objectMonitor.cpp revision 3864:f34d701e952e
1/*
2 * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/vmSymbols.hpp"
27#include "memory/resourceArea.hpp"
28#include "oops/markOop.hpp"
29#include "oops/oop.inline.hpp"
30#include "runtime/handles.inline.hpp"
31#include "runtime/interfaceSupport.hpp"
32#include "runtime/mutexLocker.hpp"
33#include "runtime/objectMonitor.hpp"
34#include "runtime/objectMonitor.inline.hpp"
35#include "runtime/osThread.hpp"
36#include "runtime/stubRoutines.hpp"
37#include "runtime/thread.inline.hpp"
38#include "services/threadService.hpp"
39#include "utilities/dtrace.hpp"
40#include "utilities/preserveException.hpp"
41#ifdef TARGET_OS_FAMILY_linux
42# include "os_linux.inline.hpp"
43#endif
44#ifdef TARGET_OS_FAMILY_solaris
45# include "os_solaris.inline.hpp"
46#endif
47#ifdef TARGET_OS_FAMILY_windows
48# include "os_windows.inline.hpp"
49#endif
50#ifdef TARGET_OS_FAMILY_bsd
51# include "os_bsd.inline.hpp"
52#endif
53
54#if defined(__GNUC__) && !defined(IA64)
55  // Need to inhibit inlining for older versions of GCC to avoid build-time failures
56  #define ATTR __attribute__((noinline))
57#else
58  #define ATTR
59#endif
60
61
62#ifdef DTRACE_ENABLED
63
64// Only bother with this argument setup if dtrace is available
65// TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
66
67
68#define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
69  char* bytes = NULL;                                                      \
70  int len = 0;                                                             \
71  jlong jtid = SharedRuntime::get_java_tid(thread);                        \
72  Symbol* klassname = ((oop)obj)->klass()->name();                         \
73  if (klassname != NULL) {                                                 \
74    bytes = (char*)klassname->bytes();                                     \
75    len = klassname->utf8_length();                                        \
76  }
77
78#ifndef USDT2
79
80HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
81  jlong, uintptr_t, char*, int);
82HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
83  jlong, uintptr_t, char*, int);
84HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
85  jlong, uintptr_t, char*, int);
86HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
87  jlong, uintptr_t, char*, int);
88HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
89  jlong, uintptr_t, char*, int);
90
91#define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)       \
92  {                                                                        \
93    if (DTraceMonitorProbes) {                                            \
94      DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
95      HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
96                       (monitor), bytes, len, (millis));                   \
97    }                                                                      \
98  }
99
100#define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)             \
101  {                                                                        \
102    if (DTraceMonitorProbes) {                                            \
103      DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
104      HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
105                       (uintptr_t)(monitor), bytes, len);                  \
106    }                                                                      \
107  }
108
109#else /* USDT2 */
110
111#define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
112  {                                                                        \
113    if (DTraceMonitorProbes) {                                            \
114      DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
115      HOTSPOT_MONITOR_WAIT(jtid,                                           \
116                       (monitor), bytes, len, (millis));                   \
117    }                                                                      \
118  }
119
120#define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
121#define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
122#define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
123#define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
124#define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
125
126#define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
127  {                                                                        \
128    if (DTraceMonitorProbes) {                                            \
129      DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
130      HOTSPOT_MONITOR_##probe(jtid,                                               \
131                       (uintptr_t)(monitor), bytes, len);                  \
132    }                                                                      \
133  }
134
135#endif /* USDT2 */
136#else //  ndef DTRACE_ENABLED
137
138#define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
139#define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
140
141#endif // ndef DTRACE_ENABLED
142
143// Tunables ...
144// The knob* variables are effectively final.  Once set they should
145// never be modified hence.  Consider using __read_mostly with GCC.
146
147int ObjectMonitor::Knob_Verbose    = 0 ;
148int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
149static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
150static int Knob_HandOff            = 0 ;
151static int Knob_ReportSettings     = 0 ;
152
153static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
154static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
155static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
156static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
157static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
158static int Knob_SpinEarly          = 1 ;
159static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
160static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
161static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
162static int Knob_Bonus              = 100 ;     // spin success bonus
163static int Knob_BonusB             = 100 ;     // spin success bonus
164static int Knob_Penalty            = 200 ;     // spin failure penalty
165static int Knob_Poverty            = 1000 ;
166static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
167static int Knob_FixedSpin          = 0 ;
168static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
169static int Knob_UsePause           = 1 ;
170static int Knob_ExitPolicy         = 0 ;
171static int Knob_PreSpin            = 10 ;      // 20-100 likely better
172static int Knob_ResetEvent         = 0 ;
173static int BackOffMask             = 0 ;
174
175static int Knob_FastHSSEC          = 0 ;
176static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
177static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
178static volatile int InitDone       = 0 ;
179
180#define TrySpin TrySpin_VaryDuration
181
182// -----------------------------------------------------------------------------
183// Theory of operations -- Monitors lists, thread residency, etc:
184//
185// * A thread acquires ownership of a monitor by successfully
186//   CAS()ing the _owner field from null to non-null.
187//
188// * Invariant: A thread appears on at most one monitor list --
189//   cxq, EntryList or WaitSet -- at any one time.
190//
191// * Contending threads "push" themselves onto the cxq with CAS
192//   and then spin/park.
193//
194// * After a contending thread eventually acquires the lock it must
195//   dequeue itself from either the EntryList or the cxq.
196//
197// * The exiting thread identifies and unparks an "heir presumptive"
198//   tentative successor thread on the EntryList.  Critically, the
199//   exiting thread doesn't unlink the successor thread from the EntryList.
200//   After having been unparked, the wakee will recontend for ownership of
201//   the monitor.   The successor (wakee) will either acquire the lock or
202//   re-park itself.
203//
204//   Succession is provided for by a policy of competitive handoff.
205//   The exiting thread does _not_ grant or pass ownership to the
206//   successor thread.  (This is also referred to as "handoff" succession").
207//   Instead the exiting thread releases ownership and possibly wakes
208//   a successor, so the successor can (re)compete for ownership of the lock.
209//   If the EntryList is empty but the cxq is populated the exiting
210//   thread will drain the cxq into the EntryList.  It does so by
211//   by detaching the cxq (installing null with CAS) and folding
212//   the threads from the cxq into the EntryList.  The EntryList is
213//   doubly linked, while the cxq is singly linked because of the
214//   CAS-based "push" used to enqueue recently arrived threads (RATs).
215//
216// * Concurrency invariants:
217//
218//   -- only the monitor owner may access or mutate the EntryList.
219//      The mutex property of the monitor itself protects the EntryList
220//      from concurrent interference.
221//   -- Only the monitor owner may detach the cxq.
222//
223// * The monitor entry list operations avoid locks, but strictly speaking
224//   they're not lock-free.  Enter is lock-free, exit is not.
225//   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
226//
227// * The cxq can have multiple concurrent "pushers" but only one concurrent
228//   detaching thread.  This mechanism is immune from the ABA corruption.
229//   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
230//
231// * Taken together, the cxq and the EntryList constitute or form a
232//   single logical queue of threads stalled trying to acquire the lock.
233//   We use two distinct lists to improve the odds of a constant-time
234//   dequeue operation after acquisition (in the ::enter() epilog) and
235//   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
236//   A key desideratum is to minimize queue & monitor metadata manipulation
237//   that occurs while holding the monitor lock -- that is, we want to
238//   minimize monitor lock holds times.  Note that even a small amount of
239//   fixed spinning will greatly reduce the # of enqueue-dequeue operations
240//   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
241//   locks and monitor metadata.
242//
243//   Cxq points to the the set of Recently Arrived Threads attempting entry.
244//   Because we push threads onto _cxq with CAS, the RATs must take the form of
245//   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
246//   the unlocking thread notices that EntryList is null but _cxq is != null.
247//
248//   The EntryList is ordered by the prevailing queue discipline and
249//   can be organized in any convenient fashion, such as a doubly-linked list or
250//   a circular doubly-linked list.  Critically, we want insert and delete operations
251//   to operate in constant-time.  If we need a priority queue then something akin
252//   to Solaris' sleepq would work nicely.  Viz.,
253//   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
254//   Queue discipline is enforced at ::exit() time, when the unlocking thread
255//   drains the cxq into the EntryList, and orders or reorders the threads on the
256//   EntryList accordingly.
257//
258//   Barring "lock barging", this mechanism provides fair cyclic ordering,
259//   somewhat similar to an elevator-scan.
260//
261// * The monitor synchronization subsystem avoids the use of native
262//   synchronization primitives except for the narrow platform-specific
263//   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
264//   the semantics of park-unpark.  Put another way, this monitor implementation
265//   depends only on atomic operations and park-unpark.  The monitor subsystem
266//   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
267//   underlying OS manages the READY<->RUN transitions.
268//
269// * Waiting threads reside on the WaitSet list -- wait() puts
270//   the caller onto the WaitSet.
271//
272// * notify() or notifyAll() simply transfers threads from the WaitSet to
273//   either the EntryList or cxq.  Subsequent exit() operations will
274//   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
275//   it's likely the notifyee would simply impale itself on the lock held
276//   by the notifier.
277//
278// * An interesting alternative is to encode cxq as (List,LockByte) where
279//   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
280//   variable, like _recursions, in the scheme.  The threads or Events that form
281//   the list would have to be aligned in 256-byte addresses.  A thread would
282//   try to acquire the lock or enqueue itself with CAS, but exiting threads
283//   could use a 1-0 protocol and simply STB to set the LockByte to 0.
284//   Note that is is *not* word-tearing, but it does presume that full-word
285//   CAS operations are coherent with intermix with STB operations.  That's true
286//   on most common processors.
287//
288// * See also http://blogs.sun.com/dave
289
290
291// -----------------------------------------------------------------------------
292// Enter support
293
294bool ObjectMonitor::try_enter(Thread* THREAD) {
295  if (THREAD != _owner) {
296    if (THREAD->is_lock_owned ((address)_owner)) {
297       assert(_recursions == 0, "internal state error");
298       _owner = THREAD ;
299       _recursions = 1 ;
300       OwnerIsThread = 1 ;
301       return true;
302    }
303    if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
304      return false;
305    }
306    return true;
307  } else {
308    _recursions++;
309    return true;
310  }
311}
312
313void ATTR ObjectMonitor::enter(TRAPS) {
314  // The following code is ordered to check the most common cases first
315  // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
316  Thread * const Self = THREAD ;
317  void * cur ;
318
319  cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
320  if (cur == NULL) {
321     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
322     assert (_recursions == 0   , "invariant") ;
323     assert (_owner      == Self, "invariant") ;
324     // CONSIDER: set or assert OwnerIsThread == 1
325     return ;
326  }
327
328  if (cur == Self) {
329     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
330     _recursions ++ ;
331     return ;
332  }
333
334  if (Self->is_lock_owned ((address)cur)) {
335    assert (_recursions == 0, "internal state error");
336    _recursions = 1 ;
337    // Commute owner from a thread-specific on-stack BasicLockObject address to
338    // a full-fledged "Thread *".
339    _owner = Self ;
340    OwnerIsThread = 1 ;
341    return ;
342  }
343
344  // We've encountered genuine contention.
345  assert (Self->_Stalled == 0, "invariant") ;
346  Self->_Stalled = intptr_t(this) ;
347
348  // Try one round of spinning *before* enqueueing Self
349  // and before going through the awkward and expensive state
350  // transitions.  The following spin is strictly optional ...
