823}
824
825void os::print_cpu_info(outputStream* st, char* buf, size_t buflen) {
826  // cpu
827  st->print("CPU:");
828  st->print("total %d", os::processor_count());
829  // It's not safe to query number of active processors after crash
830  // st->print("(active %d)", os::active_processor_count()); but we can
831  // print the initial number of active processors.
832  // We access the raw value here because the assert in the accessor will
833  // fail if the crash occurs before initialization of this value.
834  st->print(" (initial active %d)", _initial_active_processor_count);
835  st->print(" %s", VM_Version::features_string());
836  st->cr();
837  pd_print_cpu_info(st, buf, buflen);
838}
839
840// Print a one line string summarizing the cpu, number of cores, memory, and operating system version
841void os::print_summary_info(outputStream* st, char* buf, size_t buflen) {
842  st->print("Host: ");
843#ifndef PRODUCT
844  if (get_host_name(buf, buflen)) {
845    st->print("%s, ", buf);
846  }
847#endif // PRODUCT
848  get_summary_cpu_info(buf, buflen);
849  st->print("%s, ", buf);
850  size_t mem = physical_memory()/G;
851  if (mem == 0) {  // for low memory systems
852    mem = physical_memory()/M;
853    st->print("%d cores, " SIZE_FORMAT "M, ", processor_count(), mem);
854  } else {
855    st->print("%d cores, " SIZE_FORMAT "G, ", processor_count(), mem);
856  }
857  get_summary_os_info(buf, buflen);
858  st->print_raw(buf);
859  st->cr();
860}
861
862void os::print_date_and_time(outputStream *st, char* buf, size_t buflen) {
863  const int secs_per_day  = 86400;
864  const int secs_per_hour = 3600;
865  const int secs_per_min  = 60;
866
867  time_t tloc;
868  (void)time(&tloc);
869  char* timestring = ctime(&tloc);  // ctime adds newline.
870  // edit out the newline
871  char* nl = strchr(timestring, '\n');
872  if (nl != NULL) {
873    *nl = '\0';
874  }
875
876  struct tm tz;
877  if (localtime_pd(&tloc, &tz) != NULL) {
878    ::strftime(buf, buflen, "%Z", &tz);
879    st->print("Time: %s %s", timestring, buf);
880  } else {
881    st->print("Time: %s", timestring);
882  }
883
884  double t = os::elapsedTime();
885  // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
886  //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
887  //       before printf. We lost some precision, but who cares?
888  int eltime = (int)t;  // elapsed time in seconds
889
890  // print elapsed time in a human-readable format:
891  int eldays = eltime / secs_per_day;
892  int day_secs = eldays * secs_per_day;
893  int elhours = (eltime - day_secs) / secs_per_hour;
894  int hour_secs = elhours * secs_per_hour;
895  int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
896  int minute_secs = elmins * secs_per_min;
897  int elsecs = (eltime - day_secs - hour_secs - minute_secs);
898  st->print_cr(" elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
899}
900
901// moved from debug.cpp (used to be find()) but still called from there
902// The verbose parameter is only set by the debug code in one case
903void os::print_location(outputStream* st, intptr_t x, bool verbose) {
904  address addr = (address)x;
905  CodeBlob* b = CodeCache::find_blob_unsafe(addr);
906  if (b != NULL) {
907    if (b->is_buffer_blob()) {
908      // the interpreter is generated into a buffer blob
909      InterpreterCodelet* i = Interpreter::codelet_containing(addr);
910      if (i != NULL) {
911        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", p2i(addr), (int)(addr - i->code_begin()));
912        i->print_on(st);
913        return;
914      }
915      if (Interpreter::contains(addr)) {
916        st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
917                     " (not bytecode specific)", p2i(addr));
918        return;
919      }
920      //
921      if (AdapterHandlerLibrary::contains(b)) {
922        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", p2i(addr), (int)(addr - b->code_begin()));
923        AdapterHandlerLibrary::print_handler_on(st, b);
924      }
925      // the stubroutines are generated into a buffer blob
926      StubCodeDesc* d = StubCodeDesc::desc_for(addr);
927      if (d != NULL) {
928        st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", p2i(addr), (int)(addr - d->begin()));
929        d->print_on(st);
930        st->cr();
931        return;
932      }
933      if (StubRoutines::contains(addr)) {
934        st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) stub routine", p2i(addr));
935        return;
936      }
937      // the InlineCacheBuffer is using stubs generated into a buffer blob
938      if (InlineCacheBuffer::contains(addr)) {
939        st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", p2i(addr));
940        return;
941      }
