os.cpp revision 11857:d0fbf661cc16
1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "gc/shared/vmGCOperations.hpp"
34#include "interpreter/interpreter.hpp"
35#include "logging/log.hpp"
36#include "logging/logStream.inline.hpp"
37#include "memory/allocation.inline.hpp"
38#ifdef ASSERT
39#include "memory/guardedMemory.hpp"
40#endif
41#include "memory/resourceArea.hpp"
42#include "oops/oop.inline.hpp"
43#include "prims/jvm.h"
44#include "prims/jvm_misc.hpp"
45#include "prims/privilegedStack.hpp"
46#include "runtime/arguments.hpp"
47#include "runtime/atomic.hpp"
48#include "runtime/frame.inline.hpp"
49#include "runtime/interfaceSupport.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/os.inline.hpp"
54#include "runtime/stubRoutines.hpp"
55#include "runtime/thread.inline.hpp"
56#include "runtime/vm_version.hpp"
57#include "services/attachListener.hpp"
58#include "services/mallocTracker.hpp"
59#include "services/memTracker.hpp"
60#include "services/nmtCommon.hpp"
61#include "services/threadService.hpp"
62#include "utilities/defaultStream.hpp"
63#include "utilities/events.hpp"
64
65# include <signal.h>
66# include <errno.h>
67
68OSThread*         os::_starting_thread    = NULL;
69address           os::_polling_page       = NULL;
70volatile int32_t* os::_mem_serialize_page = NULL;
71uintptr_t         os::_serialize_page_mask = 0;
72long              os::_rand_seed          = 1;
73int               os::_processor_count    = 0;
74int               os::_initial_active_processor_count = 0;
75size_t            os::_page_sizes[os::page_sizes_max];
76
77#ifndef PRODUCT
78julong os::num_mallocs = 0;         // # of calls to malloc/realloc
79julong os::alloc_bytes = 0;         // # of bytes allocated
80julong os::num_frees = 0;           // # of calls to free
81julong os::free_bytes = 0;          // # of bytes freed
82#endif
83
84static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
85
86void os_init_globals() {
87  // Called from init_globals().
88  // See Threads::create_vm() in thread.cpp, and init.cpp.
89  os::init_globals();
90}
91
92// Fill in buffer with current local time as an ISO-8601 string.
93// E.g., yyyy-mm-ddThh:mm:ss-zzzz.
94// Returns buffer, or NULL if it failed.
95// This would mostly be a call to
96//     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
97// except that on Windows the %z behaves badly, so we do it ourselves.
98// Also, people wanted milliseconds on there,
99// and strftime doesn't do milliseconds.
100char* os::iso8601_time(char* buffer, size_t buffer_length) {
101  // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
102  //                                      1         2
103  //                             12345678901234567890123456789
104  // format string: "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d"
105  static const size_t needed_buffer = 29;
106
107  // Sanity check the arguments
108  if (buffer == NULL) {
109    assert(false, "NULL buffer");
110    return NULL;
111  }
112  if (buffer_length < needed_buffer) {
113    assert(false, "buffer_length too small");
114    return NULL;
115  }
116  // Get the current time
117  jlong milliseconds_since_19700101 = javaTimeMillis();
118  const int milliseconds_per_microsecond = 1000;
119  const time_t seconds_since_19700101 =
120    milliseconds_since_19700101 / milliseconds_per_microsecond;
121  const int milliseconds_after_second =
122    milliseconds_since_19700101 % milliseconds_per_microsecond;
123  // Convert the time value to a tm and timezone variable
124  struct tm time_struct;
125  if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
126    assert(false, "Failed localtime_pd");
127    return NULL;
128  }
129#if defined(_ALLBSD_SOURCE)
130  const time_t zone = (time_t) time_struct.tm_gmtoff;
131#else
132  const time_t zone = timezone;
133#endif
134
135  // If daylight savings time is in effect,
136  // we are 1 hour East of our time zone
137  const time_t seconds_per_minute = 60;
138  const time_t minutes_per_hour = 60;
139  const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
140  time_t UTC_to_local = zone;
141  if (time_struct.tm_isdst > 0) {
142    UTC_to_local = UTC_to_local - seconds_per_hour;
143  }
144  // Compute the time zone offset.
145  //    localtime_pd() sets timezone to the difference (in seconds)
146  //    between UTC and and local time.
147  //    ISO 8601 says we need the difference between local time and UTC,
148  //    we change the sign of the localtime_pd() result.
149  const time_t local_to_UTC = -(UTC_to_local);
150  // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
151  char sign_local_to_UTC = '+';
152  time_t abs_local_to_UTC = local_to_UTC;
153  if (local_to_UTC < 0) {
154    sign_local_to_UTC = '-';
155    abs_local_to_UTC = -(abs_local_to_UTC);
156  }
157  // Convert time zone offset seconds to hours and minutes.
158  const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
159  const time_t zone_min =
160    ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
161
162  // Print an ISO 8601 date and time stamp into the buffer
163  const int year = 1900 + time_struct.tm_year;
164  const int month = 1 + time_struct.tm_mon;
165  const int printed = jio_snprintf(buffer, buffer_length,
166                                   "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d",
167                                   year,
168                                   month,
169                                   time_struct.tm_mday,
170                                   time_struct.tm_hour,
171                                   time_struct.tm_min,
172                                   time_struct.tm_sec,
173                                   milliseconds_after_second,
174                                   sign_local_to_UTC,
175                                   zone_hours,
176                                   zone_min);
177  if (printed == 0) {
178    assert(false, "Failed jio_printf");
179    return NULL;
180  }
181  return buffer;
182}
183
184OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
185#ifdef ASSERT
186  if (!(!thread->is_Java_thread() ||
187         Thread::current() == thread  ||
188         Threads_lock->owned_by_self()
189         || thread->is_Compiler_thread()
190        )) {
191    assert(false, "possibility of dangling Thread pointer");
192  }
193#endif
194
195  if (p >= MinPriority && p <= MaxPriority) {
196    int priority = java_to_os_priority[p];
197    return set_native_priority(thread, priority);
198  } else {
199    assert(false, "Should not happen");
200    return OS_ERR;
201  }
202}
203
204// The mapping from OS priority back to Java priority may be inexact because
205// Java priorities can map M:1 with native priorities. If you want the definite
206// Java priority then use JavaThread::java_priority()
207OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
208  int p;
209  int os_prio;
210  OSReturn ret = get_native_priority(thread, &os_prio);
211  if (ret != OS_OK) return ret;
212
213  if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
214    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
215  } else {
216    // niceness values are in reverse order
217    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
218  }
219  priority = (ThreadPriority)p;
220  return OS_OK;
221}
222
223
224// --------------------- sun.misc.Signal (optional) ---------------------
225
226
227// SIGBREAK is sent by the keyboard to query the VM state
228#ifndef SIGBREAK
229#define SIGBREAK SIGQUIT
230#endif
231
232// sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
233
234
235static void signal_thread_entry(JavaThread* thread, TRAPS) {
236  os::set_priority(thread, NearMaxPriority);
237  while (true) {
238    int sig;
239    {
240      // FIXME : Currently we have not decided what should be the status
241      //         for this java thread blocked here. Once we decide about
242      //         that we should fix this.
243      sig = os::signal_wait();
244    }
245    if (sig == os::sigexitnum_pd()) {
246       // Terminate the signal thread
247       return;
248    }
249
250    switch (sig) {
251      case SIGBREAK: {
252        // Check if the signal is a trigger to start the Attach Listener - in that
253        // case don't print stack traces.
254        if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
255          continue;
256        }
257        // Print stack traces
258        // Any SIGBREAK operations added here should make sure to flush
259        // the output stream (e.g. tty->flush()) after output.  See 4803766.
260        // Each module also prints an extra carriage return after its output.