351  // Note that if we acquire the monitor from an initial spin
352  // we forgo posting JVMTI events and firing DTRACE probes.
353  if (Knob_SpinEarly && TrySpin (Self) > 0) {
354     assert (_owner == Self      , "invariant") ;
355     assert (_recursions == 0    , "invariant") ;
356     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
357     Self->_Stalled = 0 ;
358     return ;
359  }
360
361  assert (_owner != Self          , "invariant") ;
362  assert (_succ  != Self          , "invariant") ;
363  assert (Self->is_Java_thread()  , "invariant") ;
364  JavaThread * jt = (JavaThread *) Self ;
365  assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
366  assert (jt->thread_state() != _thread_blocked   , "invariant") ;
367  assert (this->object() != NULL  , "invariant") ;
368  assert (_count >= 0, "invariant") ;
369
370  // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
371  // Ensure the object-monitor relationship remains stable while there's contention.
372  Atomic::inc_ptr(&_count);
373
374  { // Change java thread status to indicate blocked on monitor enter.
375    JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
376
377    DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
378    if (JvmtiExport::should_post_monitor_contended_enter()) {
379      JvmtiExport::post_monitor_contended_enter(jt, this);
380    }
381
382    OSThreadContendState osts(Self->osthread());
383    ThreadBlockInVM tbivm(jt);
384
385    Self->set_current_pending_monitor(this);
386
387    // TODO-FIXME: change the following for(;;) loop to straight-line code.
388    for (;;) {
389      jt->set_suspend_equivalent();
390      // cleared by handle_special_suspend_equivalent_condition()
391      // or java_suspend_self()
392
393      EnterI (THREAD) ;
394
395      if (!ExitSuspendEquivalent(jt)) break ;
396
397      //
398      // We have acquired the contended monitor, but while we were
399      // waiting another thread suspended us. We don't want to enter
400      // the monitor while suspended because that would surprise the
401      // thread that suspended us.
402      //
403          _recursions = 0 ;
404      _succ = NULL ;
405      exit (Self) ;
406
407      jt->java_suspend_self();
408    }
409    Self->set_current_pending_monitor(NULL);
410  }
411
412  Atomic::dec_ptr(&_count);
413  assert (_count >= 0, "invariant") ;
414  Self->_Stalled = 0 ;
415
416  // Must either set _recursions = 0 or ASSERT _recursions == 0.
417  assert (_recursions == 0     , "invariant") ;
418  assert (_owner == Self       , "invariant") ;
419  assert (_succ  != Self       , "invariant") ;
420  assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
421
422  // The thread -- now the owner -- is back in vm mode.
423  // Report the glorious news via TI,DTrace and jvmstat.
424  // The probe effect is non-trivial.  All the reportage occurs
425  // while we hold the monitor, increasing the length of the critical
426  // section.  Amdahl's parallel speedup law comes vividly into play.
427  //
428  // Another option might be to aggregate the events (thread local or
429  // per-monitor aggregation) and defer reporting until a more opportune
430  // time -- such as next time some thread encounters contention but has
431  // yet to acquire the lock.  While spinning that thread could
432  // spinning we could increment JVMStat counters, etc.
433
434  DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
435  if (JvmtiExport::should_post_monitor_contended_entered()) {
436    JvmtiExport::post_monitor_contended_entered(jt, this);
437  }
438  if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
439     ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
440  }
441}
442
443
444// Caveat: TryLock() is not necessarily serializing if it returns failure.
445// Callers must compensate as needed.
446
447int ObjectMonitor::TryLock (Thread * Self) {
448   for (;;) {
449      void * own = _owner ;
450      if (own != NULL) return 0 ;
451      if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
452         // Either guarantee _recursions == 0 or set _recursions = 0.
453         assert (_recursions == 0, "invariant") ;
454         assert (_owner == Self, "invariant") ;
455         // CONSIDER: set or assert that OwnerIsThread == 1
456         return 1 ;
457      }
458      // The lock had been free momentarily, but we lost the race to the lock.
459      // Interference -- the CAS failed.
460      // We can either return -1 or retry.
461      // Retry doesn't make as much sense because the lock was just acquired.
462      if (true) return -1 ;
463   }
464}
465
466void ATTR ObjectMonitor::EnterI (TRAPS) {
467    Thread * Self = THREAD ;
468    assert (Self->is_Java_thread(), "invariant") ;
469    assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
470
471    // Try the lock - TATAS
472    if (TryLock (Self) > 0) {
473        assert (_succ != Self              , "invariant") ;
474        assert (_owner == Self             , "invariant") ;
475        assert (_Responsible != Self       , "invariant") ;
476        return ;
477    }
478
479    DeferredInitialize () ;
480
481    // We try one round of spinning *before* enqueueing Self.
482    //
483    // If the _owner is ready but OFFPROC we could use a YieldTo()
484    // operation to donate the remainder of this thread's quantum
485    // to the owner.  This has subtle but beneficial affinity
486    // effects.
487
488    if (TrySpin (Self) > 0) {
489        assert (_owner == Self        , "invariant") ;
490        assert (_succ != Self         , "invariant") ;
491        assert (_Responsible != Self  , "invariant") ;
492        return ;
493    }
494
495    // The Spin failed -- Enqueue and park the thread ...
496    assert (_succ  != Self            , "invariant") ;
497    assert (_owner != Self            , "invariant") ;
498    assert (_Responsible != Self      , "invariant") ;
499
500    // Enqueue "Self" on ObjectMonitor's _cxq.
501    //
502    // Node acts as a proxy for Self.
503    // As an aside, if were to ever rewrite the synchronization code mostly
504    // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
505    // Java objects.  This would avoid awkward lifecycle and liveness issues,
506    // as well as eliminate a subset of ABA issues.
507    // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
508    //
509
510    ObjectWaiter node(Self) ;
511    Self->_ParkEvent->reset() ;
512    node._prev   = (ObjectWaiter *) 0xBAD ;
513    node.TState  = ObjectWaiter::TS_CXQ ;
514
515    // Push "Self" onto the front of the _cxq.
516    // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
517    // Note that spinning tends to reduce the rate at which threads
518    // enqueue and dequeue on EntryList|cxq.
519    ObjectWaiter * nxt ;
520    for (;;) {
521        node._next = nxt = _cxq ;
522        if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
523
524        // Interference - the CAS failed because _cxq changed.  Just retry.
525        // As an optional optimization we retry the lock.
526        if (TryLock (Self) > 0) {
527            assert (_succ != Self         , "invariant") ;
528            assert (_owner == Self        , "invariant") ;
529            assert (_Responsible != Self  , "invariant") ;
530            return ;
531        }
532    }
533
534    // Check for cxq|EntryList edge transition to non-null.  This indicates
535    // the onset of contention.  While contention persists exiting threads
536    // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
537    // operations revert to the faster 1-0 mode.  This enter operation may interleave
538    // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
539    // arrange for one of the contending thread to use a timed park() operations
540    // to detect and recover from the race.  (Stranding is form of progress failure
541    // where the monitor is unlocked but all the contending threads remain parked).
542    // That is, at least one of the contended threads will periodically poll _owner.
543    // One of the contending threads will become the designated "Responsible" thread.
544    // The Responsible thread uses a timed park instead of a normal indefinite park
545    // operation -- it periodically wakes and checks for and recovers from potential
546    // strandings admitted by 1-0 exit operations.   We need at most one Responsible
547    // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
548    // be responsible for a monitor.
549    //
550    // Currently, one of the contended threads takes on the added role of "Responsible".
551    // A viable alternative would be to use a dedicated "stranding checker" thread
552    // that periodically iterated over all the threads (or active monitors) and unparked
553    // successors where there was risk of stranding.  This would help eliminate the
554    // timer scalability issues we see on some platforms as we'd only have one thread
555    // -- the checker -- parked on a timer.
556
557    if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
558        // Try to assume the role of responsible thread for the monitor.
559        // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
560        Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
561    }
562
563    // The lock have been released while this thread was occupied queueing
564    // itself onto _cxq.  To close the race and avoid "stranding" and
565    // progress-liveness failure we must resample-retry _owner before parking.
566    // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
567    // In this case the ST-MEMBAR is accomplished with CAS().
568    //
569    // TODO: Defer all thread state transitions until park-time.
570    // Since state transitions are heavy and inefficient we'd like
571    // to defer the state transitions until absolutely necessary,
572    // and in doing so avoid some transitions ...
573
574    TEVENT (Inflated enter - Contention) ;
575    int nWakeups = 0 ;
576    int RecheckInterval = 1 ;
577
578    for (;;) {
579
580        if (TryLock (Self) > 0) break ;
581        assert (_owner != Self, "invariant") ;
582
583        if ((SyncFlags & 2) && _Responsible == NULL) {
584           Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
585        }
586
587        // park self
588        if (_Responsible == Self || (SyncFlags & 1)) {
589            TEVENT (Inflated enter - park TIMED) ;
590            Self->_ParkEvent->park ((jlong) RecheckInterval) ;
591            // Increase the RecheckInterval, but clamp the value.
592            RecheckInterval *= 8 ;
593            if (RecheckInterval > 1000) RecheckInterval = 1000 ;
594        } else {
595            TEVENT (Inflated enter - park UNTIMED) ;
596            Self->_ParkEvent->park() ;
597        }
598
599        if (TryLock(Self) > 0) break ;
600
601        // The lock is still contested.
602        // Keep a tally of the # of futile wakeups.
603        // Note that the counter is not protected by a lock or updated by atomics.
604        // That is by design - we trade "lossy" counters which are exposed to
605        // races during updates for a lower probe effect.
606        TEVENT (Inflated enter - Futile wakeup) ;
607        if (ObjectMonitor::_sync_FutileWakeups != NULL) {
608           ObjectMonitor::_sync_FutileWakeups->inc() ;
609        }
610        ++ nWakeups ;
611
612        // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
613        // We can defer clearing _succ until after the spin completes
614        // TrySpin() must tolerate being called with _succ == Self.
615        // Try yet another round of adaptive spinning.
616        if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
617
618        // We can find that we were unpark()ed and redesignated _succ while
619        // we were spinning.  That's harmless.  If we iterate and call park(),
620        // park() will consume the event and return immediately and we'll
621        // just spin again.  This pattern can repeat, leaving _succ to simply
622        // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
623        // Alternately, we can sample fired() here, and if set, forgo spinning
624        // in the next iteration.
625
626        if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
627           Self->_ParkEvent->reset() ;
628           OrderAccess::fence() ;
629        }
630        if (_succ == Self) _succ = NULL ;
631
632        // Invariant: after clearing _succ a thread *must* retry _owner before parking.
633        OrderAccess::fence() ;
634    }
635
636    // Egress :
637    // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
638    // Normally we'll find Self on the EntryList .
639    // From the perspective of the lock owner (this thread), the
640    // EntryList is stable and cxq is prepend-only.
641    // The head of cxq is volatile but the interior is stable.
642    // In addition, Self.TState is stable.
643
644    assert (_owner == Self      , "invariant") ;
645    assert (object() != NULL    , "invariant") ;
646    // I'd like to write:
647    //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
648    // but as we're at a safepoint that's not safe.
649
650    UnlinkAfterAcquire (Self, &node) ;
651    if (_succ == Self) _succ = NULL ;
652
653    assert (_succ != Self, "invariant") ;
654    if (_Responsible == Self) {
655        _Responsible = NULL ;
656        // Dekker pivot-point.
