objectMonitor.cpp revision 2062:3582bf76420e
1/*
2 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/vmSymbols.hpp"
27#include "memory/resourceArea.hpp"
28#include "oops/markOop.hpp"
29#include "oops/oop.inline.hpp"
30#include "runtime/handles.inline.hpp"
31#include "runtime/interfaceSupport.hpp"
32#include "runtime/mutexLocker.hpp"
33#include "runtime/objectMonitor.hpp"
34#include "runtime/objectMonitor.inline.hpp"
35#include "runtime/osThread.hpp"
36#include "runtime/stubRoutines.hpp"
37#include "runtime/thread.hpp"
38#include "services/threadService.hpp"
39#include "utilities/dtrace.hpp"
40#include "utilities/preserveException.hpp"
41#ifdef TARGET_OS_FAMILY_linux
42# include "os_linux.inline.hpp"
43# include "thread_linux.inline.hpp"
44#endif
45#ifdef TARGET_OS_FAMILY_solaris
46# include "os_solaris.inline.hpp"
47# include "thread_solaris.inline.hpp"
48#endif
49#ifdef TARGET_OS_FAMILY_windows
50# include "os_windows.inline.hpp"
51# include "thread_windows.inline.hpp"
52#endif
53
54#if defined(__GNUC__) && !defined(IA64)
55  // Need to inhibit inlining for older versions of GCC to avoid build-time failures
56  #define ATTR __attribute__((noinline))
57#else
58  #define ATTR
59#endif
60
61
62#ifdef DTRACE_ENABLED
63
64// Only bother with this argument setup if dtrace is available
65// TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
66
67HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
68  jlong, uintptr_t, char*, int);
69HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
70  jlong, uintptr_t, char*, int);
71HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
72  jlong, uintptr_t, char*, int);
73HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
74  jlong, uintptr_t, char*, int);
75HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
76  jlong, uintptr_t, char*, int);
77
78#define DTRACE_MONITOR_PROBE_COMMON(klassOop, thread)                      \
79  char* bytes = NULL;                                                      \
80  int len = 0;                                                             \
81  jlong jtid = SharedRuntime::get_java_tid(thread);                        \
82  Symbol* klassname = ((oop)(klassOop))->klass()->klass_part()->name();    \
83  if (klassname != NULL) {                                                 \
84    bytes = (char*)klassname->bytes();                                     \
85    len = klassname->utf8_length();                                        \
86  }
87
88#define DTRACE_MONITOR_WAIT_PROBE(monitor, klassOop, thread, millis)       \
89  {                                                                        \
90    if (DTraceMonitorProbes) {                                            \
91      DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
92      HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
93                       (monitor), bytes, len, (millis));                   \
94    }                                                                      \
95  }
96
97#define DTRACE_MONITOR_PROBE(probe, monitor, klassOop, thread)             \
98  {                                                                        \
99    if (DTraceMonitorProbes) {                                            \
100      DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
101      HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
102                       (uintptr_t)(monitor), bytes, len);                  \
103    }                                                                      \
104  }
105
106#else //  ndef DTRACE_ENABLED
107
108#define DTRACE_MONITOR_WAIT_PROBE(klassOop, thread, millis, mon)    {;}
109#define DTRACE_MONITOR_PROBE(probe, klassOop, thread, mon)          {;}
110
111#endif // ndef DTRACE_ENABLED
112
113// Tunables ...
114// The knob* variables are effectively final.  Once set they should
115// never be modified hence.  Consider using __read_mostly with GCC.
