objectMonitor.cpp revision 6599:d9f77ba99034
1/*
2 * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/vmSymbols.hpp"
27#include "memory/resourceArea.hpp"
28#include "oops/markOop.hpp"
29#include "oops/oop.inline.hpp"
30#include "runtime/handles.inline.hpp"
31#include "runtime/interfaceSupport.hpp"
32#include "runtime/mutexLocker.hpp"
33#include "runtime/objectMonitor.hpp"
34#include "runtime/objectMonitor.inline.hpp"
35#include "runtime/orderAccess.inline.hpp"
36#include "runtime/osThread.hpp"
37#include "runtime/stubRoutines.hpp"
38#include "runtime/thread.inline.hpp"
39#include "services/threadService.hpp"
40#include "trace/tracing.hpp"
41#include "trace/traceMacros.hpp"
42#include "utilities/dtrace.hpp"
43#include "utilities/macros.hpp"
44#include "utilities/preserveException.hpp"
45#ifdef TARGET_OS_FAMILY_linux
46# include "os_linux.inline.hpp"
47#endif
48#ifdef TARGET_OS_FAMILY_solaris
49# include "os_solaris.inline.hpp"
50#endif
51#ifdef TARGET_OS_FAMILY_windows
52# include "os_windows.inline.hpp"
53#endif
54#ifdef TARGET_OS_FAMILY_bsd
55# include "os_bsd.inline.hpp"
56#endif
57
58#if defined(__GNUC__) && !defined(IA64) && !defined(PPC64)
59  // Need to inhibit inlining for older versions of GCC to avoid build-time failures
60  #define ATTR __attribute__((noinline))
61#else
62  #define ATTR
63#endif
64
65
66#ifdef DTRACE_ENABLED
67
68// Only bother with this argument setup if dtrace is available
69// TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
70
71
72#define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
73  char* bytes = NULL;                                                      \
74  int len = 0;                                                             \
75  jlong jtid = SharedRuntime::get_java_tid(thread);                        \
76  Symbol* klassname = ((oop)obj)->klass()->name();                         \
77  if (klassname != NULL) {                                                 \
78    bytes = (char*)klassname->bytes();                                     \
79    len = klassname->utf8_length();                                        \
80  }
81
82#define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
83  {                                                                        \
84    if (DTraceMonitorProbes) {                                            \
85      DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
86      HOTSPOT_MONITOR_WAIT(jtid,                                           \
87                       (monitor), bytes, len, (millis));                   \
88    }                                                                      \
89  }
90
91#define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
92#define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
93#define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
94#define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
95#define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
96
97#define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
98  {                                                                        \
99    if (DTraceMonitorProbes) {                                            \
100      DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
101      HOTSPOT_MONITOR_##probe(jtid,                                               \
102                       (uintptr_t)(monitor), bytes, len);                  \
103    }                                                                      \
104  }
105
106#else //  ndef DTRACE_ENABLED
107
108#define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
109#define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
110
111#endif // ndef DTRACE_ENABLED
112
113// Tunables ...
114// The knob* variables are effectively final.  Once set they should
115// never be modified hence.  Consider using __read_mostly with GCC.
116
117int ObjectMonitor::Knob_Verbose    = 0;
118int ObjectMonitor::Knob_SpinLimit  = 5000;    // derived by an external tool -
119static int Knob_LogSpins           = 0;       // enable jvmstat tally for spins
120static int Knob_HandOff            = 0;
121static int Knob_ReportSettings     = 0;
122
123static int Knob_SpinBase           = 0;       // Floor AKA SpinMin
124static int Knob_SpinBackOff        = 0;       // spin-loop backoff
125static int Knob_CASPenalty         = -1;      // Penalty for failed CAS
126static int Knob_OXPenalty          = -1;      // Penalty for observed _owner change
127static int Knob_SpinSetSucc        = 1;       // spinners set the _succ field
128static int Knob_SpinEarly          = 1;
129static int Knob_SuccEnabled        = 1;       // futile wake throttling
130static int Knob_SuccRestrict       = 0;       // Limit successors + spinners to at-most-one
131static int Knob_MaxSpinners        = -1;      // Should be a function of # CPUs
132static int Knob_Bonus              = 100;     // spin success bonus
133static int Knob_BonusB             = 100;     // spin success bonus
134static int Knob_Penalty            = 200;     // spin failure penalty
135static int Knob_Poverty            = 1000;
136static int Knob_SpinAfterFutile    = 1;       // Spin after returning from park()
137static int Knob_FixedSpin          = 0;
138static int Knob_OState             = 3;       // Spinner checks thread state of _owner
139static int Knob_UsePause           = 1;
140static int Knob_ExitPolicy         = 0;
141static int Knob_PreSpin            = 10;      // 20-100 likely better
142static int Knob_ResetEvent         = 0;
143static int BackOffMask             = 0;
144
145static int Knob_FastHSSEC          = 0;
146static int Knob_MoveNotifyee       = 2;       // notify() - disposition of notifyee
147static int Knob_QMode              = 0;       // EntryList-cxq policy - queue discipline
148static volatile int InitDone       = 0;
149
150#define TrySpin TrySpin_VaryDuration
151
152// -----------------------------------------------------------------------------
153// Theory of operations -- Monitors lists, thread residency, etc:
154//
155// * A thread acquires ownership of a monitor by successfully
156//   CAS()ing the _owner field from null to non-null.
157//
158// * Invariant: A thread appears on at most one monitor list --
159//   cxq, EntryList or WaitSet -- at any one time.
160//
161// * Contending threads "push" themselves onto the cxq with CAS
162//   and then spin/park.
163//
164// * After a contending thread eventually acquires the lock it must
165//   dequeue itself from either the EntryList or the cxq.
166//
167// * The exiting thread identifies and unparks an "heir presumptive"
168//   tentative successor thread on the EntryList.  Critically, the
169//   exiting thread doesn't unlink the successor thread from the EntryList.
170//   After having been unparked, the wakee will recontend for ownership of
171//   the monitor.   The successor (wakee) will either acquire the lock or
172//   re-park itself.
173//
174//   Succession is provided for by a policy of competitive handoff.
175//   The exiting thread does _not_ grant or pass ownership to the
176//   successor thread.  (This is also referred to as "handoff" succession").
177//   Instead the exiting thread releases ownership and possibly wakes
178//   a successor, so the successor can (re)compete for ownership of the lock.
179//   If the EntryList is empty but the cxq is populated the exiting
180//   thread will drain the cxq into the EntryList.  It does so by
181//   by detaching the cxq (installing null with CAS) and folding
182//   the threads from the cxq into the EntryList.  The EntryList is
183//   doubly linked, while the cxq is singly linked because of the
184//   CAS-based "push" used to enqueue recently arrived threads (RATs).
185//
186// * Concurrency invariants:
187//
188//   -- only the monitor owner may access or mutate the EntryList.
189//      The mutex property of the monitor itself protects the EntryList
190//      from concurrent interference.
191//   -- Only the monitor owner may detach the cxq.
192//
193// * The monitor entry list operations avoid locks, but strictly speaking
194//   they're not lock-free.  Enter is lock-free, exit is not.
195//   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
196//
197// * The cxq can have multiple concurrent "pushers" but only one concurrent
198//   detaching thread.  This mechanism is immune from the ABA corruption.
199//   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
200//
201// * Taken together, the cxq and the EntryList constitute or form a
202//   single logical queue of threads stalled trying to acquire the lock.
203//   We use two distinct lists to improve the odds of a constant-time
204//   dequeue operation after acquisition (in the ::enter() epilogue) and
205//   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
206//   A key desideratum is to minimize queue & monitor metadata manipulation
207//   that occurs while holding the monitor lock -- that is, we want to
208//   minimize monitor lock holds times.  Note that even a small amount of
209//   fixed spinning will greatly reduce the # of enqueue-dequeue operations
210//   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
211//   locks and monitor metadata.
212//
213//   Cxq points to the the set of Recently Arrived Threads attempting entry.
214//   Because we push threads onto _cxq with CAS, the RATs must take the form of
215//   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
216//   the unlocking thread notices that EntryList is null but _cxq is != null.
217//
218//   The EntryList is ordered by the prevailing queue discipline and
219//   can be organized in any convenient fashion, such as a doubly-linked list or
220//   a circular doubly-linked list.  Critically, we want insert and delete operations
221//   to operate in constant-time.  If we need a priority queue then something akin
222//   to Solaris' sleepq would work nicely.  Viz.,
223//   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
224//   Queue discipline is enforced at ::exit() time, when the unlocking thread
225//   drains the cxq into the EntryList, and orders or reorders the threads on the
226//   EntryList accordingly.
227//
228//   Barring "lock barging", this mechanism provides fair cyclic ordering,
229//   somewhat similar to an elevator-scan.
230//
231// * The monitor synchronization subsystem avoids the use of native
232//   synchronization primitives except for the narrow platform-specific
233//   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
234//   the semantics of park-unpark.  Put another way, this monitor implementation
235//   depends only on atomic operations and park-unpark.  The monitor subsystem
236//   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
237//   underlying OS manages the READY<->RUN transitions.
238//
239// * Waiting threads reside on the WaitSet list -- wait() puts
240//   the caller onto the WaitSet.
241//
242// * notify() or notifyAll() simply transfers threads from the WaitSet to
243//   either the EntryList or cxq.  Subsequent exit() operations will
244//   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
245//   it's likely the notifyee would simply impale itself on the lock held
246//   by the notifier.
247//
248// * An interesting alternative is to encode cxq as (List,LockByte) where
249//   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
250//   variable, like _recursions, in the scheme.  The threads or Events that form
251//   the list would have to be aligned in 256-byte addresses.  A thread would
252//   try to acquire the lock or enqueue itself with CAS, but exiting threads
253//   could use a 1-0 protocol and simply STB to set the LockByte to 0.
254//   Note that is is *not* word-tearing, but it does presume that full-word
255//   CAS operations are coherent with intermix with STB operations.  That's true
256//   on most common processors.
257//
258// * See also http://blogs.sun.com/dave
259
260
261// -----------------------------------------------------------------------------
262// Enter support
263
264bool ObjectMonitor::try_enter(Thread* THREAD) {
265  if (THREAD != _owner) {
266    if (THREAD->is_lock_owned ((address)_owner)) {
267       assert(_recursions == 0, "internal state error");
268       _owner = THREAD;
269       _recursions = 1;
270       OwnerIsThread = 1;
271       return true;
272    }
273    if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
274      return false;
275    }
276    return true;
277  } else {
278    _recursions++;
279    return true;
280  }
281}
282
283void ATTR ObjectMonitor::enter(TRAPS) {
284  // The following code is ordered to check the most common cases first
285  // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
286  Thread * const Self = THREAD;
287  void * cur;
288
289  cur = Atomic::cmpxchg_ptr(Self, &_owner, NULL);
290  if (cur == NULL) {
291     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
292     assert(_recursions == 0   , "invariant");
293     assert(_owner      == Self, "invariant");
294     // CONSIDER: set or assert OwnerIsThread == 1
295     return;
296  }
297
298  if (cur == Self) {
299     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
300     _recursions++;
301     return;
302  }
303
304  if (Self->is_lock_owned ((address)cur)) {
305    assert(_recursions == 0, "internal state error");
306    _recursions = 1;
307    // Commute owner from a thread-specific on-stack BasicLockObject address to
308    // a full-fledged "Thread *".
309    _owner = Self;
310    OwnerIsThread = 1;
311    return;
312  }
313
314  // We've encountered genuine contention.
315  assert(Self->_Stalled == 0, "invariant");
316  Self->_Stalled = intptr_t(this);
317
318  // Try one round of spinning *before* enqueueing Self
319  // and before going through the awkward and expensive state
320  // transitions.  The following spin is strictly optional ...
321  // Note that if we acquire the monitor from an initial spin
322  // we forgo posting JVMTI events and firing DTRACE probes.