657        // Consider OrderAccess::storeload() here
658
659        // We may leave threads on cxq|EntryList without a designated
660        // "Responsible" thread.  This is benign.  When this thread subsequently
661        // exits the monitor it can "see" such preexisting "old" threads --
662        // threads that arrived on the cxq|EntryList before the fence, above --
663        // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
664        // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
665        // non-null and elect a new "Responsible" timer thread.
666        //
667        // This thread executes:
668        //    ST Responsible=null; MEMBAR    (in enter epilog - here)
669        //    LD cxq|EntryList               (in subsequent exit)
670        //
671        // Entering threads in the slow/contended path execute:
672        //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
673        //    The (ST cxq; MEMBAR) is accomplished with CAS().
674        //
675        // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
676        // exit operation from floating above the ST Responsible=null.
677        //
678        // In *practice* however, EnterI() is always followed by some atomic
679        // operation such as the decrement of _count in ::enter().  Those atomics
680        // obviate the need for the explicit MEMBAR, above.
681    }
682
683    // We've acquired ownership with CAS().
684    // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
685    // But since the CAS() this thread may have also stored into _succ,
686    // EntryList, cxq or Responsible.  These meta-data updates must be
687    // visible __before this thread subsequently drops the lock.
688    // Consider what could occur if we didn't enforce this constraint --
689    // STs to monitor meta-data and user-data could reorder with (become
690    // visible after) the ST in exit that drops ownership of the lock.
691    // Some other thread could then acquire the lock, but observe inconsistent
692    // or old monitor meta-data and heap data.  That violates the JMM.
693    // To that end, the 1-0 exit() operation must have at least STST|LDST
694    // "release" barrier semantics.  Specifically, there must be at least a
695    // STST|LDST barrier in exit() before the ST of null into _owner that drops
696    // the lock.   The barrier ensures that changes to monitor meta-data and data
697    // protected by the lock will be visible before we release the lock, and
698    // therefore before some other thread (CPU) has a chance to acquire the lock.
699    // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
700    //
701    // Critically, any prior STs to _succ or EntryList must be visible before
702    // the ST of null into _owner in the *subsequent* (following) corresponding
703    // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
704    // execute a serializing instruction.
705
706    if (SyncFlags & 8) {
707       OrderAccess::fence() ;
708    }
709    return ;
710}
711
712// ReenterI() is a specialized inline form of the latter half of the
713// contended slow-path from EnterI().  We use ReenterI() only for
714// monitor reentry in wait().
715//
716// In the future we should reconcile EnterI() and ReenterI(), adding
717// Knob_Reset and Knob_SpinAfterFutile support and restructuring the
718// loop accordingly.
719
720void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
721    assert (Self != NULL                , "invariant") ;
722    assert (SelfNode != NULL            , "invariant") ;
723    assert (SelfNode->_thread == Self   , "invariant") ;
724    assert (_waiters > 0                , "invariant") ;
725    assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
726    assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
727    JavaThread * jt = (JavaThread *) Self ;
728
729    int nWakeups = 0 ;
730    for (;;) {
731        ObjectWaiter::TStates v = SelfNode->TState ;
732        guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
733        assert    (_owner != Self, "invariant") ;
734
735        if (TryLock (Self) > 0) break ;
736        if (TrySpin (Self) > 0) break ;
737
738        TEVENT (Wait Reentry - parking) ;
739
740        // State transition wrappers around park() ...
741        // ReenterI() wisely defers state transitions until
742        // it's clear we must park the thread.
743        {
744           OSThreadContendState osts(Self->osthread());
745           ThreadBlockInVM tbivm(jt);
746
747           // cleared by handle_special_suspend_equivalent_condition()
748           // or java_suspend_self()
749           jt->set_suspend_equivalent();
750           if (SyncFlags & 1) {
751              Self->_ParkEvent->park ((jlong)1000) ;
752           } else {
753              Self->_ParkEvent->park () ;
754           }
755
756           // were we externally suspended while we were waiting?
757           for (;;) {
758              if (!ExitSuspendEquivalent (jt)) break ;
759              if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
760              jt->java_suspend_self();
761              jt->set_suspend_equivalent();
762           }
763        }
764
765        // Try again, but just so we distinguish between futile wakeups and
766        // successful wakeups.  The following test isn't algorithmically
767        // necessary, but it helps us maintain sensible statistics.
768        if (TryLock(Self) > 0) break ;
769
770        // The lock is still contested.
771        // Keep a tally of the # of futile wakeups.
772        // Note that the counter is not protected by a lock or updated by atomics.
773        // That is by design - we trade "lossy" counters which are exposed to
774        // races during updates for a lower probe effect.
775        TEVENT (Wait Reentry - futile wakeup) ;
776        ++ nWakeups ;
777
778        // Assuming this is not a spurious wakeup we'll normally
779        // find that _succ == Self.
780        if (_succ == Self) _succ = NULL ;
781
782        // Invariant: after clearing _succ a contending thread
783        // *must* retry  _owner before parking.
784        OrderAccess::fence() ;
785
786        if (ObjectMonitor::_sync_FutileWakeups != NULL) {
787          ObjectMonitor::_sync_FutileWakeups->inc() ;
788        }
789    }
790
791    // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
792    // Normally we'll find Self on the EntryList.
793    // Unlinking from the EntryList is constant-time and atomic-free.
794    // From the perspective of the lock owner (this thread), the
795    // EntryList is stable and cxq is prepend-only.
796    // The head of cxq is volatile but the interior is stable.
797    // In addition, Self.TState is stable.
798
799    assert (_owner == Self, "invariant") ;
800    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
801    UnlinkAfterAcquire (Self, SelfNode) ;
802    if (_succ == Self) _succ = NULL ;
803    assert (_succ != Self, "invariant") ;
804    SelfNode->TState = ObjectWaiter::TS_RUN ;
805    OrderAccess::fence() ;      // see comments at the end of EnterI()
806}
807
808// after the thread acquires the lock in ::enter().  Equally, we could defer
809// unlinking the thread until ::exit()-time.
810
811void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
812{
813    assert (_owner == Self, "invariant") ;
814    assert (SelfNode->_thread == Self, "invariant") ;
815
816    if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
817        // Normal case: remove Self from the DLL EntryList .
818        // This is a constant-time operation.
819        ObjectWaiter * nxt = SelfNode->_next ;
820        ObjectWaiter * prv = SelfNode->_prev ;
821        if (nxt != NULL) nxt->_prev = prv ;
822        if (prv != NULL) prv->_next = nxt ;
823        if (SelfNode == _EntryList ) _EntryList = nxt ;
824        assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
825        assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
826        TEVENT (Unlink from EntryList) ;
827    } else {
828        guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
829        // Inopportune interleaving -- Self is still on the cxq.
830        // This usually means the enqueue of self raced an exiting thread.
831        // Normally we'll find Self near the front of the cxq, so
832        // dequeueing is typically fast.  If needbe we can accelerate
833        // this with some MCS/CHL-like bidirectional list hints and advisory
834        // back-links so dequeueing from the interior will normally operate
835        // in constant-time.
836        // Dequeue Self from either the head (with CAS) or from the interior
837        // with a linear-time scan and normal non-atomic memory operations.
838        // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
839        // and then unlink Self from EntryList.  We have to drain eventually,
840        // so it might as well be now.
841
842        ObjectWaiter * v = _cxq ;
843        assert (v != NULL, "invariant") ;
844        if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
845            // The CAS above can fail from interference IFF a "RAT" arrived.
846            // In that case Self must be in the interior and can no longer be
847            // at the head of cxq.
848            if (v == SelfNode) {
849                assert (_cxq != v, "invariant") ;
850                v = _cxq ;          // CAS above failed - start scan at head of list
851            }
852            ObjectWaiter * p ;
853            ObjectWaiter * q = NULL ;
854            for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
855                q = p ;
856                assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
857            }
858            assert (v != SelfNode,  "invariant") ;
859            assert (p == SelfNode,  "Node not found on cxq") ;
860            assert (p != _cxq,      "invariant") ;
861            assert (q != NULL,      "invariant") ;
862            assert (q->_next == p,  "invariant") ;
863            q->_next = p->_next ;
864        }
865        TEVENT (Unlink from cxq) ;
866    }
867
868    // Diagnostic hygiene ...
869    SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
870    SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
871    SelfNode->TState = ObjectWaiter::TS_RUN ;
872}
873
874// -----------------------------------------------------------------------------
875// Exit support
876//
877// exit()
878// ~~~~~~
879// Note that the collector can't reclaim the objectMonitor or deflate
880// the object out from underneath the thread calling ::exit() as the
881// thread calling ::exit() never transitions to a stable state.
882// This inhibits GC, which in turn inhibits asynchronous (and
883// inopportune) reclamation of "this".
884//
885// We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
886// There's one exception to the claim above, however.  EnterI() can call
887// exit() to drop a lock if the acquirer has been externally suspended.
888// In that case exit() is called with _thread_state as _thread_blocked,
889// but the monitor's _count field is > 0, which inhibits reclamation.
890//
891// 1-0 exit
892// ~~~~~~~~
893// ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
894// the fast-path operators have been optimized so the common ::exit()
895// operation is 1-0.  See i486.ad fast_unlock(), for instance.
896// The code emitted by fast_unlock() elides the usual MEMBAR.  This
897// greatly improves latency -- MEMBAR and CAS having considerable local
898// latency on modern processors -- but at the cost of "stranding".  Absent the
899// MEMBAR, a thread in fast_unlock() can race a thread in the slow
900// ::enter() path, resulting in the entering thread being stranding
901// and a progress-liveness failure.   Stranding is extremely rare.
902// We use timers (timed park operations) & periodic polling to detect
903// and recover from stranding.  Potentially stranded threads periodically
904// wake up and poll the lock.  See the usage of the _Responsible variable.
905//
906// The CAS() in enter provides for safety and exclusion, while the CAS or
907// MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
908// eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
909// We detect and recover from stranding with timers.
910//
911// If a thread transiently strands it'll park until (a) another
912// thread acquires the lock and then drops the lock, at which time the
913// exiting thread will notice and unpark the stranded thread, or, (b)
914// the timer expires.  If the lock is high traffic then the stranding latency
915// will be low due to (a).  If the lock is low traffic then the odds of
916// stranding are lower, although the worst-case stranding latency
917// is longer.  Critically, we don't want to put excessive load in the
918// platform's timer subsystem.  We want to minimize both the timer injection
919// rate (timers created/sec) as well as the number of timers active at
920// any one time.  (more precisely, we want to minimize timer-seconds, which is
921// the integral of the # of active timers at any instant over time).
922// Both impinge on OS scalability.  Given that, at most one thread parked on
923// a monitor will use a timer.
924
925void ATTR ObjectMonitor::exit(TRAPS) {
926   Thread * Self = THREAD ;
927   if (THREAD != _owner) {
928     if (THREAD->is_lock_owned((address) _owner)) {
929       // Transmute _owner from a BasicLock pointer to a Thread address.
930       // We don't need to hold _mutex for this transition.
931       // Non-null to Non-null is safe as long as all readers can
932       // tolerate either flavor.
933       assert (_recursions == 0, "invariant") ;
934       _owner = THREAD ;
935       _recursions = 0 ;
936       OwnerIsThread = 1 ;
937     } else {
938       // NOTE: we need to handle unbalanced monitor enter/exit
939       // in native code by throwing an exception.
940       // TODO: Throw an IllegalMonitorStateException ?