116
117int ObjectMonitor::Knob_Verbose    = 0 ;
118int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
119static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
120static int Knob_HandOff            = 0 ;
121static int Knob_ReportSettings     = 0 ;
122
123static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
124static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
125static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
126static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
127static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
128static int Knob_SpinEarly          = 1 ;
129static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
130static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
131static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
132static int Knob_Bonus              = 100 ;     // spin success bonus
133static int Knob_BonusB             = 100 ;     // spin success bonus
134static int Knob_Penalty            = 200 ;     // spin failure penalty
135static int Knob_Poverty            = 1000 ;
136static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
137static int Knob_FixedSpin          = 0 ;
138static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
139static int Knob_UsePause           = 1 ;
140static int Knob_ExitPolicy         = 0 ;
141static int Knob_PreSpin            = 10 ;      // 20-100 likely better
142static int Knob_ResetEvent         = 0 ;
143static int BackOffMask             = 0 ;
144
145static int Knob_FastHSSEC          = 0 ;
146static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
147static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
148static volatile int InitDone       = 0 ;
149
150#define TrySpin TrySpin_VaryDuration
151
152// -----------------------------------------------------------------------------
153// Theory of operations -- Monitors lists, thread residency, etc:
154//
155// * A thread acquires ownership of a monitor by successfully
156//   CAS()ing the _owner field from null to non-null.
157//
158// * Invariant: A thread appears on at most one monitor list --
159//   cxq, EntryList or WaitSet -- at any one time.
160//
161// * Contending threads "push" themselves onto the cxq with CAS
162//   and then spin/park.
163//
164// * After a contending thread eventually acquires the lock it must
165//   dequeue itself from either the EntryList or the cxq.
166//
167// * The exiting thread identifies and unparks an "heir presumptive"
168//   tentative successor thread on the EntryList.  Critically, the
169//   exiting thread doesn't unlink the successor thread from the EntryList.
170//   After having been unparked, the wakee will recontend for ownership of
171//   the monitor.   The successor (wakee) will either acquire the lock or
172//   re-park itself.
173//
174//   Succession is provided for by a policy of competitive handoff.
175//   The exiting thread does _not_ grant or pass ownership to the
176//   successor thread.  (This is also referred to as "handoff" succession").
177//   Instead the exiting thread releases ownership and possibly wakes
178//   a successor, so the successor can (re)compete for ownership of the lock.
179//   If the EntryList is empty but the cxq is populated the exiting
180//   thread will drain the cxq into the EntryList.  It does so by
181//   by detaching the cxq (installing null with CAS) and folding
182//   the threads from the cxq into the EntryList.  The EntryList is
183//   doubly linked, while the cxq is singly linked because of the
184//   CAS-based "push" used to enqueue recently arrived threads (RATs).
185//
186// * Concurrency invariants:
187//
188//   -- only the monitor owner may access or mutate the EntryList.
189//      The mutex property of the monitor itself protects the EntryList
190//      from concurrent interference.
191//   -- Only the monitor owner may detach the cxq.
192//
193// * The monitor entry list operations avoid locks, but strictly speaking
194//   they're not lock-free.  Enter is lock-free, exit is not.
195//   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
196//
197// * The cxq can have multiple concurrent "pushers" but only one concurrent
198//   detaching thread.  This mechanism is immune from the ABA corruption.
199//   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
200//
201// * Taken together, the cxq and the EntryList constitute or form a
202//   single logical queue of threads stalled trying to acquire the lock.
203//   We use two distinct lists to improve the odds of a constant-time
204//   dequeue operation after acquisition (in the ::enter() epilog) and
205//   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
206//   A key desideratum is to minimize queue & monitor metadata manipulation
207//   that occurs while holding the monitor lock -- that is, we want to
208//   minimize monitor lock holds times.  Note that even a small amount of
209//   fixed spinning will greatly reduce the # of enqueue-dequeue operations
210//   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
211//   locks and monitor metadata.
212//
213//   Cxq points to the the set of Recently Arrived Threads attempting entry.
214//   Because we push threads onto _cxq with CAS, the RATs must take the form of
215//   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
216//   the unlocking thread notices that EntryList is null but _cxq is != null.
217//
218//   The EntryList is ordered by the prevailing queue discipline and
219//   can be organized in any convenient fashion, such as a doubly-linked list or
220//   a circular doubly-linked list.  Critically, we want insert and delete operations
221//   to operate in constant-time.  If we need a priority queue then something akin
222//   to Solaris' sleepq would work nicely.  Viz.,
223//   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
224//   Queue discipline is enforced at ::exit() time, when the unlocking thread
225//   drains the cxq into the EntryList, and orders or reorders the threads on the
226//   EntryList accordingly.
227//
228//   Barring "lock barging", this mechanism provides fair cyclic ordering,
229//   somewhat similar to an elevator-scan.
