objectMonitor.cpp revision 6014:8a9bb7821e28
1/*
2 * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/vmSymbols.hpp"
27#include "memory/resourceArea.hpp"
28#include "oops/markOop.hpp"
29#include "oops/oop.inline.hpp"
30#include "runtime/handles.inline.hpp"
31#include "runtime/interfaceSupport.hpp"
32#include "runtime/mutexLocker.hpp"
33#include "runtime/objectMonitor.hpp"
34#include "runtime/objectMonitor.inline.hpp"
35#include "runtime/osThread.hpp"
36#include "runtime/stubRoutines.hpp"
37#include "runtime/thread.inline.hpp"
38#include "services/threadService.hpp"
39#include "trace/tracing.hpp"
40#include "trace/traceMacros.hpp"
41#include "utilities/dtrace.hpp"
42#include "utilities/macros.hpp"
43#include "utilities/preserveException.hpp"
44#ifdef TARGET_OS_FAMILY_linux
45# include "os_linux.inline.hpp"
46#endif
47#ifdef TARGET_OS_FAMILY_solaris
48# include "os_solaris.inline.hpp"
49#endif
50#ifdef TARGET_OS_FAMILY_windows
51# include "os_windows.inline.hpp"
52#endif
53#ifdef TARGET_OS_FAMILY_bsd
54# include "os_bsd.inline.hpp"
55#endif
56
57#if defined(__GNUC__) && !defined(IA64) && !defined(PPC64)
58  // Need to inhibit inlining for older versions of GCC to avoid build-time failures
59  #define ATTR __attribute__((noinline))
60#else
61  #define ATTR
62#endif
63
64
65#ifdef DTRACE_ENABLED
66
67// Only bother with this argument setup if dtrace is available
68// TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
69
70
71#define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
72  char* bytes = NULL;                                                      \
73  int len = 0;                                                             \
74  jlong jtid = SharedRuntime::get_java_tid(thread);                        \
75  Symbol* klassname = ((oop)obj)->klass()->name();                         \
76  if (klassname != NULL) {                                                 \
77    bytes = (char*)klassname->bytes();                                     \
78    len = klassname->utf8_length();                                        \
79  }
80
81#ifndef USDT2
82
83HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
84  jlong, uintptr_t, char*, int);
85HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
86  jlong, uintptr_t, char*, int);
87HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
88  jlong, uintptr_t, char*, int);
89HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
90  jlong, uintptr_t, char*, int);
91HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
92  jlong, uintptr_t, char*, int);
93
94#define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)       \
95  {                                                                        \
96    if (DTraceMonitorProbes) {                                            \
97      DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
98      HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
99                       (monitor), bytes, len, (millis));                   \
100    }                                                                      \
101  }
102
103#define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)             \
104  {                                                                        \
105    if (DTraceMonitorProbes) {                                            \
106      DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
107      HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
108                       (uintptr_t)(monitor), bytes, len);                  \
109    }                                                                      \
110  }
111
112#else /* USDT2 */
113
114#define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
115  {                                                                        \
116    if (DTraceMonitorProbes) {                                            \
117      DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
118      HOTSPOT_MONITOR_WAIT(jtid,                                           \
119                       (monitor), bytes, len, (millis));                   \
120    }                                                                      \
121  }
122
123#define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
124#define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
125#define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
126#define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
127#define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
128
129#define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
130  {                                                                        \
131    if (DTraceMonitorProbes) {                                            \
132      DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
133      HOTSPOT_MONITOR_##probe(jtid,                                               \
134                       (uintptr_t)(monitor), bytes, len);                  \
135    }                                                                      \
136  }
137
138#endif /* USDT2 */
139#else //  ndef DTRACE_ENABLED
140
141#define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
142#define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
143
144#endif // ndef DTRACE_ENABLED
145
146// Tunables ...
147// The knob* variables are effectively final.  Once set they should
148// never be modified hence.  Consider using __read_mostly with GCC.
149
150int ObjectMonitor::Knob_Verbose    = 0 ;
151int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
152static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
153static int Knob_HandOff            = 0 ;
154static int Knob_ReportSettings     = 0 ;
155
156static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
157static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
158static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
159static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
160static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
161static int Knob_SpinEarly          = 1 ;
162static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
163static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
164static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
165static int Knob_Bonus              = 100 ;     // spin success bonus
166static int Knob_BonusB             = 100 ;     // spin success bonus
167static int Knob_Penalty            = 200 ;     // spin failure penalty
168static int Knob_Poverty            = 1000 ;
169static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
170static int Knob_FixedSpin          = 0 ;
171static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
172static int Knob_UsePause           = 1 ;
173static int Knob_ExitPolicy         = 0 ;
174static int Knob_PreSpin            = 10 ;      // 20-100 likely better
175static int Knob_ResetEvent         = 0 ;
176static int BackOffMask             = 0 ;
177
178static int Knob_FastHSSEC          = 0 ;
179static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
180static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
181static volatile int InitDone       = 0 ;
182
183#define TrySpin TrySpin_VaryDuration
184
185// -----------------------------------------------------------------------------
186// Theory of operations -- Monitors lists, thread residency, etc:
187//
188// * A thread acquires ownership of a monitor by successfully
189//   CAS()ing the _owner field from null to non-null.
190//
191// * Invariant: A thread appears on at most one monitor list --
192//   cxq, EntryList or WaitSet -- at any one time.
193//
194// * Contending threads "push" themselves onto the cxq with CAS
195//   and then spin/park.
196//
197// * After a contending thread eventually acquires the lock it must
198//   dequeue itself from either the EntryList or the cxq.
199//
200// * The exiting thread identifies and unparks an "heir presumptive"
201//   tentative successor thread on the EntryList.  Critically, the
202//   exiting thread doesn't unlink the successor thread from the EntryList.
203//   After having been unparked, the wakee will recontend for ownership of
204//   the monitor.   The successor (wakee) will either acquire the lock or
205//   re-park itself.
206//
207//   Succession is provided for by a policy of competitive handoff.
208//   The exiting thread does _not_ grant or pass ownership to the
209//   successor thread.  (This is also referred to as "handoff" succession").
210//   Instead the exiting thread releases ownership and possibly wakes
211//   a successor, so the successor can (re)compete for ownership of the lock.
212//   If the EntryList is empty but the cxq is populated the exiting
213//   thread will drain the cxq into the EntryList.  It does so by
214//   by detaching the cxq (installing null with CAS) and folding
215//   the threads from the cxq into the EntryList.  The EntryList is
216//   doubly linked, while the cxq is singly linked because of the
217//   CAS-based "push" used to enqueue recently arrived threads (RATs).
218//
219// * Concurrency invariants:
220//
221//   -- only the monitor owner may access or mutate the EntryList.
222//      The mutex property of the monitor itself protects the EntryList
223//      from concurrent interference.
224//   -- Only the monitor owner may detach the cxq.
225//
226// * The monitor entry list operations avoid locks, but strictly speaking
227//   they're not lock-free.  Enter is lock-free, exit is not.
228//   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
229//
230// * The cxq can have multiple concurrent "pushers" but only one concurrent
231//   detaching thread.  This mechanism is immune from the ABA corruption.
232//   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
233//
234// * Taken together, the cxq and the EntryList constitute or form a
235//   single logical queue of threads stalled trying to acquire the lock.
236//   We use two distinct lists to improve the odds of a constant-time
237//   dequeue operation after acquisition (in the ::enter() epilogue) and
238//   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
239//   A key desideratum is to minimize queue & monitor metadata manipulation
240//   that occurs while holding the monitor lock -- that is, we want to
241//   minimize monitor lock holds times.  Note that even a small amount of
242//   fixed spinning will greatly reduce the # of enqueue-dequeue operations
243//   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
244//   locks and monitor metadata.
245//
246//   Cxq points to the the set of Recently Arrived Threads attempting entry.
247//   Because we push threads onto _cxq with CAS, the RATs must take the form of
248//   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
249//   the unlocking thread notices that EntryList is null but _cxq is != null.
250//
251//   The EntryList is ordered by the prevailing queue discipline and
252//   can be organized in any convenient fashion, such as a doubly-linked list or
253//   a circular doubly-linked list.  Critically, we want insert and delete operations
254//   to operate in constant-time.  If we need a priority queue then something akin
255//   to Solaris' sleepq would work nicely.  Viz.,
256//   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
257//   Queue discipline is enforced at ::exit() time, when the unlocking thread
258//   drains the cxq into the EntryList, and orders or reorders the threads on the
259//   EntryList accordingly.
260//
261//   Barring "lock barging", this mechanism provides fair cyclic ordering,
262//   somewhat similar to an elevator-scan.
263//
264// * The monitor synchronization subsystem avoids the use of native
265//   synchronization primitives except for the narrow platform-specific
266//   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
267//   the semantics of park-unpark.  Put another way, this monitor implementation
268//   depends only on atomic operations and park-unpark.  The monitor subsystem
269//   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
270//   underlying OS manages the READY<->RUN transitions.
271//
272// * Waiting threads reside on the WaitSet list -- wait() puts
273//   the caller onto the WaitSet.
274//
275// * notify() or notifyAll() simply transfers threads from the WaitSet to
276//   either the EntryList or cxq.  Subsequent exit() operations will
277//   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
278//   it's likely the notifyee would simply impale itself on the lock held
279//   by the notifier.
280//
281// * An interesting alternative is to encode cxq as (List,LockByte) where
282//   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
283//   variable, like _recursions, in the scheme.  The threads or Events that form
284//   the list would have to be aligned in 256-byte addresses.  A thread would
285//   try to acquire the lock or enqueue itself with CAS, but exiting threads
286//   could use a 1-0 protocol and simply STB to set the LockByte to 0.
287//   Note that is is *not* word-tearing, but it does presume that full-word
288//   CAS operations are coherent with intermix with STB operations.  That's true
289//   on most common processors.
290//
291// * See also http://blogs.sun.com/dave
292
293
294// -----------------------------------------------------------------------------
295// Enter support
296
297bool ObjectMonitor::try_enter(Thread* THREAD) {
298  if (THREAD != _owner) {
299    if (THREAD->is_lock_owned ((address)_owner)) {
300       assert(_recursions == 0, "internal state error");
301       _owner = THREAD ;
302       _recursions = 1 ;
303       OwnerIsThread = 1 ;
304       return true;
305    }
306    if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
307      return false;
308    }
309    return true;
310  } else {
311    _recursions++;
312    return true;
313  }
314}
315
316void ATTR ObjectMonitor::enter(TRAPS) {
317  // The following code is ordered to check the most common cases first
318  // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
319  Thread * const Self = THREAD ;
320  void * cur ;
321
322  cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
323  if (cur == NULL) {
324     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
325     assert (_recursions == 0   , "invariant") ;
326     assert (_owner      == Self, "invariant") ;
327     // CONSIDER: set or assert OwnerIsThread == 1
328     return ;
329  }
330
331  if (cur == Self) {
332     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
333     _recursions ++ ;
334     return ;
335  }
336
337  if (Self->is_lock_owned ((address)cur)) {
338    assert (_recursions == 0, "internal state error");
339    _recursions = 1 ;
340    // Commute owner from a thread-specific on-stack BasicLockObject address to
341    // a full-fledged "Thread *".
342    _owner = Self ;
343    OwnerIsThread = 1 ;
344    return ;
345  }
346
347  // We've encountered genuine contention.
348  assert (Self->_Stalled == 0, "invariant") ;
349  Self->_Stalled = intptr_t(this) ;
350
351  // Try one round of spinning *before* enqueueing Self
352  // and before going through the awkward and expensive state
353  // transitions.  The following spin is strictly optional ...
354  // Note that if we acquire the monitor from an initial spin
355  // we forgo posting JVMTI events and firing DTRACE probes.