941       TEVENT (Exit - Throw IMSX) ;
942       assert(false, "Non-balanced monitor enter/exit!");
943       if (false) {
944          THROW(vmSymbols::java_lang_IllegalMonitorStateException());
945       }
946       return;
947     }
948   }
949
950   if (_recursions != 0) {
951     _recursions--;        // this is simple recursive enter
952     TEVENT (Inflated exit - recursive) ;
953     return ;
954   }
955
956   // Invariant: after setting Responsible=null an thread must execute
957   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
958   if ((SyncFlags & 4) == 0) {
959      _Responsible = NULL ;
960   }
961
962   for (;;) {
963      assert (THREAD == _owner, "invariant") ;
964
965
966      if (Knob_ExitPolicy == 0) {
967         // release semantics: prior loads and stores from within the critical section
968         // must not float (reorder) past the following store that drops the lock.
969         // On SPARC that requires MEMBAR #loadstore|#storestore.
970         // But of course in TSO #loadstore|#storestore is not required.
971         // I'd like to write one of the following:
972         // A.  OrderAccess::release() ; _owner = NULL
973         // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
974         // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
975         // store into a _dummy variable.  That store is not needed, but can result
976         // in massive wasteful coherency traffic on classic SMP systems.
977         // Instead, I use release_store(), which is implemented as just a simple
978         // ST on x64, x86 and SPARC.
979         OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
980         OrderAccess::storeload() ;                         // See if we need to wake a successor
981         if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
982            TEVENT (Inflated exit - simple egress) ;
983            return ;
984         }
985         TEVENT (Inflated exit - complex egress) ;
986
987         // Normally the exiting thread is responsible for ensuring succession,
988         // but if other successors are ready or other entering threads are spinning
989         // then this thread can simply store NULL into _owner and exit without
990         // waking a successor.  The existence of spinners or ready successors
991         // guarantees proper succession (liveness).  Responsibility passes to the
992         // ready or running successors.  The exiting thread delegates the duty.
993         // More precisely, if a successor already exists this thread is absolved
994         // of the responsibility of waking (unparking) one.
995         //
996         // The _succ variable is critical to reducing futile wakeup frequency.
997         // _succ identifies the "heir presumptive" thread that has been made
998         // ready (unparked) but that has not yet run.  We need only one such
999         // successor thread to guarantee progress.
1000         // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1001         // section 3.3 "Futile Wakeup Throttling" for details.
1002         //
1003         // Note that spinners in Enter() also set _succ non-null.
1004         // In the current implementation spinners opportunistically set
1005         // _succ so that exiting threads might avoid waking a successor.
1006         // Another less appealing alternative would be for the exiting thread
1007         // to drop the lock and then spin briefly to see if a spinner managed
1008         // to acquire the lock.  If so, the exiting thread could exit
1009         // immediately without waking a successor, otherwise the exiting
1010         // thread would need to dequeue and wake a successor.
1011         // (Note that we'd need to make the post-drop spin short, but no
1012         // shorter than the worst-case round-trip cache-line migration time.
1013         // The dropped lock needs to become visible to the spinner, and then
1014         // the acquisition of the lock by the spinner must become visible to
1015         // the exiting thread).
1016         //
1017
1018         // It appears that an heir-presumptive (successor) must be made ready.
1019         // Only the current lock owner can manipulate the EntryList or
1020         // drain _cxq, so we need to reacquire the lock.  If we fail
1021         // to reacquire the lock the responsibility for ensuring succession
1022         // falls to the new owner.
1023         //
1024         if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1025            return ;
1026         }
1027         TEVENT (Exit - Reacquired) ;
1028      } else {
1029         if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1030            OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
1031            OrderAccess::storeload() ;
1032            // Ratify the previously observed values.
1033            if (_cxq == NULL || _succ != NULL) {
1034                TEVENT (Inflated exit - simple egress) ;
1035                return ;
1036            }
1037
1038            // inopportune interleaving -- the exiting thread (this thread)
1039            // in the fast-exit path raced an entering thread in the slow-enter
1040            // path.
1041            // We have two choices:
1042            // A.  Try to reacquire the lock.
1043            //     If the CAS() fails return immediately, otherwise
1044            //     we either restart/rerun the exit operation, or simply
1045            //     fall-through into the code below which wakes a successor.
1046            // B.  If the elements forming the EntryList|cxq are TSM
1047            //     we could simply unpark() the lead thread and return
1048            //     without having set _succ.
1049            if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1050               TEVENT (Inflated exit - reacquired succeeded) ;
1051               return ;
1052            }
1053            TEVENT (Inflated exit - reacquired failed) ;
1054         } else {
1055            TEVENT (Inflated exit - complex egress) ;
1056         }
1057      }
1058
1059      guarantee (_owner == THREAD, "invariant") ;
1060
1061      ObjectWaiter * w = NULL ;
1062      int QMode = Knob_QMode ;
1063
1064      if (QMode == 2 && _cxq != NULL) {
1065          // QMode == 2 : cxq has precedence over EntryList.
1066          // Try to directly wake a successor from the cxq.
1067          // If successful, the successor will need to unlink itself from cxq.
1068          w = _cxq ;
1069          assert (w != NULL, "invariant") ;
1070          assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1071          ExitEpilog (Self, w) ;
1072          return ;
1073      }
1074
1075      if (QMode == 3 && _cxq != NULL) {
1076          // Aggressively drain cxq into EntryList at the first opportunity.
1077          // This policy ensure that recently-run threads live at the head of EntryList.
1078          // Drain _cxq into EntryList - bulk transfer.
1079          // First, detach _cxq.
1080          // The following loop is tantamount to: w = swap (&cxq, NULL)
1081          w = _cxq ;
1082          for (;;) {
1083             assert (w != NULL, "Invariant") ;
1084             ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1085             if (u == w) break ;
1086             w = u ;
1087          }
1088          assert (w != NULL              , "invariant") ;
1089
1090          ObjectWaiter * q = NULL ;
1091          ObjectWaiter * p ;
1092          for (p = w ; p != NULL ; p = p->_next) {
1093              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1094              p->TState = ObjectWaiter::TS_ENTER ;
1095              p->_prev = q ;
1096              q = p ;
1097          }
1098
1099          // Append the RATs to the EntryList
1100          // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1101          ObjectWaiter * Tail ;
1102          for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
1103          if (Tail == NULL) {
1104              _EntryList = w ;
1105          } else {
1106              Tail->_next = w ;
1107              w->_prev = Tail ;
1108          }
1109
1110          // Fall thru into code that tries to wake a successor from EntryList
1111      }
1112
1113      if (QMode == 4 && _cxq != NULL) {
1114          // Aggressively drain cxq into EntryList at the first opportunity.
1115          // This policy ensure that recently-run threads live at the head of EntryList.
1116
1117          // Drain _cxq into EntryList - bulk transfer.
1118          // First, detach _cxq.
1119          // The following loop is tantamount to: w = swap (&cxq, NULL)
1120          w = _cxq ;
1121          for (;;) {
1122             assert (w != NULL, "Invariant") ;
1123             ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1124             if (u == w) break ;
1125             w = u ;
1126          }
1127          assert (w != NULL              , "invariant") ;
1128
1129          ObjectWaiter * q = NULL ;
1130          ObjectWaiter * p ;
1131          for (p = w ; p != NULL ; p = p->_next) {
1132              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1133              p->TState = ObjectWaiter::TS_ENTER ;
1134              p->_prev = q ;
1135              q = p ;
1136          }
1137
1138          // Prepend the RATs to the EntryList
1139          if (_EntryList != NULL) {
1140              q->_next = _EntryList ;
1141              _EntryList->_prev = q ;
1142          }
1143          _EntryList = w ;
1144
1145          // Fall thru into code that tries to wake a successor from EntryList
1146      }
1147
1148      w = _EntryList  ;
1149      if (w != NULL) {
1150          // I'd like to write: guarantee (w->_thread != Self).
1151          // But in practice an exiting thread may find itself on the EntryList.
1152          // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1153          // then calls exit().  Exit release the lock by setting O._owner to NULL.
1154          // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
1155          // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1156          // release the lock "O".  T2 resumes immediately after the ST of null into
1157          // _owner, above.  T2 notices that the EntryList is populated, so it
1158          // reacquires the lock and then finds itself on the EntryList.
1159          // Given all that, we have to tolerate the circumstance where "w" is
1160          // associated with Self.
1161          assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1162          ExitEpilog (Self, w) ;
1163          return ;
1164      }
1165
1166      // If we find that both _cxq and EntryList are null then just
1167      // re-run the exit protocol from the top.
1168      w = _cxq ;
1169      if (w == NULL) continue ;
1170
1171      // Drain _cxq into EntryList - bulk transfer.
1172      // First, detach _cxq.
1173      // The following loop is tantamount to: w = swap (&cxq, NULL)
1174      for (;;) {
1175          assert (w != NULL, "Invariant") ;
1176          ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1177          if (u == w) break ;
1178          w = u ;
1179      }
1180      TEVENT (Inflated exit - drain cxq into EntryList) ;
1181
1182      assert (w != NULL              , "invariant") ;
1183      assert (_EntryList  == NULL    , "invariant") ;
1184
1185      // Convert the LIFO SLL anchored by _cxq into a DLL.
1186      // The list reorganization step operates in O(LENGTH(w)) time.
1187      // It's critical that this step operate quickly as
1188      // "Self" still holds the outer-lock, restricting parallelism
1189      // and effectively lengthening the critical section.
1190      // Invariant: s chases t chases u.
1191      // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1192      // we have faster access to the tail.
1193
1194      if (QMode == 1) {
1195         // QMode == 1 : drain cxq to EntryList, reversing order
1196         // We also reverse the order of the list.
1197         ObjectWaiter * s = NULL ;
1198         ObjectWaiter * t = w ;
1199         ObjectWaiter * u = NULL ;
1200         while (t != NULL) {
1201             guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
1202             t->TState = ObjectWaiter::TS_ENTER ;
1203             u = t->_next ;
1204             t->_prev = u ;
1205             t->_next = s ;
1206             s = t;
1207             t = u ;
1208         }
1209         _EntryList  = s ;
1210         assert (s != NULL, "invariant") ;
1211      } else {
1212         // QMode == 0 or QMode == 2
1213         _EntryList = w ;
1214         ObjectWaiter * q = NULL ;
1215         ObjectWaiter * p ;
1216         for (p = w ; p != NULL ; p = p->_next) {
1217             guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1218             p->TState = ObjectWaiter::TS_ENTER ;
1219             p->_prev = q ;
1220             q = p ;
1221         }
1222      }
1223
1224      // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1225      // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1226
1227      // See if we can abdicate to a spinner instead of waking a thread.
1228      // A primary goal of the implementation is to reduce the
1229      // context-switch rate.
1230      if (_succ != NULL) continue;
1231
1232      w = _EntryList  ;
1233      if (w != NULL) {
1234          guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1235          ExitEpilog (Self, w) ;
1236          return ;
1237      }
1238   }
1239}
1240
1241// ExitSuspendEquivalent:
1242// A faster alternate to handle_special_suspend_equivalent_condition()
1243//
1244// handle_special_suspend_equivalent_condition() unconditionally
1245// acquires the SR_lock.  On some platforms uncontended MutexLocker()
1246// operations have high latency.  Note that in ::enter() we call HSSEC
1247// while holding the monitor, so we effectively lengthen the critical sections.