261        VM_PrintThreads op;
262        VMThread::execute(&op);
263        VM_PrintJNI jni_op;
264        VMThread::execute(&jni_op);
265        VM_FindDeadlocks op1(tty);
266        VMThread::execute(&op1);
267        Universe::print_heap_at_SIGBREAK();
268        if (PrintClassHistogram) {
269          VM_GC_HeapInspection op1(tty, true /* force full GC before heap inspection */);
270          VMThread::execute(&op1);
271        }
272        if (JvmtiExport::should_post_data_dump()) {
273          JvmtiExport::post_data_dump();
274        }
275        break;
276      }
277      default: {
278        // Dispatch the signal to java
279        HandleMark hm(THREAD);
280        Klass* k = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_misc_Signal(), THREAD);
281        KlassHandle klass (THREAD, k);
282        if (klass.not_null()) {
283          JavaValue result(T_VOID);
284          JavaCallArguments args;
285          args.push_int(sig);
286          JavaCalls::call_static(
287            &result,
288            klass,
289            vmSymbols::dispatch_name(),
290            vmSymbols::int_void_signature(),
291            &args,
292            THREAD
293          );
294        }
295        if (HAS_PENDING_EXCEPTION) {
296          // tty is initialized early so we don't expect it to be null, but
297          // if it is we can't risk doing an initialization that might
298          // trigger additional out-of-memory conditions
299          if (tty != NULL) {
300            char klass_name[256];
301            char tmp_sig_name[16];
302            const char* sig_name = "UNKNOWN";
303            InstanceKlass::cast(PENDING_EXCEPTION->klass())->
304              name()->as_klass_external_name(klass_name, 256);
305            if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
306              sig_name = tmp_sig_name;
307            warning("Exception %s occurred dispatching signal %s to handler"
308                    "- the VM may need to be forcibly terminated",
309                    klass_name, sig_name );
310          }
311          CLEAR_PENDING_EXCEPTION;
312        }
313      }
314    }
315  }
316}
317
318void os::init_before_ergo() {
319  initialize_initial_active_processor_count();
320  // We need to initialize large page support here because ergonomics takes some
321  // decisions depending on large page support and the calculated large page size.
322  large_page_init();
323
324  // We need to adapt the configured number of stack protection pages given
325  // in 4K pages to the actual os page size. We must do this before setting
326  // up minimal stack sizes etc. in os::init_2().
327  JavaThread::set_stack_red_zone_size     (align_size_up(StackRedPages      * 4 * K, vm_page_size()));
328  JavaThread::set_stack_yellow_zone_size  (align_size_up(StackYellowPages   * 4 * K, vm_page_size()));
329  JavaThread::set_stack_reserved_zone_size(align_size_up(StackReservedPages * 4 * K, vm_page_size()));
330  JavaThread::set_stack_shadow_zone_size  (align_size_up(StackShadowPages   * 4 * K, vm_page_size()));
331
332  // VM version initialization identifies some characteristics of the
333  // platform that are used during ergonomic decisions.
334  VM_Version::init_before_ergo();
335}
336
337void os::signal_init() {
338  if (!ReduceSignalUsage) {
339    // Setup JavaThread for processing signals
340    EXCEPTION_MARK;
341    Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
342    instanceKlassHandle klass (THREAD, k);
343    instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
344
345    const char thread_name[] = "Signal Dispatcher";
346    Handle string = java_lang_String::create_from_str(thread_name, CHECK);
347
348    // Initialize thread_oop to put it into the system threadGroup
349    Handle thread_group (THREAD, Universe::system_thread_group());
350    JavaValue result(T_VOID);
351    JavaCalls::call_special(&result, thread_oop,
352                           klass,
353                           vmSymbols::object_initializer_name(),
354                           vmSymbols::threadgroup_string_void_signature(),
355                           thread_group,
356                           string,
357                           CHECK);
358
359    KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
360    JavaCalls::call_special(&result,
361                            thread_group,
362                            group,
363                            vmSymbols::add_method_name(),
364                            vmSymbols::thread_void_signature(),
365                            thread_oop,         // ARG 1
366                            CHECK);
367
368    os::signal_init_pd();
369
370    { MutexLocker mu(Threads_lock);
371      JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
372
373      // At this point it may be possible that no osthread was created for the
374      // JavaThread due to lack of memory. We would have to throw an exception
375      // in that case. However, since this must work and we do not allow
376      // exceptions anyway, check and abort if this fails.
377      if (signal_thread == NULL || signal_thread->osthread() == NULL) {
378        vm_exit_during_initialization("java.lang.OutOfMemoryError",
379                                      os::native_thread_creation_failed_msg());
380      }
381
382      java_lang_Thread::set_thread(thread_oop(), signal_thread);
383      java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
384      java_lang_Thread::set_daemon(thread_oop());
385
386      signal_thread->set_threadObj(thread_oop());
387      Threads::add(signal_thread);
388      Thread::start(signal_thread);
389    }
390    // Handle ^BREAK
391    os::signal(SIGBREAK, os::user_handler());
392  }
393}
394
395
396void os::terminate_signal_thread() {
397  if (!ReduceSignalUsage)
398    signal_notify(sigexitnum_pd());
399}
400
401
402// --------------------- loading libraries ---------------------
403
404typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
405extern struct JavaVM_ main_vm;
406
407static void* _native_java_library = NULL;
408
409void* os::native_java_library() {
410  if (_native_java_library == NULL) {
411    char buffer[JVM_MAXPATHLEN];
412    char ebuf[1024];
413
414    // Try to load verify dll first. In 1.3 java dll depends on it and is not
415    // always able to find it when the loading executable is outside the JDK.
416    // In order to keep working with 1.2 we ignore any loading errors.
417    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
418                       "verify")) {
419      dll_load(buffer, ebuf, sizeof(ebuf));
420    }
421
422    // Load java dll
423    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
424                       "java")) {
425      _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
426    }
427    if (_native_java_library == NULL) {
428      vm_exit_during_initialization("Unable to load native library", ebuf);
429    }
430
431#if defined(__OpenBSD__)
432    // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
433    // ignore errors
434    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
435                       "net")) {
436      dll_load(buffer, ebuf, sizeof(ebuf));
437    }
438#endif
439  }
440  return _native_java_library;
441}
442
443/*
444 * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
445 * If check_lib == true then we are looking for an
446 * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
447 * this library is statically linked into the image.
448 * If check_lib == false then we will look for the appropriate symbol in the
449 * executable if agent_lib->is_static_lib() == true or in the shared library
450 * referenced by 'handle'.
451 */
452void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
453                              const char *syms[], size_t syms_len) {
454  assert(agent_lib != NULL, "sanity check");
455  const char *lib_name;
456  void *handle = agent_lib->os_lib();
457  void *entryName = NULL;
458  char *agent_function_name;
459  size_t i;
460
461  // If checking then use the agent name otherwise test is_static_lib() to
462  // see how to process this lookup
463  lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
464  for (i = 0; i < syms_len; i++) {
465    agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
466    if (agent_function_name == NULL) {
467      break;
468    }
469    entryName = dll_lookup(handle, agent_function_name);
470    FREE_C_HEAP_ARRAY(char, agent_function_name);
471    if (entryName != NULL) {
472      break;
473    }
474  }
475  return entryName;
476}
477
478// See if the passed in agent is statically linked into the VM image.
479bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
480                            size_t syms_len) {
481  void *ret;
482  void *proc_handle;
483  void *save_handle;
484
485  assert(agent_lib != NULL, "sanity check");
486  if (agent_lib->name() == NULL) {
487    return false;
488  }
489  proc_handle = get_default_process_handle();
490  // Check for Agent_OnLoad/Attach_lib_name function
491  save_handle = agent_lib->os_lib();
492  // We want to look in this process' symbol table.