942      VtableStub* v = VtableStubs::stub_containing(addr);
943      if (v != NULL) {
944        st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", p2i(addr), (int)(addr - v->entry_point()));
945        v->print_on(st);
946        st->cr();
947        return;
948      }
949    }
950    nmethod* nm = b->as_nmethod_or_null();
951    if (nm != NULL) {
952      ResourceMark rm;
953      st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
954                p2i(addr), (int)(addr - nm->entry_point()), p2i(nm));
955      if (verbose) {
956        st->print(" for ");
957        nm->method()->print_value_on(st);
958      }
959      st->cr();
960      nm->print_nmethod(verbose);
961      return;
962    }
963    st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", p2i(addr), (int)(addr - b->code_begin()));
964    b->print_on(st);
965    return;
966  }
967
968  if (Universe::heap()->is_in(addr)) {
969    HeapWord* p = Universe::heap()->block_start(addr);
970    bool print = false;
971    // If we couldn't find it it just may mean that heap wasn't parsable
972    // See if we were just given an oop directly
973    if (p != NULL && Universe::heap()->block_is_obj(p)) {
974      print = true;
975    } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
976      p = (HeapWord*) addr;
977      print = true;
978    }
979    if (print) {
980      if (p == (HeapWord*) addr) {
981        st->print_cr(INTPTR_FORMAT " is an oop", p2i(addr));
982      } else {
983        st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, p2i(addr), p2i(p));
984      }
985      oop(p)->print_on(st);
986      return;
987    }
988  } else {
989    if (Universe::heap()->is_in_reserved(addr)) {
990      st->print_cr(INTPTR_FORMAT " is an unallocated location "
991                   "in the heap", p2i(addr));
992      return;
993    }
994  }
995  if (JNIHandles::is_global_handle((jobject) addr)) {
996    st->print_cr(INTPTR_FORMAT " is a global jni handle", p2i(addr));
997    return;
998  }
999  if (JNIHandles::is_weak_global_handle((jobject) addr)) {
1000    st->print_cr(INTPTR_FORMAT " is a weak global jni handle", p2i(addr));
1001    return;
1002  }
1003#ifndef PRODUCT
1004  // we don't keep the block list in product mode
1005  if (JNIHandleBlock::any_contains((jobject) addr)) {
1006    st->print_cr(INTPTR_FORMAT " is a local jni handle", p2i(addr));
1007    return;
1008  }
1009#endif
1010
1011  for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
1012    // Check for privilege stack
1013    if (thread->privileged_stack_top() != NULL &&
1014        thread->privileged_stack_top()->contains(addr)) {
1015      st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
1016                   "for thread: " INTPTR_FORMAT, p2i(addr), p2i(thread));
1017      if (verbose) thread->print_on(st);
1018      return;
1019    }
1020    // If the addr is a java thread print information about that.
1021    if (addr == (address)thread) {
1022      if (verbose) {
1023        thread->print_on(st);
1024      } else {
1025        st->print_cr(INTPTR_FORMAT " is a thread", p2i(addr));
1026      }
1027      return;
1028    }
1029    // If the addr is in the stack region for this thread then report that
1030    // and print thread info
1031    if (thread->on_local_stack(addr)) {
1032      st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
1033                   INTPTR_FORMAT, p2i(addr), p2i(thread));
1034      if (verbose) thread->print_on(st);
1035      return;
1036    }
1037
1038  }
1039
1040  // Check if in metaspace and print types that have vptrs (only method now)
1041  if (Metaspace::contains(addr)) {
1042    if (Method::has_method_vptr((const void*)addr)) {
1043      ((Method*)addr)->print_value_on(st);
1044      st->cr();
1045    } else {
1046      // Use addr->print() from the debugger instead (not here)
1047      st->print_cr(INTPTR_FORMAT " is pointing into metadata", p2i(addr));
1048    }
1049    return;
1050  }
1051
1052  // Try an OS specific find
1053  if (os::find(addr, st)) {
1054    return;
1055  }
1056
1057  st->print_cr(INTPTR_FORMAT " is an unknown value", p2i(addr));
1058}
1059
1060// Looks like all platforms except IA64 can use the same function to check
1061// if C stack is walkable beyond current frame. The check for fp() is not
1062// necessary on Sparc, but it's harmless.
1063bool os::is_first_C_frame(frame* fr) {
1064#if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
1065  // On IA64 we have to check if the callers bsp is still valid
1066  // (i.e. within the register stack bounds).
1067  // Notice: this only works for threads created by the VM and only if
1068  // we walk the current stack!!! If we want to be able to walk
1069  // arbitrary other threads, we'll have to somehow store the thread
1070  // object in the frame.