356  if (Knob_SpinEarly && TrySpin (Self) > 0) {
357     assert (_owner == Self      , "invariant") ;
358     assert (_recursions == 0    , "invariant") ;
359     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
360     Self->_Stalled = 0 ;
361     return ;
362  }
363
364  assert (_owner != Self          , "invariant") ;
365  assert (_succ  != Self          , "invariant") ;
366  assert (Self->is_Java_thread()  , "invariant") ;
367  JavaThread * jt = (JavaThread *) Self ;
368  assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
369  assert (jt->thread_state() != _thread_blocked   , "invariant") ;
370  assert (this->object() != NULL  , "invariant") ;
371  assert (_count >= 0, "invariant") ;
372
373  // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
374  // Ensure the object-monitor relationship remains stable while there's contention.
375  Atomic::inc_ptr(&_count);
376
377  EventJavaMonitorEnter event;
378
379  { // Change java thread status to indicate blocked on monitor enter.
380    JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
381
382    DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
383    if (JvmtiExport::should_post_monitor_contended_enter()) {
384      JvmtiExport::post_monitor_contended_enter(jt, this);
385
386      // The current thread does not yet own the monitor and does not
387      // yet appear on any queues that would get it made the successor.
388      // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
389      // handler cannot accidentally consume an unpark() meant for the
390      // ParkEvent associated with this ObjectMonitor.
391    }
392
393    OSThreadContendState osts(Self->osthread());
394    ThreadBlockInVM tbivm(jt);
395
396    Self->set_current_pending_monitor(this);
397
398    // TODO-FIXME: change the following for(;;) loop to straight-line code.
399    for (;;) {
400      jt->set_suspend_equivalent();
401      // cleared by handle_special_suspend_equivalent_condition()
402      // or java_suspend_self()
403
404      EnterI (THREAD) ;
405
406      if (!ExitSuspendEquivalent(jt)) break ;
407
408      //
409      // We have acquired the contended monitor, but while we were
410      // waiting another thread suspended us. We don't want to enter
411      // the monitor while suspended because that would surprise the
412      // thread that suspended us.
413      //
414          _recursions = 0 ;
415      _succ = NULL ;
416      exit (false, Self) ;
417
418      jt->java_suspend_self();
419    }
420    Self->set_current_pending_monitor(NULL);
421  }
422
423  Atomic::dec_ptr(&_count);
424  assert (_count >= 0, "invariant") ;
425  Self->_Stalled = 0 ;
426
427  // Must either set _recursions = 0 or ASSERT _recursions == 0.
428  assert (_recursions == 0     , "invariant") ;
429  assert (_owner == Self       , "invariant") ;
430  assert (_succ  != Self       , "invariant") ;
431  assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
432
433  // The thread -- now the owner -- is back in vm mode.
434  // Report the glorious news via TI,DTrace and jvmstat.
435  // The probe effect is non-trivial.  All the reportage occurs
436  // while we hold the monitor, increasing the length of the critical
437  // section.  Amdahl's parallel speedup law comes vividly into play.
438  //
439  // Another option might be to aggregate the events (thread local or
440  // per-monitor aggregation) and defer reporting until a more opportune
441  // time -- such as next time some thread encounters contention but has
442  // yet to acquire the lock.  While spinning that thread could
443  // spinning we could increment JVMStat counters, etc.
444
445  DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
446  if (JvmtiExport::should_post_monitor_contended_entered()) {
447    JvmtiExport::post_monitor_contended_entered(jt, this);
448
449    // The current thread already owns the monitor and is not going to
450    // call park() for the remainder of the monitor enter protocol. So
451    // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
452    // event handler consumed an unpark() issued by the thread that
453    // just exited the monitor.
454  }
455
456  if (event.should_commit()) {
457    event.set_klass(((oop)this->object())->klass());
458    event.set_previousOwner((TYPE_JAVALANGTHREAD)_previous_owner_tid);
459    event.set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
460    event.commit();
461  }
462
463  if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
464     ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
465  }
466}
467
468
469// Caveat: TryLock() is not necessarily serializing if it returns failure.
470// Callers must compensate as needed.
471
472int ObjectMonitor::TryLock (Thread * Self) {
473   for (;;) {
474      void * own = _owner ;
475      if (own != NULL) return 0 ;
476      if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
477         // Either guarantee _recursions == 0 or set _recursions = 0.
478         assert (_recursions == 0, "invariant") ;
479         assert (_owner == Self, "invariant") ;
480         // CONSIDER: set or assert that OwnerIsThread == 1
481         return 1 ;
482      }
483      // The lock had been free momentarily, but we lost the race to the lock.
484      // Interference -- the CAS failed.
485      // We can either return -1 or retry.
486      // Retry doesn't make as much sense because the lock was just acquired.
487      if (true) return -1 ;
488   }
489}
490
491void ATTR ObjectMonitor::EnterI (TRAPS) {
492    Thread * Self = THREAD ;
493    assert (Self->is_Java_thread(), "invariant") ;
494    assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
495
496    // Try the lock - TATAS
497    if (TryLock (Self) > 0) {
498        assert (_succ != Self              , "invariant") ;
499        assert (_owner == Self             , "invariant") ;
500        assert (_Responsible != Self       , "invariant") ;
501        return ;
502    }
503
504    DeferredInitialize () ;
505
506    // We try one round of spinning *before* enqueueing Self.
507    //
508    // If the _owner is ready but OFFPROC we could use a YieldTo()
509    // operation to donate the remainder of this thread's quantum
510    // to the owner.  This has subtle but beneficial affinity
511    // effects.
512
513    if (TrySpin (Self) > 0) {
514        assert (_owner == Self        , "invariant") ;
515        assert (_succ != Self         , "invariant") ;
516        assert (_Responsible != Self  , "invariant") ;
517        return ;
518    }
519
520    // The Spin failed -- Enqueue and park the thread ...
521    assert (_succ  != Self            , "invariant") ;
522    assert (_owner != Self            , "invariant") ;
523    assert (_Responsible != Self      , "invariant") ;
524
525    // Enqueue "Self" on ObjectMonitor's _cxq.
526    //
527    // Node acts as a proxy for Self.
528    // As an aside, if were to ever rewrite the synchronization code mostly
529    // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
530    // Java objects.  This would avoid awkward lifecycle and liveness issues,
531    // as well as eliminate a subset of ABA issues.
532    // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
533    //
534
535    ObjectWaiter node(Self) ;
536    Self->_ParkEvent->reset() ;
537    node._prev   = (ObjectWaiter *) 0xBAD ;
538    node.TState  = ObjectWaiter::TS_CXQ ;
539
540    // Push "Self" onto the front of the _cxq.
541    // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
542    // Note that spinning tends to reduce the rate at which threads
543    // enqueue and dequeue on EntryList|cxq.
544    ObjectWaiter * nxt ;
545    for (;;) {
546        node._next = nxt = _cxq ;
547        if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
548
549        // Interference - the CAS failed because _cxq changed.  Just retry.
550        // As an optional optimization we retry the lock.
551        if (TryLock (Self) > 0) {
552            assert (_succ != Self         , "invariant") ;
553            assert (_owner == Self        , "invariant") ;
554            assert (_Responsible != Self  , "invariant") ;
555            return ;
556        }
557    }
558
559    // Check for cxq|EntryList edge transition to non-null.  This indicates
560    // the onset of contention.  While contention persists exiting threads
561    // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
562    // operations revert to the faster 1-0 mode.  This enter operation may interleave
563    // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
564    // arrange for one of the contending thread to use a timed park() operations
565    // to detect and recover from the race.  (Stranding is form of progress failure
566    // where the monitor is unlocked but all the contending threads remain parked).
567    // That is, at least one of the contended threads will periodically poll _owner.
568    // One of the contending threads will become the designated "Responsible" thread.
569    // The Responsible thread uses a timed park instead of a normal indefinite park
570    // operation -- it periodically wakes and checks for and recovers from potential
571    // strandings admitted by 1-0 exit operations.   We need at most one Responsible
572    // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
573    // be responsible for a monitor.
574    //
575    // Currently, one of the contended threads takes on the added role of "Responsible".
576    // A viable alternative would be to use a dedicated "stranding checker" thread
577    // that periodically iterated over all the threads (or active monitors) and unparked
578    // successors where there was risk of stranding.  This would help eliminate the
579    // timer scalability issues we see on some platforms as we'd only have one thread
580    // -- the checker -- parked on a timer.
581
582    if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
583        // Try to assume the role of responsible thread for the monitor.
584        // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
585        Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
586    }
587
588    // The lock have been released while this thread was occupied queueing
589    // itself onto _cxq.  To close the race and avoid "stranding" and
590    // progress-liveness failure we must resample-retry _owner before parking.
591    // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
592    // In this case the ST-MEMBAR is accomplished with CAS().
593    //
594    // TODO: Defer all thread state transitions until park-time.
595    // Since state transitions are heavy and inefficient we'd like
596    // to defer the state transitions until absolutely necessary,
597    // and in doing so avoid some transitions ...
598
599    TEVENT (Inflated enter - Contention) ;
600    int nWakeups = 0 ;
601    int RecheckInterval = 1 ;
602
603    for (;;) {
604
605        if (TryLock (Self) > 0) break ;
606        assert (_owner != Self, "invariant") ;
607
608        if ((SyncFlags & 2) && _Responsible == NULL) {
609           Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
610        }
611
612        // park self
613        if (_Responsible == Self || (SyncFlags & 1)) {
614            TEVENT (Inflated enter - park TIMED) ;
615            Self->_ParkEvent->park ((jlong) RecheckInterval) ;
616            // Increase the RecheckInterval, but clamp the value.
617            RecheckInterval *= 8 ;
618            if (RecheckInterval > 1000) RecheckInterval = 1000 ;
619        } else {
620            TEVENT (Inflated enter - park UNTIMED) ;
621            Self->_ParkEvent->park() ;
622        }
623
624        if (TryLock(Self) > 0) break ;
625
626        // The lock is still contested.
627        // Keep a tally of the # of futile wakeups.
628        // Note that the counter is not protected by a lock or updated by atomics.
629        // That is by design - we trade "lossy" counters which are exposed to
630        // races during updates for a lower probe effect.
631        TEVENT (Inflated enter - Futile wakeup) ;
632        if (ObjectMonitor::_sync_FutileWakeups != NULL) {
633           ObjectMonitor::_sync_FutileWakeups->inc() ;
634        }
635        ++ nWakeups ;
636
637        // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
638        // We can defer clearing _succ until after the spin completes
639        // TrySpin() must tolerate being called with _succ == Self.
640        // Try yet another round of adaptive spinning.
641        if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
642
643        // We can find that we were unpark()ed and redesignated _succ while
644        // we were spinning.  That's harmless.  If we iterate and call park(),
645        // park() will consume the event and return immediately and we'll
646        // just spin again.  This pattern can repeat, leaving _succ to simply
647        // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
648        // Alternately, we can sample fired() here, and if set, forgo spinning
649        // in the next iteration.
650
651        if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
652           Self->_ParkEvent->reset() ;
653           OrderAccess::fence() ;
654        }
655        if (_succ == Self) _succ = NULL ;
656
657        // Invariant: after clearing _succ a thread *must* retry _owner before parking.
658        OrderAccess::fence() ;
659    }
660
661    // Egress :
662    // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
663    // Normally we'll find Self on the EntryList .
664    // From the perspective of the lock owner (this thread), the
665    // EntryList is stable and cxq is prepend-only.
666    // The head of cxq is volatile but the interior is stable.
667    // In addition, Self.TState is stable.
668
669    assert (_owner == Self      , "invariant") ;
670    assert (object() != NULL    , "invariant") ;
671    // I'd like to write:
672    //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
673    // but as we're at a safepoint that's not safe.