493  agent_lib->set_os_lib(proc_handle);
494  ret = find_agent_function(agent_lib, true, syms, syms_len);
495  if (ret != NULL) {
496    // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
497    agent_lib->set_valid();
498    agent_lib->set_static_lib(true);
499    return true;
500  }
501  agent_lib->set_os_lib(save_handle);
502  return false;
503}
504
505// --------------------- heap allocation utilities ---------------------
506
507char *os::strdup(const char *str, MEMFLAGS flags) {
508  size_t size = strlen(str);
509  char *dup_str = (char *)malloc(size + 1, flags);
510  if (dup_str == NULL) return NULL;
511  strcpy(dup_str, str);
512  return dup_str;
513}
514
515char* os::strdup_check_oom(const char* str, MEMFLAGS flags) {
516  char* p = os::strdup(str, flags);
517  if (p == NULL) {
518    vm_exit_out_of_memory(strlen(str) + 1, OOM_MALLOC_ERROR, "os::strdup_check_oom");
519  }
520  return p;
521}
522
523
524#define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
525
526#ifdef ASSERT
527
528static void verify_memory(void* ptr) {
529  GuardedMemory guarded(ptr);
530  if (!guarded.verify_guards()) {
531    tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
532    tty->print_cr("## memory stomp:");
533    guarded.print_on(tty);
534    fatal("memory stomping error");
535  }
536}
537
538#endif
539
540//
541// This function supports testing of the malloc out of memory
542// condition without really running the system out of memory.
543//
544static bool has_reached_max_malloc_test_peak(size_t alloc_size) {
545  if (MallocMaxTestWords > 0) {
546    jint words = (jint)(alloc_size / BytesPerWord);
547
548    if ((cur_malloc_words + words) > MallocMaxTestWords) {
549      return true;
550    }
551    Atomic::add(words, (volatile jint *)&cur_malloc_words);
552  }
553  return false;
554}
555
556void* os::malloc(size_t size, MEMFLAGS flags) {
557  return os::malloc(size, flags, CALLER_PC);
558}
559
560void* os::malloc(size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
561  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
562  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
563
564#ifdef ASSERT
565  // checking for the WatcherThread and crash_protection first
566  // since os::malloc can be called when the libjvm.{dll,so} is
567  // first loaded and we don't have a thread yet.
568  // try to find the thread after we see that the watcher thread
569  // exists and has crash protection.
570  WatcherThread *wt = WatcherThread::watcher_thread();
571  if (wt != NULL && wt->has_crash_protection()) {
572    Thread* thread = Thread::current_or_null();
573    if (thread == wt) {
574      assert(!wt->has_crash_protection(),
575          "Can't malloc with crash protection from WatcherThread");
576    }
577  }
578#endif
579
580  if (size == 0) {
581    // return a valid pointer if size is zero
582    // if NULL is returned the calling functions assume out of memory.
583    size = 1;
584  }
585
586  // NMT support
587  NMT_TrackingLevel level = MemTracker::tracking_level();
588  size_t            nmt_header_size = MemTracker::malloc_header_size(level);
589
590#ifndef ASSERT
591  const size_t alloc_size = size + nmt_header_size;
592#else
593  const size_t alloc_size = GuardedMemory::get_total_size(size + nmt_header_size);
594  if (size + nmt_header_size > alloc_size) { // Check for rollover.
595    return NULL;
596  }
597#endif
598
599  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
600
601  // For the test flag -XX:MallocMaxTestWords
602  if (has_reached_max_malloc_test_peak(size)) {
603    return NULL;
604  }
605
606  u_char* ptr;
607  ptr = (u_char*)::malloc(alloc_size);
608
609#ifdef ASSERT
610  if (ptr == NULL) {
611    return NULL;
612  }
613  // Wrap memory with guard
614  GuardedMemory guarded(ptr, size + nmt_header_size);
615  ptr = guarded.get_user_ptr();
616#endif
617  if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
618    tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
619    breakpoint();
620  }
621  debug_only(if (paranoid) verify_memory(ptr));
622  if (PrintMalloc && tty != NULL) {
623    tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
624  }
625
626  // we do not track guard memory
627  return MemTracker::record_malloc((address)ptr, size, memflags, stack, level);
628}
629
630void* os::realloc(void *memblock, size_t size, MEMFLAGS flags) {
631  return os::realloc(memblock, size, flags, CALLER_PC);
632}
633
634void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
635
636  // For the test flag -XX:MallocMaxTestWords
637  if (has_reached_max_malloc_test_peak(size)) {
638    return NULL;
639  }
640
641#ifndef ASSERT
642  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
643  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
644   // NMT support
645  void* membase = MemTracker::record_free(memblock);
646  NMT_TrackingLevel level = MemTracker::tracking_level();
647  size_t  nmt_header_size = MemTracker::malloc_header_size(level);
648  void* ptr = ::realloc(membase, size + nmt_header_size);
649  return MemTracker::record_malloc(ptr, size, memflags, stack, level);
650#else
651  if (memblock == NULL) {
652    return os::malloc(size, memflags, stack);
653  }
654  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
655    tty->print_cr("os::realloc caught " PTR_FORMAT, p2i(memblock));
656    breakpoint();
657  }
658  // NMT support
659  void* membase = MemTracker::malloc_base(memblock);
660  verify_memory(membase);
661  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
662  if (size == 0) {
663    return NULL;
664  }
665  // always move the block
666  void* ptr = os::malloc(size, memflags, stack);
667  if (PrintMalloc && tty != NULL) {
668    tty->print_cr("os::realloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, p2i(memblock), p2i(ptr));
669  }
670  // Copy to new memory if malloc didn't fail
671  if ( ptr != NULL ) {
672    GuardedMemory guarded(MemTracker::malloc_base(memblock));
673    // Guard's user data contains NMT header
674    size_t memblock_size = guarded.get_user_size() - MemTracker::malloc_header_size(memblock);
675    memcpy(ptr, memblock, MIN2(size, memblock_size));
676    if (paranoid) verify_memory(MemTracker::malloc_base(ptr));
677    if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
678      tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
679      breakpoint();
680    }
681    os::free(memblock);
682  }
683  return ptr;
684#endif
685}
686
687
688void  os::free(void *memblock) {
689  NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
690#ifdef ASSERT
691  if (memblock == NULL) return;
692  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
693    if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, p2i(memblock));
694    breakpoint();
695  }
696  void* membase = MemTracker::record_free(memblock);
697  verify_memory(membase);
698  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
699
700  GuardedMemory guarded(membase);
701  size_t size = guarded.get_user_size();
702  inc_stat_counter(&free_bytes, size);
703  membase = guarded.release_for_freeing();
704  if (PrintMalloc && tty != NULL) {
705      fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)membase);
706  }
707  ::free(membase);
708#else
709  void* membase = MemTracker::record_free(memblock);
710  ::free(membase);
711#endif
712}
713
714void os::init_random(long initval) {
715  _rand_seed = initval;
716}
717
718
719long os::random() {
720  /* standard, well-known linear congruential random generator with
721   * next_rand = (16807*seed) mod (2**31-1)
722   * see
723   * (1) "Random Number Generators: Good Ones Are Hard to Find",
724   *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
725   * (2) "Two Fast Implementations of the 'Minimal Standard' Random
726   *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
727  */
728  const long a = 16807;
729  const unsigned long m = 2147483647;
730  const long q = m / a;        assert(q == 127773, "weird math");
731  const long r = m % a;        assert(r == 2836, "weird math");
732
733  // compute az=2^31p+q
734  unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
735  unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
736  lo += (hi & 0x7FFF) << 16;
737
738  // if q overflowed, ignore the overflow and increment q
739  if (lo > m) {
740    lo &= m;
741    ++lo;
742  }
743  lo += hi >> 15;
744
745  // if (p+q) overflowed, ignore the overflow and increment (p+q)
746  if (lo > m) {
747    lo &= m;
748    ++lo;
749  }
750  return (_rand_seed = lo);
751}
752
753// The INITIALIZED state is distinguished from the SUSPENDED state because the
754// conditions in which a thread is first started are different from those in which
755// a suspension is resumed.  These differences make it hard for us to apply the
756// tougher checks when starting threads that we want to do when resuming them.