1071  Thread *thread = Thread::current();
1072  if ((address)fr->fp() <=
1073      thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1074    // This check is a little hacky, because on Linux the first C
1075    // frame's ('start_thread') register stack frame starts at
1076    // "register_stack_base + 0x48" while on HPUX, the first C frame's
1077    // ('__pthread_bound_body') register stack frame seems to really
1078    // start at "register_stack_base".
1079    return true;
1080  } else {
1081    return false;
1082  }
1083#elif defined(IA64) && defined(_WIN32)
1084  return true;
1085#else
1086  // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1087  // Check usp first, because if that's bad the other accessors may fault
1088  // on some architectures.  Ditto ufp second, etc.
1089  uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1090  // sp on amd can be 32 bit aligned.
1091  uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1092
1093  uintptr_t usp    = (uintptr_t)fr->sp();
1094  if ((usp & sp_align_mask) != 0) return true;
1095
1096  uintptr_t ufp    = (uintptr_t)fr->fp();
1097  if ((ufp & fp_align_mask) != 0) return true;
1098
1099  uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1100  if ((old_sp & sp_align_mask) != 0) return true;
1101  if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1102
1103  uintptr_t old_fp = (uintptr_t)fr->link();
1104  if ((old_fp & fp_align_mask) != 0) return true;
1105  if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1106
1107  // stack grows downwards; if old_fp is below current fp or if the stack
1108  // frame is too large, either the stack is corrupted or fp is not saved
1109  // on stack (i.e. on x86, ebp may be used as general register). The stack
1110  // is not walkable beyond current frame.
1111  if (old_fp < ufp) return true;
1112  if (old_fp - ufp > 64 * K) return true;
1113
1114  return false;
1115#endif
1116}
1117
1118#ifdef ASSERT
1119extern "C" void test_random() {
1120  const double m = 2147483647;
1121  double mean = 0.0, variance = 0.0, t;
1122  long reps = 10000;
1123  unsigned long seed = 1;
1124
1125  tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1126  os::init_random(seed);
1127  long num;
1128  for (int k = 0; k < reps; k++) {
1129    num = os::random();
1130    double u = (double)num / m;
1131    assert(u >= 0.0 && u <= 1.0, "bad random number!");
1132
1133    // calculate mean and variance of the random sequence
1134    mean += u;
1135    variance += (u*u);
1136  }
1137  mean /= reps;
1138  variance /= (reps - 1);
1139
1140  assert(num == 1043618065, "bad seed");
1141  tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1142  tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1143  const double eps = 0.0001;
1144  t = fabsd(mean - 0.5018);
1145  assert(t < eps, "bad mean");
1146  t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1147  assert(t < eps, "bad variance");
1148}
1149#endif
1150
1151
1152// Set up the boot classpath.
1153
1154char* os::format_boot_path(const char* format_string,
1155                           const char* home,
1156                           int home_len,
1157                           char fileSep,
1158                           char pathSep) {
1159    assert((fileSep == '/' && pathSep == ':') ||
1160           (fileSep == '\\' && pathSep == ';'), "unexpected separator chars");
1161
1162    // Scan the format string to determine the length of the actual
1163    // boot classpath, and handle platform dependencies as well.
1164    int formatted_path_len = 0;
1165    const char* p;
1166    for (p = format_string; *p != 0; ++p) {
1167        if (*p == '%') formatted_path_len += home_len - 1;
1168        ++formatted_path_len;
1169    }
1170
1171    char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1172    if (formatted_path == NULL) {
1173        return NULL;
1174    }
1175
1176    // Create boot classpath from format, substituting separator chars and
1177    // java home directory.
1178    char* q = formatted_path;
1179    for (p = format_string; *p != 0; ++p) {
1180        switch (*p) {
1181        case '%':
1182            strcpy(q, home);
1183            q += home_len;
1184            break;
1185        case '/':
1186            *q++ = fileSep;
1187            break;
1188        case ':':
1189            *q++ = pathSep;
1190            break;
1191        default:
1192            *q++ = *p;
1193        }
1194    }
1195    *q = '\0';
1196
1197    assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1198    return formatted_path;
1199}
1200
1201bool os::set_boot_path(char fileSep, char pathSep) {
1202  const char* home = Arguments::get_java_home();
1203  int home_len = (int)strlen(home);
1204
1205  struct stat st;
1206
1207  // modular image if "modules" jimage exists
1208  char* jimage = format_boot_path("%/lib/" MODULES_IMAGE_NAME, home, home_len, fileSep, pathSep);
1209  if (jimage == NULL) return false;
1210  bool has_jimage = (os::stat(jimage, &st) == 0);
1211  if (has_jimage) {
1212    Arguments::set_sysclasspath(jimage, true);
1213    FREE_C_HEAP_ARRAY(char, jimage);
1214    return true;
1215  }
1216  FREE_C_HEAP_ARRAY(char, jimage);
1217
1218  // check if developer build with exploded modules
1219  char* base_classes = format_boot_path("%/modules/java.base", home, home_len, fileSep, pathSep);
1220  if (base_classes == NULL) return false;
1221  if (os::stat(base_classes, &st) == 0) {
1222    Arguments::set_sysclasspath(base_classes, false);
1223    FREE_C_HEAP_ARRAY(char, base_classes);
1224    return true;
1225  }
1226  FREE_C_HEAP_ARRAY(char, base_classes);
1227
1228  return false;
1229}
1230
1231/*
1232 * Splits a path, based on its separator, the number of
1233 * elements is returned back in n.