674
675    UnlinkAfterAcquire (Self, &node) ;
676    if (_succ == Self) _succ = NULL ;
677
678    assert (_succ != Self, "invariant") ;
679    if (_Responsible == Self) {
680        _Responsible = NULL ;
681        OrderAccess::fence(); // Dekker pivot-point
682
683        // We may leave threads on cxq|EntryList without a designated
684        // "Responsible" thread.  This is benign.  When this thread subsequently
685        // exits the monitor it can "see" such preexisting "old" threads --
686        // threads that arrived on the cxq|EntryList before the fence, above --
687        // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
688        // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
689        // non-null and elect a new "Responsible" timer thread.
690        //
691        // This thread executes:
692        //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
693        //    LD cxq|EntryList               (in subsequent exit)
694        //
695        // Entering threads in the slow/contended path execute:
696        //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
697        //    The (ST cxq; MEMBAR) is accomplished with CAS().
698        //
699        // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
700        // exit operation from floating above the ST Responsible=null.
701    }
702
703    // We've acquired ownership with CAS().
704    // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
705    // But since the CAS() this thread may have also stored into _succ,
706    // EntryList, cxq or Responsible.  These meta-data updates must be
707    // visible __before this thread subsequently drops the lock.
708    // Consider what could occur if we didn't enforce this constraint --
709    // STs to monitor meta-data and user-data could reorder with (become
710    // visible after) the ST in exit that drops ownership of the lock.
711    // Some other thread could then acquire the lock, but observe inconsistent
712    // or old monitor meta-data and heap data.  That violates the JMM.
713    // To that end, the 1-0 exit() operation must have at least STST|LDST
714    // "release" barrier semantics.  Specifically, there must be at least a
715    // STST|LDST barrier in exit() before the ST of null into _owner that drops
716    // the lock.   The barrier ensures that changes to monitor meta-data and data
717    // protected by the lock will be visible before we release the lock, and
718    // therefore before some other thread (CPU) has a chance to acquire the lock.
719    // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
720    //
721    // Critically, any prior STs to _succ or EntryList must be visible before
722    // the ST of null into _owner in the *subsequent* (following) corresponding
723    // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
724    // execute a serializing instruction.
725
726    if (SyncFlags & 8) {
727       OrderAccess::fence() ;
728    }
729    return ;
730}
731
732// ReenterI() is a specialized inline form of the latter half of the
733// contended slow-path from EnterI().  We use ReenterI() only for
734// monitor reentry in wait().
735//
736// In the future we should reconcile EnterI() and ReenterI(), adding
737// Knob_Reset and Knob_SpinAfterFutile support and restructuring the
738// loop accordingly.
739
740void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
741    assert (Self != NULL                , "invariant") ;
742    assert (SelfNode != NULL            , "invariant") ;
743    assert (SelfNode->_thread == Self   , "invariant") ;
744    assert (_waiters > 0                , "invariant") ;
745    assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
746    assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
747    JavaThread * jt = (JavaThread *) Self ;
748
749    int nWakeups = 0 ;
750    for (;;) {
751        ObjectWaiter::TStates v = SelfNode->TState ;
752        guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
753        assert    (_owner != Self, "invariant") ;
754
755        if (TryLock (Self) > 0) break ;
756        if (TrySpin (Self) > 0) break ;
757
758        TEVENT (Wait Reentry - parking) ;
759
760        // State transition wrappers around park() ...
761        // ReenterI() wisely defers state transitions until
762        // it's clear we must park the thread.
763        {
764           OSThreadContendState osts(Self->osthread());
765           ThreadBlockInVM tbivm(jt);
766
767           // cleared by handle_special_suspend_equivalent_condition()
768           // or java_suspend_self()
769           jt->set_suspend_equivalent();
770           if (SyncFlags & 1) {
771              Self->_ParkEvent->park ((jlong)1000) ;
772           } else {
773              Self->_ParkEvent->park () ;
774           }
775
776           // were we externally suspended while we were waiting?
777           for (;;) {
778              if (!ExitSuspendEquivalent (jt)) break ;
779              if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
780              jt->java_suspend_self();
781              jt->set_suspend_equivalent();
782           }
783        }
784
785        // Try again, but just so we distinguish between futile wakeups and
786        // successful wakeups.  The following test isn't algorithmically
787        // necessary, but it helps us maintain sensible statistics.
788        if (TryLock(Self) > 0) break ;
789
790        // The lock is still contested.
791        // Keep a tally of the # of futile wakeups.
792        // Note that the counter is not protected by a lock or updated by atomics.
793        // That is by design - we trade "lossy" counters which are exposed to
794        // races during updates for a lower probe effect.
795        TEVENT (Wait Reentry - futile wakeup) ;
796        ++ nWakeups ;
797
798        // Assuming this is not a spurious wakeup we'll normally
799        // find that _succ == Self.
800        if (_succ == Self) _succ = NULL ;
801
802        // Invariant: after clearing _succ a contending thread
803        // *must* retry  _owner before parking.
804        OrderAccess::fence() ;
805
806        if (ObjectMonitor::_sync_FutileWakeups != NULL) {
807          ObjectMonitor::_sync_FutileWakeups->inc() ;
808        }
809    }
810
811    // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
812    // Normally we'll find Self on the EntryList.
813    // Unlinking from the EntryList is constant-time and atomic-free.
814    // From the perspective of the lock owner (this thread), the
815    // EntryList is stable and cxq is prepend-only.
816    // The head of cxq is volatile but the interior is stable.
817    // In addition, Self.TState is stable.
818
819    assert (_owner == Self, "invariant") ;
820    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
821    UnlinkAfterAcquire (Self, SelfNode) ;
822    if (_succ == Self) _succ = NULL ;
823    assert (_succ != Self, "invariant") ;
824    SelfNode->TState = ObjectWaiter::TS_RUN ;
825    OrderAccess::fence() ;      // see comments at the end of EnterI()
826}
827
828// after the thread acquires the lock in ::enter().  Equally, we could defer
829// unlinking the thread until ::exit()-time.
830
831void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
832{
833    assert (_owner == Self, "invariant") ;
834    assert (SelfNode->_thread == Self, "invariant") ;
835
836    if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
837        // Normal case: remove Self from the DLL EntryList .
838        // This is a constant-time operation.
839        ObjectWaiter * nxt = SelfNode->_next ;
840        ObjectWaiter * prv = SelfNode->_prev ;
841        if (nxt != NULL) nxt->_prev = prv ;
842        if (prv != NULL) prv->_next = nxt ;
843        if (SelfNode == _EntryList ) _EntryList = nxt ;
844        assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
845        assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
846        TEVENT (Unlink from EntryList) ;
847    } else {
848        guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
849        // Inopportune interleaving -- Self is still on the cxq.
850        // This usually means the enqueue of self raced an exiting thread.
851        // Normally we'll find Self near the front of the cxq, so
852        // dequeueing is typically fast.  If needbe we can accelerate
853        // this with some MCS/CHL-like bidirectional list hints and advisory
854        // back-links so dequeueing from the interior will normally operate
855        // in constant-time.
856        // Dequeue Self from either the head (with CAS) or from the interior
857        // with a linear-time scan and normal non-atomic memory operations.
858        // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
859        // and then unlink Self from EntryList.  We have to drain eventually,
860        // so it might as well be now.
861
862        ObjectWaiter * v = _cxq ;
863        assert (v != NULL, "invariant") ;
864        if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
865            // The CAS above can fail from interference IFF a "RAT" arrived.
866            // In that case Self must be in the interior and can no longer be
867            // at the head of cxq.
868            if (v == SelfNode) {
869                assert (_cxq != v, "invariant") ;
870                v = _cxq ;          // CAS above failed - start scan at head of list
871            }
872            ObjectWaiter * p ;
873            ObjectWaiter * q = NULL ;
874            for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
875                q = p ;
876                assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
877            }
878            assert (v != SelfNode,  "invariant") ;
879            assert (p == SelfNode,  "Node not found on cxq") ;
880            assert (p != _cxq,      "invariant") ;
881            assert (q != NULL,      "invariant") ;
882            assert (q->_next == p,  "invariant") ;
883            q->_next = p->_next ;
884        }
885        TEVENT (Unlink from cxq) ;
886    }
887
888    // Diagnostic hygiene ...
889    SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
890    SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
891    SelfNode->TState = ObjectWaiter::TS_RUN ;
892}
893
894// -----------------------------------------------------------------------------
895// Exit support
896//
897// exit()
898// ~~~~~~
899// Note that the collector can't reclaim the objectMonitor or deflate
900// the object out from underneath the thread calling ::exit() as the
901// thread calling ::exit() never transitions to a stable state.
902// This inhibits GC, which in turn inhibits asynchronous (and
903// inopportune) reclamation of "this".
904//
905// We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
906// There's one exception to the claim above, however.  EnterI() can call
907// exit() to drop a lock if the acquirer has been externally suspended.
908// In that case exit() is called with _thread_state as _thread_blocked,
909// but the monitor's _count field is > 0, which inhibits reclamation.
910//
911// 1-0 exit
912// ~~~~~~~~
913// ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
914// the fast-path operators have been optimized so the common ::exit()
915// operation is 1-0.  See i486.ad fast_unlock(), for instance.
916// The code emitted by fast_unlock() elides the usual MEMBAR.  This
917// greatly improves latency -- MEMBAR and CAS having considerable local
918// latency on modern processors -- but at the cost of "stranding".  Absent the
919// MEMBAR, a thread in fast_unlock() can race a thread in the slow
920// ::enter() path, resulting in the entering thread being stranding
921// and a progress-liveness failure.   Stranding is extremely rare.
922// We use timers (timed park operations) & periodic polling to detect
923// and recover from stranding.  Potentially stranded threads periodically
924// wake up and poll the lock.  See the usage of the _Responsible variable.
925//
926// The CAS() in enter provides for safety and exclusion, while the CAS or
927// MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
928// eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
929// We detect and recover from stranding with timers.
930//
931// If a thread transiently strands it'll park until (a) another
932// thread acquires the lock and then drops the lock, at which time the
933// exiting thread will notice and unpark the stranded thread, or, (b)
934// the timer expires.  If the lock is high traffic then the stranding latency
935// will be low due to (a).  If the lock is low traffic then the odds of
936// stranding are lower, although the worst-case stranding latency
937// is longer.  Critically, we don't want to put excessive load in the
938// platform's timer subsystem.  We want to minimize both the timer injection
939// rate (timers created/sec) as well as the number of timers active at
940// any one time.  (more precisely, we want to minimize timer-seconds, which is
941// the integral of the # of active timers at any instant over time).
942// Both impinge on OS scalability.  Given that, at most one thread parked on
943// a monitor will use a timer.
944
945void ATTR ObjectMonitor::exit(bool not_suspended, TRAPS) {
946   Thread * Self = THREAD ;
947   if (THREAD != _owner) {
948     if (THREAD->is_lock_owned((address) _owner)) {
949       // Transmute _owner from a BasicLock pointer to a Thread address.
950       // We don't need to hold _mutex for this transition.
951       // Non-null to Non-null is safe as long as all readers can
952       // tolerate either flavor.
953       assert (_recursions == 0, "invariant") ;
954       _owner = THREAD ;
955       _recursions = 0 ;
956       OwnerIsThread = 1 ;
957     } else {
958       // NOTE: we need to handle unbalanced monitor enter/exit
959       // in native code by throwing an exception.
960       // TODO: Throw an IllegalMonitorStateException ?