323  if (Knob_SpinEarly && TrySpin (Self) > 0) {
324     assert(_owner == Self      , "invariant");
325     assert(_recursions == 0    , "invariant");
326     assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
327     Self->_Stalled = 0;
328     return;
329  }
330
331  assert(_owner != Self          , "invariant");
332  assert(_succ  != Self          , "invariant");
333  assert(Self->is_Java_thread()  , "invariant");
334  JavaThread * jt = (JavaThread *) Self;
335  assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
336  assert(jt->thread_state() != _thread_blocked   , "invariant");
337  assert(this->object() != NULL  , "invariant");
338  assert(_count >= 0, "invariant");
339
340  // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
341  // Ensure the object-monitor relationship remains stable while there's contention.
342  Atomic::inc_ptr(&_count);
343
344  EventJavaMonitorEnter event;
345
346  { // Change java thread status to indicate blocked on monitor enter.
347    JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
348
349    DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
350    if (JvmtiExport::should_post_monitor_contended_enter()) {
351      JvmtiExport::post_monitor_contended_enter(jt, this);
352
353      // The current thread does not yet own the monitor and does not
354      // yet appear on any queues that would get it made the successor.
355      // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
356      // handler cannot accidentally consume an unpark() meant for the
357      // ParkEvent associated with this ObjectMonitor.
358    }
359
360    OSThreadContendState osts(Self->osthread());
361    ThreadBlockInVM tbivm(jt);
362
363    Self->set_current_pending_monitor(this);
364
365    // TODO-FIXME: change the following for(;;) loop to straight-line code.
366    for (;;) {
367      jt->set_suspend_equivalent();
368      // cleared by handle_special_suspend_equivalent_condition()
369      // or java_suspend_self()
370
371      EnterI(THREAD);
372
373      if (!ExitSuspendEquivalent(jt)) break;
374
375      //
376      // We have acquired the contended monitor, but while we were
377      // waiting another thread suspended us. We don't want to enter
378      // the monitor while suspended because that would surprise the
379      // thread that suspended us.
380      //
381          _recursions = 0;
382      _succ = NULL;
383      exit(false, Self);
384
385      jt->java_suspend_self();
386    }
387    Self->set_current_pending_monitor(NULL);
388
389    // We cleared the pending monitor info since we've just gotten past
390    // the enter-check-for-suspend dance and we now own the monitor free
391    // and clear, i.e., it is no longer pending. The ThreadBlockInVM
392    // destructor can go to a safepoint at the end of this block. If we
393    // do a thread dump during that safepoint, then this thread will show
394    // as having "-locked" the monitor, but the OS and java.lang.Thread
395    // states will still report that the thread is blocked trying to
396    // acquire it.
397  }
398
399  Atomic::dec_ptr(&_count);
400  assert(_count >= 0, "invariant");
401  Self->_Stalled = 0;
402
403  // Must either set _recursions = 0 or ASSERT _recursions == 0.
404  assert(_recursions == 0     , "invariant");
405  assert(_owner == Self       , "invariant");
406  assert(_succ  != Self       , "invariant");
407  assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
408
409  // The thread -- now the owner -- is back in vm mode.
410  // Report the glorious news via TI,DTrace and jvmstat.
411  // The probe effect is non-trivial.  All the reportage occurs
412  // while we hold the monitor, increasing the length of the critical
413  // section.  Amdahl's parallel speedup law comes vividly into play.
414  //
415  // Another option might be to aggregate the events (thread local or
416  // per-monitor aggregation) and defer reporting until a more opportune
417  // time -- such as next time some thread encounters contention but has
418  // yet to acquire the lock.  While spinning that thread could
419  // spinning we could increment JVMStat counters, etc.
420
421  DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
422  if (JvmtiExport::should_post_monitor_contended_entered()) {
423    JvmtiExport::post_monitor_contended_entered(jt, this);
424
425    // The current thread already owns the monitor and is not going to
426    // call park() for the remainder of the monitor enter protocol. So
427    // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
428    // event handler consumed an unpark() issued by the thread that
429    // just exited the monitor.
430  }
431
432  if (event.should_commit()) {
433    event.set_klass(((oop)this->object())->klass());
434    event.set_previousOwner((TYPE_JAVALANGTHREAD)_previous_owner_tid);
435    event.set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
436    event.commit();
437  }
438
439  if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
440     ObjectMonitor::_sync_ContendedLockAttempts->inc();
441  }
442}
443
444
445// Caveat: TryLock() is not necessarily serializing if it returns failure.
446// Callers must compensate as needed.
447
448int ObjectMonitor::TryLock (Thread * Self) {
449   for (;;) {
450      void * own = _owner;
451      if (own != NULL) return 0;
452      if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
453         // Either guarantee _recursions == 0 or set _recursions = 0.
454         assert(_recursions == 0, "invariant");
455         assert(_owner == Self, "invariant");
456         // CONSIDER: set or assert that OwnerIsThread == 1
457         return 1;
458      }
459      // The lock had been free momentarily, but we lost the race to the lock.
460      // Interference -- the CAS failed.
461      // We can either return -1 or retry.
462      // Retry doesn't make as much sense because the lock was just acquired.
463      if (true) return -1;
464   }
465}
466
467void ATTR ObjectMonitor::EnterI (TRAPS) {
468    Thread * Self = THREAD;
469    assert(Self->is_Java_thread(), "invariant");
470    assert(((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant");
471
472    // Try the lock - TATAS
473    if (TryLock (Self) > 0) {
474        assert(_succ != Self              , "invariant");
475        assert(_owner == Self             , "invariant");
476        assert(_Responsible != Self       , "invariant");
477        return;
478    }
479
480    DeferredInitialize();
481
482    // We try one round of spinning *before* enqueueing Self.
483    //
484    // If the _owner is ready but OFFPROC we could use a YieldTo()
485    // operation to donate the remainder of this thread's quantum
486    // to the owner.  This has subtle but beneficial affinity
487    // effects.
488
489    if (TrySpin (Self) > 0) {
490        assert(_owner == Self        , "invariant");
491        assert(_succ != Self         , "invariant");
492        assert(_Responsible != Self  , "invariant");
493        return;
494    }
495
496    // The Spin failed -- Enqueue and park the thread ...
497    assert(_succ  != Self            , "invariant");
498    assert(_owner != Self            , "invariant");
499    assert(_Responsible != Self      , "invariant");
500
501    // Enqueue "Self" on ObjectMonitor's _cxq.
502    //
503    // Node acts as a proxy for Self.
504    // As an aside, if were to ever rewrite the synchronization code mostly
505    // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
506    // Java objects.  This would avoid awkward lifecycle and liveness issues,
507    // as well as eliminate a subset of ABA issues.
508    // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
509    //
510
511    ObjectWaiter node(Self);
512    Self->_ParkEvent->reset();
513    node._prev   = (ObjectWaiter *) 0xBAD;
514    node.TState  = ObjectWaiter::TS_CXQ;
515
516    // Push "Self" onto the front of the _cxq.
517    // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
518    // Note that spinning tends to reduce the rate at which threads
519    // enqueue and dequeue on EntryList|cxq.
520    ObjectWaiter * nxt;
521    for (;;) {
522        node._next = nxt = _cxq;
523        if (Atomic::cmpxchg_ptr(&node, &_cxq, nxt) == nxt) break;
524
525        // Interference - the CAS failed because _cxq changed.  Just retry.
526        // As an optional optimization we retry the lock.
527        if (TryLock (Self) > 0) {
528            assert(_succ != Self         , "invariant");
529            assert(_owner == Self        , "invariant");
530            assert(_Responsible != Self  , "invariant");
531            return;
532        }
533    }
534
535    // Check for cxq|EntryList edge transition to non-null.  This indicates
536    // the onset of contention.  While contention persists exiting threads
537    // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
538    // operations revert to the faster 1-0 mode.  This enter operation may interleave
539    // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
540    // arrange for one of the contending thread to use a timed park() operations
541    // to detect and recover from the race.  (Stranding is form of progress failure
542    // where the monitor is unlocked but all the contending threads remain parked).
543    // That is, at least one of the contended threads will periodically poll _owner.
544    // One of the contending threads will become the designated "Responsible" thread.
545    // The Responsible thread uses a timed park instead of a normal indefinite park
546    // operation -- it periodically wakes and checks for and recovers from potential
547    // strandings admitted by 1-0 exit operations.   We need at most one Responsible
548    // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
549    // be responsible for a monitor.
550    //
551    // Currently, one of the contended threads takes on the added role of "Responsible".
552    // A viable alternative would be to use a dedicated "stranding checker" thread
553    // that periodically iterated over all the threads (or active monitors) and unparked
554    // successors where there was risk of stranding.  This would help eliminate the
555    // timer scalability issues we see on some platforms as we'd only have one thread
556    // -- the checker -- parked on a timer.
557
558    if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
559        // Try to assume the role of responsible thread for the monitor.
560        // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
561        Atomic::cmpxchg_ptr(Self, &_Responsible, NULL);
562    }
563
564    // The lock have been released while this thread was occupied queueing
565    // itself onto _cxq.  To close the race and avoid "stranding" and
566    // progress-liveness failure we must resample-retry _owner before parking.
567    // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
568    // In this case the ST-MEMBAR is accomplished with CAS().
569    //
570    // TODO: Defer all thread state transitions until park-time.
571    // Since state transitions are heavy and inefficient we'd like
572    // to defer the state transitions until absolutely necessary,
573    // and in doing so avoid some transitions ...
574
575    TEVENT(Inflated enter - Contention);
576    int nWakeups = 0;
577    int RecheckInterval = 1;
578
579    for (;;) {
580
581        if (TryLock(Self) > 0) break;
582        assert(_owner != Self, "invariant");
583
584        if ((SyncFlags & 2) && _Responsible == NULL) {
585           Atomic::cmpxchg_ptr(Self, &_Responsible, NULL);
586        }
587
588        // park self
589        if (_Responsible == Self || (SyncFlags & 1)) {
590            TEVENT(Inflated enter - park TIMED);
591            Self->_ParkEvent->park((jlong) RecheckInterval);
592            // Increase the RecheckInterval, but clamp the value.
593            RecheckInterval *= 8;
594            if (RecheckInterval > 1000) RecheckInterval = 1000;
595        } else {
596            TEVENT(Inflated enter - park UNTIMED);
597            Self->_ParkEvent->park();
598        }
599
600        if (TryLock(Self) > 0) break;
601
602        // The lock is still contested.
603        // Keep a tally of the # of futile wakeups.
604        // Note that the counter is not protected by a lock or updated by atomics.
605        // That is by design - we trade "lossy" counters which are exposed to
606        // races during updates for a lower probe effect.
607        TEVENT(Inflated enter - Futile wakeup);
608        if (ObjectMonitor::_sync_FutileWakeups != NULL) {
609           ObjectMonitor::_sync_FutileWakeups->inc();
610        }
611        ++nWakeups;
612
613        // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
614        // We can defer clearing _succ until after the spin completes
615        // TrySpin() must tolerate being called with _succ == Self.
616        // Try yet another round of adaptive spinning.
617        if ((Knob_SpinAfterFutile & 1) && TrySpin(Self) > 0) break;
618
619        // We can find that we were unpark()ed and redesignated _succ while
620        // we were spinning.  That's harmless.  If we iterate and call park(),
621        // park() will consume the event and return immediately and we'll
622        // just spin again.  This pattern can repeat, leaving _succ to simply
623        // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
624        // Alternately, we can sample fired() here, and if set, forgo spinning
625        // in the next iteration.
626
627        if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
628           Self->_ParkEvent->reset();
629           OrderAccess::fence();
630        }
631        if (_succ == Self) _succ = NULL;
632
633        // Invariant: after clearing _succ a thread *must* retry _owner before parking.
634        OrderAccess::fence();
635    }
636
637    // Egress :
638    // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
639    // Normally we'll find Self on the EntryList .