757// However, when start_thread is called as a result of Thread.start, on a Java
758// thread, the operation is synchronized on the Java Thread object.  So there
759// cannot be a race to start the thread and hence for the thread to exit while
760// we are working on it.  Non-Java threads that start Java threads either have
761// to do so in a context in which races are impossible, or should do appropriate
762// locking.
763
764void os::start_thread(Thread* thread) {
765  // guard suspend/resume
766  MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
767  OSThread* osthread = thread->osthread();
768  osthread->set_state(RUNNABLE);
769  pd_start_thread(thread);
770}
771
772void os::abort(bool dump_core) {
773  abort(dump_core && CreateCoredumpOnCrash, NULL, NULL);
774}
775
776//---------------------------------------------------------------------------
777// Helper functions for fatal error handler
778
779void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
780  assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
781
782  int cols = 0;
783  int cols_per_line = 0;
784  switch (unitsize) {
785    case 1: cols_per_line = 16; break;
786    case 2: cols_per_line = 8;  break;
787    case 4: cols_per_line = 4;  break;
788    case 8: cols_per_line = 2;  break;
789    default: return;
790  }
791
792  address p = start;
793  st->print(PTR_FORMAT ":   ", p2i(start));
794  while (p < end) {
795    switch (unitsize) {
796      case 1: st->print("%02x", *(u1*)p); break;
797      case 2: st->print("%04x", *(u2*)p); break;
798      case 4: st->print("%08x", *(u4*)p); break;
799      case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
800    }
801    p += unitsize;
802    cols++;
803    if (cols >= cols_per_line && p < end) {
804       cols = 0;
805       st->cr();
806       st->print(PTR_FORMAT ":   ", p2i(p));
807    } else {
808       st->print(" ");
809    }
810  }
811  st->cr();
812}
813
814void os::print_environment_variables(outputStream* st, const char** env_list) {
815  if (env_list) {
816    st->print_cr("Environment Variables:");
817
818    for (int i = 0; env_list[i] != NULL; i++) {
819      char *envvar = ::getenv(env_list[i]);
820      if (envvar != NULL) {
821        st->print("%s", env_list[i]);
822        st->print("=");
823        st->print_cr("%s", envvar);
824      }
825    }
826  }
827}
828
829void os::print_cpu_info(outputStream* st, char* buf, size_t buflen) {
830  // cpu
831  st->print("CPU:");
832  st->print("total %d", os::processor_count());
833  // It's not safe to query number of active processors after crash
834  // st->print("(active %d)", os::active_processor_count()); but we can
835  // print the initial number of active processors.
836  // We access the raw value here because the assert in the accessor will
837  // fail if the crash occurs before initialization of this value.
838  st->print(" (initial active %d)", _initial_active_processor_count);
839  st->print(" %s", VM_Version::features_string());
840  st->cr();
841  pd_print_cpu_info(st, buf, buflen);
842}
843
844// Print a one line string summarizing the cpu, number of cores, memory, and operating system version
845void os::print_summary_info(outputStream* st, char* buf, size_t buflen) {
846  st->print("Host: ");
847#ifndef PRODUCT
848  if (get_host_name(buf, buflen)) {
849    st->print("%s, ", buf);
850  }
851#endif // PRODUCT
852  get_summary_cpu_info(buf, buflen);
853  st->print("%s, ", buf);
854  size_t mem = physical_memory()/G;
855  if (mem == 0) {  // for low memory systems
856    mem = physical_memory()/M;
857    st->print("%d cores, " SIZE_FORMAT "M, ", processor_count(), mem);
858  } else {
859    st->print("%d cores, " SIZE_FORMAT "G, ", processor_count(), mem);
860  }
861  get_summary_os_info(buf, buflen);
862  st->print_raw(buf);
863  st->cr();
864}
865
866void os::print_date_and_time(outputStream *st, char* buf, size_t buflen) {
867  const int secs_per_day  = 86400;
868  const int secs_per_hour = 3600;
869  const int secs_per_min  = 60;
870
871  time_t tloc;
872  (void)time(&tloc);
873  char* timestring = ctime(&tloc);  // ctime adds newline.
874  // edit out the newline
875  char* nl = strchr(timestring, '\n');
876  if (nl != NULL) {
877    *nl = '\0';
878  }
879
880  struct tm tz;
881  if (localtime_pd(&tloc, &tz) != NULL) {
882    ::strftime(buf, buflen, "%Z", &tz);
883    st->print("Time: %s %s", timestring, buf);
884  } else {
885    st->print("Time: %s", timestring);
886  }
887
888  double t = os::elapsedTime();
889  // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
890  //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
891  //       before printf. We lost some precision, but who cares?
892  int eltime = (int)t;  // elapsed time in seconds
893
894  // print elapsed time in a human-readable format:
895  int eldays = eltime / secs_per_day;
896  int day_secs = eldays * secs_per_day;
897  int elhours = (eltime - day_secs) / secs_per_hour;
898  int hour_secs = elhours * secs_per_hour;
899  int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
900  int minute_secs = elmins * secs_per_min;
901  int elsecs = (eltime - day_secs - hour_secs - minute_secs);
902  st->print_cr(" elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
903}
904
905// moved from debug.cpp (used to be find()) but still called from there
906// The verbose parameter is only set by the debug code in one case
907void os::print_location(outputStream* st, intptr_t x, bool verbose) {
908  address addr = (address)x;
909  CodeBlob* b = CodeCache::find_blob_unsafe(addr);
910  if (b != NULL) {
911    if (b->is_buffer_blob()) {
912      // the interpreter is generated into a buffer blob
913      InterpreterCodelet* i = Interpreter::codelet_containing(addr);
914      if (i != NULL) {
915        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", p2i(addr), (int)(addr - i->code_begin()));
916        i->print_on(st);
917        return;
918      }
919      if (Interpreter::contains(addr)) {
920        st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
921                     " (not bytecode specific)", p2i(addr));
922        return;
923      }
924      //
925      if (AdapterHandlerLibrary::contains(b)) {
926        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", p2i(addr), (int)(addr - b->code_begin()));
927        AdapterHandlerLibrary::print_handler_on(st, b);
928      }
929      // the stubroutines are generated into a buffer blob
930      StubCodeDesc* d = StubCodeDesc::desc_for(addr);
931      if (d != NULL) {
932        st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", p2i(addr), (int)(addr - d->begin()));
933        d->print_on(st);
934        st->cr();
935        return;
936      }
937      if (StubRoutines::contains(addr)) {
938        st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) stub routine", p2i(addr));
939        return;
940      }
941      // the InlineCacheBuffer is using stubs generated into a buffer blob
942      if (InlineCacheBuffer::contains(addr)) {
943        st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", p2i(addr));
944        return;
945      }
946      VtableStub* v = VtableStubs::stub_containing(addr);
947      if (v != NULL) {
948        st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", p2i(addr), (int)(addr - v->entry_point()));
949        v->print_on(st);
950        st->cr();
951        return;
952      }
953    }
954    nmethod* nm = b->as_nmethod_or_null();
955    if (nm != NULL) {
956      ResourceMark rm;
957      st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
958                p2i(addr), (int)(addr - nm->entry_point()), p2i(nm));
959      if (verbose) {
960        st->print(" for ");
961        nm->method()->print_value_on(st);
962      }
963      st->cr();
964      nm->print_nmethod(verbose);
965      return;
966    }
967    st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", p2i(addr), (int)(addr - b->code_begin()));
968    b->print_on(st);
969    return;
970  }
971
972  if (Universe::heap()->is_in(addr)) {
973    HeapWord* p = Universe::heap()->block_start(addr);
974    bool print = false;
975    // If we couldn't find it it just may mean that heap wasn't parsable
976    // See if we were just given an oop directly
977    if (p != NULL && Universe::heap()->block_is_obj(p)) {
978      print = true;
979    } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
980      p = (HeapWord*) addr;
981      print = true;
982    }
983    if (print) {
984      if (p == (HeapWord*) addr) {
985        st->print_cr(INTPTR_FORMAT " is an oop", p2i(addr));
986      } else {
987        st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, p2i(addr), p2i(p));
988      }
989      oop(p)->print_on(st);
990      return;
991    }
992  } else {
993    if (Universe::heap()->is_in_reserved(addr)) {
994      st->print_cr(INTPTR_FORMAT " is an unallocated location "
995                   "in the heap", p2i(addr));
996      return;
997    }
998  }
999  if (JNIHandles::is_global_handle((jobject) addr)) {
1000    st->print_cr(INTPTR_FORMAT " is a global jni handle", p2i(addr));
1001    return;
1002  }
1003  if (JNIHandles::is_weak_global_handle((jobject) addr)) {
1004    st->print_cr(INTPTR_FORMAT " is a weak global jni handle", p2i(addr));
1005    return;
1006  }
1007#ifndef PRODUCT
1008  // we don't keep the block list in product mode
1009  if (JNIHandleBlock::any_contains((jobject) addr)) {
1010    st->print_cr(INTPTR_FORMAT " is a local jni handle", p2i(addr));
1011    return;
1012  }
1013#endif
1014
1015  for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
1016    // Check for privilege stack
1017    if (thread->privileged_stack_top() != NULL &&
1018        thread->privileged_stack_top()->contains(addr)) {
1019      st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
1020                   "for thread: " INTPTR_FORMAT, p2i(addr), p2i(thread));
1021      if (verbose) thread->print_on(st);
1022      return;
1023    }
1024    // If the addr is a java thread print information about that.