961       TEVENT (Exit - Throw IMSX) ;
962       assert(false, "Non-balanced monitor enter/exit!");
963       if (false) {
964          THROW(vmSymbols::java_lang_IllegalMonitorStateException());
965       }
966       return;
967     }
968   }
969
970   if (_recursions != 0) {
971     _recursions--;        // this is simple recursive enter
972     TEVENT (Inflated exit - recursive) ;
973     return ;
974   }
975
976   // Invariant: after setting Responsible=null an thread must execute
977   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
978   if ((SyncFlags & 4) == 0) {
979      _Responsible = NULL ;
980   }
981
982#if INCLUDE_TRACE
983   // get the owner's thread id for the MonitorEnter event
984   // if it is enabled and the thread isn't suspended
985   if (not_suspended && Tracing::is_event_enabled(TraceJavaMonitorEnterEvent)) {
986     _previous_owner_tid = SharedRuntime::get_java_tid(Self);
987   }
988#endif
989
990   for (;;) {
991      assert (THREAD == _owner, "invariant") ;
992
993
994      if (Knob_ExitPolicy == 0) {
995         // release semantics: prior loads and stores from within the critical section
996         // must not float (reorder) past the following store that drops the lock.
997         // On SPARC that requires MEMBAR #loadstore|#storestore.
998         // But of course in TSO #loadstore|#storestore is not required.
999         // I'd like to write one of the following:
1000         // A.  OrderAccess::release() ; _owner = NULL
1001         // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
1002         // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
1003         // store into a _dummy variable.  That store is not needed, but can result
1004         // in massive wasteful coherency traffic on classic SMP systems.
1005         // Instead, I use release_store(), which is implemented as just a simple
1006         // ST on x64, x86 and SPARC.
1007         OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
1008         OrderAccess::storeload() ;                         // See if we need to wake a successor
1009         if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1010            TEVENT (Inflated exit - simple egress) ;
1011            return ;
1012         }
1013         TEVENT (Inflated exit - complex egress) ;
1014
1015         // Normally the exiting thread is responsible for ensuring succession,
1016         // but if other successors are ready or other entering threads are spinning
1017         // then this thread can simply store NULL into _owner and exit without
1018         // waking a successor.  The existence of spinners or ready successors
1019         // guarantees proper succession (liveness).  Responsibility passes to the
1020         // ready or running successors.  The exiting thread delegates the duty.
1021         // More precisely, if a successor already exists this thread is absolved
1022         // of the responsibility of waking (unparking) one.
1023         //
1024         // The _succ variable is critical to reducing futile wakeup frequency.
1025         // _succ identifies the "heir presumptive" thread that has been made
1026         // ready (unparked) but that has not yet run.  We need only one such
1027         // successor thread to guarantee progress.
1028         // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1029         // section 3.3 "Futile Wakeup Throttling" for details.
1030         //
1031         // Note that spinners in Enter() also set _succ non-null.
1032         // In the current implementation spinners opportunistically set
1033         // _succ so that exiting threads might avoid waking a successor.
1034         // Another less appealing alternative would be for the exiting thread
1035         // to drop the lock and then spin briefly to see if a spinner managed
1036         // to acquire the lock.  If so, the exiting thread could exit
1037         // immediately without waking a successor, otherwise the exiting
1038         // thread would need to dequeue and wake a successor.
1039         // (Note that we'd need to make the post-drop spin short, but no
1040         // shorter than the worst-case round-trip cache-line migration time.
1041         // The dropped lock needs to become visible to the spinner, and then
1042         // the acquisition of the lock by the spinner must become visible to
1043         // the exiting thread).
1044         //
1045
1046         // It appears that an heir-presumptive (successor) must be made ready.
1047         // Only the current lock owner can manipulate the EntryList or
1048         // drain _cxq, so we need to reacquire the lock.  If we fail
1049         // to reacquire the lock the responsibility for ensuring succession
1050         // falls to the new owner.
1051         //
1052         if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1053            return ;
1054         }
1055         TEVENT (Exit - Reacquired) ;
1056      } else {
1057         if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1058            OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
1059            OrderAccess::storeload() ;
1060            // Ratify the previously observed values.
1061            if (_cxq == NULL || _succ != NULL) {
1062                TEVENT (Inflated exit - simple egress) ;
1063                return ;
1064            }
1065
1066            // inopportune interleaving -- the exiting thread (this thread)
1067            // in the fast-exit path raced an entering thread in the slow-enter
1068            // path.
1069            // We have two choices:
1070            // A.  Try to reacquire the lock.
1071            //     If the CAS() fails return immediately, otherwise
1072            //     we either restart/rerun the exit operation, or simply
1073            //     fall-through into the code below which wakes a successor.
1074            // B.  If the elements forming the EntryList|cxq are TSM
1075            //     we could simply unpark() the lead thread and return
1076            //     without having set _succ.
1077            if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1078               TEVENT (Inflated exit - reacquired succeeded) ;
1079               return ;
1080            }
1081            TEVENT (Inflated exit - reacquired failed) ;
1082         } else {
1083            TEVENT (Inflated exit - complex egress) ;
1084         }
1085      }
1086
1087      guarantee (_owner == THREAD, "invariant") ;
1088
1089      ObjectWaiter * w = NULL ;
1090      int QMode = Knob_QMode ;
1091
1092      if (QMode == 2 && _cxq != NULL) {
1093          // QMode == 2 : cxq has precedence over EntryList.
1094          // Try to directly wake a successor from the cxq.
1095          // If successful, the successor will need to unlink itself from cxq.
1096          w = _cxq ;
1097          assert (w != NULL, "invariant") ;
1098          assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1099          ExitEpilog (Self, w) ;
1100          return ;
1101      }
1102
1103      if (QMode == 3 && _cxq != NULL) {
1104          // Aggressively drain cxq into EntryList at the first opportunity.
1105          // This policy ensure that recently-run threads live at the head of EntryList.
1106          // Drain _cxq into EntryList - bulk transfer.
1107          // First, detach _cxq.
1108          // The following loop is tantamount to: w = swap (&cxq, NULL)
1109          w = _cxq ;
1110          for (;;) {
1111             assert (w != NULL, "Invariant") ;
1112             ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1113             if (u == w) break ;
1114             w = u ;
1115          }
1116          assert (w != NULL              , "invariant") ;
1117
1118          ObjectWaiter * q = NULL ;
1119          ObjectWaiter * p ;
1120          for (p = w ; p != NULL ; p = p->_next) {
1121              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1122              p->TState = ObjectWaiter::TS_ENTER ;
1123              p->_prev = q ;
1124              q = p ;
1125          }
1126
1127          // Append the RATs to the EntryList
1128          // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1129          ObjectWaiter * Tail ;
1130          for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
1131          if (Tail == NULL) {
1132              _EntryList = w ;
1133          } else {
1134              Tail->_next = w ;
1135              w->_prev = Tail ;
1136          }
1137
1138          // Fall thru into code that tries to wake a successor from EntryList
1139      }
1140
1141      if (QMode == 4 && _cxq != NULL) {
1142          // Aggressively drain cxq into EntryList at the first opportunity.
1143          // This policy ensure that recently-run threads live at the head of EntryList.
1144
1145          // Drain _cxq into EntryList - bulk transfer.
1146          // First, detach _cxq.
1147          // The following loop is tantamount to: w = swap (&cxq, NULL)
1148          w = _cxq ;
1149          for (;;) {
1150             assert (w != NULL, "Invariant") ;
1151             ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1152             if (u == w) break ;
1153             w = u ;
1154          }
1155          assert (w != NULL              , "invariant") ;
1156
1157          ObjectWaiter * q = NULL ;
1158          ObjectWaiter * p ;
1159          for (p = w ; p != NULL ; p = p->_next) {
1160              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1161              p->TState = ObjectWaiter::TS_ENTER ;
1162              p->_prev = q ;
1163              q = p ;
1164          }
1165
1166          // Prepend the RATs to the EntryList
1167          if (_EntryList != NULL) {
1168              q->_next = _EntryList ;
1169              _EntryList->_prev = q ;
1170          }
1171          _EntryList = w ;
1172
1173          // Fall thru into code that tries to wake a successor from EntryList
1174      }
1175
1176      w = _EntryList  ;
1177      if (w != NULL) {
1178          // I'd like to write: guarantee (w->_thread != Self).
1179          // But in practice an exiting thread may find itself on the EntryList.
1180          // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1181          // then calls exit().  Exit release the lock by setting O._owner to NULL.
1182          // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
1183          // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1184          // release the lock "O".  T2 resumes immediately after the ST of null into
1185          // _owner, above.  T2 notices that the EntryList is populated, so it
1186          // reacquires the lock and then finds itself on the EntryList.
1187          // Given all that, we have to tolerate the circumstance where "w" is
1188          // associated with Self.
1189          assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1190          ExitEpilog (Self, w) ;
1191          return ;
1192      }
1193
1194      // If we find that both _cxq and EntryList are null then just
1195      // re-run the exit protocol from the top.
1196      w = _cxq ;
1197      if (w == NULL) continue ;
1198
1199      // Drain _cxq into EntryList - bulk transfer.
1200      // First, detach _cxq.
1201      // The following loop is tantamount to: w = swap (&cxq, NULL)
1202      for (;;) {
1203          assert (w != NULL, "Invariant") ;
1204          ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1205          if (u == w) break ;
1206          w = u ;
1207      }
1208      TEVENT (Inflated exit - drain cxq into EntryList) ;
1209
1210      assert (w != NULL              , "invariant") ;
1211      assert (_EntryList  == NULL    , "invariant") ;
1212
1213      // Convert the LIFO SLL anchored by _cxq into a DLL.
1214      // The list reorganization step operates in O(LENGTH(w)) time.
1215      // It's critical that this step operate quickly as
1216      // "Self" still holds the outer-lock, restricting parallelism
1217      // and effectively lengthening the critical section.
1218      // Invariant: s chases t chases u.
1219      // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1220      // we have faster access to the tail.
1221
1222      if (QMode == 1) {
1223         // QMode == 1 : drain cxq to EntryList, reversing order
1224         // We also reverse the order of the list.
1225         ObjectWaiter * s = NULL ;
1226         ObjectWaiter * t = w ;
1227         ObjectWaiter * u = NULL ;
1228         while (t != NULL) {
1229             guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
1230             t->TState = ObjectWaiter::TS_ENTER ;
1231             u = t->_next ;
1232             t->_prev = u ;
1233             t->_next = s ;
1234             s = t;
1235             t = u ;
1236         }
1237         _EntryList  = s ;
1238         assert (s != NULL, "invariant") ;
1239      } else {
1240         // QMode == 0 or QMode == 2
1241         _EntryList = w ;
1242         ObjectWaiter * q = NULL ;
1243         ObjectWaiter * p ;
1244         for (p = w ; p != NULL ; p = p->_next) {
1245             guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1246             p->TState = ObjectWaiter::TS_ENTER ;
1247             p->_prev = q ;
1248             q = p ;
1249         }
1250      }
1251
1252      // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1253      // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1254
1255      // See if we can abdicate to a spinner instead of waking a thread.
1256      // A primary goal of the implementation is to reduce the
1257      // context-switch rate.
1258      if (_succ != NULL) continue;
1259
1260      w = _EntryList  ;
1261      if (w != NULL) {
1262          guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1263          ExitEpilog (Self, w) ;
1264          return ;
1265      }
1266   }
1267}
1268
1269// ExitSuspendEquivalent:
1270// A faster alternate to handle_special_suspend_equivalent_condition()
1271//
1272// handle_special_suspend_equivalent_condition() unconditionally
1273// acquires the SR_lock.  On some platforms uncontended MutexLocker()
1274// operations have high latency.  Note that in ::enter() we call HSSEC
1275// while holding the monitor, so we effectively lengthen the critical sections.
1276//
1277// There are a number of possible solutions:
1278//
1279// A.  To ameliorate the problem we might also defer state transitions
1280//     to as late as possible -- just prior to parking.