640    // From the perspective of the lock owner (this thread), the
641    // EntryList is stable and cxq is prepend-only.
642    // The head of cxq is volatile but the interior is stable.
643    // In addition, Self.TState is stable.
644
645    assert(_owner == Self      , "invariant");
646    assert(object() != NULL    , "invariant");
647    // I'd like to write:
648    //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
649    // but as we're at a safepoint that's not safe.
650
651    UnlinkAfterAcquire(Self, &node);
652    if (_succ == Self) _succ = NULL;
653
654    assert(_succ != Self, "invariant");
655    if (_Responsible == Self) {
656        _Responsible = NULL;
657        OrderAccess::fence(); // Dekker pivot-point
658
659        // We may leave threads on cxq|EntryList without a designated
660        // "Responsible" thread.  This is benign.  When this thread subsequently
661        // exits the monitor it can "see" such preexisting "old" threads --
662        // threads that arrived on the cxq|EntryList before the fence, above --
663        // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
664        // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
665        // non-null and elect a new "Responsible" timer thread.
666        //
667        // This thread executes:
668        //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
669        //    LD cxq|EntryList               (in subsequent exit)
670        //
671        // Entering threads in the slow/contended path execute:
672        //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
673        //    The (ST cxq; MEMBAR) is accomplished with CAS().
674        //
675        // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
676        // exit operation from floating above the ST Responsible=null.
677    }
678
679    // We've acquired ownership with CAS().
680    // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
681    // But since the CAS() this thread may have also stored into _succ,
682    // EntryList, cxq or Responsible.  These meta-data updates must be
683    // visible __before this thread subsequently drops the lock.
684    // Consider what could occur if we didn't enforce this constraint --
685    // STs to monitor meta-data and user-data could reorder with (become
686    // visible after) the ST in exit that drops ownership of the lock.
687    // Some other thread could then acquire the lock, but observe inconsistent
688    // or old monitor meta-data and heap data.  That violates the JMM.
689    // To that end, the 1-0 exit() operation must have at least STST|LDST
690    // "release" barrier semantics.  Specifically, there must be at least a
691    // STST|LDST barrier in exit() before the ST of null into _owner that drops
692    // the lock.   The barrier ensures that changes to monitor meta-data and data
693    // protected by the lock will be visible before we release the lock, and
694    // therefore before some other thread (CPU) has a chance to acquire the lock.
695    // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
696    //
697    // Critically, any prior STs to _succ or EntryList must be visible before
698    // the ST of null into _owner in the *subsequent* (following) corresponding
699    // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
700    // execute a serializing instruction.
701
702    if (SyncFlags & 8) {
703       OrderAccess::fence();
704    }
705    return;
706}
707
708// ReenterI() is a specialized inline form of the latter half of the
709// contended slow-path from EnterI().  We use ReenterI() only for
710// monitor reentry in wait().
711//
712// In the future we should reconcile EnterI() and ReenterI(), adding
713// Knob_Reset and Knob_SpinAfterFutile support and restructuring the
714// loop accordingly.
715
716void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
717    assert(Self != NULL                , "invariant");
718    assert(SelfNode != NULL            , "invariant");
719    assert(SelfNode->_thread == Self   , "invariant");
720    assert(_waiters > 0                , "invariant");
721    assert(((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant");
722    assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
723    JavaThread * jt = (JavaThread *) Self;
724
725    int nWakeups = 0;
726    for (;;) {
727        ObjectWaiter::TStates v = SelfNode->TState;
728        guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
729        assert(_owner != Self, "invariant");
730
731        if (TryLock(Self) > 0) break;
732        if (TrySpin(Self) > 0) break;
733
734        TEVENT(Wait Reentry - parking);
735
736        // State transition wrappers around park() ...
737        // ReenterI() wisely defers state transitions until
738        // it's clear we must park the thread.
739        {
740           OSThreadContendState osts(Self->osthread());
741           ThreadBlockInVM tbivm(jt);
742
743           // cleared by handle_special_suspend_equivalent_condition()
744           // or java_suspend_self()
745           jt->set_suspend_equivalent();
746           if (SyncFlags & 1) {
747              Self->_ParkEvent->park((jlong)1000);
748           } else {
749              Self->_ParkEvent->park();
750           }
751
752           // were we externally suspended while we were waiting?
753           for (;;) {
754              if (!ExitSuspendEquivalent(jt)) break;
755              if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
756              jt->java_suspend_self();
757              jt->set_suspend_equivalent();
758           }
759        }
760
761        // Try again, but just so we distinguish between futile wakeups and
762        // successful wakeups.  The following test isn't algorithmically
763        // necessary, but it helps us maintain sensible statistics.
764        if (TryLock(Self) > 0) break;
765
766        // The lock is still contested.
767        // Keep a tally of the # of futile wakeups.
768        // Note that the counter is not protected by a lock or updated by atomics.
769        // That is by design - we trade "lossy" counters which are exposed to
770        // races during updates for a lower probe effect.
771        TEVENT(Wait Reentry - futile wakeup);
772        ++nWakeups;
773
774        // Assuming this is not a spurious wakeup we'll normally
775        // find that _succ == Self.
776        if (_succ == Self) _succ = NULL;
777
778        // Invariant: after clearing _succ a contending thread
779        // *must* retry  _owner before parking.
780        OrderAccess::fence();
781
782        if (ObjectMonitor::_sync_FutileWakeups != NULL) {
783          ObjectMonitor::_sync_FutileWakeups->inc();
784        }
785    }
786
787    // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
788    // Normally we'll find Self on the EntryList.
789    // Unlinking from the EntryList is constant-time and atomic-free.
790    // From the perspective of the lock owner (this thread), the
791    // EntryList is stable and cxq is prepend-only.
792    // The head of cxq is volatile but the interior is stable.
793    // In addition, Self.TState is stable.
794
795    assert(_owner == Self, "invariant");
796    assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
797    UnlinkAfterAcquire(Self, SelfNode);
798    if (_succ == Self) _succ = NULL;
799    assert(_succ != Self, "invariant");
800    SelfNode->TState = ObjectWaiter::TS_RUN;
801    OrderAccess::fence();      // see comments at the end of EnterI()
802}
803
804// after the thread acquires the lock in ::enter().  Equally, we could defer
805// unlinking the thread until ::exit()-time.
806
807void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
808{
809    assert(_owner == Self, "invariant");
810    assert(SelfNode->_thread == Self, "invariant");
811
812    if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
813        // Normal case: remove Self from the DLL EntryList .
814        // This is a constant-time operation.
815        ObjectWaiter * nxt = SelfNode->_next;
816        ObjectWaiter * prv = SelfNode->_prev;
817        if (nxt != NULL) nxt->_prev = prv;
818        if (prv != NULL) prv->_next = nxt;
819        if (SelfNode == _EntryList) _EntryList = nxt;
820        assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
821        assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
822        TEVENT(Unlink from EntryList);
823    } else {
824        guarantee(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
825        // Inopportune interleaving -- Self is still on the cxq.
826        // This usually means the enqueue of self raced an exiting thread.
827        // Normally we'll find Self near the front of the cxq, so
828        // dequeueing is typically fast.  If needbe we can accelerate
829        // this with some MCS/CHL-like bidirectional list hints and advisory
830        // back-links so dequeueing from the interior will normally operate
831        // in constant-time.
832        // Dequeue Self from either the head (with CAS) or from the interior
833        // with a linear-time scan and normal non-atomic memory operations.
834        // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
835        // and then unlink Self from EntryList.  We have to drain eventually,
836        // so it might as well be now.
837
838        ObjectWaiter * v = _cxq;
839        assert(v != NULL, "invariant");
840        if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
841            // The CAS above can fail from interference IFF a "RAT" arrived.
842            // In that case Self must be in the interior and can no longer be
843            // at the head of cxq.
844            if (v == SelfNode) {
845                assert(_cxq != v, "invariant");
846                v = _cxq;          // CAS above failed - start scan at head of list
847            }
848            ObjectWaiter * p;
849            ObjectWaiter * q = NULL;
850            for (p = v; p != NULL && p != SelfNode; p = p->_next) {
851                q = p;
852                assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
853            }
854            assert(v != SelfNode, "invariant");
855            assert(p == SelfNode, "Node not found on cxq");
856            assert(p != _cxq, "invariant");
857            assert(q != NULL, "invariant");
858            assert(q->_next == p, "invariant");
859            q->_next = p->_next;
860        }
861        TEVENT(Unlink from cxq);
862    }
863
864    // Diagnostic hygiene ...
865    SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
866    SelfNode->_next  = (ObjectWaiter *) 0xBAD;
867    SelfNode->TState = ObjectWaiter::TS_RUN;
868}
869
870// -----------------------------------------------------------------------------
871// Exit support
872//
873// exit()
874// ~~~~~~
875// Note that the collector can't reclaim the objectMonitor or deflate
876// the object out from underneath the thread calling ::exit() as the
877// thread calling ::exit() never transitions to a stable state.
878// This inhibits GC, which in turn inhibits asynchronous (and
879// inopportune) reclamation of "this".
880//
881// We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
882// There's one exception to the claim above, however.  EnterI() can call
883// exit() to drop a lock if the acquirer has been externally suspended.
884// In that case exit() is called with _thread_state as _thread_blocked,
885// but the monitor's _count field is > 0, which inhibits reclamation.
886//
887// 1-0 exit
888// ~~~~~~~~
889// ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
890// the fast-path operators have been optimized so the common ::exit()
891// operation is 1-0.  See i486.ad fast_unlock(), for instance.
892// The code emitted by fast_unlock() elides the usual MEMBAR.  This
893// greatly improves latency -- MEMBAR and CAS having considerable local
894// latency on modern processors -- but at the cost of "stranding".  Absent the
895// MEMBAR, a thread in fast_unlock() can race a thread in the slow
896// ::enter() path, resulting in the entering thread being stranding
897// and a progress-liveness failure.   Stranding is extremely rare.
898// We use timers (timed park operations) & periodic polling to detect
899// and recover from stranding.  Potentially stranded threads periodically
900// wake up and poll the lock.  See the usage of the _Responsible variable.
901//
902// The CAS() in enter provides for safety and exclusion, while the CAS or
903// MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
904// eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
905// We detect and recover from stranding with timers.
906//
907// If a thread transiently strands it'll park until (a) another
908// thread acquires the lock and then drops the lock, at which time the
909// exiting thread will notice and unpark the stranded thread, or, (b)
910// the timer expires.  If the lock is high traffic then the stranding latency
911// will be low due to (a).  If the lock is low traffic then the odds of
912// stranding are lower, although the worst-case stranding latency
913// is longer.  Critically, we don't want to put excessive load in the
914// platform's timer subsystem.  We want to minimize both the timer injection
915// rate (timers created/sec) as well as the number of timers active at
916// any one time.  (more precisely, we want to minimize timer-seconds, which is
917// the integral of the # of active timers at any instant over time).
918// Both impinge on OS scalability.  Given that, at most one thread parked on
919// a monitor will use a timer.
920
921void ATTR ObjectMonitor::exit(bool not_suspended, TRAPS) {
922   Thread * Self = THREAD;
923   if (THREAD != _owner) {
924     if (THREAD->is_lock_owned((address) _owner)) {
925       // Transmute _owner from a BasicLock pointer to a Thread address.
926       // We don't need to hold _mutex for this transition.
927       // Non-null to Non-null is safe as long as all readers can
928       // tolerate either flavor.
929       assert(_recursions == 0, "invariant");
930       _owner = THREAD;
931       _recursions = 0;
932       OwnerIsThread = 1;
933     } else {
934       // NOTE: we need to handle unbalanced monitor enter/exit
935       // in native code by throwing an exception.
936       // TODO: Throw an IllegalMonitorStateException ?