1234 * It is the callers responsibility to:
1235 *   a> check the value of n, and n may be 0.
1236 *   b> ignore any empty path elements
1237 *   c> free up the data.
1238 */
1239char** os::split_path(const char* path, int* n) {
1240  *n = 0;
1241  if (path == NULL || strlen(path) == 0) {
1242    return NULL;
1243  }
1244  const char psepchar = *os::path_separator();
1245  char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1246  if (inpath == NULL) {
1247    return NULL;
1248  }
1249  strcpy(inpath, path);
1250  int count = 1;
1251  char* p = strchr(inpath, psepchar);
1252  // Get a count of elements to allocate memory
1253  while (p != NULL) {
1254    count++;
1255    p++;
1256    p = strchr(p, psepchar);
1257  }
1258  char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1259  if (opath == NULL) {
1260    return NULL;
1261  }
1262
1263  // do the actual splitting
1264  p = inpath;
1265  for (int i = 0 ; i < count ; i++) {
1266    size_t len = strcspn(p, os::path_separator());
1267    if (len > JVM_MAXPATHLEN) {
1268      return NULL;
1269    }
1270    // allocate the string and add terminator storage
1271    char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1272    if (s == NULL) {
1273      return NULL;
1274    }
1275    strncpy(s, p, len);
1276    s[len] = '\0';
1277    opath[i] = s;
1278    p += len + 1;
1279  }
1280  FREE_C_HEAP_ARRAY(char, inpath);
1281  *n = count;
1282  return opath;
1283}
1284
1285void os::set_memory_serialize_page(address page) {
1286  int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1287  _mem_serialize_page = (volatile int32_t *)page;
1288  // We initialize the serialization page shift count here
1289  // We assume a cache line size of 64 bytes
1290  assert(SerializePageShiftCount == count, "JavaThread size changed; "
1291         "SerializePageShiftCount constant should be %d", count);
1292  set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1293}
1294
1295static volatile intptr_t SerializePageLock = 0;
1296
1297// This method is called from signal handler when SIGSEGV occurs while the current
1298// thread tries to store to the "read-only" memory serialize page during state
1299// transition.
1300void os::block_on_serialize_page_trap() {
1301  log_debug(safepoint)("Block until the serialize page permission restored");
1302
1303  // When VMThread is holding the SerializePageLock during modifying the
1304  // access permission of the memory serialize page, the following call
1305  // will block until the permission of that page is restored to rw.
1306  // Generally, it is unsafe to manipulate locks in signal handlers, but in
1307  // this case, it's OK as the signal is synchronous and we know precisely when
1308  // it can occur.
1309  Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1310  Thread::muxRelease(&SerializePageLock);
1311}
1312
1313// Serialize all thread state variables
1314void os::serialize_thread_states() {
1315  // On some platforms such as Solaris & Linux, the time duration of the page
1316  // permission restoration is observed to be much longer than expected  due to
1317  // scheduler starvation problem etc. To avoid the long synchronization
1318  // time and expensive page trap spinning, 'SerializePageLock' is used to block
1319  // the mutator thread if such case is encountered. See bug 6546278 for details.
1320  Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1321  os::protect_memory((char *)os::get_memory_serialize_page(),
1322                     os::vm_page_size(), MEM_PROT_READ);
1323  os::protect_memory((char *)os::get_memory_serialize_page(),
1324                     os::vm_page_size(), MEM_PROT_RW);
1325  Thread::muxRelease(&SerializePageLock);
1326}
1327
1328// Returns true if the current stack pointer is above the stack shadow
1329// pages, false otherwise.
1330bool os::stack_shadow_pages_available(Thread *thread, const methodHandle& method, address sp) {
1331  if (!thread->is_Java_thread()) return false;
1332  // Check if we have StackShadowPages above the yellow zone.  This parameter
1333  // is dependent on the depth of the maximum VM call stack possible from
1334  // the handler for stack overflow.  'instanceof' in the stack overflow
1335  // handler or a println uses at least 8k stack of VM and native code
1336  // respectively.