1025    if (addr == (address)thread) {
1026      if (verbose) {
1027        thread->print_on(st);
1028      } else {
1029        st->print_cr(INTPTR_FORMAT " is a thread", p2i(addr));
1030      }
1031      return;
1032    }
1033    // If the addr is in the stack region for this thread then report that
1034    // and print thread info
1035    if (thread->on_local_stack(addr)) {
1036      st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
1037                   INTPTR_FORMAT, p2i(addr), p2i(thread));
1038      if (verbose) thread->print_on(st);
1039      return;
1040    }
1041
1042  }
1043
1044  // Check if in metaspace and print types that have vptrs (only method now)
1045  if (Metaspace::contains(addr)) {
1046    if (Method::has_method_vptr((const void*)addr)) {
1047      ((Method*)addr)->print_value_on(st);
1048      st->cr();
1049    } else {
1050      // Use addr->print() from the debugger instead (not here)
1051      st->print_cr(INTPTR_FORMAT " is pointing into metadata", p2i(addr));
1052    }
1053    return;
1054  }
1055
1056  // Try an OS specific find
1057  if (os::find(addr, st)) {
1058    return;
1059  }
1060
1061  st->print_cr(INTPTR_FORMAT " is an unknown value", p2i(addr));
1062}
1063
1064// Looks like all platforms except IA64 can use the same function to check
1065// if C stack is walkable beyond current frame. The check for fp() is not
1066// necessary on Sparc, but it's harmless.
1067bool os::is_first_C_frame(frame* fr) {
1068#if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
1069  // On IA64 we have to check if the callers bsp is still valid
1070  // (i.e. within the register stack bounds).
1071  // Notice: this only works for threads created by the VM and only if
1072  // we walk the current stack!!! If we want to be able to walk
1073  // arbitrary other threads, we'll have to somehow store the thread
1074  // object in the frame.
1075  Thread *thread = Thread::current();
1076  if ((address)fr->fp() <=
1077      thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1078    // This check is a little hacky, because on Linux the first C
1079    // frame's ('start_thread') register stack frame starts at
1080    // "register_stack_base + 0x48" while on HPUX, the first C frame's
1081    // ('__pthread_bound_body') register stack frame seems to really
1082    // start at "register_stack_base".
1083    return true;
1084  } else {
1085    return false;
1086  }
1087#elif defined(IA64) && defined(_WIN32)
1088  return true;
1089#else
1090  // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1091  // Check usp first, because if that's bad the other accessors may fault
1092  // on some architectures.  Ditto ufp second, etc.
1093  uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1094  // sp on amd can be 32 bit aligned.
1095  uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1096
1097  uintptr_t usp    = (uintptr_t)fr->sp();
1098  if ((usp & sp_align_mask) != 0) return true;
1099
1100  uintptr_t ufp    = (uintptr_t)fr->fp();
1101  if ((ufp & fp_align_mask) != 0) return true;
1102
1103  uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1104  if ((old_sp & sp_align_mask) != 0) return true;
1105  if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1106
1107  uintptr_t old_fp = (uintptr_t)fr->link();
1108  if ((old_fp & fp_align_mask) != 0) return true;
1109  if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1110
1111  // stack grows downwards; if old_fp is below current fp or if the stack
1112  // frame is too large, either the stack is corrupted or fp is not saved
1113  // on stack (i.e. on x86, ebp may be used as general register). The stack
1114  // is not walkable beyond current frame.
1115  if (old_fp < ufp) return true;
1116  if (old_fp - ufp > 64 * K) return true;
1117
1118  return false;
1119#endif
1120}
1121
1122#ifdef ASSERT
1123extern "C" void test_random() {
1124  const double m = 2147483647;
1125  double mean = 0.0, variance = 0.0, t;
1126  long reps = 10000;
1127  unsigned long seed = 1;
1128
1129  tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1130  os::init_random(seed);
1131  long num;
1132  for (int k = 0; k < reps; k++) {
1133    num = os::random();
1134    double u = (double)num / m;
1135    assert(u >= 0.0 && u <= 1.0, "bad random number!");
1136
1137    // calculate mean and variance of the random sequence
1138    mean += u;
1139    variance += (u*u);
1140  }
1141  mean /= reps;
1142  variance /= (reps - 1);
1143
1144  assert(num == 1043618065, "bad seed");
1145  tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1146  tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1147  const double eps = 0.0001;
1148  t = fabsd(mean - 0.5018);
1149  assert(t < eps, "bad mean");
1150  t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1151  assert(t < eps, "bad variance");
1152}
1153#endif
1154
1155
1156// Set up the boot classpath.
1157
1158char* os::format_boot_path(const char* format_string,
1159                           const char* home,
1160                           int home_len,
1161                           char fileSep,
1162                           char pathSep) {
1163    assert((fileSep == '/' && pathSep == ':') ||
1164           (fileSep == '\\' && pathSep == ';'), "unexpected separator chars");
1165
1166    // Scan the format string to determine the length of the actual
1167    // boot classpath, and handle platform dependencies as well.
1168    int formatted_path_len = 0;
1169    const char* p;
1170    for (p = format_string; *p != 0; ++p) {
1171        if (*p == '%') formatted_path_len += home_len - 1;
1172        ++formatted_path_len;
1173    }
1174
1175    char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1176    if (formatted_path == NULL) {
1177        return NULL;
1178    }
1179
1180    // Create boot classpath from format, substituting separator chars and
1181    // java home directory.