1248//
1249// There are a number of possible solutions:
1250//
1251// A.  To ameliorate the problem we might also defer state transitions
1252//     to as late as possible -- just prior to parking.
1253//     Given that, we'd call HSSEC after having returned from park(),
1254//     but before attempting to acquire the monitor.  This is only a
1255//     partial solution.  It avoids calling HSSEC while holding the
1256//     monitor (good), but it still increases successor reacquisition latency --
1257//     the interval between unparking a successor and the time the successor
1258//     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1259//     If we use this technique we can also avoid EnterI()-exit() loop
1260//     in ::enter() where we iteratively drop the lock and then attempt
1261//     to reacquire it after suspending.
1262//
1263// B.  In the future we might fold all the suspend bits into a
1264//     composite per-thread suspend flag and then update it with CAS().
1265//     Alternately, a Dekker-like mechanism with multiple variables
1266//     would suffice:
1267//       ST Self->_suspend_equivalent = false
1268//       MEMBAR
1269//       LD Self_>_suspend_flags
1270//
1271
1272
1273bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
1274   int Mode = Knob_FastHSSEC ;
1275   if (Mode && !jSelf->is_external_suspend()) {
1276      assert (jSelf->is_suspend_equivalent(), "invariant") ;
1277      jSelf->clear_suspend_equivalent() ;
1278      if (2 == Mode) OrderAccess::storeload() ;
1279      if (!jSelf->is_external_suspend()) return false ;
1280      // We raced a suspension -- fall thru into the slow path
1281      TEVENT (ExitSuspendEquivalent - raced) ;
1282      jSelf->set_suspend_equivalent() ;
1283   }
1284   return jSelf->handle_special_suspend_equivalent_condition() ;
1285}
1286
1287
1288void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
1289   assert (_owner == Self, "invariant") ;
1290
1291   // Exit protocol:
1292   // 1. ST _succ = wakee
1293   // 2. membar #loadstore|#storestore;
1294   // 2. ST _owner = NULL
1295   // 3. unpark(wakee)
1296
1297   _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
1298   ParkEvent * Trigger = Wakee->_event ;
1299
1300   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1301   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1302   // out-of-scope (non-extant).
1303   Wakee  = NULL ;
1304
1305   // Drop the lock
1306   OrderAccess::release_store_ptr (&_owner, NULL) ;
1307   OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
1308
1309   if (SafepointSynchronize::do_call_back()) {
1310      TEVENT (unpark before SAFEPOINT) ;
1311   }
1312
1313   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1314   Trigger->unpark() ;
1315
1316   // Maintain stats and report events to JVMTI
1317   if (ObjectMonitor::_sync_Parks != NULL) {
1318      ObjectMonitor::_sync_Parks->inc() ;
1319   }
1320}
1321
1322
1323// -----------------------------------------------------------------------------
1324// Class Loader deadlock handling.
1325//
1326// complete_exit exits a lock returning recursion count
1327// complete_exit/reenter operate as a wait without waiting
1328// complete_exit requires an inflated monitor
1329// The _owner field is not always the Thread addr even with an
1330// inflated monitor, e.g. the monitor can be inflated by a non-owning
1331// thread due to contention.
1332intptr_t ObjectMonitor::complete_exit(TRAPS) {
1333   Thread * const Self = THREAD;
1334   assert(Self->is_Java_thread(), "Must be Java thread!");
1335   JavaThread *jt = (JavaThread *)THREAD;
1336
1337   DeferredInitialize();
1338
1339   if (THREAD != _owner) {
1340    if (THREAD->is_lock_owned ((address)_owner)) {
1341       assert(_recursions == 0, "internal state error");
1342       _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
1343       _recursions = 0 ;
1344       OwnerIsThread = 1 ;
1345    }
1346   }
1347
1348   guarantee(Self == _owner, "complete_exit not owner");
1349   intptr_t save = _recursions; // record the old recursion count
1350   _recursions = 0;        // set the recursion level to be 0
1351   exit (Self) ;           // exit the monitor
1352   guarantee (_owner != Self, "invariant");
1353   return save;
1354}
1355
1356// reenter() enters a lock and sets recursion count
1357// complete_exit/reenter operate as a wait without waiting
1358void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1359   Thread * const Self = THREAD;
1360   assert(Self->is_Java_thread(), "Must be Java thread!");
1361   JavaThread *jt = (JavaThread *)THREAD;
1362
1363   guarantee(_owner != Self, "reenter already owner");
1364   enter (THREAD);       // enter the monitor
1365   guarantee (_recursions == 0, "reenter recursion");
1366   _recursions = recursions;
1367   return;
1368}
1369
1370
1371// -----------------------------------------------------------------------------
1372// A macro is used below because there may already be a pending
1373// exception which should not abort the execution of the routines
1374// which use this (which is why we don't put this into check_slow and
1375// call it with a CHECK argument).
1376
1377#define CHECK_OWNER()                                                             \
1378  do {                                                                            \
1379    if (THREAD != _owner) {                                                       \
1380      if (THREAD->is_lock_owned((address) _owner)) {                              \
1381        _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
1382        _recursions = 0;                                                          \
1383        OwnerIsThread = 1 ;                                                       \
1384      } else {                                                                    \
1385        TEVENT (Throw IMSX) ;                                                     \
1386        THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
1387      }                                                                           \
1388    }                                                                             \
1389  } while (false)
1390
1391// check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1392// TODO-FIXME: remove check_slow() -- it's likely dead.
1393
1394void ObjectMonitor::check_slow(TRAPS) {
1395  TEVENT (check_slow - throw IMSX) ;
1396  assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1397  THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1398}
1399
1400static int Adjust (volatile int * adr, int dx) {
1401  int v ;
1402  for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
1403  return v ;
1404}
1405// -----------------------------------------------------------------------------
1406// Wait/Notify/NotifyAll
1407//
1408// Note: a subset of changes to ObjectMonitor::wait()
1409// will need to be replicated in complete_exit above
1410void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1411   Thread * const Self = THREAD ;
1412   assert(Self->is_Java_thread(), "Must be Java thread!");
1413   JavaThread *jt = (JavaThread *)THREAD;
1414
1415   DeferredInitialize () ;
1416
1417   // Throw IMSX or IEX.
1418   CHECK_OWNER();
1419
1420   // check for a pending interrupt
1421   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1422     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1423     if (JvmtiExport::should_post_monitor_waited()) {
1424        // Note: 'false' parameter is passed here because the
1425        // wait was not timed out due to thread interrupt.
1426        JvmtiExport::post_monitor_waited(jt, this, false);
1427     }
1428     TEVENT (Wait - Throw IEX) ;
1429     THROW(vmSymbols::java_lang_InterruptedException());
1430     return ;
1431   }
1432   TEVENT (Wait) ;
1433
1434   assert (Self->_Stalled == 0, "invariant") ;
1435   Self->_Stalled = intptr_t(this) ;
1436   jt->set_current_waiting_monitor(this);
1437
1438   // create a node to be put into the queue
1439   // Critically, after we reset() the event but prior to park(), we must check
1440   // for a pending interrupt.
1441   ObjectWaiter node(Self);
1442   node.TState = ObjectWaiter::TS_WAIT ;
1443   Self->_ParkEvent->reset() ;
1444   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1445
1446   // Enter the waiting queue, which is a circular doubly linked list in this case
1447   // but it could be a priority queue or any data structure.
1448   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1449   // by the the owner of the monitor *except* in the case where park()
1450   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1451   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1452
1453   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
1454   AddWaiter (&node) ;
1455   Thread::SpinRelease (&_WaitSetLock) ;
1456
1457   if ((SyncFlags & 4) == 0) {
1458      _Responsible = NULL ;
1459   }
1460   intptr_t save = _recursions; // record the old recursion count
1461   _waiters++;                  // increment the number of waiters
1462   _recursions = 0;             // set the recursion level to be 1
1463   exit (Self) ;                    // exit the monitor
1464   guarantee (_owner != Self, "invariant") ;
1465
1466   // As soon as the ObjectMonitor's ownership is dropped in the exit()
1467   // call above, another thread can enter() the ObjectMonitor, do the
1468   // notify(), and exit() the ObjectMonitor. If the other thread's
1469   // exit() call chooses this thread as the successor and the unpark()
1470   // call happens to occur while this thread is posting a
1471   // MONITOR_CONTENDED_EXIT event, then we run the risk of the event
1472   // handler using RawMonitors and consuming the unpark().
1473   //
1474   // To avoid the problem, we re-post the event. This does no harm
1475   // even if the original unpark() was not consumed because we are the
1476   // chosen successor for this monitor.
1477   if (node._notified != 0 && _succ == Self) {
1478      node._event->unpark();
1479   }
1480
1481   // The thread is on the WaitSet list - now park() it.
1482   // On MP systems it's conceivable that a brief spin before we park
1483   // could be profitable.
1484   //
1485   // TODO-FIXME: change the following logic to a loop of the form
1486   //   while (!timeout && !interrupted && _notified == 0) park()
1487
1488   int ret = OS_OK ;
1489   int WasNotified = 0 ;
1490   { // State transition wrappers
1491     OSThread* osthread = Self->osthread();
1492     OSThreadWaitState osts(osthread, true);
1493     {
1494       ThreadBlockInVM tbivm(jt);
1495       // Thread is in thread_blocked state and oop access is unsafe.
1496       jt->set_suspend_equivalent();
1497
1498       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1499           // Intentionally empty
1500       } else
1501       if (node._notified == 0) {
1502         if (millis <= 0) {
1503            Self->_ParkEvent->park () ;
1504         } else {
1505            ret = Self->_ParkEvent->park (millis) ;
1506         }
1507       }
1508
1509       // were we externally suspended while we were waiting?
1510       if (ExitSuspendEquivalent (jt)) {
1511          // TODO-FIXME: add -- if succ == Self then succ = null.
1512          jt->java_suspend_self();
1513       }
1514
1515     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1516
1517
1518     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1519     // from the WaitSet to the EntryList.
1520     // See if we need to remove Node from the WaitSet.
1521     // We use double-checked locking to avoid grabbing _WaitSetLock
1522     // if the thread is not on the wait queue.
1523     //
1524     // Note that we don't need a fence before the fetch of TState.
1525     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1526     // written by the is thread. (perhaps the fetch might even be satisfied
1527     // by a look-aside into the processor's own store buffer, although given
1528     // the length of the code path between the prior ST and this load that's
1529     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1530     // then we'll acquire the lock and then re-fetch a fresh TState value.
1531     // That is, we fail toward safety.
1532
1533     if (node.TState == ObjectWaiter::TS_WAIT) {
1534         Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
1535         if (node.TState == ObjectWaiter::TS_WAIT) {
1536            DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
1537            assert(node._notified == 0, "invariant");
1538            node.TState = ObjectWaiter::TS_RUN ;
1539         }
1540         Thread::SpinRelease (&_WaitSetLock) ;
1541     }
1542
1543     // The thread is now either on off-list (TS_RUN),
1544     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1545     // The Node's TState variable is stable from the perspective of this thread.
1546     // No other threads will asynchronously modify TState.
1547     guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
1548     OrderAccess::loadload() ;
1549     if (_succ == Self) _succ = NULL ;
1550     WasNotified = node._notified ;
1551
1552     // Reentry phase -- reacquire the monitor.
1553     // re-enter contended monitor after object.wait().
1554     // retain OBJECT_WAIT state until re-enter successfully completes
1555     // Thread state is thread_in_vm and oop access is again safe,
1556     // although the raw address of the object may have changed.