1337  const int framesize_in_bytes =
1338    Interpreter::size_top_interpreter_activation(method()) * wordSize;
1339
1340  address limit = ((JavaThread*)thread)->stack_end() +
1341                  (JavaThread::stack_guard_zone_size() + JavaThread::stack_shadow_zone_size());
1342
1343  return sp > (limit + framesize_in_bytes);
1344}
1345
1346size_t os::page_size_for_region(size_t region_size, size_t min_pages, bool must_be_aligned) {
1347  assert(min_pages > 0, "sanity");
1348  if (UseLargePages) {
1349    const size_t max_page_size = region_size / min_pages;
1350
1351    for (size_t i = 0; _page_sizes[i] != 0; ++i) {
1352      const size_t page_size = _page_sizes[i];
1353      if (page_size <= max_page_size) {
1354        if (!must_be_aligned || is_size_aligned(region_size, page_size)) {
1355          return page_size;
1356        }
1357      }
1358    }
1359  }
1360
1361  return vm_page_size();
1362}
1363
1364size_t os::page_size_for_region_aligned(size_t region_size, size_t min_pages) {
1365  return page_size_for_region(region_size, min_pages, true);
1366}
1367
1368size_t os::page_size_for_region_unaligned(size_t region_size, size_t min_pages) {
1369  return page_size_for_region(region_size, min_pages, false);
1370}
1371
1372static const char* errno_to_string (int e, bool short_text) {
1373  #define ALL_SHARED_ENUMS(X) \
1374    X(E2BIG, "Argument list too long") \
1375    X(EACCES, "Permission denied") \
1376    X(EADDRINUSE, "Address in use") \
1377    X(EADDRNOTAVAIL, "Address not available") \
1378    X(EAFNOSUPPORT, "Address family not supported") \
1379    X(EAGAIN, "Resource unavailable, try again") \
1380    X(EALREADY, "Connection already in progress") \
1381    X(EBADF, "Bad file descriptor") \
1382    X(EBADMSG, "Bad message") \
1383    X(EBUSY, "Device or resource busy") \
1384    X(ECANCELED, "Operation canceled") \
1385    X(ECHILD, "No child processes") \
1386    X(ECONNABORTED, "Connection aborted") \
1387    X(ECONNREFUSED, "Connection refused") \
1388    X(ECONNRESET, "Connection reset") \
1389    X(EDEADLK, "Resource deadlock would occur") \
1390    X(EDESTADDRREQ, "Destination address required") \
1391    X(EDOM, "Mathematics argument out of domain of function") \
1392    X(EEXIST, "File exists") \
1393    X(EFAULT, "Bad address") \
1394    X(EFBIG, "File too large") \
1395    X(EHOSTUNREACH, "Host is unreachable") \
1396    X(EIDRM, "Identifier removed") \
1397    X(EILSEQ, "Illegal byte sequence") \
1398    X(EINPROGRESS, "Operation in progress") \
1399    X(EINTR, "Interrupted function") \
1400    X(EINVAL, "Invalid argument") \
1401    X(EIO, "I/O error") \
1402    X(EISCONN, "Socket is connected") \
1403    X(EISDIR, "Is a directory") \
1404    X(ELOOP, "Too many levels of symbolic links") \
1405    X(EMFILE, "Too many open files") \
1406    X(EMLINK, "Too many links") \
1407    X(EMSGSIZE, "Message too large") \
1408    X(ENAMETOOLONG, "Filename too long") \
1409    X(ENETDOWN, "Network is down") \
1410    X(ENETRESET, "Connection aborted by network") \
1411    X(ENETUNREACH, "Network unreachable") \
1412    X(ENFILE, "Too many files open in system") \
1413    X(ENOBUFS, "No buffer space available") \
1414    X(ENODATA, "No message is available on the STREAM head read queue") \
1415    X(ENODEV, "No such device") \
1416    X(ENOENT, "No such file or directory") \
1417    X(ENOEXEC, "Executable file format error") \
1418    X(ENOLCK, "No locks available") \
1419    X(ENOLINK, "Reserved") \
1420    X(ENOMEM, "Not enough space") \
1421    X(ENOMSG, "No message of the desired type") \
1422    X(ENOPROTOOPT, "Protocol not available") \
1423    X(ENOSPC, "No space left on device") \
1424    X(ENOSR, "No STREAM resources") \
1425    X(ENOSTR, "Not a STREAM") \
1426    X(ENOSYS, "Function not supported") \
1427    X(ENOTCONN, "The socket is not connected") \
1428    X(ENOTDIR, "Not a directory") \
1429    X(ENOTEMPTY, "Directory not empty") \
1430    X(ENOTSOCK, "Not a socket") \
1431    X(ENOTSUP, "Not supported") \
1432    X(ENOTTY, "Inappropriate I/O control operation") \
1433    X(ENXIO, "No such device or address") \
1434    X(EOPNOTSUPP, "Operation not supported on socket") \
1435    X(EOVERFLOW, "Value too large to be stored in data type") \
1436    X(EPERM, "Operation not permitted") \