230//
231// * The monitor synchronization subsystem avoids the use of native
232//   synchronization primitives except for the narrow platform-specific
233//   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
234//   the semantics of park-unpark.  Put another way, this monitor implementation
235//   depends only on atomic operations and park-unpark.  The monitor subsystem
236//   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
237//   underlying OS manages the READY<->RUN transitions.
238//
239// * Waiting threads reside on the WaitSet list -- wait() puts
240//   the caller onto the WaitSet.
241//
242// * notify() or notifyAll() simply transfers threads from the WaitSet to
243//   either the EntryList or cxq.  Subsequent exit() operations will
244//   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
245//   it's likely the notifyee would simply impale itself on the lock held
246//   by the notifier.
247//
248// * An interesting alternative is to encode cxq as (List,LockByte) where
249//   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
250//   variable, like _recursions, in the scheme.  The threads or Events that form
251//   the list would have to be aligned in 256-byte addresses.  A thread would
252//   try to acquire the lock or enqueue itself with CAS, but exiting threads
253//   could use a 1-0 protocol and simply STB to set the LockByte to 0.
254//   Note that is is *not* word-tearing, but it does presume that full-word
255//   CAS operations are coherent with intermix with STB operations.  That's true
256//   on most common processors.
257//
258// * See also http://blogs.sun.com/dave
259
260
261// -----------------------------------------------------------------------------
262// Enter support
263
264bool ObjectMonitor::try_enter(Thread* THREAD) {
265  if (THREAD != _owner) {
266    if (THREAD->is_lock_owned ((address)_owner)) {
267       assert(_recursions == 0, "internal state error");
268       _owner = THREAD ;
269       _recursions = 1 ;
270       OwnerIsThread = 1 ;
271       return true;
272    }
273    if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
274      return false;
275    }
276    return true;
277  } else {
278    _recursions++;
279    return true;
280  }
281}
282
283void ATTR ObjectMonitor::enter(TRAPS) {
284  // The following code is ordered to check the most common cases first
285  // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
286  Thread * const Self = THREAD ;
287  void * cur ;
288
289  cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
290  if (cur == NULL) {
291     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
292     assert (_recursions == 0   , "invariant") ;
293     assert (_owner      == Self, "invariant") ;
294     // CONSIDER: set or assert OwnerIsThread == 1
295     return ;
296  }
297
298  if (cur == Self) {
299     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
300     _recursions ++ ;
301     return ;
302  }
303
304  if (Self->is_lock_owned ((address)cur)) {
305    assert (_recursions == 0, "internal state error");
306    _recursions = 1 ;
307    // Commute owner from a thread-specific on-stack BasicLockObject address to
308    // a full-fledged "Thread *".
309    _owner = Self ;
310    OwnerIsThread = 1 ;
311    return ;
312  }
313
314  // We've encountered genuine contention.
315  assert (Self->_Stalled == 0, "invariant") ;
316  Self->_Stalled = intptr_t(this) ;
317
318  // Try one round of spinning *before* enqueueing Self
319  // and before going through the awkward and expensive state
320  // transitions.  The following spin is strictly optional ...
321  // Note that if we acquire the monitor from an initial spin
322  // we forgo posting JVMTI events and firing DTRACE probes.
323  if (Knob_SpinEarly && TrySpin (Self) > 0) {
324     assert (_owner == Self      , "invariant") ;
325     assert (_recursions == 0    , "invariant") ;
326     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
327     Self->_Stalled = 0 ;
328     return ;
329  }
330
331  assert (_owner != Self          , "invariant") ;
332  assert (_succ  != Self          , "invariant") ;
333  assert (Self->is_Java_thread()  , "invariant") ;
334  JavaThread * jt = (JavaThread *) Self ;
335  assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
336  assert (jt->thread_state() != _thread_blocked   , "invariant") ;
337  assert (this->object() != NULL  , "invariant") ;
338  assert (_count >= 0, "invariant") ;
339
340  // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
341  // Ensure the object-monitor relationship remains stable while there's contention.
342  Atomic::inc_ptr(&_count);
343
344  { // Change java thread status to indicate blocked on monitor enter.