1557     // (Don't cache naked oops over safepoints, of course).
1558
1559     // post monitor waited event. Note that this is past-tense, we are done waiting.
1560     if (JvmtiExport::should_post_monitor_waited()) {
1561       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1562     }
1563     OrderAccess::fence() ;
1564
1565     assert (Self->_Stalled != 0, "invariant") ;
1566     Self->_Stalled = 0 ;
1567
1568     assert (_owner != Self, "invariant") ;
1569     ObjectWaiter::TStates v = node.TState ;
1570     if (v == ObjectWaiter::TS_RUN) {
1571         enter (Self) ;
1572     } else {
1573         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
1574         ReenterI (Self, &node) ;
1575         node.wait_reenter_end(this);
1576     }
1577
1578     // Self has reacquired the lock.
1579     // Lifecycle - the node representing Self must not appear on any queues.
1580     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1581     // want residual elements associated with this thread left on any lists.
1582     guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
1583     assert    (_owner == Self, "invariant") ;
1584     assert    (_succ != Self , "invariant") ;
1585   } // OSThreadWaitState()
1586
1587   jt->set_current_waiting_monitor(NULL);
1588
1589   guarantee (_recursions == 0, "invariant") ;
1590   _recursions = save;     // restore the old recursion count
1591   _waiters--;             // decrement the number of waiters
1592
1593   // Verify a few postconditions
1594   assert (_owner == Self       , "invariant") ;
1595   assert (_succ  != Self       , "invariant") ;
1596   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
1597
1598   if (SyncFlags & 32) {
1599      OrderAccess::fence() ;
1600   }
1601
1602   // check if the notification happened
1603   if (!WasNotified) {
1604     // no, it could be timeout or Thread.interrupt() or both
1605     // check for interrupt event, otherwise it is timeout
1606     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1607       TEVENT (Wait - throw IEX from epilog) ;
1608       THROW(vmSymbols::java_lang_InterruptedException());
1609     }
1610   }
1611
1612   // NOTE: Spurious wake up will be consider as timeout.
1613   // Monitor notify has precedence over thread interrupt.
1614}
1615
1616
1617// Consider:
1618// If the lock is cool (cxq == null && succ == null) and we're on an MP system
1619// then instead of transferring a thread from the WaitSet to the EntryList
1620// we might just dequeue a thread from the WaitSet and directly unpark() it.
1621
1622void ObjectMonitor::notify(TRAPS) {
1623  CHECK_OWNER();
1624  if (_WaitSet == NULL) {
1625     TEVENT (Empty-Notify) ;
1626     return ;
1627  }
1628  DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1629
1630  int Policy = Knob_MoveNotifyee ;
1631
1632  Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
1633  ObjectWaiter * iterator = DequeueWaiter() ;
1634  if (iterator != NULL) {
1635     TEVENT (Notify1 - Transfer) ;
1636     guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1637     guarantee (iterator->_notified == 0, "invariant") ;
1638     if (Policy != 4) {
1639        iterator->TState = ObjectWaiter::TS_ENTER ;
1640     }
1641     iterator->_notified = 1 ;
1642
1643     ObjectWaiter * List = _EntryList ;
1644     if (List != NULL) {
1645        assert (List->_prev == NULL, "invariant") ;
1646        assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1647        assert (List != iterator, "invariant") ;
1648     }
1649
1650     if (Policy == 0) {       // prepend to EntryList
1651         if (List == NULL) {
1652             iterator->_next = iterator->_prev = NULL ;
1653             _EntryList = iterator ;
1654         } else {
1655             List->_prev = iterator ;
1656             iterator->_next = List ;
1657             iterator->_prev = NULL ;
1658             _EntryList = iterator ;
1659        }
1660     } else
1661     if (Policy == 1) {      // append to EntryList
1662         if (List == NULL) {
1663             iterator->_next = iterator->_prev = NULL ;
1664             _EntryList = iterator ;
1665         } else {
1666            // CONSIDER:  finding the tail currently requires a linear-time walk of
1667            // the EntryList.  We can make tail access constant-time by converting to
1668            // a CDLL instead of using our current DLL.
1669            ObjectWaiter * Tail ;
1670            for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1671            assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1672            Tail->_next = iterator ;
1673            iterator->_prev = Tail ;
1674            iterator->_next = NULL ;
1675        }
1676     } else
1677     if (Policy == 2) {      // prepend to cxq
1678         // prepend to cxq
1679         if (List == NULL) {
1680             iterator->_next = iterator->_prev = NULL ;
1681             _EntryList = iterator ;
1682         } else {
1683            iterator->TState = ObjectWaiter::TS_CXQ ;
1684            for (;;) {
1685                ObjectWaiter * Front = _cxq ;
1686                iterator->_next = Front ;
1687                if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1688                    break ;
1689                }
1690            }
1691         }
1692     } else
1693     if (Policy == 3) {      // append to cxq
1694        iterator->TState = ObjectWaiter::TS_CXQ ;
1695        for (;;) {
1696            ObjectWaiter * Tail ;
1697            Tail = _cxq ;
1698            if (Tail == NULL) {
1699                iterator->_next = NULL ;
1700                if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1701                   break ;
1702                }
1703            } else {
1704                while (Tail->_next != NULL) Tail = Tail->_next ;
1705                Tail->_next = iterator ;
1706                iterator->_prev = Tail ;
1707                iterator->_next = NULL ;
1708                break ;
1709            }
1710        }
1711     } else {
1712        ParkEvent * ev = iterator->_event ;
1713        iterator->TState = ObjectWaiter::TS_RUN ;
1714        OrderAccess::fence() ;
1715        ev->unpark() ;
1716     }
1717
1718     if (Policy < 4) {
1719       iterator->wait_reenter_begin(this);
1720     }
1721
1722     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1723     // move the add-to-EntryList operation, above, outside the critical section
1724     // protected by _WaitSetLock.  In practice that's not useful.  With the
1725     // exception of  wait() timeouts and interrupts the monitor owner
1726     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1727     // on _WaitSetLock so it's not profitable to reduce the length of the
1728     // critical section.
1729  }
1730
1731  Thread::SpinRelease (&_WaitSetLock) ;
1732
1733  if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
1734     ObjectMonitor::_sync_Notifications->inc() ;
1735  }
1736}
1737
1738
1739void ObjectMonitor::notifyAll(TRAPS) {
1740  CHECK_OWNER();
1741  ObjectWaiter* iterator;
1742  if (_WaitSet == NULL) {
1743      TEVENT (Empty-NotifyAll) ;
1744      return ;
1745  }
1746  DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1747
1748  int Policy = Knob_MoveNotifyee ;
1749  int Tally = 0 ;
1750  Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
1751
1752  for (;;) {
1753     iterator = DequeueWaiter () ;
1754     if (iterator == NULL) break ;
1755     TEVENT (NotifyAll - Transfer1) ;
1756     ++Tally ;
1757
1758     // Disposition - what might we do with iterator ?
1759     // a.  add it directly to the EntryList - either tail or head.
1760     // b.  push it onto the front of the _cxq.
1761     // For now we use (a).
1762
1763     guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1764     guarantee (iterator->_notified == 0, "invariant") ;
1765     iterator->_notified = 1 ;
1766     if (Policy != 4) {
1767        iterator->TState = ObjectWaiter::TS_ENTER ;
1768     }
1769
1770     ObjectWaiter * List = _EntryList ;
1771     if (List != NULL) {
1772        assert (List->_prev == NULL, "invariant") ;
1773        assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1774        assert (List != iterator, "invariant") ;
1775     }
1776
1777     if (Policy == 0) {       // prepend to EntryList
1778         if (List == NULL) {
1779             iterator->_next = iterator->_prev = NULL ;
1780             _EntryList = iterator ;
1781         } else {
1782             List->_prev = iterator ;
1783             iterator->_next = List ;
1784             iterator->_prev = NULL ;
1785             _EntryList = iterator ;
1786        }
1787     } else
1788     if (Policy == 1) {      // append to EntryList
1789         if (List == NULL) {
1790             iterator->_next = iterator->_prev = NULL ;
1791             _EntryList = iterator ;
1792         } else {
1793            // CONSIDER:  finding the tail currently requires a linear-time walk of
1794            // the EntryList.  We can make tail access constant-time by converting to
1795            // a CDLL instead of using our current DLL.
1796            ObjectWaiter * Tail ;
1797            for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1798            assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1799            Tail->_next = iterator ;
1800            iterator->_prev = Tail ;
1801            iterator->_next = NULL ;
1802        }
1803     } else
1804     if (Policy == 2) {      // prepend to cxq
1805         // prepend to cxq
1806         iterator->TState = ObjectWaiter::TS_CXQ ;
1807         for (;;) {
1808             ObjectWaiter * Front = _cxq ;
1809             iterator->_next = Front ;
1810             if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1811                 break ;
1812             }
1813         }
1814     } else
1815     if (Policy == 3) {      // append to cxq
1816        iterator->TState = ObjectWaiter::TS_CXQ ;
1817        for (;;) {
1818            ObjectWaiter * Tail ;
1819            Tail = _cxq ;
1820            if (Tail == NULL) {
1821                iterator->_next = NULL ;
1822                if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1823                   break ;
1824                }
1825            } else {
1826                while (Tail->_next != NULL) Tail = Tail->_next ;
1827                Tail->_next = iterator ;
1828                iterator->_prev = Tail ;
1829                iterator->_next = NULL ;
1830                break ;
1831            }
1832        }
1833     } else {
1834        ParkEvent * ev = iterator->_event ;
1835        iterator->TState = ObjectWaiter::TS_RUN ;
1836        OrderAccess::fence() ;
1837        ev->unpark() ;
1838     }
1839
1840     if (Policy < 4) {
1841       iterator->wait_reenter_begin(this);
1842     }
1843
1844     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1845     // move the add-to-EntryList operation, above, outside the critical section
1846     // protected by _WaitSetLock.  In practice that's not useful.  With the
1847     // exception of  wait() timeouts and interrupts the monitor owner
1848     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1849     // on _WaitSetLock so it's not profitable to reduce the length of the
1850     // critical section.
1851  }
1852
1853  Thread::SpinRelease (&_WaitSetLock) ;
1854
1855  if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
1856     ObjectMonitor::_sync_Notifications->inc(Tally) ;
1857  }
1858}
1859
1860// -----------------------------------------------------------------------------
1861// Adaptive Spinning Support
1862//
1863// Adaptive spin-then-block - rational spinning
1864//
1865// Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1866// algorithm.  On high order SMP systems it would be better to start with
1867// a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1868// a contending thread could enqueue itself on the cxq and then spin locally
1869// on a thread-specific variable such as its ParkEvent._Event flag.
1870// That's left as an exercise for the reader.  Note that global spinning is
1871// not problematic on Niagara, as the L2$ serves the interconnect and has both
1872// low latency and massive bandwidth.
1873//
1874// Broadly, we can fix the spin frequency -- that is, the % of contended lock
1875// acquisition attempts where we opt to spin --  at 100% and vary the spin count
1876// (duration) or we can fix the count at approximately the duration of
1877// a context switch and vary the frequency.   Of course we could also
1878// vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1879// See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
1880//
1881// This implementation varies the duration "D", where D varies with
1882// the success rate of recent spin attempts. (D is capped at approximately
1883// length of a round-trip context switch).  The success rate for recent
1884// spin attempts is a good predictor of the success rate of future spin
1885// attempts.  The mechanism adapts automatically to varying critical
1886// section length (lock modality), system load and degree of parallelism.