1182    char* q = formatted_path;
1183    for (p = format_string; *p != 0; ++p) {
1184        switch (*p) {
1185        case '%':
1186            strcpy(q, home);
1187            q += home_len;
1188            break;
1189        case '/':
1190            *q++ = fileSep;
1191            break;
1192        case ':':
1193            *q++ = pathSep;
1194            break;
1195        default:
1196            *q++ = *p;
1197        }
1198    }
1199    *q = '\0';
1200
1201    assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1202    return formatted_path;
1203}
1204
1205bool os::set_boot_path(char fileSep, char pathSep) {
1206  const char* home = Arguments::get_java_home();
1207  int home_len = (int)strlen(home);
1208
1209  struct stat st;
1210
1211  // modular image if "modules" jimage exists
1212  char* jimage = format_boot_path("%/lib/" MODULES_IMAGE_NAME, home, home_len, fileSep, pathSep);
1213  if (jimage == NULL) return false;
1214  bool has_jimage = (os::stat(jimage, &st) == 0);
1215  if (has_jimage) {
1216    Arguments::set_sysclasspath(jimage, true);
1217    FREE_C_HEAP_ARRAY(char, jimage);
1218    return true;
1219  }
1220  FREE_C_HEAP_ARRAY(char, jimage);
1221
1222  // check if developer build with exploded modules
1223  char* base_classes = format_boot_path("%/modules/java.base", home, home_len, fileSep, pathSep);
1224  if (base_classes == NULL) return false;
1225  if (os::stat(base_classes, &st) == 0) {
1226    Arguments::set_sysclasspath(base_classes, false);
1227    FREE_C_HEAP_ARRAY(char, base_classes);
1228    return true;
1229  }
1230  FREE_C_HEAP_ARRAY(char, base_classes);
1231
1232  return false;
1233}
1234
1235/*
1236 * Splits a path, based on its separator, the number of
1237 * elements is returned back in n.
1238 * It is the callers responsibility to:
1239 *   a> check the value of n, and n may be 0.
1240 *   b> ignore any empty path elements
1241 *   c> free up the data.
1242 */
1243char** os::split_path(const char* path, int* n) {
1244  *n = 0;
1245  if (path == NULL || strlen(path) == 0) {
1246    return NULL;
1247  }
1248  const char psepchar = *os::path_separator();
1249  char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1250  if (inpath == NULL) {
1251    return NULL;
1252  }
1253  strcpy(inpath, path);
1254  int count = 1;
1255  char* p = strchr(inpath, psepchar);
1256  // Get a count of elements to allocate memory
1257  while (p != NULL) {
1258    count++;
1259    p++;
1260    p = strchr(p, psepchar);
1261  }
1262  char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1263  if (opath == NULL) {
1264    return NULL;
1265  }
1266
1267  // do the actual splitting
1268  p = inpath;
1269  for (int i = 0 ; i < count ; i++) {
1270    size_t len = strcspn(p, os::path_separator());
1271    if (len > JVM_MAXPATHLEN) {
1272      return NULL;
1273    }
1274    // allocate the string and add terminator storage
1275    char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1276    if (s == NULL) {
1277      return NULL;
1278    }
1279    strncpy(s, p, len);
1280    s[len] = '\0';
1281    opath[i] = s;
1282    p += len + 1;
1283  }
1284  FREE_C_HEAP_ARRAY(char, inpath);
1285  *n = count;
1286  return opath;
1287}
1288
1289void os::set_memory_serialize_page(address page) {
1290  int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1291  _mem_serialize_page = (volatile int32_t *)page;
1292  // We initialize the serialization page shift count here
1293  // We assume a cache line size of 64 bytes
1294  assert(SerializePageShiftCount == count, "JavaThread size changed; "
1295         "SerializePageShiftCount constant should be %d", count);
1296  set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1297}
1298
1299static volatile intptr_t SerializePageLock = 0;
1300
1301// This method is called from signal handler when SIGSEGV occurs while the current
1302// thread tries to store to the "read-only" memory serialize page during state
1303// transition.
1304void os::block_on_serialize_page_trap() {
1305  log_debug(safepoint)("Block until the serialize page permission restored");
1306
1307  // When VMThread is holding the SerializePageLock during modifying the
1308  // access permission of the memory serialize page, the following call
1309  // will block until the permission of that page is restored to rw.
1310  // Generally, it is unsafe to manipulate locks in signal handlers, but in
1311  // this case, it's OK as the signal is synchronous and we know precisely when
1312  // it can occur.
1313  Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1314  Thread::muxRelease(&SerializePageLock);
1315}
1316
1317// Serialize all thread state variables
1318void os::serialize_thread_states() {
1319  // On some platforms such as Solaris & Linux, the time duration of the page
1320  // permission restoration is observed to be much longer than expected  due to
1321  // scheduler starvation problem etc. To avoid the long synchronization
1322  // time and expensive page trap spinning, 'SerializePageLock' is used to block
1323  // the mutator thread if such case is encountered. See bug 6546278 for details.
1324  Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1325  os::protect_memory((char *)os::get_memory_serialize_page(),
1326                     os::vm_page_size(), MEM_PROT_READ);
1327  os::protect_memory((char *)os::get_memory_serialize_page(),
1328                     os::vm_page_size(), MEM_PROT_RW);
1329  Thread::muxRelease(&SerializePageLock);
1330}
1331
1332// Returns true if the current stack pointer is above the stack shadow
1333// pages, false otherwise.
1334bool os::stack_shadow_pages_available(Thread *thread, const methodHandle& method, address sp) {
1335  if (!thread->is_Java_thread()) return false;
1336  // Check if we have StackShadowPages above the yellow zone.  This parameter
1337  // is dependent on the depth of the maximum VM call stack possible from
1338  // the handler for stack overflow.  'instanceof' in the stack overflow
1339  // handler or a println uses at least 8k stack of VM and native code
1340  // respectively.
1341  const int framesize_in_bytes =
1342    Interpreter::size_top_interpreter_activation(method()) * wordSize;
1343
1344  address limit = ((JavaThread*)thread)->stack_end() +
1345                  (JavaThread::stack_guard_zone_size() + JavaThread::stack_shadow_zone_size());
1346
1347  return sp > (limit + framesize_in_bytes);
1348}
1349
1350size_t os::page_size_for_region(size_t region_size, size_t min_pages, bool must_be_aligned) {
1351  assert(min_pages > 0, "sanity");
1352  if (UseLargePages) {
1353    const size_t max_page_size = region_size / min_pages;
1354
1355    for (size_t i = 0; _page_sizes[i] != 0; ++i) {
1356      const size_t page_size = _page_sizes[i];
1357      if (page_size <= max_page_size) {
1358        if (!must_be_aligned || is_size_aligned(region_size, page_size)) {
1359          return page_size;
1360        }
1361      }
1362    }
1363  }
1364
1365  return vm_page_size();
1366}
1367
1368size_t os::page_size_for_region_aligned(size_t region_size, size_t min_pages) {
1369  return page_size_for_region(region_size, min_pages, true);
1370}
1371
1372size_t os::page_size_for_region_unaligned(size_t region_size, size_t min_pages) {
1373  return page_size_for_region(region_size, min_pages, false);
1374}
1375
1376static const char* errno_to_string (int e, bool short_text) {
1377  #define ALL_SHARED_ENUMS(X) \
1378    X(E2BIG, "Argument list too long") \
1379    X(EACCES, "Permission denied") \
1380    X(EADDRINUSE, "Address in use") \
1381    X(EADDRNOTAVAIL, "Address not available") \
1382    X(EAFNOSUPPORT, "Address family not supported") \
1383    X(EAGAIN, "Resource unavailable, try again") \
1384    X(EALREADY, "Connection already in progress") \
1385    X(EBADF, "Bad file descriptor") \
1386    X(EBADMSG, "Bad message") \
1387    X(EBUSY, "Device or resource busy") \
1388    X(ECANCELED, "Operation canceled") \