1437    X(EPIPE, "Broken pipe") \
1438    X(EPROTO, "Protocol error") \
1439    X(EPROTONOSUPPORT, "Protocol not supported") \
1440    X(EPROTOTYPE, "Protocol wrong type for socket") \
1441    X(ERANGE, "Result too large") \
1442    X(EROFS, "Read-only file system") \
1443    X(ESPIPE, "Invalid seek") \
1444    X(ESRCH, "No such process") \
1445    X(ETIME, "Stream ioctl() timeout") \
1446    X(ETIMEDOUT, "Connection timed out") \
1447    X(ETXTBSY, "Text file busy") \
1448    X(EWOULDBLOCK, "Operation would block") \
1449    X(EXDEV, "Cross-device link")
1450
1451  #define DEFINE_ENTRY(e, text) { e, #e, text },
1452
1453  static const struct {
1454    int v;
1455    const char* short_text;
1456    const char* long_text;
1457  } table [] = {
1458
1459    ALL_SHARED_ENUMS(DEFINE_ENTRY)
1460
1461    // The following enums are not defined on all platforms.
1462    #ifdef ESTALE
1463    DEFINE_ENTRY(ESTALE, "Reserved")
1464    #endif
1465    #ifdef EDQUOT
1466    DEFINE_ENTRY(EDQUOT, "Reserved")
1467    #endif
1468    #ifdef EMULTIHOP
1469    DEFINE_ENTRY(EMULTIHOP, "Reserved")
1470    #endif
1471
1472    // End marker.
1473    { -1, "Unknown errno", "Unknown error" }
1474
1475  };
1476
1477  #undef DEFINE_ENTRY
1478  #undef ALL_FLAGS
1479
1480  int i = 0;
1481  while (table[i].v != -1 && table[i].v != e) {
1482    i ++;
1483  }
1484
1485  return short_text ? table[i].short_text : table[i].long_text;
1486
1487}
1488
1489const char* os::strerror(int e) {
1490  return errno_to_string(e, false);
1491}
1492
1493const char* os::errno_name(int e) {
1494  return errno_to_string(e, true);
1495}
1496
1497void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count) {
1498  LogTarget(Info, pagesize) log;
1499  if (log.is_enabled()) {
1500    LogStreamCHeap out(log);
1501
1502    out.print("%s: ", str);
1503    for (int i = 0; i < count; ++i) {
1504      out.print(" " SIZE_FORMAT, page_sizes[i]);
1505    }
1506    out.cr();
1507  }
1508}
1509
1510#define trace_page_size_params(size) byte_size_in_exact_unit(size), exact_unit_for_byte_size(size)
1511
1512void os::trace_page_sizes(const char* str,
1513                          const size_t region_min_size,
1514                          const size_t region_max_size,
1515                          const size_t page_size,
1516                          const char* base,
1517                          const size_t size) {
1518
1519  log_info(pagesize)("%s: "
1520                     " min=" SIZE_FORMAT "%s"
1521                     " max=" SIZE_FORMAT "%s"
1522                     " base=" PTR_FORMAT
1523                     " page_size=" SIZE_FORMAT "%s"
1524                     " size=" SIZE_FORMAT "%s",
1525                     str,
1526                     trace_page_size_params(region_min_size),
1527                     trace_page_size_params(region_max_size),
1528                     p2i(base),
1529                     trace_page_size_params(page_size),
1530                     trace_page_size_params(size));
1531}
1532
1533void os::trace_page_sizes_for_requested_size(const char* str,
1534                                             const size_t requested_size,
1535                                             const size_t page_size,
1536                                             const size_t alignment,
1537                                             const char* base,
1538                                             const size_t size) {
1539
1540  log_info(pagesize)("%s:"
1541                     " req_size=" SIZE_FORMAT "%s"
1542                     " base=" PTR_FORMAT
1543                     " page_size=" SIZE_FORMAT "%s"
1544                     " alignment=" SIZE_FORMAT "%s"
1545                     " size=" SIZE_FORMAT "%s",
1546                     str,
1547                     trace_page_size_params(requested_size),
1548                     p2i(base),
1549                     trace_page_size_params(page_size),
1550                     trace_page_size_params(alignment),
1551                     trace_page_size_params(size));
1552}
1553
1554
1555// This is the working definition of a server class machine:
1556// >= 2 physical CPU's and >=2GB of memory, with some fuzz
1557// because the graphics memory (?) sometimes masks physical memory.