937       TEVENT(Exit - Throw IMSX);
938       assert(false, "Non-balanced monitor enter/exit!");
939       if (false) {
940          THROW(vmSymbols::java_lang_IllegalMonitorStateException());
941       }
942       return;
943     }
944   }
945
946   if (_recursions != 0) {
947     _recursions--;        // this is simple recursive enter
948     TEVENT(Inflated exit - recursive);
949     return;
950   }
951
952   // Invariant: after setting Responsible=null an thread must execute
953   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
954   if ((SyncFlags & 4) == 0) {
955      _Responsible = NULL;
956   }
957
958#if INCLUDE_TRACE
959   // get the owner's thread id for the MonitorEnter event
960   // if it is enabled and the thread isn't suspended
961   if (not_suspended && Tracing::is_event_enabled(TraceJavaMonitorEnterEvent)) {
962     _previous_owner_tid = SharedRuntime::get_java_tid(Self);
963   }
964#endif
965
966   for (;;) {
967      assert(THREAD == _owner, "invariant");
968
969
970      if (Knob_ExitPolicy == 0) {
971         // release semantics: prior loads and stores from within the critical section
972         // must not float (reorder) past the following store that drops the lock.
973         // On SPARC that requires MEMBAR #loadstore|#storestore.
974         // But of course in TSO #loadstore|#storestore is not required.
975         // I'd like to write one of the following:
976         // A.  OrderAccess::release() ; _owner = NULL
977         // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
978         // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
979         // store into a _dummy variable.  That store is not needed, but can result
980         // in massive wasteful coherency traffic on classic SMP systems.
981         // Instead, I use release_store(), which is implemented as just a simple
982         // ST on x64, x86 and SPARC.
983         OrderAccess::release_store_ptr(&_owner, NULL);   // drop the lock
984         OrderAccess::storeload();                         // See if we need to wake a successor
985         if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
986            TEVENT(Inflated exit - simple egress);
987            return;
988         }
989         TEVENT(Inflated exit - complex egress);
990
991         // Normally the exiting thread is responsible for ensuring succession,
992         // but if other successors are ready or other entering threads are spinning
993         // then this thread can simply store NULL into _owner and exit without
994         // waking a successor.  The existence of spinners or ready successors
995         // guarantees proper succession (liveness).  Responsibility passes to the
996         // ready or running successors.  The exiting thread delegates the duty.
997         // More precisely, if a successor already exists this thread is absolved
998         // of the responsibility of waking (unparking) one.
999         //
1000         // The _succ variable is critical to reducing futile wakeup frequency.
1001         // _succ identifies the "heir presumptive" thread that has been made
1002         // ready (unparked) but that has not yet run.  We need only one such
1003         // successor thread to guarantee progress.
1004         // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1005         // section 3.3 "Futile Wakeup Throttling" for details.
1006         //
1007         // Note that spinners in Enter() also set _succ non-null.
1008         // In the current implementation spinners opportunistically set
1009         // _succ so that exiting threads might avoid waking a successor.
1010         // Another less appealing alternative would be for the exiting thread
1011         // to drop the lock and then spin briefly to see if a spinner managed
1012         // to acquire the lock.  If so, the exiting thread could exit
1013         // immediately without waking a successor, otherwise the exiting
1014         // thread would need to dequeue and wake a successor.
1015         // (Note that we'd need to make the post-drop spin short, but no
1016         // shorter than the worst-case round-trip cache-line migration time.
1017         // The dropped lock needs to become visible to the spinner, and then
1018         // the acquisition of the lock by the spinner must become visible to
1019         // the exiting thread).
1020         //
1021
1022         // It appears that an heir-presumptive (successor) must be made ready.
1023         // Only the current lock owner can manipulate the EntryList or
1024         // drain _cxq, so we need to reacquire the lock.  If we fail
1025         // to reacquire the lock the responsibility for ensuring succession
1026         // falls to the new owner.
1027         //
1028         if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1029            return;
1030         }
1031         TEVENT(Exit - Reacquired);
1032      } else {
1033         if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1034            OrderAccess::release_store_ptr(&_owner, NULL);   // drop the lock
1035            OrderAccess::storeload();
1036            // Ratify the previously observed values.
1037            if (_cxq == NULL || _succ != NULL) {
1038                TEVENT(Inflated exit - simple egress);
1039                return;
1040            }
1041
1042            // inopportune interleaving -- the exiting thread (this thread)
1043            // in the fast-exit path raced an entering thread in the slow-enter
1044            // path.
1045            // We have two choices:
1046            // A.  Try to reacquire the lock.
1047            //     If the CAS() fails return immediately, otherwise
1048            //     we either restart/rerun the exit operation, or simply
1049            //     fall-through into the code below which wakes a successor.
1050            // B.  If the elements forming the EntryList|cxq are TSM
1051            //     we could simply unpark() the lead thread and return
1052            //     without having set _succ.
1053            if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1054               TEVENT(Inflated exit - reacquired succeeded);
1055               return;
1056            }
1057            TEVENT(Inflated exit - reacquired failed);
1058         } else {
1059            TEVENT(Inflated exit - complex egress);
1060         }
1061      }
1062
1063      guarantee(_owner == THREAD, "invariant");
1064
1065      ObjectWaiter * w = NULL;
1066      int QMode = Knob_QMode;
1067
1068      if (QMode == 2 && _cxq != NULL) {
1069          // QMode == 2 : cxq has precedence over EntryList.
1070          // Try to directly wake a successor from the cxq.
1071          // If successful, the successor will need to unlink itself from cxq.
1072          w = _cxq;
1073          assert(w != NULL, "invariant");
1074          assert(w->TState == ObjectWaiter::TS_CXQ, "Invariant");
1075          ExitEpilog(Self, w);
1076          return;
1077      }
1078
1079      if (QMode == 3 && _cxq != NULL) {
1080          // Aggressively drain cxq into EntryList at the first opportunity.
1081          // This policy ensure that recently-run threads live at the head of EntryList.
1082          // Drain _cxq into EntryList - bulk transfer.
1083          // First, detach _cxq.
1084          // The following loop is tantamount to: w = swap (&cxq, NULL)
1085          w = _cxq;
1086          for (;;) {
1087             assert(w != NULL, "Invariant");
1088             ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr(NULL, &_cxq, w);
1089             if (u == w) break;
1090             w = u;
1091          }
1092          assert(w != NULL              , "invariant");
1093
1094          ObjectWaiter * q = NULL;
1095          ObjectWaiter * p;
1096          for (p = w; p != NULL; p = p->_next) {
1097              guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1098              p->TState = ObjectWaiter::TS_ENTER;
1099              p->_prev = q;
1100              q = p;
1101          }
1102
1103          // Append the RATs to the EntryList
1104          // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1105          ObjectWaiter * Tail;
1106          for (Tail = _EntryList; Tail != NULL && Tail->_next != NULL; Tail = Tail->_next);
1107          if (Tail == NULL) {
1108              _EntryList = w;
1109          } else {
1110              Tail->_next = w;
1111              w->_prev = Tail;
1112          }
1113
1114          // Fall thru into code that tries to wake a successor from EntryList
1115      }
1116
1117      if (QMode == 4 && _cxq != NULL) {
1118          // Aggressively drain cxq into EntryList at the first opportunity.
1119          // This policy ensure that recently-run threads live at the head of EntryList.
1120
1121          // Drain _cxq into EntryList - bulk transfer.
1122          // First, detach _cxq.
1123          // The following loop is tantamount to: w = swap (&cxq, NULL)
1124          w = _cxq;
1125          for (;;) {
1126             assert(w != NULL, "Invariant");
1127             ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr(NULL, &_cxq, w);
1128             if (u == w) break;
1129             w = u;
1130          }
1131          assert(w != NULL              , "invariant");
1132
1133          ObjectWaiter * q = NULL;
1134          ObjectWaiter * p;
1135          for (p = w; p != NULL; p = p->_next) {
1136              guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1137              p->TState = ObjectWaiter::TS_ENTER;
1138              p->_prev = q;
1139              q = p;
1140          }
1141
1142          // Prepend the RATs to the EntryList
1143          if (_EntryList != NULL) {
1144              q->_next = _EntryList;
1145              _EntryList->_prev = q;
1146          }
1147          _EntryList = w;
1148
1149          // Fall thru into code that tries to wake a successor from EntryList
1150      }
1151
1152      w = _EntryList;
1153      if (w != NULL) {
1154          // I'd like to write: guarantee (w->_thread != Self).
1155          // But in practice an exiting thread may find itself on the EntryList.
1156          // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1157          // then calls exit().  Exit release the lock by setting O._owner to NULL.
1158          // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
1159          // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1160          // release the lock "O".  T2 resumes immediately after the ST of null into
1161          // _owner, above.  T2 notices that the EntryList is populated, so it
1162          // reacquires the lock and then finds itself on the EntryList.
1163          // Given all that, we have to tolerate the circumstance where "w" is
1164          // associated with Self.
1165          assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1166          ExitEpilog(Self, w);
1167          return;
1168      }
1169
1170      // If we find that both _cxq and EntryList are null then just
1171      // re-run the exit protocol from the top.
1172      w = _cxq;
1173      if (w == NULL) continue;
1174
1175      // Drain _cxq into EntryList - bulk transfer.
1176      // First, detach _cxq.
1177      // The following loop is tantamount to: w = swap (&cxq, NULL)
1178      for (;;) {
1179          assert(w != NULL, "Invariant");
1180          ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr(NULL, &_cxq, w);
1181          if (u == w) break;
1182          w = u;
1183      }
1184      TEVENT(Inflated exit - drain cxq into EntryList);
1185
1186      assert(w != NULL              , "invariant");
1187      assert(_EntryList  == NULL    , "invariant");
1188
1189      // Convert the LIFO SLL anchored by _cxq into a DLL.
1190      // The list reorganization step operates in O(LENGTH(w)) time.
1191      // It's critical that this step operate quickly as
1192      // "Self" still holds the outer-lock, restricting parallelism
1193      // and effectively lengthening the critical section.
1194      // Invariant: s chases t chases u.
1195      // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1196      // we have faster access to the tail.
1197
1198      if (QMode == 1) {
1199         // QMode == 1 : drain cxq to EntryList, reversing order
1200         // We also reverse the order of the list.
1201         ObjectWaiter * s = NULL;
1202         ObjectWaiter * t = w;
1203         ObjectWaiter * u = NULL;
1204         while (t != NULL) {
1205             guarantee(t->TState == ObjectWaiter::TS_CXQ, "invariant");
1206             t->TState = ObjectWaiter::TS_ENTER;
1207             u = t->_next;
1208             t->_prev = u;
1209             t->_next = s;
1210             s = t;
1211             t = u;
1212         }
1213         _EntryList  = s;
1214         assert(s != NULL, "invariant");
1215      } else {
1216         // QMode == 0 or QMode == 2
1217         _EntryList = w;
1218         ObjectWaiter * q = NULL;
1219         ObjectWaiter * p;
1220         for (p = w; p != NULL; p = p->_next) {
1221             guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1222             p->TState = ObjectWaiter::TS_ENTER;
1223             p->_prev = q;
1224             q = p;
1225         }
1226      }
1227
1228      // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1229      // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1230
1231      // See if we can abdicate to a spinner instead of waking a thread.
1232      // A primary goal of the implementation is to reduce the
1233      // context-switch rate.
1234      if (_succ != NULL) continue;
1235
1236      w = _EntryList;
1237      if (w != NULL) {
1238          guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1239          ExitEpilog(Self, w);
1240          return;
1241      }
1242   }
1243}
1244
1245// ExitSuspendEquivalent:
1246// A faster alternate to handle_special_suspend_equivalent_condition()
1247//
1248// handle_special_suspend_equivalent_condition() unconditionally
1249// acquires the SR_lock.  On some platforms uncontended MutexLocker()
1250// operations have high latency.  Note that in ::enter() we call HSSEC
1251// while holding the monitor, so we effectively lengthen the critical sections.
1252//
1253// There are a number of possible solutions:
1254//
1255// A.  To ameliorate the problem we might also defer state transitions
1256//     to as late as possible -- just prior to parking.