1389    X(ECHILD, "No child processes") \
1390    X(ECONNABORTED, "Connection aborted") \
1391    X(ECONNREFUSED, "Connection refused") \
1392    X(ECONNRESET, "Connection reset") \
1393    X(EDEADLK, "Resource deadlock would occur") \
1394    X(EDESTADDRREQ, "Destination address required") \
1395    X(EDOM, "Mathematics argument out of domain of function") \
1396    X(EEXIST, "File exists") \
1397    X(EFAULT, "Bad address") \
1398    X(EFBIG, "File too large") \
1399    X(EHOSTUNREACH, "Host is unreachable") \
1400    X(EIDRM, "Identifier removed") \
1401    X(EILSEQ, "Illegal byte sequence") \
1402    X(EINPROGRESS, "Operation in progress") \
1403    X(EINTR, "Interrupted function") \
1404    X(EINVAL, "Invalid argument") \
1405    X(EIO, "I/O error") \
1406    X(EISCONN, "Socket is connected") \
1407    X(EISDIR, "Is a directory") \
1408    X(ELOOP, "Too many levels of symbolic links") \
1409    X(EMFILE, "Too many open files") \
1410    X(EMLINK, "Too many links") \
1411    X(EMSGSIZE, "Message too large") \
1412    X(ENAMETOOLONG, "Filename too long") \
1413    X(ENETDOWN, "Network is down") \
1414    X(ENETRESET, "Connection aborted by network") \
1415    X(ENETUNREACH, "Network unreachable") \
1416    X(ENFILE, "Too many files open in system") \
1417    X(ENOBUFS, "No buffer space available") \
1418    X(ENODATA, "No message is available on the STREAM head read queue") \
1419    X(ENODEV, "No such device") \
1420    X(ENOENT, "No such file or directory") \
1421    X(ENOEXEC, "Executable file format error") \
1422    X(ENOLCK, "No locks available") \
1423    X(ENOLINK, "Reserved") \
1424    X(ENOMEM, "Not enough space") \
1425    X(ENOMSG, "No message of the desired type") \
1426    X(ENOPROTOOPT, "Protocol not available") \
1427    X(ENOSPC, "No space left on device") \
1428    X(ENOSR, "No STREAM resources") \
1429    X(ENOSTR, "Not a STREAM") \
1430    X(ENOSYS, "Function not supported") \
1431    X(ENOTCONN, "The socket is not connected") \
1432    X(ENOTDIR, "Not a directory") \
1433    X(ENOTEMPTY, "Directory not empty") \
1434    X(ENOTSOCK, "Not a socket") \
1435    X(ENOTSUP, "Not supported") \
1436    X(ENOTTY, "Inappropriate I/O control operation") \
1437    X(ENXIO, "No such device or address") \
1438    X(EOPNOTSUPP, "Operation not supported on socket") \
1439    X(EOVERFLOW, "Value too large to be stored in data type") \
1440    X(EPERM, "Operation not permitted") \
1441    X(EPIPE, "Broken pipe") \
1442    X(EPROTO, "Protocol error") \
1443    X(EPROTONOSUPPORT, "Protocol not supported") \
1444    X(EPROTOTYPE, "Protocol wrong type for socket") \
1445    X(ERANGE, "Result too large") \
1446    X(EROFS, "Read-only file system") \
1447    X(ESPIPE, "Invalid seek") \
1448    X(ESRCH, "No such process") \
1449    X(ETIME, "Stream ioctl() timeout") \
1450    X(ETIMEDOUT, "Connection timed out") \
1451    X(ETXTBSY, "Text file busy") \
1452    X(EWOULDBLOCK, "Operation would block") \
1453    X(EXDEV, "Cross-device link")
1454
1455  #define DEFINE_ENTRY(e, text) { e, #e, text },
1456
1457  static const struct {
1458    int v;
1459    const char* short_text;
1460    const char* long_text;
1461  } table [] = {
1462
1463    ALL_SHARED_ENUMS(DEFINE_ENTRY)
1464
1465    // The following enums are not defined on all platforms.
1466    #ifdef ESTALE
1467    DEFINE_ENTRY(ESTALE, "Reserved")
1468    #endif
1469    #ifdef EDQUOT
1470    DEFINE_ENTRY(EDQUOT, "Reserved")
1471    #endif
1472    #ifdef EMULTIHOP
1473    DEFINE_ENTRY(EMULTIHOP, "Reserved")
1474    #endif
1475
1476    // End marker.
1477    { -1, "Unknown errno", "Unknown error" }
1478
1479  };
1480
1481  #undef DEFINE_ENTRY
1482  #undef ALL_FLAGS
1483
1484  int i = 0;
1485  while (table[i].v != -1 && table[i].v != e) {
1486    i ++;
1487  }
1488
1489  return short_text ? table[i].short_text : table[i].long_text;
1490
1491}
1492
1493const char* os::strerror(int e) {
1494  return errno_to_string(e, false);
1495}
1496
1497const char* os::errno_name(int e) {
1498  return errno_to_string(e, true);
1499}
1500
1501void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count) {
1502  LogTarget(Info, pagesize) log;
1503  if (log.is_enabled()) {
1504    LogStreamCHeap out(log);
1505
1506    out.print("%s: ", str);
1507    for (int i = 0; i < count; ++i) {
1508      out.print(" " SIZE_FORMAT, page_sizes[i]);
1509    }
1510    out.cr();
1511  }
1512}
1513
1514#define trace_page_size_params(size) byte_size_in_exact_unit(size), exact_unit_for_byte_size(size)
1515
1516void os::trace_page_sizes(const char* str,
1517                          const size_t region_min_size,
1518                          const size_t region_max_size,
1519                          const size_t page_size,
1520                          const char* base,
1521                          const size_t size) {
1522
1523  log_info(pagesize)("%s: "
1524                     " min=" SIZE_FORMAT "%s"
1525                     " max=" SIZE_FORMAT "%s"
1526                     " base=" PTR_FORMAT
1527                     " page_size=" SIZE_FORMAT "%s"
1528                     " size=" SIZE_FORMAT "%s",
1529                     str,
1530                     trace_page_size_params(region_min_size),
1531                     trace_page_size_params(region_max_size),
1532                     p2i(base),
1533                     trace_page_size_params(page_size),
1534                     trace_page_size_params(size));
1535}
1536
1537void os::trace_page_sizes_for_requested_size(const char* str,
1538                                             const size_t requested_size,
1539                                             const size_t page_size,
1540                                             const size_t alignment,
1541                                             const char* base,
1542                                             const size_t size) {
1543
1544  log_info(pagesize)("%s:"
1545                     " req_size=" SIZE_FORMAT "%s"
1546                     " base=" PTR_FORMAT
1547                     " page_size=" SIZE_FORMAT "%s"
1548                     " alignment=" SIZE_FORMAT "%s"
1549                     " size=" SIZE_FORMAT "%s",
1550                     str,
1551                     trace_page_size_params(requested_size),
1552                     p2i(base),
1553                     trace_page_size_params(page_size),
1554                     trace_page_size_params(alignment),
1555                     trace_page_size_params(size));
1556}
1557
1558
1559// This is the working definition of a server class machine:
1560// >= 2 physical CPU's and >=2GB of memory, with some fuzz
1561// because the graphics memory (?) sometimes masks physical memory.
1562// If you want to change the definition of a server class machine
1563// on some OS or platform, e.g., >=4GB on Windows platforms,
1564// then you'll have to parameterize this method based on that state,
1565// as was done for logical processors here, or replicate and
1566// specialize this method for each platform.  (Or fix os to have
1567// some inheritance structure and use subclassing.  Sigh.)
1568// If you want some platform to always or never behave as a server
1569// class machine, change the setting of AlwaysActAsServerClassMachine
1570// and NeverActAsServerClassMachine in globals*.hpp.
1571bool os::is_server_class_machine() {
1572  // First check for the early returns
1573  if (NeverActAsServerClassMachine) {
1574    return false;
1575  }
1576  if (AlwaysActAsServerClassMachine) {
1577    return true;
1578  }
1579  // Then actually look at the machine
1580  bool         result            = false;
1581  const unsigned int    server_processors = 2;
1582  const julong server_memory     = 2UL * G;
1583  // We seem not to get our full complement of memory.
1584  //     We allow some part (1/8?) of the memory to be "missing",
1585  //     based on the sizes of DIMMs, and maybe graphics cards.