1281//     Given that, we'd call HSSEC after having returned from park(),
1282//     but before attempting to acquire the monitor.  This is only a
1283//     partial solution.  It avoids calling HSSEC while holding the
1284//     monitor (good), but it still increases successor reacquisition latency --
1285//     the interval between unparking a successor and the time the successor
1286//     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1287//     If we use this technique we can also avoid EnterI()-exit() loop
1288//     in ::enter() where we iteratively drop the lock and then attempt
1289//     to reacquire it after suspending.
1290//
1291// B.  In the future we might fold all the suspend bits into a
1292//     composite per-thread suspend flag and then update it with CAS().
1293//     Alternately, a Dekker-like mechanism with multiple variables
1294//     would suffice:
1295//       ST Self->_suspend_equivalent = false
1296//       MEMBAR
1297//       LD Self_>_suspend_flags
1298//
1299
1300
1301bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
1302   int Mode = Knob_FastHSSEC ;
1303   if (Mode && !jSelf->is_external_suspend()) {
1304      assert (jSelf->is_suspend_equivalent(), "invariant") ;
1305      jSelf->clear_suspend_equivalent() ;
1306      if (2 == Mode) OrderAccess::storeload() ;
1307      if (!jSelf->is_external_suspend()) return false ;
1308      // We raced a suspension -- fall thru into the slow path
1309      TEVENT (ExitSuspendEquivalent - raced) ;
1310      jSelf->set_suspend_equivalent() ;
1311   }
1312   return jSelf->handle_special_suspend_equivalent_condition() ;
1313}
1314
1315
1316void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
1317   assert (_owner == Self, "invariant") ;
1318
1319   // Exit protocol:
1320   // 1. ST _succ = wakee
1321   // 2. membar #loadstore|#storestore;
1322   // 2. ST _owner = NULL
1323   // 3. unpark(wakee)
1324
1325   _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
1326   ParkEvent * Trigger = Wakee->_event ;
1327
1328   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1329   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1330   // out-of-scope (non-extant).
1331   Wakee  = NULL ;
1332
1333   // Drop the lock
1334   OrderAccess::release_store_ptr (&_owner, NULL) ;
1335   OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
1336
1337   if (SafepointSynchronize::do_call_back()) {
1338      TEVENT (unpark before SAFEPOINT) ;
1339   }
1340
1341   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1342   Trigger->unpark() ;
1343
1344   // Maintain stats and report events to JVMTI
1345   if (ObjectMonitor::_sync_Parks != NULL) {
1346      ObjectMonitor::_sync_Parks->inc() ;
1347   }
1348}
1349
1350
1351// -----------------------------------------------------------------------------
1352// Class Loader deadlock handling.
1353//
1354// complete_exit exits a lock returning recursion count
1355// complete_exit/reenter operate as a wait without waiting
1356// complete_exit requires an inflated monitor
1357// The _owner field is not always the Thread addr even with an
1358// inflated monitor, e.g. the monitor can be inflated by a non-owning
1359// thread due to contention.
1360intptr_t ObjectMonitor::complete_exit(TRAPS) {
1361   Thread * const Self = THREAD;
1362   assert(Self->is_Java_thread(), "Must be Java thread!");
1363   JavaThread *jt = (JavaThread *)THREAD;
1364
1365   DeferredInitialize();
1366
1367   if (THREAD != _owner) {
1368    if (THREAD->is_lock_owned ((address)_owner)) {
1369       assert(_recursions == 0, "internal state error");
1370       _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
1371       _recursions = 0 ;
1372       OwnerIsThread = 1 ;
1373    }
1374   }
1375
1376   guarantee(Self == _owner, "complete_exit not owner");
1377   intptr_t save = _recursions; // record the old recursion count
1378   _recursions = 0;        // set the recursion level to be 0
1379   exit (true, Self) ;           // exit the monitor
1380   guarantee (_owner != Self, "invariant");
1381   return save;
1382}
1383
1384// reenter() enters a lock and sets recursion count
1385// complete_exit/reenter operate as a wait without waiting
1386void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1387   Thread * const Self = THREAD;
1388   assert(Self->is_Java_thread(), "Must be Java thread!");
1389   JavaThread *jt = (JavaThread *)THREAD;
1390
1391   guarantee(_owner != Self, "reenter already owner");
1392   enter (THREAD);       // enter the monitor
1393   guarantee (_recursions == 0, "reenter recursion");
1394   _recursions = recursions;
1395   return;
1396}
1397
1398
1399// -----------------------------------------------------------------------------
1400// A macro is used below because there may already be a pending
1401// exception which should not abort the execution of the routines
1402// which use this (which is why we don't put this into check_slow and
1403// call it with a CHECK argument).
1404
1405#define CHECK_OWNER()                                                             \
1406  do {                                                                            \
1407    if (THREAD != _owner) {                                                       \
1408      if (THREAD->is_lock_owned((address) _owner)) {                              \
1409        _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
1410        _recursions = 0;                                                          \
1411        OwnerIsThread = 1 ;                                                       \
1412      } else {                                                                    \
1413        TEVENT (Throw IMSX) ;                                                     \
1414        THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
1415      }                                                                           \
1416    }                                                                             \
1417  } while (false)
1418
1419// check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1420// TODO-FIXME: remove check_slow() -- it's likely dead.
1421
1422void ObjectMonitor::check_slow(TRAPS) {
1423  TEVENT (check_slow - throw IMSX) ;
1424  assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1425  THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1426}
1427
1428static int Adjust (volatile int * adr, int dx) {
1429  int v ;
1430  for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
1431  return v ;
1432}
1433
1434// helper method for posting a monitor wait event
1435void ObjectMonitor::post_monitor_wait_event(EventJavaMonitorWait* event,
1436                                                           jlong notifier_tid,
1437                                                           jlong timeout,
1438                                                           bool timedout) {
1439  event->set_klass(((oop)this->object())->klass());
1440  event->set_timeout((TYPE_ULONG)timeout);
1441  event->set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
1442  event->set_notifier((TYPE_OSTHREAD)notifier_tid);
1443  event->set_timedOut((TYPE_BOOLEAN)timedout);
1444  event->commit();
1445}
1446
1447// -----------------------------------------------------------------------------
1448// Wait/Notify/NotifyAll
1449//
1450// Note: a subset of changes to ObjectMonitor::wait()
1451// will need to be replicated in complete_exit above
1452void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1453   Thread * const Self = THREAD ;
1454   assert(Self->is_Java_thread(), "Must be Java thread!");
1455   JavaThread *jt = (JavaThread *)THREAD;
1456
1457   DeferredInitialize () ;
1458
1459   // Throw IMSX or IEX.
1460   CHECK_OWNER();
1461
1462   EventJavaMonitorWait event;
1463
1464   // check for a pending interrupt
1465   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1466     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1467     if (JvmtiExport::should_post_monitor_waited()) {
1468        // Note: 'false' parameter is passed here because the
1469        // wait was not timed out due to thread interrupt.
1470        JvmtiExport::post_monitor_waited(jt, this, false);
1471
1472        // In this short circuit of the monitor wait protocol, the
1473        // current thread never drops ownership of the monitor and
1474        // never gets added to the wait queue so the current thread
1475        // cannot be made the successor. This means that the
1476        // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1477        // consume an unpark() meant for the ParkEvent associated with
1478        // this ObjectMonitor.
1479     }
1480     if (event.should_commit()) {
1481       post_monitor_wait_event(&event, 0, millis, false);
1482     }
1483     TEVENT (Wait - Throw IEX) ;
1484     THROW(vmSymbols::java_lang_InterruptedException());
1485     return ;
1486   }
1487
1488   TEVENT (Wait) ;
1489
1490   assert (Self->_Stalled == 0, "invariant") ;
1491   Self->_Stalled = intptr_t(this) ;
1492   jt->set_current_waiting_monitor(this);
1493
1494   // create a node to be put into the queue
1495   // Critically, after we reset() the event but prior to park(), we must check
1496   // for a pending interrupt.
1497   ObjectWaiter node(Self);
1498   node.TState = ObjectWaiter::TS_WAIT ;
1499   Self->_ParkEvent->reset() ;
1500   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1501
1502   // Enter the waiting queue, which is a circular doubly linked list in this case
1503   // but it could be a priority queue or any data structure.
1504   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1505   // by the the owner of the monitor *except* in the case where park()
1506   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1507   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1508
1509   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
1510   AddWaiter (&node) ;
1511   Thread::SpinRelease (&_WaitSetLock) ;
1512
1513   if ((SyncFlags & 4) == 0) {
1514      _Responsible = NULL ;
1515   }
1516   intptr_t save = _recursions; // record the old recursion count
1517   _waiters++;                  // increment the number of waiters
1518   _recursions = 0;             // set the recursion level to be 1
1519   exit (true, Self) ;                    // exit the monitor
1520   guarantee (_owner != Self, "invariant") ;
1521
1522   // The thread is on the WaitSet list - now park() it.
1523   // On MP systems it's conceivable that a brief spin before we park
1524   // could be profitable.
1525   //
1526   // TODO-FIXME: change the following logic to a loop of the form
1527   //   while (!timeout && !interrupted && _notified == 0) park()
1528
1529   int ret = OS_OK ;
1530   int WasNotified = 0 ;
1531   { // State transition wrappers
1532     OSThread* osthread = Self->osthread();
1533     OSThreadWaitState osts(osthread, true);
1534     {
1535       ThreadBlockInVM tbivm(jt);
1536       // Thread is in thread_blocked state and oop access is unsafe.
1537       jt->set_suspend_equivalent();
1538
1539       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1540           // Intentionally empty
1541       } else
1542       if (node._notified == 0) {
1543         if (millis <= 0) {
1544            Self->_ParkEvent->park () ;
1545         } else {
1546            ret = Self->_ParkEvent->park (millis) ;
1547         }
1548       }
1549
1550       // were we externally suspended while we were waiting?
1551       if (ExitSuspendEquivalent (jt)) {
1552          // TODO-FIXME: add -- if succ == Self then succ = null.
1553          jt->java_suspend_self();
1554       }
1555
1556     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1557
1558
1559     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1560     // from the WaitSet to the EntryList.
1561     // See if we need to remove Node from the WaitSet.
1562     // We use double-checked locking to avoid grabbing _WaitSetLock
1563     // if the thread is not on the wait queue.
1564     //
1565     // Note that we don't need a fence before the fetch of TState.
1566     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1567     // written by the is thread. (perhaps the fetch might even be satisfied
1568     // by a look-aside into the processor's own store buffer, although given
1569     // the length of the code path between the prior ST and this load that's
1570     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1571     // then we'll acquire the lock and then re-fetch a fresh TState value.
1572     // That is, we fail toward safety.
1573
1574     if (node.TState == ObjectWaiter::TS_WAIT) {
1575         Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
1576         if (node.TState == ObjectWaiter::TS_WAIT) {
1577            DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
1578            assert(node._notified == 0, "invariant");
1579            node.TState = ObjectWaiter::TS_RUN ;
1580         }
1581         Thread::SpinRelease (&_WaitSetLock) ;
1582     }
1583
1584     // The thread is now either on off-list (TS_RUN),
1585     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1586     // The Node's TState variable is stable from the perspective of this thread.
1587     // No other threads will asynchronously modify TState.
1588     guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
1589     OrderAccess::loadload() ;
1590     if (_succ == Self) _succ = NULL ;
1591     WasNotified = node._notified ;
1592
1593     // Reentry phase -- reacquire the monitor.
1594     // re-enter contended monitor after object.wait().
1595     // retain OBJECT_WAIT state until re-enter successfully completes
1596     // Thread state is thread_in_vm and oop access is again safe,
1597     // although the raw address of the object may have changed.
1598     // (Don't cache naked oops over safepoints, of course).
1599
1600     // post monitor waited event. Note that this is past-tense, we are done waiting.