1257//     Given that, we'd call HSSEC after having returned from park(),
1258//     but before attempting to acquire the monitor.  This is only a
1259//     partial solution.  It avoids calling HSSEC while holding the
1260//     monitor (good), but it still increases successor reacquisition latency --
1261//     the interval between unparking a successor and the time the successor
1262//     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1263//     If we use this technique we can also avoid EnterI()-exit() loop
1264//     in ::enter() where we iteratively drop the lock and then attempt
1265//     to reacquire it after suspending.
1266//
1267// B.  In the future we might fold all the suspend bits into a
1268//     composite per-thread suspend flag and then update it with CAS().
1269//     Alternately, a Dekker-like mechanism with multiple variables
1270//     would suffice:
1271//       ST Self->_suspend_equivalent = false
1272//       MEMBAR
1273//       LD Self_>_suspend_flags
1274//
1275
1276
1277bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
1278   int Mode = Knob_FastHSSEC;
1279   if (Mode && !jSelf->is_external_suspend()) {
1280      assert(jSelf->is_suspend_equivalent(), "invariant");
1281      jSelf->clear_suspend_equivalent();
1282      if (2 == Mode) OrderAccess::storeload();
1283      if (!jSelf->is_external_suspend()) return false;
1284      // We raced a suspension -- fall thru into the slow path
1285      TEVENT(ExitSuspendEquivalent - raced);
1286      jSelf->set_suspend_equivalent();
1287   }
1288   return jSelf->handle_special_suspend_equivalent_condition();
1289}
1290
1291
1292void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
1293   assert(_owner == Self, "invariant");
1294
1295   // Exit protocol:
1296   // 1. ST _succ = wakee
1297   // 2. membar #loadstore|#storestore;
1298   // 2. ST _owner = NULL
1299   // 3. unpark(wakee)
1300
1301   _succ = Knob_SuccEnabled ? Wakee->_thread : NULL;
1302   ParkEvent * Trigger = Wakee->_event;
1303
1304   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1305   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1306   // out-of-scope (non-extant).
1307   Wakee  = NULL;
1308
1309   // Drop the lock
1310   OrderAccess::release_store_ptr(&_owner, NULL);
1311   OrderAccess::fence();                               // ST _owner vs LD in unpark()
1312
1313   if (SafepointSynchronize::do_call_back()) {
1314      TEVENT(unpark before SAFEPOINT);
1315   }
1316
1317   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1318   Trigger->unpark();
1319
1320   // Maintain stats and report events to JVMTI
1321   if (ObjectMonitor::_sync_Parks != NULL) {
1322      ObjectMonitor::_sync_Parks->inc();
1323   }
1324}
1325
1326
1327// -----------------------------------------------------------------------------
1328// Class Loader deadlock handling.
1329//
1330// complete_exit exits a lock returning recursion count
1331// complete_exit/reenter operate as a wait without waiting
1332// complete_exit requires an inflated monitor
1333// The _owner field is not always the Thread addr even with an
1334// inflated monitor, e.g. the monitor can be inflated by a non-owning
1335// thread due to contention.
1336intptr_t ObjectMonitor::complete_exit(TRAPS) {
1337   Thread * const Self = THREAD;
1338   assert(Self->is_Java_thread(), "Must be Java thread!");
1339   JavaThread *jt = (JavaThread *)THREAD;
1340
1341   DeferredInitialize();
1342
1343   if (THREAD != _owner) {
1344    if (THREAD->is_lock_owned ((address)_owner)) {
1345       assert(_recursions == 0, "internal state error");
1346       _owner = THREAD;   /* Convert from basiclock addr to Thread addr */
1347       _recursions = 0;
1348       OwnerIsThread = 1;
1349    }
1350   }
1351
1352   guarantee(Self == _owner, "complete_exit not owner");
1353   intptr_t save = _recursions; // record the old recursion count
1354   _recursions = 0;        // set the recursion level to be 0
1355   exit(true, Self);           // exit the monitor
1356   guarantee(_owner != Self, "invariant");
1357   return save;
1358}
1359
1360// reenter() enters a lock and sets recursion count
1361// complete_exit/reenter operate as a wait without waiting
1362void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1363   Thread * const Self = THREAD;
1364   assert(Self->is_Java_thread(), "Must be Java thread!");
1365   JavaThread *jt = (JavaThread *)THREAD;
1366
1367   guarantee(_owner != Self, "reenter already owner");
1368   enter(THREAD);       // enter the monitor
1369   guarantee(_recursions == 0, "reenter recursion");
1370   _recursions = recursions;
1371   return;
1372}
1373
1374
1375// -----------------------------------------------------------------------------
1376// A macro is used below because there may already be a pending
1377// exception which should not abort the execution of the routines
1378// which use this (which is why we don't put this into check_slow and
1379// call it with a CHECK argument).
1380
1381#define CHECK_OWNER()                                                             \
1382  do {                                                                            \
1383    if (THREAD != _owner) {                                                       \
1384      if (THREAD->is_lock_owned((address) _owner)) {                              \
1385        _owner = THREAD;  /* Convert from basiclock addr to Thread addr */       \
1386        _recursions = 0;                                                          \
1387        OwnerIsThread = 1;                                                       \
1388      } else {                                                                    \
1389        TEVENT(Throw IMSX);                                                     \
1390        THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
1391      }                                                                           \
1392    }                                                                             \
1393  } while (false)
1394
1395// check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1396// TODO-FIXME: remove check_slow() -- it's likely dead.
1397
1398void ObjectMonitor::check_slow(TRAPS) {
1399  TEVENT(check_slow - throw IMSX);
1400  assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1401  THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1402}
1403
1404static int Adjust (volatile int * adr, int dx) {
1405  int v;
1406  for (v = *adr; Atomic::cmpxchg(v + dx, adr, v) != v; v = *adr);
1407  return v;
1408}
1409
1410// helper method for posting a monitor wait event
1411void ObjectMonitor::post_monitor_wait_event(EventJavaMonitorWait* event,
1412                                                           jlong notifier_tid,
1413                                                           jlong timeout,
1414                                                           bool timedout) {
1415  event->set_klass(((oop)this->object())->klass());
1416  event->set_timeout((TYPE_ULONG)timeout);
1417  event->set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
1418  event->set_notifier((TYPE_OSTHREAD)notifier_tid);
1419  event->set_timedOut((TYPE_BOOLEAN)timedout);
1420  event->commit();
1421}
1422
1423// -----------------------------------------------------------------------------
1424// Wait/Notify/NotifyAll
1425//
1426// Note: a subset of changes to ObjectMonitor::wait()
1427// will need to be replicated in complete_exit above
1428void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1429   Thread * const Self = THREAD;
1430   assert(Self->is_Java_thread(), "Must be Java thread!");
1431   JavaThread *jt = (JavaThread *)THREAD;
1432
1433   DeferredInitialize();
1434
1435   // Throw IMSX or IEX.
1436   CHECK_OWNER();
1437
1438   EventJavaMonitorWait event;
1439
1440   // check for a pending interrupt
1441   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1442     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1443     if (JvmtiExport::should_post_monitor_waited()) {
1444        // Note: 'false' parameter is passed here because the
1445        // wait was not timed out due to thread interrupt.
1446        JvmtiExport::post_monitor_waited(jt, this, false);
1447
1448        // In this short circuit of the monitor wait protocol, the
1449        // current thread never drops ownership of the monitor and
1450        // never gets added to the wait queue so the current thread
1451        // cannot be made the successor. This means that the
1452        // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1453        // consume an unpark() meant for the ParkEvent associated with
1454        // this ObjectMonitor.
1455     }
1456     if (event.should_commit()) {
1457       post_monitor_wait_event(&event, 0, millis, false);
1458     }
1459     TEVENT(Wait - Throw IEX);
1460     THROW(vmSymbols::java_lang_InterruptedException());
1461     return;
1462   }
1463
1464   TEVENT(Wait);
1465
1466   assert(Self->_Stalled == 0, "invariant");
1467   Self->_Stalled = intptr_t(this);
1468   jt->set_current_waiting_monitor(this);
1469
1470   // create a node to be put into the queue
1471   // Critically, after we reset() the event but prior to park(), we must check
1472   // for a pending interrupt.
1473   ObjectWaiter node(Self);
1474   node.TState = ObjectWaiter::TS_WAIT;
1475   Self->_ParkEvent->reset();
1476   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1477
1478   // Enter the waiting queue, which is a circular doubly linked list in this case
1479   // but it could be a priority queue or any data structure.
1480   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1481   // by the the owner of the monitor *except* in the case where park()
1482   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1483   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1484
1485   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1486   AddWaiter(&node);
1487   Thread::SpinRelease(&_WaitSetLock);
1488
1489   if ((SyncFlags & 4) == 0) {
1490      _Responsible = NULL;
1491   }
1492   intptr_t save = _recursions; // record the old recursion count
1493   _waiters++;                  // increment the number of waiters
1494   _recursions = 0;             // set the recursion level to be 1
1495   exit(true, Self);                    // exit the monitor
1496   guarantee(_owner != Self, "invariant");
1497
1498   // The thread is on the WaitSet list - now park() it.
1499   // On MP systems it's conceivable that a brief spin before we park
1500   // could be profitable.
1501   //
1502   // TODO-FIXME: change the following logic to a loop of the form
1503   //   while (!timeout && !interrupted && _notified == 0) park()
1504
1505   int ret = OS_OK;
1506   int WasNotified = 0;
1507   { // State transition wrappers
1508     OSThread* osthread = Self->osthread();
1509     OSThreadWaitState osts(osthread, true);
1510     {
1511       ThreadBlockInVM tbivm(jt);
1512       // Thread is in thread_blocked state and oop access is unsafe.
1513       jt->set_suspend_equivalent();
1514
1515       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1516           // Intentionally empty
1517       } else
1518       if (node._notified == 0) {
1519         if (millis <= 0) {
1520            Self->_ParkEvent->park();
1521         } else {
1522            ret = Self->_ParkEvent->park(millis);
1523         }
1524       }
1525
1526       // were we externally suspended while we were waiting?
1527       if (ExitSuspendEquivalent (jt)) {
1528          // TODO-FIXME: add -- if succ == Self then succ = null.
1529          jt->java_suspend_self();
1530       }
1531
1532     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1533
1534
1535     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1536     // from the WaitSet to the EntryList.
1537     // See if we need to remove Node from the WaitSet.
1538     // We use double-checked locking to avoid grabbing _WaitSetLock
1539     // if the thread is not on the wait queue.
1540     //
1541     // Note that we don't need a fence before the fetch of TState.
1542     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1543     // written by the is thread. (perhaps the fetch might even be satisfied
1544     // by a look-aside into the processor's own store buffer, although given
1545     // the length of the code path between the prior ST and this load that's
1546     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1547     // then we'll acquire the lock and then re-fetch a fresh TState value.
1548     // That is, we fail toward safety.
1549
1550     if (node.TState == ObjectWaiter::TS_WAIT) {
1551         Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1552         if (node.TState == ObjectWaiter::TS_WAIT) {
1553            DequeueSpecificWaiter(&node);       // unlink from WaitSet
1554            assert(node._notified == 0, "invariant");
1555            node.TState = ObjectWaiter::TS_RUN;
1556         }
1557         Thread::SpinRelease(&_WaitSetLock);
1558     }
1559
1560     // The thread is now either on off-list (TS_RUN),
1561     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1562     // The Node's TState variable is stable from the perspective of this thread.
1563     // No other threads will asynchronously modify TState.
1564     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1565     OrderAccess::loadload();
1566     if (_succ == Self) _succ = NULL;
1567     WasNotified = node._notified;
1568
1569     // Reentry phase -- reacquire the monitor.
1570     // re-enter contended monitor after object.wait().
1571     // retain OBJECT_WAIT state until re-enter successfully completes
1572     // Thread state is thread_in_vm and oop access is again safe,
1573     // although the raw address of the object may have changed.