1558// If you want to change the definition of a server class machine
1559// on some OS or platform, e.g., >=4GB on Windows platforms,
1560// then you'll have to parameterize this method based on that state,
1561// as was done for logical processors here, or replicate and
1562// specialize this method for each platform.  (Or fix os to have
1563// some inheritance structure and use subclassing.  Sigh.)
1564// If you want some platform to always or never behave as a server
1565// class machine, change the setting of AlwaysActAsServerClassMachine
1566// and NeverActAsServerClassMachine in globals*.hpp.
1567bool os::is_server_class_machine() {
1568  // First check for the early returns
1569  if (NeverActAsServerClassMachine) {
1570    return false;
1571  }
1572  if (AlwaysActAsServerClassMachine) {
1573    return true;
1574  }
1575  // Then actually look at the machine
1576  bool         result            = false;
1577  const unsigned int    server_processors = 2;
1578  const julong server_memory     = 2UL * G;
1579  // We seem not to get our full complement of memory.
1580  //     We allow some part (1/8?) of the memory to be "missing",
1581  //     based on the sizes of DIMMs, and maybe graphics cards.
1582  const julong missing_memory   = 256UL * M;
1583
1584  /* Is this a server class machine? */
1585  if ((os::active_processor_count() >= (int)server_processors) &&
1586      (os::physical_memory() >= (server_memory - missing_memory))) {
1587    const unsigned int logical_processors =
1588      VM_Version::logical_processors_per_package();
1589    if (logical_processors > 1) {
1590      const unsigned int physical_packages =
1591        os::active_processor_count() / logical_processors;
1592      if (physical_packages >= server_processors) {
1593        result = true;
1594      }
1595    } else {
1596      result = true;
1597    }
1598  }
1599  return result;
1600}
1601
1602void os::initialize_initial_active_processor_count() {
1603  assert(_initial_active_processor_count == 0, "Initial active processor count already set.");
1604  _initial_active_processor_count = active_processor_count();
1605  log_debug(os)("Initial active processor count set to %d" , _initial_active_processor_count);
1606}
1607
1608void os::SuspendedThreadTask::run() {
1609  assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1610  internal_do_task();
1611  _done = true;
1612}
1613
1614bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1615  return os::pd_create_stack_guard_pages(addr, bytes);
1616}
1617
1618char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1619  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1620  if (result != NULL) {
1621    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1622  }
1623
1624  return result;
1625}
1626
1627char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1628   MEMFLAGS flags) {
1629  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1630  if (result != NULL) {
1631    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1632    MemTracker::record_virtual_memory_type((address)result, flags);
1633  }
1634
1635  return result;
1636}
1637
1638char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1639  char* result = pd_attempt_reserve_memory_at(bytes, addr);
1640  if (result != NULL) {
1641    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1642  }
1643  return result;
1644}
1645
1646void os::split_reserved_memory(char *base, size_t size,
1647                                 size_t split, bool realloc) {
1648  pd_split_reserved_memory(base, size, split, realloc);
1649}
1650
1651bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1652  bool res = pd_commit_memory(addr, bytes, executable);
1653  if (res) {
1654    MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1655  }
1656  return res;
1657}
1658
1659bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1660                              bool executable) {
1661  bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1662  if (res) {
1663    MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1664  }
1665  return res;
1666}
1667
1668void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1669                               const char* mesg) {
1670  pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1671  MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1672}
1673
1674void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1675                               bool executable, const char* mesg) {
1676  os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1677  MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1678}
1679
1680bool os::uncommit_memory(char* addr, size_t bytes) {
1681  bool res;
1682  if (MemTracker::tracking_level() > NMT_minimal) {
1683    Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
1684    res = pd_uncommit_memory(addr, bytes);
1685    if (res) {
1686      tkr.record((address)addr, bytes);
1687    }
1688  } else {
1689    res = pd_uncommit_memory(addr, bytes);
1690  }
1691  return res;
1692}
1693
1694bool os::release_memory(char* addr, size_t bytes) {
1695  bool res;
1696  if (MemTracker::tracking_level() > NMT_minimal) {
1697    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1698    res = pd_release_memory(addr, bytes);
1699    if (res) {
1700      tkr.record((address)addr, bytes);
1701    }
1702  } else {
1703    res = pd_release_memory(addr, bytes);