1887// D is maintained per-monitor in _SpinDuration and is initialized
1888// optimistically.  Spin frequency is fixed at 100%.
1889//
1890// Note that _SpinDuration is volatile, but we update it without locks
1891// or atomics.  The code is designed so that _SpinDuration stays within
1892// a reasonable range even in the presence of races.  The arithmetic
1893// operations on _SpinDuration are closed over the domain of legal values,
1894// so at worst a race will install and older but still legal value.
1895// At the very worst this introduces some apparent non-determinism.
1896// We might spin when we shouldn't or vice-versa, but since the spin
1897// count are relatively short, even in the worst case, the effect is harmless.
1898//
1899// Care must be taken that a low "D" value does not become an
1900// an absorbing state.  Transient spinning failures -- when spinning
1901// is overall profitable -- should not cause the system to converge
1902// on low "D" values.  We want spinning to be stable and predictable
1903// and fairly responsive to change and at the same time we don't want
1904// it to oscillate, become metastable, be "too" non-deterministic,
1905// or converge on or enter undesirable stable absorbing states.
1906//
1907// We implement a feedback-based control system -- using past behavior
1908// to predict future behavior.  We face two issues: (a) if the
1909// input signal is random then the spin predictor won't provide optimal
1910// results, and (b) if the signal frequency is too high then the control
1911// system, which has some natural response lag, will "chase" the signal.
1912// (b) can arise from multimodal lock hold times.  Transient preemption
1913// can also result in apparent bimodal lock hold times.
1914// Although sub-optimal, neither condition is particularly harmful, as
1915// in the worst-case we'll spin when we shouldn't or vice-versa.
1916// The maximum spin duration is rather short so the failure modes aren't bad.
1917// To be conservative, I've tuned the gain in system to bias toward
1918// _not spinning.  Relatedly, the system can sometimes enter a mode where it
1919// "rings" or oscillates between spinning and not spinning.  This happens
1920// when spinning is just on the cusp of profitability, however, so the
1921// situation is not dire.  The state is benign -- there's no need to add
1922// hysteresis control to damp the transition rate between spinning and
1923// not spinning.
1924//
1925
1926intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
1927int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
1928
1929// Spinning: Fixed frequency (100%), vary duration
1930
1931
1932int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
1933
1934    // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1935    int ctr = Knob_FixedSpin ;
1936    if (ctr != 0) {
1937        while (--ctr >= 0) {
1938            if (TryLock (Self) > 0) return 1 ;
1939            SpinPause () ;
1940        }
1941        return 0 ;
1942    }
1943
1944    for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
1945      if (TryLock(Self) > 0) {
1946        // Increase _SpinDuration ...
1947        // Note that we don't clamp SpinDuration precisely at SpinLimit.
1948        // Raising _SpurDuration to the poverty line is key.
1949        int x = _SpinDuration ;
1950        if (x < Knob_SpinLimit) {
1951           if (x < Knob_Poverty) x = Knob_Poverty ;
1952           _SpinDuration = x + Knob_BonusB ;
1953        }
1954        return 1 ;
1955      }
1956      SpinPause () ;
1957    }
1958
1959    // Admission control - verify preconditions for spinning
1960    //
1961    // We always spin a little bit, just to prevent _SpinDuration == 0 from
1962    // becoming an absorbing state.  Put another way, we spin briefly to
1963    // sample, just in case the system load, parallelism, contention, or lock
1964    // modality changed.
1965    //
1966    // Consider the following alternative:
1967    // Periodically set _SpinDuration = _SpinLimit and try a long/full
1968    // spin attempt.  "Periodically" might mean after a tally of
1969    // the # of failed spin attempts (or iterations) reaches some threshold.
1970    // This takes us into the realm of 1-out-of-N spinning, where we
1971    // hold the duration constant but vary the frequency.
1972
1973    ctr = _SpinDuration  ;
1974    if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
1975    if (ctr <= 0) return 0 ;
1976
1977    if (Knob_SuccRestrict && _succ != NULL) return 0 ;
1978    if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
1979       TEVENT (Spin abort - notrunnable [TOP]);
1980       return 0 ;
1981    }
1982
1983    int MaxSpin = Knob_MaxSpinners ;
1984    if (MaxSpin >= 0) {
1985       if (_Spinner > MaxSpin) {
1986          TEVENT (Spin abort -- too many spinners) ;
1987          return 0 ;
1988       }
1989       // Slighty racy, but benign ...
1990       Adjust (&_Spinner, 1) ;
1991    }
1992
1993    // We're good to spin ... spin ingress.
1994    // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1995    // when preparing to LD...CAS _owner, etc and the CAS is likely
1996    // to succeed.
1997    int hits    = 0 ;
1998    int msk     = 0 ;
1999    int caspty  = Knob_CASPenalty ;
2000    int oxpty   = Knob_OXPenalty ;
2001    int sss     = Knob_SpinSetSucc ;
2002    if (sss && _succ == NULL ) _succ = Self ;
2003    Thread * prv = NULL ;
2004
2005    // There are three ways to exit the following loop:
2006    // 1.  A successful spin where this thread has acquired the lock.
2007    // 2.  Spin failure with prejudice
2008    // 3.  Spin failure without prejudice
2009
2010    while (--ctr >= 0) {
2011
2012      // Periodic polling -- Check for pending GC
2013      // Threads may spin while they're unsafe.
2014      // We don't want spinning threads to delay the JVM from reaching
2015      // a stop-the-world safepoint or to steal cycles from GC.
2016      // If we detect a pending safepoint we abort in order that
2017      // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
2018      // this thread, if safe, doesn't steal cycles from GC.
2019      // This is in keeping with the "no loitering in runtime" rule.
2020      // We periodically check to see if there's a safepoint pending.
2021      if ((ctr & 0xFF) == 0) {
2022         if (SafepointSynchronize::do_call_back()) {
2023            TEVENT (Spin: safepoint) ;
2024            goto Abort ;           // abrupt spin egress
2025         }
2026         if (Knob_UsePause & 1) SpinPause () ;
2027
2028         int (*scb)(intptr_t,int) = SpinCallbackFunction ;
2029         if (hits > 50 && scb != NULL) {
2030            int abend = (*scb)(SpinCallbackArgument, 0) ;
2031         }
2032      }
2033
2034      if (Knob_UsePause & 2) SpinPause() ;
2035
2036      // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
2037      // This is useful on classic SMP systems, but is of less utility on
2038      // N1-style CMT platforms.
2039      //
2040      // Trade-off: lock acquisition latency vs coherency bandwidth.
2041      // Lock hold times are typically short.  A histogram
2042      // of successful spin attempts shows that we usually acquire
2043      // the lock early in the spin.  That suggests we want to
2044      // sample _owner frequently in the early phase of the spin,
2045      // but then back-off and sample less frequently as the spin
2046      // progresses.  The back-off makes a good citizen on SMP big
2047      // SMP systems.  Oversampling _owner can consume excessive
2048      // coherency bandwidth.  Relatedly, if we _oversample _owner we
2049      // can inadvertently interfere with the the ST m->owner=null.
2050      // executed by the lock owner.
2051      if (ctr & msk) continue ;
2052      ++hits ;
2053      if ((hits & 0xF) == 0) {
2054        // The 0xF, above, corresponds to the exponent.
2055        // Consider: (msk+1)|msk
2056        msk = ((msk << 2)|3) & BackOffMask ;
2057      }
2058
2059      // Probe _owner with TATAS
2060      // If this thread observes the monitor transition or flicker
2061      // from locked to unlocked to locked, then the odds that this
2062      // thread will acquire the lock in this spin attempt go down
2063      // considerably.  The same argument applies if the CAS fails
2064      // or if we observe _owner change from one non-null value to
2065      // another non-null value.   In such cases we might abort
2066      // the spin without prejudice or apply a "penalty" to the
2067      // spin count-down variable "ctr", reducing it by 100, say.
2068
2069      Thread * ox = (Thread *) _owner ;
2070      if (ox == NULL) {
2071         ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
2072         if (ox == NULL) {
2073            // The CAS succeeded -- this thread acquired ownership
2074            // Take care of some bookkeeping to exit spin state.
2075            if (sss && _succ == Self) {
2076               _succ = NULL ;
2077            }
2078            if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
2079
2080            // Increase _SpinDuration :
2081            // The spin was successful (profitable) so we tend toward
2082            // longer spin attempts in the future.
2083            // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2084            // If we acquired the lock early in the spin cycle it
2085            // makes sense to increase _SpinDuration proportionally.
2086            // Note that we don't clamp SpinDuration precisely at SpinLimit.
2087            int x = _SpinDuration ;
2088            if (x < Knob_SpinLimit) {
2089                if (x < Knob_Poverty) x = Knob_Poverty ;
2090                _SpinDuration = x + Knob_Bonus ;
2091            }
2092            return 1 ;
2093         }
2094
2095         // The CAS failed ... we can take any of the following actions:
2096         // * penalize: ctr -= Knob_CASPenalty
2097         // * exit spin with prejudice -- goto Abort;
2098         // * exit spin without prejudice.
2099         // * Since CAS is high-latency, retry again immediately.
2100         prv = ox ;
2101         TEVENT (Spin: cas failed) ;
2102         if (caspty == -2) break ;
2103         if (caspty == -1) goto Abort ;
2104         ctr -= caspty ;
2105         continue ;
2106      }
2107
2108      // Did lock ownership change hands ?
2109      if (ox != prv && prv != NULL ) {
2110          TEVENT (spin: Owner changed)
2111          if (oxpty == -2) break ;
2112          if (oxpty == -1) goto Abort ;
2113          ctr -= oxpty ;
2114      }
2115      prv = ox ;
2116
2117      // Abort the spin if the owner is not executing.
2118      // The owner must be executing in order to drop the lock.
2119      // Spinning while the owner is OFFPROC is idiocy.
2120      // Consider: ctr -= RunnablePenalty ;
2121      if (Knob_OState && NotRunnable (Self, ox)) {
2122         TEVENT (Spin abort - notrunnable);
2123         goto Abort ;
2124      }
2125      if (sss && _succ == NULL ) _succ = Self ;
2126   }
2127
2128   // Spin failed with prejudice -- reduce _SpinDuration.
2129   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2130   // AIMD is globally stable.
2131   TEVENT (Spin failure) ;
2132   {
2133     int x = _SpinDuration ;
2134     if (x > 0) {
2135        // Consider an AIMD scheme like: x -= (x >> 3) + 100
2136        // This is globally sample and tends to damp the response.
2137        x -= Knob_Penalty ;
2138        if (x < 0) x = 0 ;
2139        _SpinDuration = x ;
2140     }
2141   }
2142
2143 Abort:
2144   if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
2145   if (sss && _succ == Self) {
2146      _succ = NULL ;
2147      // Invariant: after setting succ=null a contending thread
2148      // must recheck-retry _owner before parking.  This usually happens
2149      // in the normal usage of TrySpin(), but it's safest
2150      // to make TrySpin() as foolproof as possible.
2151      OrderAccess::fence() ;
2152      if (TryLock(Self) > 0) return 1 ;
2153   }
2154   return 0 ;
2155}
2156
2157// NotRunnable() -- informed spinning
2158//
2159// Don't bother spinning if the owner is not eligible to drop the lock.