1574     // (Don't cache naked oops over safepoints, of course).
1575
1576     // post monitor waited event. Note that this is past-tense, we are done waiting.
1577     if (JvmtiExport::should_post_monitor_waited()) {
1578       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1579
1580       if (node._notified != 0 && _succ == Self) {
1581         // In this part of the monitor wait-notify-reenter protocol it
1582         // is possible (and normal) for another thread to do a fastpath
1583         // monitor enter-exit while this thread is still trying to get
1584         // to the reenter portion of the protocol.
1585         //
1586         // The ObjectMonitor was notified and the current thread is
1587         // the successor which also means that an unpark() has already
1588         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1589         // consume the unpark() that was done when the successor was
1590         // set because the same ParkEvent is shared between Java
1591         // monitors and JVM/TI RawMonitors (for now).
1592         //
1593         // We redo the unpark() to ensure forward progress, i.e., we
1594         // don't want all pending threads hanging (parked) with none
1595         // entering the unlocked monitor.
1596         node._event->unpark();
1597       }
1598     }
1599
1600     if (event.should_commit()) {
1601       post_monitor_wait_event(&event, node._notifier_tid, millis, ret == OS_TIMEOUT);
1602     }
1603
1604     OrderAccess::fence();
1605
1606     assert(Self->_Stalled != 0, "invariant");
1607     Self->_Stalled = 0;
1608
1609     assert(_owner != Self, "invariant");
1610     ObjectWaiter::TStates v = node.TState;
1611     if (v == ObjectWaiter::TS_RUN) {
1612         enter(Self);
1613     } else {
1614         guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1615         ReenterI(Self, &node);
1616         node.wait_reenter_end(this);
1617     }
1618
1619     // Self has reacquired the lock.
1620     // Lifecycle - the node representing Self must not appear on any queues.
1621     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1622     // want residual elements associated with this thread left on any lists.
1623     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1624     assert(_owner == Self, "invariant");
1625     assert(_succ != Self , "invariant");
1626   } // OSThreadWaitState()
1627
1628   jt->set_current_waiting_monitor(NULL);
1629
1630   guarantee(_recursions == 0, "invariant");
1631   _recursions = save;     // restore the old recursion count
1632   _waiters--;             // decrement the number of waiters
1633
1634   // Verify a few postconditions
1635   assert(_owner == Self       , "invariant");
1636   assert(_succ  != Self       , "invariant");
1637   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
1638
1639   if (SyncFlags & 32) {
1640      OrderAccess::fence();
1641   }
1642
1643   // check if the notification happened
1644   if (!WasNotified) {
1645     // no, it could be timeout or Thread.interrupt() or both
1646     // check for interrupt event, otherwise it is timeout
1647     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1648       TEVENT(Wait - throw IEX from epilog);
1649       THROW(vmSymbols::java_lang_InterruptedException());
1650     }
1651   }
1652
1653   // NOTE: Spurious wake up will be consider as timeout.
1654   // Monitor notify has precedence over thread interrupt.
1655}
1656
1657
1658// Consider:
1659// If the lock is cool (cxq == null && succ == null) and we're on an MP system
1660// then instead of transferring a thread from the WaitSet to the EntryList
1661// we might just dequeue a thread from the WaitSet and directly unpark() it.
1662
1663void ObjectMonitor::notify(TRAPS) {
1664  CHECK_OWNER();
1665  if (_WaitSet == NULL) {
1666     TEVENT(Empty-Notify);
1667     return;
1668  }
1669  DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1670
1671  int Policy = Knob_MoveNotifyee;
1672
1673  Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1674  ObjectWaiter * iterator = DequeueWaiter();
1675  if (iterator != NULL) {
1676     TEVENT(Notify1 - Transfer);
1677     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1678     guarantee(iterator->_notified == 0, "invariant");
1679     if (Policy != 4) {
1680        iterator->TState = ObjectWaiter::TS_ENTER;
1681     }
1682     iterator->_notified = 1;
1683     Thread * Self = THREAD;
1684     iterator->_notifier_tid = Self->osthread()->thread_id();
1685
1686     ObjectWaiter * List = _EntryList;
1687     if (List != NULL) {
1688        assert(List->_prev == NULL, "invariant");
1689        assert(List->TState == ObjectWaiter::TS_ENTER, "invariant");
1690        assert(List != iterator, "invariant");
1691     }
1692
1693     if (Policy == 0) {       // prepend to EntryList
1694         if (List == NULL) {
1695             iterator->_next = iterator->_prev = NULL;
1696             _EntryList = iterator;
1697         } else {
1698             List->_prev = iterator;
1699             iterator->_next = List;
1700             iterator->_prev = NULL;
1701             _EntryList = iterator;
1702        }
1703     } else
1704     if (Policy == 1) {      // append to EntryList
1705         if (List == NULL) {
1706             iterator->_next = iterator->_prev = NULL;
1707             _EntryList = iterator;
1708         } else {
1709            // CONSIDER:  finding the tail currently requires a linear-time walk of
1710            // the EntryList.  We can make tail access constant-time by converting to
1711            // a CDLL instead of using our current DLL.
1712            ObjectWaiter * Tail;
1713            for (Tail = List; Tail->_next != NULL; Tail = Tail->_next);
1714            assert(Tail != NULL && Tail->_next == NULL, "invariant");
1715            Tail->_next = iterator;
1716            iterator->_prev = Tail;
1717            iterator->_next = NULL;
1718        }
1719     } else
1720     if (Policy == 2) {      // prepend to cxq
1721         // prepend to cxq
1722         if (List == NULL) {
1723             iterator->_next = iterator->_prev = NULL;
1724             _EntryList = iterator;
1725         } else {
1726            iterator->TState = ObjectWaiter::TS_CXQ;
1727            for (;;) {
1728                ObjectWaiter * Front = _cxq;
1729                iterator->_next = Front;
1730                if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1731                    break;
1732                }
1733            }
1734         }
1735     } else
1736     if (Policy == 3) {      // append to cxq
1737        iterator->TState = ObjectWaiter::TS_CXQ;
1738        for (;;) {
1739            ObjectWaiter * Tail;
1740            Tail = _cxq;
1741            if (Tail == NULL) {
1742                iterator->_next = NULL;
1743                if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1744                   break;
1745                }
1746            } else {
1747                while (Tail->_next != NULL) Tail = Tail->_next;
1748                Tail->_next = iterator;
1749                iterator->_prev = Tail;
1750                iterator->_next = NULL;
1751                break;
1752            }
1753        }
1754     } else {
1755        ParkEvent * ev = iterator->_event;
1756        iterator->TState = ObjectWaiter::TS_RUN;
1757        OrderAccess::fence();
1758        ev->unpark();
1759     }
1760
1761     if (Policy < 4) {
1762       iterator->wait_reenter_begin(this);
1763     }
1764
1765     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1766     // move the add-to-EntryList operation, above, outside the critical section
1767     // protected by _WaitSetLock.  In practice that's not useful.  With the
1768     // exception of  wait() timeouts and interrupts the monitor owner
1769     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1770     // on _WaitSetLock so it's not profitable to reduce the length of the
1771     // critical section.
1772  }
1773
1774  Thread::SpinRelease(&_WaitSetLock);
1775
1776  if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
1777     ObjectMonitor::_sync_Notifications->inc();
1778  }
1779}
1780
1781
1782void ObjectMonitor::notifyAll(TRAPS) {
1783  CHECK_OWNER();
1784  ObjectWaiter* iterator;
1785  if (_WaitSet == NULL) {
1786      TEVENT(Empty-NotifyAll);
1787      return;
1788  }
1789  DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1790
1791  int Policy = Knob_MoveNotifyee;
1792  int Tally = 0;
1793  Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notifyall");
1794
1795  for (;;) {
1796     iterator = DequeueWaiter();
1797     if (iterator == NULL) break;
1798     TEVENT(NotifyAll - Transfer1);
1799     ++Tally;
1800
1801     // Disposition - what might we do with iterator ?
1802     // a.  add it directly to the EntryList - either tail or head.
1803     // b.  push it onto the front of the _cxq.
1804     // For now we use (a).
1805
1806     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1807     guarantee(iterator->_notified == 0, "invariant");
1808     iterator->_notified = 1;
1809     Thread * Self = THREAD;
1810     iterator->_notifier_tid = Self->osthread()->thread_id();
1811     if (Policy != 4) {
1812        iterator->TState = ObjectWaiter::TS_ENTER;
1813     }
1814
1815     ObjectWaiter * List = _EntryList;
1816     if (List != NULL) {
1817        assert(List->_prev == NULL, "invariant");
1818        assert(List->TState == ObjectWaiter::TS_ENTER, "invariant");
1819        assert(List != iterator, "invariant");
1820     }
1821
1822     if (Policy == 0) {       // prepend to EntryList
1823         if (List == NULL) {
1824             iterator->_next = iterator->_prev = NULL;
1825             _EntryList = iterator;
1826         } else {
1827             List->_prev = iterator;
1828             iterator->_next = List;
1829             iterator->_prev = NULL;
1830             _EntryList = iterator;
1831        }
1832     } else
1833     if (Policy == 1) {      // append to EntryList
1834         if (List == NULL) {
1835             iterator->_next = iterator->_prev = NULL;
1836             _EntryList = iterator;
1837         } else {
1838            // CONSIDER:  finding the tail currently requires a linear-time walk of
1839            // the EntryList.  We can make tail access constant-time by converting to
1840            // a CDLL instead of using our current DLL.
1841            ObjectWaiter * Tail;
1842            for (Tail = List; Tail->_next != NULL; Tail = Tail->_next);
1843            assert(Tail != NULL && Tail->_next == NULL, "invariant");
1844            Tail->_next = iterator;
1845            iterator->_prev = Tail;
1846            iterator->_next = NULL;
1847        }
1848     } else
1849     if (Policy == 2) {      // prepend to cxq
1850         // prepend to cxq
1851         iterator->TState = ObjectWaiter::TS_CXQ;
1852         for (;;) {
1853             ObjectWaiter * Front = _cxq;
1854             iterator->_next = Front;
1855             if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1856                 break;
1857             }
1858         }
1859     } else
1860     if (Policy == 3) {      // append to cxq
1861        iterator->TState = ObjectWaiter::TS_CXQ;
1862        for (;;) {
1863            ObjectWaiter * Tail;
1864            Tail = _cxq;
1865            if (Tail == NULL) {
1866                iterator->_next = NULL;
1867                if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1868                   break;
1869                }
1870            } else {
1871                while (Tail->_next != NULL) Tail = Tail->_next;
1872                Tail->_next = iterator;
1873                iterator->_prev = Tail;
1874                iterator->_next = NULL;
1875                break;
1876            }
1877        }
1878     } else {
1879        ParkEvent * ev = iterator->_event;
1880        iterator->TState = ObjectWaiter::TS_RUN;
1881        OrderAccess::fence();
1882        ev->unpark();
1883     }
1884
1885     if (Policy < 4) {
1886       iterator->wait_reenter_begin(this);
1887     }
1888
1889     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1890     // move the add-to-EntryList operation, above, outside the critical section
1891     // protected by _WaitSetLock.  In practice that's not useful.  With the
1892     // exception of  wait() timeouts and interrupts the monitor owner
1893     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1894     // on _WaitSetLock so it's not profitable to reduce the length of the
1895     // critical section.
1896  }
1897
1898  Thread::SpinRelease(&_WaitSetLock);
1899
1900  if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
1901     ObjectMonitor::_sync_Notifications->inc(Tally);
1902  }
1903}
1904
1905// -----------------------------------------------------------------------------
1906// Adaptive Spinning Support
1907//
1908// Adaptive spin-then-block - rational spinning
1909//
1910// Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1911// algorithm.  On high order SMP systems it would be better to start with
1912// a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1913// a contending thread could enqueue itself on the cxq and then spin locally
1914// on a thread-specific variable such as its ParkEvent._Event flag.