1601     if (JvmtiExport::should_post_monitor_waited()) {
1602       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1603
1604       if (node._notified != 0 && _succ == Self) {
1605         // In this part of the monitor wait-notify-reenter protocol it
1606         // is possible (and normal) for another thread to do a fastpath
1607         // monitor enter-exit while this thread is still trying to get
1608         // to the reenter portion of the protocol.
1609         //
1610         // The ObjectMonitor was notified and the current thread is
1611         // the successor which also means that an unpark() has already
1612         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1613         // consume the unpark() that was done when the successor was
1614         // set because the same ParkEvent is shared between Java
1615         // monitors and JVM/TI RawMonitors (for now).
1616         //
1617         // We redo the unpark() to ensure forward progress, i.e., we
1618         // don't want all pending threads hanging (parked) with none
1619         // entering the unlocked monitor.
1620         node._event->unpark();
1621       }
1622     }
1623
1624     if (event.should_commit()) {
1625       post_monitor_wait_event(&event, node._notifier_tid, millis, ret == OS_TIMEOUT);
1626     }
1627
1628     OrderAccess::fence() ;
1629
1630     assert (Self->_Stalled != 0, "invariant") ;
1631     Self->_Stalled = 0 ;
1632
1633     assert (_owner != Self, "invariant") ;
1634     ObjectWaiter::TStates v = node.TState ;
1635     if (v == ObjectWaiter::TS_RUN) {
1636         enter (Self) ;
1637     } else {
1638         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
1639         ReenterI (Self, &node) ;
1640         node.wait_reenter_end(this);
1641     }
1642
1643     // Self has reacquired the lock.
1644     // Lifecycle - the node representing Self must not appear on any queues.
1645     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1646     // want residual elements associated with this thread left on any lists.
1647     guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
1648     assert    (_owner == Self, "invariant") ;
1649     assert    (_succ != Self , "invariant") ;
1650   } // OSThreadWaitState()
1651
1652   jt->set_current_waiting_monitor(NULL);
1653
1654   guarantee (_recursions == 0, "invariant") ;
1655   _recursions = save;     // restore the old recursion count
1656   _waiters--;             // decrement the number of waiters
1657
1658   // Verify a few postconditions
1659   assert (_owner == Self       , "invariant") ;
1660   assert (_succ  != Self       , "invariant") ;
1661   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
1662
1663   if (SyncFlags & 32) {
1664      OrderAccess::fence() ;
1665   }
1666
1667   // check if the notification happened
1668   if (!WasNotified) {
1669     // no, it could be timeout or Thread.interrupt() or both
1670     // check for interrupt event, otherwise it is timeout
1671     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1672       TEVENT (Wait - throw IEX from epilog) ;
1673       THROW(vmSymbols::java_lang_InterruptedException());
1674     }
1675   }
1676
1677   // NOTE: Spurious wake up will be consider as timeout.
1678   // Monitor notify has precedence over thread interrupt.
1679}
1680
1681
1682// Consider:
1683// If the lock is cool (cxq == null && succ == null) and we're on an MP system
1684// then instead of transferring a thread from the WaitSet to the EntryList
1685// we might just dequeue a thread from the WaitSet and directly unpark() it.
1686
1687void ObjectMonitor::notify(TRAPS) {
1688  CHECK_OWNER();
1689  if (_WaitSet == NULL) {
1690     TEVENT (Empty-Notify) ;
1691     return ;
1692  }
1693  DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1694
1695  int Policy = Knob_MoveNotifyee ;
1696
1697  Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
1698  ObjectWaiter * iterator = DequeueWaiter() ;
1699  if (iterator != NULL) {
1700     TEVENT (Notify1 - Transfer) ;
1701     guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1702     guarantee (iterator->_notified == 0, "invariant") ;
1703     if (Policy != 4) {
1704        iterator->TState = ObjectWaiter::TS_ENTER ;
1705     }
1706     iterator->_notified = 1 ;
1707     Thread * Self = THREAD;
1708     iterator->_notifier_tid = Self->osthread()->thread_id();
1709
1710     ObjectWaiter * List = _EntryList ;
1711     if (List != NULL) {
1712        assert (List->_prev == NULL, "invariant") ;
1713        assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1714        assert (List != iterator, "invariant") ;
1715     }
1716
1717     if (Policy == 0) {       // prepend to EntryList
1718         if (List == NULL) {
1719             iterator->_next = iterator->_prev = NULL ;
1720             _EntryList = iterator ;
1721         } else {
1722             List->_prev = iterator ;
1723             iterator->_next = List ;
1724             iterator->_prev = NULL ;
1725             _EntryList = iterator ;
1726        }
1727     } else
1728     if (Policy == 1) {      // append to EntryList
1729         if (List == NULL) {
1730             iterator->_next = iterator->_prev = NULL ;
1731             _EntryList = iterator ;
1732         } else {
1733            // CONSIDER:  finding the tail currently requires a linear-time walk of
1734            // the EntryList.  We can make tail access constant-time by converting to
1735            // a CDLL instead of using our current DLL.
1736            ObjectWaiter * Tail ;
1737            for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1738            assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1739            Tail->_next = iterator ;
1740            iterator->_prev = Tail ;
1741            iterator->_next = NULL ;
1742        }
1743     } else
1744     if (Policy == 2) {      // prepend to cxq
1745         // prepend to cxq
1746         if (List == NULL) {
1747             iterator->_next = iterator->_prev = NULL ;
1748             _EntryList = iterator ;
1749         } else {
1750            iterator->TState = ObjectWaiter::TS_CXQ ;
1751            for (;;) {
1752                ObjectWaiter * Front = _cxq ;
1753                iterator->_next = Front ;
1754                if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1755                    break ;
1756                }
1757            }
1758         }
1759     } else
1760     if (Policy == 3) {      // append to cxq
1761        iterator->TState = ObjectWaiter::TS_CXQ ;
1762        for (;;) {
1763            ObjectWaiter * Tail ;
1764            Tail = _cxq ;
1765            if (Tail == NULL) {
1766                iterator->_next = NULL ;
1767                if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1768                   break ;
1769                }
1770            } else {
1771                while (Tail->_next != NULL) Tail = Tail->_next ;
1772                Tail->_next = iterator ;
1773                iterator->_prev = Tail ;
1774                iterator->_next = NULL ;
1775                break ;
1776            }
1777        }
1778     } else {
1779        ParkEvent * ev = iterator->_event ;
1780        iterator->TState = ObjectWaiter::TS_RUN ;
1781        OrderAccess::fence() ;
1782        ev->unpark() ;
1783     }
1784
1785     if (Policy < 4) {
1786       iterator->wait_reenter_begin(this);
1787     }
1788
1789     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1790     // move the add-to-EntryList operation, above, outside the critical section
1791     // protected by _WaitSetLock.  In practice that's not useful.  With the
1792     // exception of  wait() timeouts and interrupts the monitor owner
1793     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1794     // on _WaitSetLock so it's not profitable to reduce the length of the
1795     // critical section.
1796  }
1797
1798  Thread::SpinRelease (&_WaitSetLock) ;
1799
1800  if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
1801     ObjectMonitor::_sync_Notifications->inc() ;
1802  }
1803}
1804
1805
1806void ObjectMonitor::notifyAll(TRAPS) {
1807  CHECK_OWNER();
1808  ObjectWaiter* iterator;
1809  if (_WaitSet == NULL) {
1810      TEVENT (Empty-NotifyAll) ;
1811      return ;
1812  }
1813  DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1814
1815  int Policy = Knob_MoveNotifyee ;
1816  int Tally = 0 ;
1817  Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
1818
1819  for (;;) {
1820     iterator = DequeueWaiter () ;
1821     if (iterator == NULL) break ;
1822     TEVENT (NotifyAll - Transfer1) ;
1823     ++Tally ;
1824
1825     // Disposition - what might we do with iterator ?
1826     // a.  add it directly to the EntryList - either tail or head.
1827     // b.  push it onto the front of the _cxq.
1828     // For now we use (a).
1829
1830     guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1831     guarantee (iterator->_notified == 0, "invariant") ;
1832     iterator->_notified = 1 ;
1833     Thread * Self = THREAD;
1834     iterator->_notifier_tid = Self->osthread()->thread_id();
1835     if (Policy != 4) {
1836        iterator->TState = ObjectWaiter::TS_ENTER ;
1837     }
1838
1839     ObjectWaiter * List = _EntryList ;
1840     if (List != NULL) {
1841        assert (List->_prev == NULL, "invariant") ;
1842        assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1843        assert (List != iterator, "invariant") ;
1844     }
1845
1846     if (Policy == 0) {       // prepend to EntryList
1847         if (List == NULL) {
1848             iterator->_next = iterator->_prev = NULL ;
1849             _EntryList = iterator ;
1850         } else {
1851             List->_prev = iterator ;
1852             iterator->_next = List ;
1853             iterator->_prev = NULL ;
1854             _EntryList = iterator ;
1855        }
1856     } else
1857     if (Policy == 1) {      // append to EntryList
1858         if (List == NULL) {
1859             iterator->_next = iterator->_prev = NULL ;
1860             _EntryList = iterator ;
1861         } else {
1862            // CONSIDER:  finding the tail currently requires a linear-time walk of
1863            // the EntryList.  We can make tail access constant-time by converting to
1864            // a CDLL instead of using our current DLL.
1865            ObjectWaiter * Tail ;
1866            for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1867            assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1868            Tail->_next = iterator ;
1869            iterator->_prev = Tail ;
1870            iterator->_next = NULL ;
1871        }
1872     } else
1873     if (Policy == 2) {      // prepend to cxq
1874         // prepend to cxq
1875         iterator->TState = ObjectWaiter::TS_CXQ ;
1876         for (;;) {
1877             ObjectWaiter * Front = _cxq ;
1878             iterator->_next = Front ;
1879             if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1880                 break ;
1881             }
1882         }
1883     } else
1884     if (Policy == 3) {      // append to cxq
1885        iterator->TState = ObjectWaiter::TS_CXQ ;
1886        for (;;) {
1887            ObjectWaiter * Tail ;
1888            Tail = _cxq ;
1889            if (Tail == NULL) {
1890                iterator->_next = NULL ;
1891                if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1892                   break ;
1893                }
1894            } else {
1895                while (Tail->_next != NULL) Tail = Tail->_next ;
1896                Tail->_next = iterator ;
1897                iterator->_prev = Tail ;
1898                iterator->_next = NULL ;
1899                break ;
1900            }
1901        }
1902     } else {
1903        ParkEvent * ev = iterator->_event ;
1904        iterator->TState = ObjectWaiter::TS_RUN ;
1905        OrderAccess::fence() ;
1906        ev->unpark() ;
1907     }
1908
1909     if (Policy < 4) {
1910       iterator->wait_reenter_begin(this);
1911     }
1912
1913     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1914     // move the add-to-EntryList operation, above, outside the critical section
1915     // protected by _WaitSetLock.  In practice that's not useful.  With the
1916     // exception of  wait() timeouts and interrupts the monitor owner
1917     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1918     // on _WaitSetLock so it's not profitable to reduce the length of the
1919     // critical section.
1920  }
1921
1922  Thread::SpinRelease (&_WaitSetLock) ;
1923
1924  if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
1925     ObjectMonitor::_sync_Notifications->inc(Tally) ;
1926  }
1927}
1928
1929// -----------------------------------------------------------------------------
1930// Adaptive Spinning Support
1931//
1932// Adaptive spin-then-block - rational spinning
1933//
1934// Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1935// algorithm.  On high order SMP systems it would be better to start with
1936// a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1937// a contending thread could enqueue itself on the cxq and then spin locally
1938// on a thread-specific variable such as its ParkEvent._Event flag.