2160// Peek at the owner's schedctl.sc_state and Thread._thread_values and
2161// spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2162// The thread must be runnable in order to drop the lock in timely fashion.
2163// If the _owner is not runnable then spinning will not likely be
2164// successful (profitable).
2165//
2166// Beware -- the thread referenced by _owner could have died
2167// so a simply fetch from _owner->_thread_state might trap.
2168// Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2169// Because of the lifecycle issues the schedctl and _thread_state values
2170// observed by NotRunnable() might be garbage.  NotRunnable must
2171// tolerate this and consider the observed _thread_state value
2172// as advisory.
2173//
2174// Beware too, that _owner is sometimes a BasicLock address and sometimes
2175// a thread pointer.  We differentiate the two cases with OwnerIsThread.
2176// Alternately, we might tag the type (thread pointer vs basiclock pointer)
2177// with the LSB of _owner.  Another option would be to probablistically probe
2178// the putative _owner->TypeTag value.
2179//
2180// Checking _thread_state isn't perfect.  Even if the thread is
2181// in_java it might be blocked on a page-fault or have been preempted
2182// and sitting on a ready/dispatch queue.  _thread state in conjunction
2183// with schedctl.sc_state gives us a good picture of what the
2184// thread is doing, however.
2185//
2186// TODO: check schedctl.sc_state.
2187// We'll need to use SafeFetch32() to read from the schedctl block.
2188// See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2189//
2190// The return value from NotRunnable() is *advisory* -- the
2191// result is based on sampling and is not necessarily coherent.
2192// The caller must tolerate false-negative and false-positive errors.
2193// Spinning, in general, is probabilistic anyway.
2194
2195
2196int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
2197    // Check either OwnerIsThread or ox->TypeTag == 2BAD.
2198    if (!OwnerIsThread) return 0 ;
2199
2200    if (ox == NULL) return 0 ;
2201
2202    // Avoid transitive spinning ...
2203    // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2204    // Immediately after T1 acquires L it's possible that T2, also
2205    // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2206    // This occurs transiently after T1 acquired L but before
2207    // T1 managed to clear T1.Stalled.  T2 does not need to abort
2208    // its spin in this circumstance.
2209    intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
2210
2211    if (BlockedOn == 1) return 1 ;
2212    if (BlockedOn != 0) {
2213      return BlockedOn != intptr_t(this) && _owner == ox ;
2214    }
2215
2216    assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
2217    int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
2218    // consider also: jst != _thread_in_Java -- but that's overspecific.
2219    return jst == _thread_blocked || jst == _thread_in_native ;
2220}
2221
2222
2223// -----------------------------------------------------------------------------
2224// WaitSet management ...
2225
2226ObjectWaiter::ObjectWaiter(Thread* thread) {
2227  _next     = NULL;
2228  _prev     = NULL;
2229  _notified = 0;
2230  TState    = TS_RUN ;
2231  _thread   = thread;
2232  _event    = thread->_ParkEvent ;
2233  _active   = false;
2234  assert (_event != NULL, "invariant") ;
2235}
2236
2237void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
2238  JavaThread *jt = (JavaThread *)this->_thread;
2239  _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2240}
2241
2242void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
2243  JavaThread *jt = (JavaThread *)this->_thread;
2244  JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2245}
2246
2247inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2248  assert(node != NULL, "should not dequeue NULL node");
2249  assert(node->_prev == NULL, "node already in list");
2250  assert(node->_next == NULL, "node already in list");
2251  // put node at end of queue (circular doubly linked list)
2252  if (_WaitSet == NULL) {
2253    _WaitSet = node;
2254    node->_prev = node;
2255    node->_next = node;
2256  } else {
2257    ObjectWaiter* head = _WaitSet ;
2258    ObjectWaiter* tail = head->_prev;
2259    assert(tail->_next == head, "invariant check");
2260    tail->_next = node;
2261    head->_prev = node;
2262    node->_next = head;
2263    node->_prev = tail;
2264  }
2265}
2266
2267inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2268  // dequeue the very first waiter
2269  ObjectWaiter* waiter = _WaitSet;
2270  if (waiter) {
2271    DequeueSpecificWaiter(waiter);
2272  }
2273  return waiter;
2274}
2275
2276inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2277  assert(node != NULL, "should not dequeue NULL node");
2278  assert(node->_prev != NULL, "node already removed from list");
2279  assert(node->_next != NULL, "node already removed from list");
2280  // when the waiter has woken up because of interrupt,
2281  // timeout or other spurious wake-up, dequeue the
2282  // waiter from waiting list
2283  ObjectWaiter* next = node->_next;
2284  if (next == node) {
2285    assert(node->_prev == node, "invariant check");
2286    _WaitSet = NULL;
2287  } else {
2288    ObjectWaiter* prev = node->_prev;
2289    assert(prev->_next == node, "invariant check");
2290    assert(next->_prev == node, "invariant check");
2291    next->_prev = prev;
2292    prev->_next = next;
2293    if (_WaitSet == node) {
2294      _WaitSet = next;
2295    }
2296  }
2297  node->_next = NULL;
2298  node->_prev = NULL;
2299}
2300
2301// -----------------------------------------------------------------------------
2302// PerfData support
2303PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
2304PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
2305PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
2306PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
2307PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
2308PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
2309PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
2310PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
2311PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
2312PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
2313PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
2314PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
2315PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
2316PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
2317PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
2318PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
2319PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
2320PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;
2321
2322// One-shot global initialization for the sync subsystem.
2323// We could also defer initialization and initialize on-demand
2324// the first time we call inflate().  Initialization would
2325// be protected - like so many things - by the MonitorCache_lock.
2326
2327void ObjectMonitor::Initialize () {
2328  static int InitializationCompleted = 0 ;
2329  assert (InitializationCompleted == 0, "invariant") ;
2330  InitializationCompleted = 1 ;
2331  if (UsePerfData) {
2332      EXCEPTION_MARK ;
2333      #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
2334      #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
2335      NEWPERFCOUNTER(_sync_Inflations) ;
2336      NEWPERFCOUNTER(_sync_Deflations) ;
2337      NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
2338      NEWPERFCOUNTER(_sync_FutileWakeups) ;
2339      NEWPERFCOUNTER(_sync_Parks) ;
2340      NEWPERFCOUNTER(_sync_EmptyNotifications) ;
2341      NEWPERFCOUNTER(_sync_Notifications) ;
2342      NEWPERFCOUNTER(_sync_SlowEnter) ;
2343      NEWPERFCOUNTER(_sync_SlowExit) ;
2344      NEWPERFCOUNTER(_sync_SlowNotify) ;
2345      NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
2346      NEWPERFCOUNTER(_sync_FailedSpins) ;
2347      NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
2348      NEWPERFCOUNTER(_sync_PrivateA) ;
2349      NEWPERFCOUNTER(_sync_PrivateB) ;
2350      NEWPERFCOUNTER(_sync_MonInCirculation) ;
2351      NEWPERFCOUNTER(_sync_MonScavenged) ;
2352      NEWPERFVARIABLE(_sync_MonExtant) ;
2353      #undef NEWPERFCOUNTER
2354  }
2355}
2356
2357
2358// Compile-time asserts
2359// When possible, it's better to catch errors deterministically at
2360// compile-time than at runtime.  The down-side to using compile-time
2361// asserts is that error message -- often something about negative array
2362// indices -- is opaque.
2363
2364#define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
2365
2366void ObjectMonitor::ctAsserts() {
2367  CTASSERT(offset_of (ObjectMonitor, _header) == 0);
2368}
2369
2370
2371static char * kvGet (char * kvList, const char * Key) {
2372    if (kvList == NULL) return NULL ;
2373    size_t n = strlen (Key) ;
2374    char * Search ;
2375    for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
2376        if (strncmp (Search, Key, n) == 0) {
2377            if (Search[n] == '=') return Search + n + 1 ;
2378            if (Search[n] == 0)   return (char *) "1" ;
2379        }
2380    }
2381    return NULL ;
2382}
2383
2384static int kvGetInt (char * kvList, const char * Key, int Default) {
2385    char * v = kvGet (kvList, Key) ;
2386    int rslt = v ? ::strtol (v, NULL, 0) : Default ;
2387    if (Knob_ReportSettings && v != NULL) {
2388        ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
2389        ::fflush (stdout) ;
2390    }
2391    return rslt ;
2392}
2393
2394void ObjectMonitor::DeferredInitialize () {
2395  if (InitDone > 0) return ;
2396  if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2397      while (InitDone != 1) ;
2398      return ;
2399  }
2400
2401  // One-shot global initialization ...
2402  // The initialization is idempotent, so we don't need locks.
2403  // In the future consider doing this via os::init_2().
2404  // SyncKnobs consist of <Key>=<Value> pairs in the style
2405  // of environment variables.  Start by converting ':' to NUL.
2406
2407  if (SyncKnobs == NULL) SyncKnobs = "" ;
2408
2409  size_t sz = strlen (SyncKnobs) ;
2410  char * knobs = (char *) malloc (sz + 2) ;
2411  if (knobs == NULL) {
2412     vm_exit_out_of_memory (sz + 2, "Parse SyncKnobs") ;
2413     guarantee (0, "invariant") ;
2414  }
2415  strcpy (knobs, SyncKnobs) ;
2416  knobs[sz+1] = 0 ;
2417  for (char * p = knobs ; *p ; p++) {
2418     if (*p == ':') *p = 0 ;
2419  }
2420
2421  #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
2422  SETKNOB(ReportSettings) ;
2423  SETKNOB(Verbose) ;
2424  SETKNOB(FixedSpin) ;
2425  SETKNOB(SpinLimit) ;
2426  SETKNOB(SpinBase) ;
2427  SETKNOB(SpinBackOff);
2428  SETKNOB(CASPenalty) ;
2429  SETKNOB(OXPenalty) ;
2430  SETKNOB(LogSpins) ;
2431  SETKNOB(SpinSetSucc) ;
2432  SETKNOB(SuccEnabled) ;
2433  SETKNOB(SuccRestrict) ;
2434  SETKNOB(Penalty) ;
2435  SETKNOB(Bonus) ;
2436  SETKNOB(BonusB) ;
2437  SETKNOB(Poverty) ;
2438  SETKNOB(SpinAfterFutile) ;
2439  SETKNOB(UsePause) ;
2440  SETKNOB(SpinEarly) ;
2441  SETKNOB(OState) ;
2442  SETKNOB(MaxSpinners) ;
2443  SETKNOB(PreSpin) ;
2444  SETKNOB(ExitPolicy) ;
2445  SETKNOB(QMode);
2446  SETKNOB(ResetEvent) ;
2447  SETKNOB(MoveNotifyee) ;
2448  SETKNOB(FastHSSEC) ;
2449  #undef SETKNOB
2450
2451  if (os::is_MP()) {
2452     BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
2453     if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
2454     // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2455  } else {
2456     Knob_SpinLimit = 0 ;
2457     Knob_SpinBase  = 0 ;
2458     Knob_PreSpin   = 0 ;
2459     Knob_FixedSpin = -1 ;
2460  }
2461
2462  if (Knob_LogSpins == 0) {
2463     ObjectMonitor::_sync_FailedSpins = NULL ;
2464  }
2465
2466  free (knobs) ;
2467  OrderAccess::fence() ;
2468  InitDone = 1 ;
2469}
2470
2471#ifndef PRODUCT
2472void ObjectMonitor::verify() {
2473}
2474
2475void ObjectMonitor::print() {
2476}
2477#endif
2478