1915// That's left as an exercise for the reader.  Note that global spinning is
1916// not problematic on Niagara, as the L2$ serves the interconnect and has both
1917// low latency and massive bandwidth.
1918//
1919// Broadly, we can fix the spin frequency -- that is, the % of contended lock
1920// acquisition attempts where we opt to spin --  at 100% and vary the spin count
1921// (duration) or we can fix the count at approximately the duration of
1922// a context switch and vary the frequency.   Of course we could also
1923// vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1924// See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
1925//
1926// This implementation varies the duration "D", where D varies with
1927// the success rate of recent spin attempts. (D is capped at approximately
1928// length of a round-trip context switch).  The success rate for recent
1929// spin attempts is a good predictor of the success rate of future spin
1930// attempts.  The mechanism adapts automatically to varying critical
1931// section length (lock modality), system load and degree of parallelism.
1932// D is maintained per-monitor in _SpinDuration and is initialized
1933// optimistically.  Spin frequency is fixed at 100%.
1934//
1935// Note that _SpinDuration is volatile, but we update it without locks
1936// or atomics.  The code is designed so that _SpinDuration stays within
1937// a reasonable range even in the presence of races.  The arithmetic
1938// operations on _SpinDuration are closed over the domain of legal values,
1939// so at worst a race will install and older but still legal value.
1940// At the very worst this introduces some apparent non-determinism.
1941// We might spin when we shouldn't or vice-versa, but since the spin
1942// count are relatively short, even in the worst case, the effect is harmless.
1943//
1944// Care must be taken that a low "D" value does not become an
1945// an absorbing state.  Transient spinning failures -- when spinning
1946// is overall profitable -- should not cause the system to converge
1947// on low "D" values.  We want spinning to be stable and predictable
1948// and fairly responsive to change and at the same time we don't want
1949// it to oscillate, become metastable, be "too" non-deterministic,
1950// or converge on or enter undesirable stable absorbing states.
1951//
1952// We implement a feedback-based control system -- using past behavior
1953// to predict future behavior.  We face two issues: (a) if the
1954// input signal is random then the spin predictor won't provide optimal
1955// results, and (b) if the signal frequency is too high then the control
1956// system, which has some natural response lag, will "chase" the signal.
1957// (b) can arise from multimodal lock hold times.  Transient preemption
1958// can also result in apparent bimodal lock hold times.
1959// Although sub-optimal, neither condition is particularly harmful, as
1960// in the worst-case we'll spin when we shouldn't or vice-versa.
1961// The maximum spin duration is rather short so the failure modes aren't bad.
1962// To be conservative, I've tuned the gain in system to bias toward
1963// _not spinning.  Relatedly, the system can sometimes enter a mode where it
1964// "rings" or oscillates between spinning and not spinning.  This happens
1965// when spinning is just on the cusp of profitability, however, so the
1966// situation is not dire.  The state is benign -- there's no need to add
1967// hysteresis control to damp the transition rate between spinning and
1968// not spinning.
1969//
1970
1971intptr_t ObjectMonitor::SpinCallbackArgument = 0;
1972int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL;
1973
1974// Spinning: Fixed frequency (100%), vary duration
1975
1976
1977int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
1978
1979    // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1980    int ctr = Knob_FixedSpin;
1981    if (ctr != 0) {
1982        while (--ctr >= 0) {
1983            if (TryLock(Self) > 0) return 1;
1984            SpinPause();
1985        }
1986        return 0;
1987    }
1988
1989    for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1990      if (TryLock(Self) > 0) {
1991        // Increase _SpinDuration ...
1992        // Note that we don't clamp SpinDuration precisely at SpinLimit.
1993        // Raising _SpurDuration to the poverty line is key.
1994        int x = _SpinDuration;
1995        if (x < Knob_SpinLimit) {
1996           if (x < Knob_Poverty) x = Knob_Poverty;
1997           _SpinDuration = x + Knob_BonusB;
1998        }
1999        return 1;
2000      }
2001      SpinPause();
2002    }
2003
2004    // Admission control - verify preconditions for spinning
2005    //
2006    // We always spin a little bit, just to prevent _SpinDuration == 0 from
2007    // becoming an absorbing state.  Put another way, we spin briefly to
2008    // sample, just in case the system load, parallelism, contention, or lock
2009    // modality changed.
2010    //
2011    // Consider the following alternative:
2012    // Periodically set _SpinDuration = _SpinLimit and try a long/full
2013    // spin attempt.  "Periodically" might mean after a tally of
2014    // the # of failed spin attempts (or iterations) reaches some threshold.
2015    // This takes us into the realm of 1-out-of-N spinning, where we
2016    // hold the duration constant but vary the frequency.
2017
2018    ctr = _SpinDuration;
2019    if (ctr < Knob_SpinBase) ctr = Knob_SpinBase;
2020    if (ctr <= 0) return 0;
2021
2022    if (Knob_SuccRestrict && _succ != NULL) return 0;
2023    if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
2024       TEVENT(Spin abort - notrunnable [TOP]);
2025       return 0;
2026    }
2027
2028    int MaxSpin = Knob_MaxSpinners;
2029    if (MaxSpin >= 0) {
2030       if (_Spinner > MaxSpin) {
2031          TEVENT(Spin abort -- too many spinners);
2032          return 0;
2033       }
2034       // Slightly racy, but benign ...
2035       Adjust(&_Spinner, 1);
2036    }
2037
2038    // We're good to spin ... spin ingress.
2039    // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
2040    // when preparing to LD...CAS _owner, etc and the CAS is likely
2041    // to succeed.
2042    int hits    = 0;
2043    int msk     = 0;
2044    int caspty  = Knob_CASPenalty;
2045    int oxpty   = Knob_OXPenalty;
2046    int sss     = Knob_SpinSetSucc;
2047    if (sss && _succ == NULL) _succ = Self;
2048    Thread * prv = NULL;
2049
2050    // There are three ways to exit the following loop:
2051    // 1.  A successful spin where this thread has acquired the lock.
2052    // 2.  Spin failure with prejudice
2053    // 3.  Spin failure without prejudice
2054
2055    while (--ctr >= 0) {
2056
2057      // Periodic polling -- Check for pending GC
2058      // Threads may spin while they're unsafe.
2059      // We don't want spinning threads to delay the JVM from reaching
2060      // a stop-the-world safepoint or to steal cycles from GC.
2061      // If we detect a pending safepoint we abort in order that
2062      // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
2063      // this thread, if safe, doesn't steal cycles from GC.
2064      // This is in keeping with the "no loitering in runtime" rule.
2065      // We periodically check to see if there's a safepoint pending.
2066      if ((ctr & 0xFF) == 0) {
2067         if (SafepointSynchronize::do_call_back()) {
2068            TEVENT(Spin: safepoint);
2069            goto Abort;           // abrupt spin egress
2070         }
2071         if (Knob_UsePause & 1) SpinPause();
2072
2073         int (*scb)(intptr_t,int) = SpinCallbackFunction;
2074         if (hits > 50 && scb != NULL) {
2075            int abend = (*scb)(SpinCallbackArgument, 0);
2076         }
2077      }
2078
2079      if (Knob_UsePause & 2) SpinPause();
2080
2081      // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
2082      // This is useful on classic SMP systems, but is of less utility on
2083      // N1-style CMT platforms.
2084      //
2085      // Trade-off: lock acquisition latency vs coherency bandwidth.
2086      // Lock hold times are typically short.  A histogram
2087      // of successful spin attempts shows that we usually acquire
2088      // the lock early in the spin.  That suggests we want to
2089      // sample _owner frequently in the early phase of the spin,
2090      // but then back-off and sample less frequently as the spin
2091      // progresses.  The back-off makes a good citizen on SMP big
2092      // SMP systems.  Oversampling _owner can consume excessive
2093      // coherency bandwidth.  Relatedly, if we _oversample _owner we
2094      // can inadvertently interfere with the the ST m->owner=null.
2095      // executed by the lock owner.
2096      if (ctr & msk) continue;
2097      ++hits;
2098      if ((hits & 0xF) == 0) {
2099        // The 0xF, above, corresponds to the exponent.
2100        // Consider: (msk+1)|msk
2101        msk = ((msk << 2)|3) & BackOffMask;
2102      }
2103
2104      // Probe _owner with TATAS
2105      // If this thread observes the monitor transition or flicker
2106      // from locked to unlocked to locked, then the odds that this
2107      // thread will acquire the lock in this spin attempt go down
2108      // considerably.  The same argument applies if the CAS fails
2109      // or if we observe _owner change from one non-null value to
2110      // another non-null value.   In such cases we might abort
2111      // the spin without prejudice or apply a "penalty" to the
2112      // spin count-down variable "ctr", reducing it by 100, say.
2113
2114      Thread * ox = (Thread *) _owner;
2115      if (ox == NULL) {
2116         ox = (Thread *) Atomic::cmpxchg_ptr(Self, &_owner, NULL);
2117         if (ox == NULL) {
2118            // The CAS succeeded -- this thread acquired ownership
2119            // Take care of some bookkeeping to exit spin state.
2120            if (sss && _succ == Self) {
2121               _succ = NULL;
2122            }
2123            if (MaxSpin > 0) Adjust(&_Spinner, -1);
2124
2125            // Increase _SpinDuration :
2126            // The spin was successful (profitable) so we tend toward
2127            // longer spin attempts in the future.
2128            // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2129            // If we acquired the lock early in the spin cycle it
2130            // makes sense to increase _SpinDuration proportionally.
2131            // Note that we don't clamp SpinDuration precisely at SpinLimit.
2132            int x = _SpinDuration;
2133            if (x < Knob_SpinLimit) {
2134                if (x < Knob_Poverty) x = Knob_Poverty;
2135                _SpinDuration = x + Knob_Bonus;
2136            }
2137            return 1;
2138         }
2139
2140         // The CAS failed ... we can take any of the following actions:
2141         // * penalize: ctr -= Knob_CASPenalty
2142         // * exit spin with prejudice -- goto Abort;
2143         // * exit spin without prejudice.
2144         // * Since CAS is high-latency, retry again immediately.
2145         prv = ox;
2146         TEVENT(Spin: cas failed);
2147         if (caspty == -2) break;
2148         if (caspty == -1) goto Abort;
2149         ctr -= caspty;
2150         continue;
2151      }
2152
2153      // Did lock ownership change hands ?
2154      if (ox != prv && prv != NULL) {
2155          TEVENT(spin: Owner changed)
2156          if (oxpty == -2) break;
2157          if (oxpty == -1) goto Abort;
2158          ctr -= oxpty;
2159      }
2160      prv = ox;
2161
2162      // Abort the spin if the owner is not executing.
2163      // The owner must be executing in order to drop the lock.
2164      // Spinning while the owner is OFFPROC is idiocy.
2165      // Consider: ctr -= RunnablePenalty ;
2166      if (Knob_OState && NotRunnable (Self, ox)) {
2167         TEVENT(Spin abort - notrunnable);
2168         goto Abort;
2169      }
2170      if (sss && _succ == NULL) _succ = Self;
2171   }
2172
2173   // Spin failed with prejudice -- reduce _SpinDuration.
2174   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2175   // AIMD is globally stable.
2176   TEVENT(Spin failure);
2177   {
2178     int x = _SpinDuration;
2179     if (x > 0) {
2180        // Consider an AIMD scheme like: x -= (x >> 3) + 100
2181        // This is globally sample and tends to damp the response.
2182        x -= Knob_Penalty;
2183        if (x < 0) x = 0;
2184        _SpinDuration = x;
2185     }
2186   }
2187
2188 Abort:
2189   if (MaxSpin >= 0) Adjust(&_Spinner, -1);
2190   if (sss && _succ == Self) {
2191      _succ = NULL;
2192      // Invariant: after setting succ=null a contending thread
2193      // must recheck-retry _owner before parking.  This usually happens
2194      // in the normal usage of TrySpin(), but it's safest
2195      // to make TrySpin() as foolproof as possible.