1586  const julong missing_memory   = 256UL * M;
1587
1588  /* Is this a server class machine? */
1589  if ((os::active_processor_count() >= (int)server_processors) &&
1590      (os::physical_memory() >= (server_memory - missing_memory))) {
1591    const unsigned int logical_processors =
1592      VM_Version::logical_processors_per_package();
1593    if (logical_processors > 1) {
1594      const unsigned int physical_packages =
1595        os::active_processor_count() / logical_processors;
1596      if (physical_packages >= server_processors) {
1597        result = true;
1598      }
1599    } else {
1600      result = true;
1601    }
1602  }
1603  return result;
1604}
1605
1606void os::initialize_initial_active_processor_count() {
1607  assert(_initial_active_processor_count == 0, "Initial active processor count already set.");
1608  _initial_active_processor_count = active_processor_count();
1609  log_debug(os)("Initial active processor count set to %d" , _initial_active_processor_count);
1610}
1611
1612void os::SuspendedThreadTask::run() {
1613  assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1614  internal_do_task();
1615  _done = true;
1616}
1617
1618bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1619  return os::pd_create_stack_guard_pages(addr, bytes);
1620}
1621
1622char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1623  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1624  if (result != NULL) {
1625    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1626  }
1627
1628  return result;
1629}
1630
1631char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1632   MEMFLAGS flags) {
1633  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1634  if (result != NULL) {
1635    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1636    MemTracker::record_virtual_memory_type((address)result, flags);
1637  }
1638
1639  return result;
1640}
1641
1642char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1643  char* result = pd_attempt_reserve_memory_at(bytes, addr);
1644  if (result != NULL) {
1645    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1646  }
1647  return result;
1648}
1649
1650void os::split_reserved_memory(char *base, size_t size,
1651                                 size_t split, bool realloc) {
1652  pd_split_reserved_memory(base, size, split, realloc);
1653}
1654
1655bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1656  bool res = pd_commit_memory(addr, bytes, executable);
1657  if (res) {
1658    MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1659  }
1660  return res;
1661}
1662
1663bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1664                              bool executable) {
1665  bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1666  if (res) {
1667    MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1668  }
1669  return res;
1670}
1671
1672void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1673                               const char* mesg) {
1674  pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1675  MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1676}
1677
1678void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1679                               bool executable, const char* mesg) {
1680  os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1681  MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1682}
1683
1684bool os::uncommit_memory(char* addr, size_t bytes) {
1685  bool res;
1686  if (MemTracker::tracking_level() > NMT_minimal) {
1687    Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
1688    res = pd_uncommit_memory(addr, bytes);
1689    if (res) {
1690      tkr.record((address)addr, bytes);
1691    }
1692  } else {
1693    res = pd_uncommit_memory(addr, bytes);
1694  }
1695  return res;
1696}
1697
1698bool os::release_memory(char* addr, size_t bytes) {
1699  bool res;
1700  if (MemTracker::tracking_level() > NMT_minimal) {
1701    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1702    res = pd_release_memory(addr, bytes);
1703    if (res) {
1704      tkr.record((address)addr, bytes);
1705    }
1706  } else {
1707    res = pd_release_memory(addr, bytes);
1708  }
1709  return res;
1710}
1711
1712void os::pretouch_memory(void* start, void* end) {
1713  for (volatile char *p = (char*)start; p < (char*)end; p += os::vm_page_size()) {
1714    *p = 0;
1715  }
1716}
1717
1718char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1719                           char *addr, size_t bytes, bool read_only,
1720                           bool allow_exec) {
1721  char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1722  if (result != NULL) {
1723    MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
1724  }
1725  return result;
1726}
1727
1728char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1729                             char *addr, size_t bytes, bool read_only,
1730                             bool allow_exec) {
1731  return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1732                    read_only, allow_exec);
1733}
1734
1735bool os::unmap_memory(char *addr, size_t bytes) {
1736  bool result;
1737  if (MemTracker::tracking_level() > NMT_minimal) {
1738    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1739    result = pd_unmap_memory(addr, bytes);
1740    if (result) {
1741      tkr.record((address)addr, bytes);
1742    }
1743  } else {
1744    result = pd_unmap_memory(addr, bytes);
1745  }
1746  return result;
1747}
1748
1749void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1750  pd_free_memory(addr, bytes, alignment_hint);
1751}
1752
1753void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1754  pd_realign_memory(addr, bytes, alignment_hint);
1755}
1756
1757#ifndef _WINDOWS
1758/* try to switch state from state "from" to state "to"
1759 * returns the state set after the method is complete
1760 */
1761os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1762                                                         os::SuspendResume::State to)
1763{
1764  os::SuspendResume::State result =
1765    (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1766  if (result == from) {
1767    // success
1768    return to;
1769  }
1770  return result;
1771}
1772#endif
1773
1774/////////////// Unit tests ///////////////
1775
1776#ifndef PRODUCT
1777
1778#define assert_eq(a,b) assert(a == b, SIZE_FORMAT " != " SIZE_FORMAT, a, b)
1779
1780class TestOS : AllStatic {
1781  static size_t small_page_size() {
1782    return os::vm_page_size();
1783  }
1784
1785  static size_t large_page_size() {
1786    const size_t large_page_size_example = 4 * M;
1787    return os::page_size_for_region_aligned(large_page_size_example, 1);
1788  }
1789
1790  static void test_page_size_for_region_aligned() {
1791    if (UseLargePages) {
1792      const size_t small_page = small_page_size();
1793      const size_t large_page = large_page_size();
1794
1795      if (large_page > small_page) {
1796        size_t num_small_pages_in_large = large_page / small_page;
1797        size_t page = os::page_size_for_region_aligned(large_page, num_small_pages_in_large);
1798
1799        assert_eq(page, small_page);
1800      }
1801    }
1802  }
1803
1804  static void test_page_size_for_region_alignment() {
1805    if (UseLargePages) {
1806      const size_t small_page = small_page_size();
1807      const size_t large_page = large_page_size();
1808      if (large_page > small_page) {
1809        const size_t unaligned_region = large_page + 17;
1810        size_t page = os::page_size_for_region_aligned(unaligned_region, 1);
1811        assert_eq(page, small_page);
1812
1813        const size_t num_pages = 5;
1814        const size_t aligned_region = large_page * num_pages;
1815        page = os::page_size_for_region_aligned(aligned_region, num_pages);
1816        assert_eq(page, large_page);
1817      }
1818    }
1819  }
1820
1821  static void test_page_size_for_region_unaligned() {
1822    if (UseLargePages) {
1823      // Given exact page size, should return that page size.
1824      for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
1825        size_t expected = os::_page_sizes[i];
1826        size_t actual = os::page_size_for_region_unaligned(expected, 1);
1827        assert_eq(expected, actual);
1828      }
1829
1830      // Given slightly larger size than a page size, return the page size.
1831      for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
1832        size_t expected = os::_page_sizes[i];
1833        size_t actual = os::page_size_for_region_unaligned(expected + 17, 1);
1834        assert_eq(expected, actual);
1835      }
1836
1837      // Given a slightly smaller size than a page size,
1838      // return the next smaller page size.
1839      if (os::_page_sizes[1] > os::_page_sizes[0]) {
1840        size_t expected = os::_page_sizes[0];
1841        size_t actual = os::page_size_for_region_unaligned(os::_page_sizes[1] - 17, 1);
1842        assert_eq(actual, expected);
1843      }
1844
1845      // Return small page size for values less than a small page.
1846      size_t small_page = small_page_size();
1847      size_t actual = os::page_size_for_region_unaligned(small_page - 17, 1);
1848      assert_eq(small_page, actual);
1849    }
1850  }
1851
1852 public:
1853  static void run_tests() {
1854    test_page_size_for_region_aligned();
1855    test_page_size_for_region_alignment();
1856    test_page_size_for_region_unaligned();
1857  }
1858};
1859
1860void TestOS_test() {
1861  TestOS::run_tests();
1862}
1863
1864#endif // PRODUCT
1865