1939// That's left as an exercise for the reader.  Note that global spinning is
1940// not problematic on Niagara, as the L2$ serves the interconnect and has both
1941// low latency and massive bandwidth.
1942//
1943// Broadly, we can fix the spin frequency -- that is, the % of contended lock
1944// acquisition attempts where we opt to spin --  at 100% and vary the spin count
1945// (duration) or we can fix the count at approximately the duration of
1946// a context switch and vary the frequency.   Of course we could also
1947// vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1948// See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
1949//
1950// This implementation varies the duration "D", where D varies with
1951// the success rate of recent spin attempts. (D is capped at approximately
1952// length of a round-trip context switch).  The success rate for recent
1953// spin attempts is a good predictor of the success rate of future spin
1954// attempts.  The mechanism adapts automatically to varying critical
1955// section length (lock modality), system load and degree of parallelism.
1956// D is maintained per-monitor in _SpinDuration and is initialized
1957// optimistically.  Spin frequency is fixed at 100%.
1958//
1959// Note that _SpinDuration is volatile, but we update it without locks
1960// or atomics.  The code is designed so that _SpinDuration stays within
1961// a reasonable range even in the presence of races.  The arithmetic
1962// operations on _SpinDuration are closed over the domain of legal values,
1963// so at worst a race will install and older but still legal value.
1964// At the very worst this introduces some apparent non-determinism.
1965// We might spin when we shouldn't or vice-versa, but since the spin
1966// count are relatively short, even in the worst case, the effect is harmless.
1967//
1968// Care must be taken that a low "D" value does not become an
1969// an absorbing state.  Transient spinning failures -- when spinning
1970// is overall profitable -- should not cause the system to converge
1971// on low "D" values.  We want spinning to be stable and predictable
1972// and fairly responsive to change and at the same time we don't want
1973// it to oscillate, become metastable, be "too" non-deterministic,
1974// or converge on or enter undesirable stable absorbing states.
1975//
1976// We implement a feedback-based control system -- using past behavior
1977// to predict future behavior.  We face two issues: (a) if the
1978// input signal is random then the spin predictor won't provide optimal
1979// results, and (b) if the signal frequency is too high then the control
1980// system, which has some natural response lag, will "chase" the signal.
1981// (b) can arise from multimodal lock hold times.  Transient preemption
1982// can also result in apparent bimodal lock hold times.
1983// Although sub-optimal, neither condition is particularly harmful, as
1984// in the worst-case we'll spin when we shouldn't or vice-versa.
1985// The maximum spin duration is rather short so the failure modes aren't bad.
1986// To be conservative, I've tuned the gain in system to bias toward
1987// _not spinning.  Relatedly, the system can sometimes enter a mode where it
1988// "rings" or oscillates between spinning and not spinning.  This happens
1989// when spinning is just on the cusp of profitability, however, so the
1990// situation is not dire.  The state is benign -- there's no need to add
1991// hysteresis control to damp the transition rate between spinning and
1992// not spinning.
1993//
1994
1995intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
1996int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
1997
1998// Spinning: Fixed frequency (100%), vary duration
1999
2000
2001int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
2002
2003    // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
2004    int ctr = Knob_FixedSpin ;
2005    if (ctr != 0) {
2006        while (--ctr >= 0) {
2007            if (TryLock (Self) > 0) return 1 ;
2008            SpinPause () ;
2009        }
2010        return 0 ;
2011    }
2012
2013    for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
2014      if (TryLock(Self) > 0) {
2015        // Increase _SpinDuration ...
2016        // Note that we don't clamp SpinDuration precisely at SpinLimit.
2017        // Raising _SpurDuration to the poverty line is key.
2018        int x = _SpinDuration ;
2019        if (x < Knob_SpinLimit) {
2020           if (x < Knob_Poverty) x = Knob_Poverty ;
2021           _SpinDuration = x + Knob_BonusB ;
2022        }
2023        return 1 ;
2024      }
2025      SpinPause () ;
2026    }
2027
2028    // Admission control - verify preconditions for spinning
2029    //
2030    // We always spin a little bit, just to prevent _SpinDuration == 0 from
2031    // becoming an absorbing state.  Put another way, we spin briefly to
2032    // sample, just in case the system load, parallelism, contention, or lock
2033    // modality changed.
2034    //
2035    // Consider the following alternative:
2036    // Periodically set _SpinDuration = _SpinLimit and try a long/full
2037    // spin attempt.  "Periodically" might mean after a tally of
2038    // the # of failed spin attempts (or iterations) reaches some threshold.
2039    // This takes us into the realm of 1-out-of-N spinning, where we
2040    // hold the duration constant but vary the frequency.
2041
2042    ctr = _SpinDuration  ;
2043    if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
2044    if (ctr <= 0) return 0 ;
2045
2046    if (Knob_SuccRestrict && _succ != NULL) return 0 ;
2047    if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
2048       TEVENT (Spin abort - notrunnable [TOP]);
2049       return 0 ;
2050    }
2051
2052    int MaxSpin = Knob_MaxSpinners ;
2053    if (MaxSpin >= 0) {
2054       if (_Spinner > MaxSpin) {
2055          TEVENT (Spin abort -- too many spinners) ;
2056          return 0 ;
2057       }
2058       // Slightly racy, but benign ...
2059       Adjust (&_Spinner, 1) ;
2060    }
2061
2062    // We're good to spin ... spin ingress.
2063    // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
2064    // when preparing to LD...CAS _owner, etc and the CAS is likely
2065    // to succeed.
2066    int hits    = 0 ;
2067    int msk     = 0 ;
2068    int caspty  = Knob_CASPenalty ;
2069    int oxpty   = Knob_OXPenalty ;
2070    int sss     = Knob_SpinSetSucc ;
2071    if (sss && _succ == NULL ) _succ = Self ;
2072    Thread * prv = NULL ;
2073
2074    // There are three ways to exit the following loop:
2075    // 1.  A successful spin where this thread has acquired the lock.
2076    // 2.  Spin failure with prejudice
2077    // 3.  Spin failure without prejudice
2078
2079    while (--ctr >= 0) {
2080
2081      // Periodic polling -- Check for pending GC
2082      // Threads may spin while they're unsafe.
2083      // We don't want spinning threads to delay the JVM from reaching
2084      // a stop-the-world safepoint or to steal cycles from GC.
2085      // If we detect a pending safepoint we abort in order that
2086      // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
2087      // this thread, if safe, doesn't steal cycles from GC.
2088      // This is in keeping with the "no loitering in runtime" rule.
2089      // We periodically check to see if there's a safepoint pending.
2090      if ((ctr & 0xFF) == 0) {
2091         if (SafepointSynchronize::do_call_back()) {
2092            TEVENT (Spin: safepoint) ;
2093            goto Abort ;           // abrupt spin egress
2094         }
2095         if (Knob_UsePause & 1) SpinPause () ;
2096
2097         int (*scb)(intptr_t,int) = SpinCallbackFunction ;
2098         if (hits > 50 && scb != NULL) {
2099            int abend = (*scb)(SpinCallbackArgument, 0) ;
2100         }
2101      }
2102
2103      if (Knob_UsePause & 2) SpinPause() ;
2104
2105      // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
2106      // This is useful on classic SMP systems, but is of less utility on
2107      // N1-style CMT platforms.
2108      //
2109      // Trade-off: lock acquisition latency vs coherency bandwidth.
2110      // Lock hold times are typically short.  A histogram
2111      // of successful spin attempts shows that we usually acquire
2112      // the lock early in the spin.  That suggests we want to
2113      // sample _owner frequently in the early phase of the spin,
2114      // but then back-off and sample less frequently as the spin
2115      // progresses.  The back-off makes a good citizen on SMP big
2116      // SMP systems.  Oversampling _owner can consume excessive
2117      // coherency bandwidth.  Relatedly, if we _oversample _owner we
2118      // can inadvertently interfere with the the ST m->owner=null.
2119      // executed by the lock owner.
2120      if (ctr & msk) continue ;
2121      ++hits ;
2122      if ((hits & 0xF) == 0) {
2123        // The 0xF, above, corresponds to the exponent.
2124        // Consider: (msk+1)|msk
2125        msk = ((msk << 2)|3) & BackOffMask ;
2126      }
2127
2128      // Probe _owner with TATAS
2129      // If this thread observes the monitor transition or flicker
2130      // from locked to unlocked to locked, then the odds that this
2131      // thread will acquire the lock in this spin attempt go down
2132      // considerably.  The same argument applies if the CAS fails
2133      // or if we observe _owner change from one non-null value to
2134      // another non-null value.   In such cases we might abort
2135      // the spin without prejudice or apply a "penalty" to the
2136      // spin count-down variable "ctr", reducing it by 100, say.
2137
2138      Thread * ox = (Thread *) _owner ;
2139      if (ox == NULL) {
2140         ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
2141         if (ox == NULL) {
2142            // The CAS succeeded -- this thread acquired ownership
2143            // Take care of some bookkeeping to exit spin state.
2144            if (sss && _succ == Self) {
2145               _succ = NULL ;
2146            }
2147            if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
2148
2149            // Increase _SpinDuration :
2150            // The spin was successful (profitable) so we tend toward
2151            // longer spin attempts in the future.
2152            // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2153            // If we acquired the lock early in the spin cycle it
2154            // makes sense to increase _SpinDuration proportionally.
2155            // Note that we don't clamp SpinDuration precisely at SpinLimit.
2156            int x = _SpinDuration ;
2157            if (x < Knob_SpinLimit) {
2158                if (x < Knob_Poverty) x = Knob_Poverty ;
2159                _SpinDuration = x + Knob_Bonus ;
2160            }
2161            return 1 ;
2162         }
2163
2164         // The CAS failed ... we can take any of the following actions:
2165         // * penalize: ctr -= Knob_CASPenalty
2166         // * exit spin with prejudice -- goto Abort;
2167         // * exit spin without prejudice.
2168         // * Since CAS is high-latency, retry again immediately.
2169         prv = ox ;
2170         TEVENT (Spin: cas failed) ;
2171         if (caspty == -2) break ;
2172         if (caspty == -1) goto Abort ;
2173         ctr -= caspty ;
2174         continue ;
2175      }
2176
2177      // Did lock ownership change hands ?
2178      if (ox != prv && prv != NULL ) {
2179          TEVENT (spin: Owner changed)
2180          if (oxpty == -2) break ;
2181          if (oxpty == -1) goto Abort ;
2182          ctr -= oxpty ;
2183      }
2184      prv = ox ;
2185
2186      // Abort the spin if the owner is not executing.
2187      // The owner must be executing in order to drop the lock.
2188      // Spinning while the owner is OFFPROC is idiocy.
2189      // Consider: ctr -= RunnablePenalty ;
2190      if (Knob_OState && NotRunnable (Self, ox)) {
2191         TEVENT (Spin abort - notrunnable);
2192         goto Abort ;
2193      }
2194      if (sss && _succ == NULL ) _succ = Self ;
2195   }
2196
2197   // Spin failed with prejudice -- reduce _SpinDuration.
2198   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2199   // AIMD is globally stable.
2200   TEVENT (Spin failure) ;
2201   {
2202     int x = _SpinDuration ;
2203     if (x > 0) {
2204        // Consider an AIMD scheme like: x -= (x >> 3) + 100
2205        // This is globally sample and tends to damp the response.
2206        x -= Knob_Penalty ;
2207        if (x < 0) x = 0 ;
2208        _SpinDuration = x ;
2209     }
2210   }
2211
2212 Abort:
2213   if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
2214   if (sss && _succ == Self) {
2215      _succ = NULL ;
2216      // Invariant: after setting succ=null a contending thread
2217      // must recheck-retry _owner before parking.  This usually happens
2218      // in the normal usage of TrySpin(), but it's safest
2219      // to make TrySpin() as foolproof as possible.