2196      OrderAccess::fence();
2197      if (TryLock(Self) > 0) return 1;
2198   }
2199   return 0;
2200}
2201
2202// NotRunnable() -- informed spinning
2203//
2204// Don't bother spinning if the owner is not eligible to drop the lock.
2205// Peek at the owner's schedctl.sc_state and Thread._thread_values and
2206// spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2207// The thread must be runnable in order to drop the lock in timely fashion.
2208// If the _owner is not runnable then spinning will not likely be
2209// successful (profitable).
2210//
2211// Beware -- the thread referenced by _owner could have died
2212// so a simply fetch from _owner->_thread_state might trap.
2213// Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2214// Because of the lifecycle issues the schedctl and _thread_state values
2215// observed by NotRunnable() might be garbage.  NotRunnable must
2216// tolerate this and consider the observed _thread_state value
2217// as advisory.
2218//
2219// Beware too, that _owner is sometimes a BasicLock address and sometimes
2220// a thread pointer.  We differentiate the two cases with OwnerIsThread.
2221// Alternately, we might tag the type (thread pointer vs basiclock pointer)
2222// with the LSB of _owner.  Another option would be to probablistically probe
2223// the putative _owner->TypeTag value.
2224//
2225// Checking _thread_state isn't perfect.  Even if the thread is
2226// in_java it might be blocked on a page-fault or have been preempted
2227// and sitting on a ready/dispatch queue.  _thread state in conjunction
2228// with schedctl.sc_state gives us a good picture of what the
2229// thread is doing, however.
2230//
2231// TODO: check schedctl.sc_state.
2232// We'll need to use SafeFetch32() to read from the schedctl block.
2233// See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2234//
2235// The return value from NotRunnable() is *advisory* -- the
2236// result is based on sampling and is not necessarily coherent.
2237// The caller must tolerate false-negative and false-positive errors.
2238// Spinning, in general, is probabilistic anyway.
2239
2240
2241int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
2242    // Check either OwnerIsThread or ox->TypeTag == 2BAD.
2243    if (!OwnerIsThread) return 0;
2244
2245    if (ox == NULL) return 0;
2246
2247    // Avoid transitive spinning ...
2248    // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2249    // Immediately after T1 acquires L it's possible that T2, also
2250    // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2251    // This occurs transiently after T1 acquired L but before
2252    // T1 managed to clear T1.Stalled.  T2 does not need to abort
2253    // its spin in this circumstance.
2254    intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
2255
2256    if (BlockedOn == 1) return 1;
2257    if (BlockedOn != 0) {
2258      return BlockedOn != intptr_t(this) && _owner == ox;
2259    }
2260
2261    assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
2262    int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
2263    // consider also: jst != _thread_in_Java -- but that's overspecific.
2264    return jst == _thread_blocked || jst == _thread_in_native;
2265}
2266
2267
2268// -----------------------------------------------------------------------------
2269// WaitSet management ...
2270
2271ObjectWaiter::ObjectWaiter(Thread* thread) {
2272  _next     = NULL;
2273  _prev     = NULL;
2274  _notified = 0;
2275  TState    = TS_RUN;
2276  _thread   = thread;
2277  _event    = thread->_ParkEvent;
2278  _active   = false;
2279  assert(_event != NULL, "invariant");
2280}
2281
2282void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
2283  JavaThread *jt = (JavaThread *)this->_thread;
2284  _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2285}
2286
2287void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
2288  JavaThread *jt = (JavaThread *)this->_thread;
2289  JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2290}
2291
2292inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2293  assert(node != NULL, "should not dequeue NULL node");
2294  assert(node->_prev == NULL, "node already in list");
2295  assert(node->_next == NULL, "node already in list");
2296  // put node at end of queue (circular doubly linked list)
2297  if (_WaitSet == NULL) {
2298    _WaitSet = node;
2299    node->_prev = node;
2300    node->_next = node;
2301  } else {
2302    ObjectWaiter* head = _WaitSet;
2303    ObjectWaiter* tail = head->_prev;
2304    assert(tail->_next == head, "invariant check");
2305    tail->_next = node;
2306    head->_prev = node;
2307    node->_next = head;
2308    node->_prev = tail;
2309  }
2310}
2311
2312inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2313  // dequeue the very first waiter
2314  ObjectWaiter* waiter = _WaitSet;
2315  if (waiter) {
2316    DequeueSpecificWaiter(waiter);
2317  }
2318  return waiter;
2319}
2320
2321inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2322  assert(node != NULL, "should not dequeue NULL node");
2323  assert(node->_prev != NULL, "node already removed from list");
2324  assert(node->_next != NULL, "node already removed from list");
2325  // when the waiter has woken up because of interrupt,
2326  // timeout or other spurious wake-up, dequeue the
2327  // waiter from waiting list
2328  ObjectWaiter* next = node->_next;
2329  if (next == node) {
2330    assert(node->_prev == node, "invariant check");
2331    _WaitSet = NULL;
2332  } else {
2333    ObjectWaiter* prev = node->_prev;
2334    assert(prev->_next == node, "invariant check");
2335    assert(next->_prev == node, "invariant check");
2336    next->_prev = prev;
2337    prev->_next = next;
2338    if (_WaitSet == node) {
2339      _WaitSet = next;
2340    }
2341  }
2342  node->_next = NULL;
2343  node->_prev = NULL;
2344}
2345
2346// -----------------------------------------------------------------------------
2347// PerfData support
2348PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2349PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2350PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2351PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL;
2352PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2353PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL;
2354PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL;
2355PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL;
2356PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL;
2357PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL;
2358PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL;
2359PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL;
2360PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL;
2361PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL;
2362PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL;
2363PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2364PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2365PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2366
2367// One-shot global initialization for the sync subsystem.
2368// We could also defer initialization and initialize on-demand
2369// the first time we call inflate().  Initialization would
2370// be protected - like so many things - by the MonitorCache_lock.
2371
2372void ObjectMonitor::Initialize() {
2373  static int InitializationCompleted = 0;
2374  assert(InitializationCompleted == 0, "invariant");
2375  InitializationCompleted = 1;
2376  if (UsePerfData) {
2377      EXCEPTION_MARK;
2378      #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
2379      #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
2380      NEWPERFCOUNTER(_sync_Inflations);
2381      NEWPERFCOUNTER(_sync_Deflations);
2382      NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2383      NEWPERFCOUNTER(_sync_FutileWakeups);
2384      NEWPERFCOUNTER(_sync_Parks);
2385      NEWPERFCOUNTER(_sync_EmptyNotifications);
2386      NEWPERFCOUNTER(_sync_Notifications);
2387      NEWPERFCOUNTER(_sync_SlowEnter);
2388      NEWPERFCOUNTER(_sync_SlowExit);
2389      NEWPERFCOUNTER(_sync_SlowNotify);
2390      NEWPERFCOUNTER(_sync_SlowNotifyAll);
2391      NEWPERFCOUNTER(_sync_FailedSpins);
2392      NEWPERFCOUNTER(_sync_SuccessfulSpins);
2393      NEWPERFCOUNTER(_sync_PrivateA);
2394      NEWPERFCOUNTER(_sync_PrivateB);
2395      NEWPERFCOUNTER(_sync_MonInCirculation);
2396      NEWPERFCOUNTER(_sync_MonScavenged);
2397      NEWPERFVARIABLE(_sync_MonExtant);
2398      #undef NEWPERFCOUNTER
2399  }
2400}
2401
2402
2403// Compile-time asserts
2404// When possible, it's better to catch errors deterministically at
2405// compile-time than at runtime.  The down-side to using compile-time
2406// asserts is that error message -- often something about negative array
2407// indices -- is opaque.
2408
2409#define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
2410
2411void ObjectMonitor::ctAsserts() {
2412  CTASSERT(offset_of (ObjectMonitor, _header) == 0);
2413}
2414
2415
2416static char * kvGet (char * kvList, const char * Key) {
2417    if (kvList == NULL) return NULL;
2418    size_t n = strlen(Key);
2419    char * Search;
2420    for (Search = kvList; *Search; Search += strlen(Search) + 1) {
2421        if (strncmp (Search, Key, n) == 0) {
2422            if (Search[n] == '=') return Search + n + 1;
2423            if (Search[n] == 0)   return(char *) "1";
2424        }
2425    }
2426    return NULL;
2427}
2428
2429static int kvGetInt (char * kvList, const char * Key, int Default) {
2430    char * v = kvGet(kvList, Key);
2431    int rslt = v ? ::strtol(v, NULL, 0) : Default;
2432    if (Knob_ReportSettings && v != NULL) {
2433        ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
2434        ::fflush(stdout);
2435    }
2436    return rslt;
2437}
2438
2439void ObjectMonitor::DeferredInitialize() {
2440  if (InitDone > 0) return;
2441  if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2442      while (InitDone != 1);
2443      return;
2444  }
2445
2446  // One-shot global initialization ...
2447  // The initialization is idempotent, so we don't need locks.
2448  // In the future consider doing this via os::init_2().
2449  // SyncKnobs consist of <Key>=<Value> pairs in the style
2450  // of environment variables.  Start by converting ':' to NUL.
2451
2452  if (SyncKnobs == NULL) SyncKnobs = "";
2453
2454  size_t sz = strlen(SyncKnobs);
2455  char * knobs = (char *) malloc(sz + 2);
2456  if (knobs == NULL) {
2457     vm_exit_out_of_memory(sz + 2, OOM_MALLOC_ERROR, "Parse SyncKnobs");
2458     guarantee(0, "invariant");
2459  }
2460  strcpy(knobs, SyncKnobs);
2461  knobs[sz+1] = 0;
2462  for (char * p = knobs; *p; p++) {
2463     if (*p == ':') *p = 0;
2464  }
2465
2466  #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
2467  SETKNOB(ReportSettings);
2468  SETKNOB(Verbose);
2469  SETKNOB(FixedSpin);
2470  SETKNOB(SpinLimit);
2471  SETKNOB(SpinBase);
2472  SETKNOB(SpinBackOff);
2473  SETKNOB(CASPenalty);
2474  SETKNOB(OXPenalty);
2475  SETKNOB(LogSpins);
2476  SETKNOB(SpinSetSucc);
2477  SETKNOB(SuccEnabled);
2478  SETKNOB(SuccRestrict);
2479  SETKNOB(Penalty);
2480  SETKNOB(Bonus);
2481  SETKNOB(BonusB);
2482  SETKNOB(Poverty);
2483  SETKNOB(SpinAfterFutile);
2484  SETKNOB(UsePause);
2485  SETKNOB(SpinEarly);
2486  SETKNOB(OState);
2487  SETKNOB(MaxSpinners);
2488  SETKNOB(PreSpin);
2489  SETKNOB(ExitPolicy);
2490  SETKNOB(QMode);
2491  SETKNOB(ResetEvent);
2492  SETKNOB(MoveNotifyee);
2493  SETKNOB(FastHSSEC);
2494  #undef SETKNOB
2495
2496  if (os::is_MP()) {
2497     BackOffMask = (1 << Knob_SpinBackOff) - 1;
2498     if (Knob_ReportSettings) ::printf("BackOffMask=%X\n", BackOffMask);
2499     // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2500  } else {
2501     Knob_SpinLimit = 0;
2502     Knob_SpinBase  = 0;
2503     Knob_PreSpin   = 0;
2504     Knob_FixedSpin = -1;
2505  }
2506
2507  if (Knob_LogSpins == 0) {
2508     ObjectMonitor::_sync_FailedSpins = NULL;
2509  }
2510
2511  free(knobs);
2512  OrderAccess::fence();
2513  InitDone = 1;
2514}
2515
2516#ifndef PRODUCT
2517void ObjectMonitor::verify() {
2518}
2519
2520void ObjectMonitor::print() {
2521}
2522#endif
2523