1704  }
1705  return res;
1706}
1707
1708void os::pretouch_memory(void* start, void* end) {
1709  for (volatile char *p = (char*)start; p < (char*)end; p += os::vm_page_size()) {
1710    *p = 0;
1711  }
1712}
1713
1714char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1715                           char *addr, size_t bytes, bool read_only,
1716                           bool allow_exec) {
1717  char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1718  if (result != NULL) {
1719    MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
1720  }
1721  return result;
1722}
1723
1724char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1725                             char *addr, size_t bytes, bool read_only,
1726                             bool allow_exec) {
1727  return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1728                    read_only, allow_exec);
1729}
1730
1731bool os::unmap_memory(char *addr, size_t bytes) {
1732  bool result;
1733  if (MemTracker::tracking_level() > NMT_minimal) {
1734    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1735    result = pd_unmap_memory(addr, bytes);
1736    if (result) {
1737      tkr.record((address)addr, bytes);
1738    }
1739  } else {
1740    result = pd_unmap_memory(addr, bytes);
1741  }
1742  return result;
1743}
1744
1745void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1746  pd_free_memory(addr, bytes, alignment_hint);
1747}
1748
1749void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1750  pd_realign_memory(addr, bytes, alignment_hint);
1751}
1752
1753#ifndef _WINDOWS
1754/* try to switch state from state "from" to state "to"
1755 * returns the state set after the method is complete
1756 */
1757os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1758                                                         os::SuspendResume::State to)
1759{
1760  os::SuspendResume::State result =
1761    (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1762  if (result == from) {
1763    // success
1764    return to;
1765  }
1766  return result;
1767}
1768#endif
1769
1770/////////////// Unit tests ///////////////
1771
1772#ifndef PRODUCT
1773
1774#define assert_eq(a,b) assert(a == b, SIZE_FORMAT " != " SIZE_FORMAT, a, b)
1775
1776class TestOS : AllStatic {
1777  static size_t small_page_size() {
1778    return os::vm_page_size();
1779  }
1780
1781  static size_t large_page_size() {
1782    const size_t large_page_size_example = 4 * M;
1783    return os::page_size_for_region_aligned(large_page_size_example, 1);
1784  }
1785
1786  static void test_page_size_for_region_aligned() {
1787    if (UseLargePages) {
1788      const size_t small_page = small_page_size();
1789      const size_t large_page = large_page_size();
1790
1791      if (large_page > small_page) {
1792        size_t num_small_pages_in_large = large_page / small_page;
1793        size_t page = os::page_size_for_region_aligned(large_page, num_small_pages_in_large);
1794
1795        assert_eq(page, small_page);
1796      }
1797    }
1798  }
1799
1800  static void test_page_size_for_region_alignment() {
1801    if (UseLargePages) {
1802      const size_t small_page = small_page_size();
1803      const size_t large_page = large_page_size();
1804      if (large_page > small_page) {
1805        const size_t unaligned_region = large_page + 17;
1806        size_t page = os::page_size_for_region_aligned(unaligned_region, 1);
1807        assert_eq(page, small_page);
1808
1809        const size_t num_pages = 5;
1810        const size_t aligned_region = large_page * num_pages;
1811        page = os::page_size_for_region_aligned(aligned_region, num_pages);
1812        assert_eq(page, large_page);
1813      }
1814    }
1815  }
1816
1817  static void test_page_size_for_region_unaligned() {
1818    if (UseLargePages) {
1819      // Given exact page size, should return that page size.
1820      for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
1821        size_t expected = os::_page_sizes[i];
1822        size_t actual = os::page_size_for_region_unaligned(expected, 1);
1823        assert_eq(expected, actual);
1824      }
1825
1826      // Given slightly larger size than a page size, return the page size.
1827      for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
1828        size_t expected = os::_page_sizes[i];
1829        size_t actual = os::page_size_for_region_unaligned(expected + 17, 1);
1830        assert_eq(expected, actual);
1831      }
1832
1833      // Given a slightly smaller size than a page size,
1834      // return the next smaller page size.
1835      if (os::_page_sizes[1] > os::_page_sizes[0]) {
1836        size_t expected = os::_page_sizes[0];
1837        size_t actual = os::page_size_for_region_unaligned(os::_page_sizes[1] - 17, 1);
1838        assert_eq(actual, expected);
1839      }
1840
1841      // Return small page size for values less than a small page.
1842      size_t small_page = small_page_size();
1843      size_t actual = os::page_size_for_region_unaligned(small_page - 17, 1);
1844      assert_eq(small_page, actual);
1845    }
1846  }
1847
1848 public:
1849  static void run_tests() {
1850    test_page_size_for_region_aligned();
1851    test_page_size_for_region_alignment();
1852    test_page_size_for_region_unaligned();
1853  }
1854};
1855
1856void TestOS_test() {
1857  TestOS::run_tests();
1858}
1859
1860#endif // PRODUCT
1861