2220      OrderAccess::fence() ;
2221      if (TryLock(Self) > 0) return 1 ;
2222   }
2223   return 0 ;
2224}
2225
2226// NotRunnable() -- informed spinning
2227//
2228// Don't bother spinning if the owner is not eligible to drop the lock.
2229// Peek at the owner's schedctl.sc_state and Thread._thread_values and
2230// spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2231// The thread must be runnable in order to drop the lock in timely fashion.
2232// If the _owner is not runnable then spinning will not likely be
2233// successful (profitable).
2234//
2235// Beware -- the thread referenced by _owner could have died
2236// so a simply fetch from _owner->_thread_state might trap.
2237// Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2238// Because of the lifecycle issues the schedctl and _thread_state values
2239// observed by NotRunnable() might be garbage.  NotRunnable must
2240// tolerate this and consider the observed _thread_state value
2241// as advisory.
2242//
2243// Beware too, that _owner is sometimes a BasicLock address and sometimes
2244// a thread pointer.  We differentiate the two cases with OwnerIsThread.
2245// Alternately, we might tag the type (thread pointer vs basiclock pointer)
2246// with the LSB of _owner.  Another option would be to probablistically probe
2247// the putative _owner->TypeTag value.
2248//
2249// Checking _thread_state isn't perfect.  Even if the thread is
2250// in_java it might be blocked on a page-fault or have been preempted
2251// and sitting on a ready/dispatch queue.  _thread state in conjunction
2252// with schedctl.sc_state gives us a good picture of what the
2253// thread is doing, however.
2254//
2255// TODO: check schedctl.sc_state.
2256// We'll need to use SafeFetch32() to read from the schedctl block.
2257// See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2258//
2259// The return value from NotRunnable() is *advisory* -- the
2260// result is based on sampling and is not necessarily coherent.
2261// The caller must tolerate false-negative and false-positive errors.
2262// Spinning, in general, is probabilistic anyway.
2263
2264
2265int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
2266    // Check either OwnerIsThread or ox->TypeTag == 2BAD.
2267    if (!OwnerIsThread) return 0 ;
2268
2269    if (ox == NULL) return 0 ;
2270
2271    // Avoid transitive spinning ...
2272    // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2273    // Immediately after T1 acquires L it's possible that T2, also
2274    // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2275    // This occurs transiently after T1 acquired L but before
2276    // T1 managed to clear T1.Stalled.  T2 does not need to abort
2277    // its spin in this circumstance.
2278    intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
2279
2280    if (BlockedOn == 1) return 1 ;
2281    if (BlockedOn != 0) {
2282      return BlockedOn != intptr_t(this) && _owner == ox ;
2283    }
2284
2285    assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
2286    int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
2287    // consider also: jst != _thread_in_Java -- but that's overspecific.
2288    return jst == _thread_blocked || jst == _thread_in_native ;
2289}
2290
2291
2292// -----------------------------------------------------------------------------
2293// WaitSet management ...
2294
2295ObjectWaiter::ObjectWaiter(Thread* thread) {
2296  _next     = NULL;
2297  _prev     = NULL;
2298  _notified = 0;
2299  TState    = TS_RUN ;
2300  _thread   = thread;
2301  _event    = thread->_ParkEvent ;
2302  _active   = false;
2303  assert (_event != NULL, "invariant") ;
2304}
2305
2306void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
2307  JavaThread *jt = (JavaThread *)this->_thread;
2308  _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2309}
2310
2311void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
2312  JavaThread *jt = (JavaThread *)this->_thread;
2313  JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2314}
2315
2316inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2317  assert(node != NULL, "should not dequeue NULL node");
2318  assert(node->_prev == NULL, "node already in list");
2319  assert(node->_next == NULL, "node already in list");
2320  // put node at end of queue (circular doubly linked list)
2321  if (_WaitSet == NULL) {
2322    _WaitSet = node;
2323    node->_prev = node;
2324    node->_next = node;
2325  } else {
2326    ObjectWaiter* head = _WaitSet ;
2327    ObjectWaiter* tail = head->_prev;
2328    assert(tail->_next == head, "invariant check");
2329    tail->_next = node;
2330    head->_prev = node;
2331    node->_next = head;
2332    node->_prev = tail;
2333  }
2334}
2335
2336inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2337  // dequeue the very first waiter
2338  ObjectWaiter* waiter = _WaitSet;
2339  if (waiter) {
2340    DequeueSpecificWaiter(waiter);
2341  }
2342  return waiter;
2343}
2344
2345inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2346  assert(node != NULL, "should not dequeue NULL node");
2347  assert(node->_prev != NULL, "node already removed from list");
2348  assert(node->_next != NULL, "node already removed from list");
2349  // when the waiter has woken up because of interrupt,
2350  // timeout or other spurious wake-up, dequeue the
2351  // waiter from waiting list
2352  ObjectWaiter* next = node->_next;
2353  if (next == node) {
2354    assert(node->_prev == node, "invariant check");
2355    _WaitSet = NULL;
2356  } else {
2357    ObjectWaiter* prev = node->_prev;
2358    assert(prev->_next == node, "invariant check");
2359    assert(next->_prev == node, "invariant check");
2360    next->_prev = prev;
2361    prev->_next = next;
2362    if (_WaitSet == node) {
2363      _WaitSet = next;
2364    }
2365  }
2366  node->_next = NULL;
2367  node->_prev = NULL;
2368}
2369
2370// -----------------------------------------------------------------------------
2371// PerfData support
2372PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
2373PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
2374PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
2375PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
2376PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
2377PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
2378PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
2379PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
2380PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
2381PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
2382PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
2383PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
2384PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
2385PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
2386PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
2387PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
2388PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
2389PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;
2390
2391// One-shot global initialization for the sync subsystem.
2392// We could also defer initialization and initialize on-demand
2393// the first time we call inflate().  Initialization would
2394// be protected - like so many things - by the MonitorCache_lock.
2395
2396void ObjectMonitor::Initialize () {
2397  static int InitializationCompleted = 0 ;
2398  assert (InitializationCompleted == 0, "invariant") ;
2399  InitializationCompleted = 1 ;
2400  if (UsePerfData) {
2401      EXCEPTION_MARK ;
2402      #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
2403      #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
2404      NEWPERFCOUNTER(_sync_Inflations) ;
2405      NEWPERFCOUNTER(_sync_Deflations) ;
2406      NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
2407      NEWPERFCOUNTER(_sync_FutileWakeups) ;
2408      NEWPERFCOUNTER(_sync_Parks) ;
2409      NEWPERFCOUNTER(_sync_EmptyNotifications) ;
2410      NEWPERFCOUNTER(_sync_Notifications) ;
2411      NEWPERFCOUNTER(_sync_SlowEnter) ;
2412      NEWPERFCOUNTER(_sync_SlowExit) ;
2413      NEWPERFCOUNTER(_sync_SlowNotify) ;
2414      NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
2415      NEWPERFCOUNTER(_sync_FailedSpins) ;
2416      NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
2417      NEWPERFCOUNTER(_sync_PrivateA) ;
2418      NEWPERFCOUNTER(_sync_PrivateB) ;
2419      NEWPERFCOUNTER(_sync_MonInCirculation) ;
2420      NEWPERFCOUNTER(_sync_MonScavenged) ;
2421      NEWPERFVARIABLE(_sync_MonExtant) ;
2422      #undef NEWPERFCOUNTER
2423  }
2424}
2425
2426
2427// Compile-time asserts
2428// When possible, it's better to catch errors deterministically at
2429// compile-time than at runtime.  The down-side to using compile-time
2430// asserts is that error message -- often something about negative array
2431// indices -- is opaque.
2432
2433#define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
2434
2435void ObjectMonitor::ctAsserts() {
2436  CTASSERT(offset_of (ObjectMonitor, _header) == 0);
2437}
2438
2439
2440static char * kvGet (char * kvList, const char * Key) {
2441    if (kvList == NULL) return NULL ;
2442    size_t n = strlen (Key) ;
2443    char * Search ;
2444    for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
2445        if (strncmp (Search, Key, n) == 0) {
2446            if (Search[n] == '=') return Search + n + 1 ;
2447            if (Search[n] == 0)   return (char *) "1" ;
2448        }
2449    }
2450    return NULL ;
2451}
2452
2453static int kvGetInt (char * kvList, const char * Key, int Default) {
2454    char * v = kvGet (kvList, Key) ;
2455    int rslt = v ? ::strtol (v, NULL, 0) : Default ;
2456    if (Knob_ReportSettings && v != NULL) {
2457        ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
2458        ::fflush (stdout) ;
2459    }
2460    return rslt ;
2461}
2462
2463void ObjectMonitor::DeferredInitialize () {
2464  if (InitDone > 0) return ;
2465  if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2466      while (InitDone != 1) ;
2467      return ;
2468  }
2469
2470  // One-shot global initialization ...
2471  // The initialization is idempotent, so we don't need locks.
2472  // In the future consider doing this via os::init_2().
2473  // SyncKnobs consist of <Key>=<Value> pairs in the style
2474  // of environment variables.  Start by converting ':' to NUL.
2475
2476  if (SyncKnobs == NULL) SyncKnobs = "" ;
2477
2478  size_t sz = strlen (SyncKnobs) ;
2479  char * knobs = (char *) malloc (sz + 2) ;
2480  if (knobs == NULL) {
2481     vm_exit_out_of_memory (sz + 2, OOM_MALLOC_ERROR, "Parse SyncKnobs") ;
2482     guarantee (0, "invariant") ;
2483  }
2484  strcpy (knobs, SyncKnobs) ;
2485  knobs[sz+1] = 0 ;
2486  for (char * p = knobs ; *p ; p++) {
2487     if (*p == ':') *p = 0 ;
2488  }
2489
2490  #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
2491  SETKNOB(ReportSettings) ;
2492  SETKNOB(Verbose) ;
2493  SETKNOB(FixedSpin) ;
2494  SETKNOB(SpinLimit) ;
2495  SETKNOB(SpinBase) ;
2496  SETKNOB(SpinBackOff);
2497  SETKNOB(CASPenalty) ;
2498  SETKNOB(OXPenalty) ;
2499  SETKNOB(LogSpins) ;
2500  SETKNOB(SpinSetSucc) ;
2501  SETKNOB(SuccEnabled) ;
2502  SETKNOB(SuccRestrict) ;
2503  SETKNOB(Penalty) ;
2504  SETKNOB(Bonus) ;
2505  SETKNOB(BonusB) ;
2506  SETKNOB(Poverty) ;
2507  SETKNOB(SpinAfterFutile) ;
2508  SETKNOB(UsePause) ;
2509  SETKNOB(SpinEarly) ;
2510  SETKNOB(OState) ;
2511  SETKNOB(MaxSpinners) ;
2512  SETKNOB(PreSpin) ;
2513  SETKNOB(ExitPolicy) ;
2514  SETKNOB(QMode);
2515  SETKNOB(ResetEvent) ;
2516  SETKNOB(MoveNotifyee) ;
2517  SETKNOB(FastHSSEC) ;
2518  #undef SETKNOB
2519
2520  if (os::is_MP()) {
2521     BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
2522     if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
2523     // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2524  } else {
2525     Knob_SpinLimit = 0 ;
2526     Knob_SpinBase  = 0 ;
2527     Knob_PreSpin   = 0 ;
2528     Knob_FixedSpin = -1 ;
2529  }
2530
2531  if (Knob_LogSpins == 0) {
2532     ObjectMonitor::_sync_FailedSpins = NULL ;
2533  }
2534
2535  free (knobs) ;
2536  OrderAccess::fence() ;
2537  InitDone = 1 ;
2538}
2539
2540#ifndef PRODUCT
2541void ObjectMonitor::verify() {
2542}
2543
2544void ObjectMonitor::print() {
2545}
2546#endif
2547