345    JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
346
347    DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
348    if (JvmtiExport::should_post_monitor_contended_enter()) {
349      JvmtiExport::post_monitor_contended_enter(jt, this);
350    }
351
352    OSThreadContendState osts(Self->osthread());
353    ThreadBlockInVM tbivm(jt);
354
355    Self->set_current_pending_monitor(this);
356
357    // TODO-FIXME: change the following for(;;) loop to straight-line code.
358    for (;;) {
359      jt->set_suspend_equivalent();
360      // cleared by handle_special_suspend_equivalent_condition()
361      // or java_suspend_self()
362
363      EnterI (THREAD) ;
364
365      if (!ExitSuspendEquivalent(jt)) break ;
366
367      //
368      // We have acquired the contended monitor, but while we were
369      // waiting another thread suspended us. We don't want to enter
370      // the monitor while suspended because that would surprise the
371      // thread that suspended us.
372      //
373          _recursions = 0 ;
374      _succ = NULL ;
375      exit (Self) ;
376
377      jt->java_suspend_self();
378    }
379    Self->set_current_pending_monitor(NULL);
380  }
381
382  Atomic::dec_ptr(&_count);
383  assert (_count >= 0, "invariant") ;
384  Self->_Stalled = 0 ;
385
386  // Must either set _recursions = 0 or ASSERT _recursions == 0.
387  assert (_recursions == 0     , "invariant") ;
388  assert (_owner == Self       , "invariant") ;
389  assert (_succ  != Self       , "invariant") ;
390  assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
391
392  // The thread -- now the owner -- is back in vm mode.
393  // Report the glorious news via TI,DTrace and jvmstat.
394  // The probe effect is non-trivial.  All the reportage occurs
395  // while we hold the monitor, increasing the length of the critical
396  // section.  Amdahl's parallel speedup law comes vividly into play.
397  //
398  // Another option might be to aggregate the events (thread local or
399  // per-monitor aggregation) and defer reporting until a more opportune
400  // time -- such as next time some thread encounters contention but has
401  // yet to acquire the lock.  While spinning that thread could
402  // spinning we could increment JVMStat counters, etc.
403
404  DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
405  if (JvmtiExport::should_post_monitor_contended_entered()) {
406    JvmtiExport::post_monitor_contended_entered(jt, this);
407  }
408  if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
409     ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
410  }
411}
412
413
414// Caveat: TryLock() is not necessarily serializing if it returns failure.
415// Callers must compensate as needed.
416
417int ObjectMonitor::TryLock (Thread * Self) {
418   for (;;) {
419      void * own = _owner ;
420      if (own != NULL) return 0 ;
421      if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
422         // Either guarantee _recursions == 0 or set _recursions = 0.
423         assert (_recursions == 0, "invariant") ;
424         assert (_owner == Self, "invariant") ;
425         // CONSIDER: set or assert that OwnerIsThread == 1
426         return 1 ;
427      }
428      // The lock had been free momentarily, but we lost the race to the lock.
429      // Interference -- the CAS failed.
430      // We can either return -1 or retry.
431      // Retry doesn't make as much sense because the lock was just acquired.
432      if (true) return -1 ;
433   }
434}
435
436void ATTR ObjectMonitor::EnterI (TRAPS) {
437    Thread * Self = THREAD ;
438    assert (Self->is_Java_thread(), "invariant") ;
439    assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
440
441    // Try the lock - TATAS
442    if (TryLock (Self) > 0) {
443        assert (_succ != Self              , "invariant") ;
444        assert (_owner == Self             , "invariant") ;
445        assert (_Responsible != Self       , "invariant") ;
446        return ;
447    }
448
449    DeferredInitialize () ;
450
451    // We try one round of spinning *before* enqueueing Self.
452    //
453    // If the _owner is ready but OFFPROC we could use a YieldTo()
454    // operation to donate the remainder of this thread's quantum
455    // to the owner.  This has subtle but beneficial affinity
456    // effects.
457
458    if (TrySpin (Self) > 0) {
459        assert (_owner == Self        , "invariant") ;
460        assert (_succ != Self         , "invariant") ;
461        assert (_Responsible != Self  , "invariant") ;
462        return ;
463    }
464
465    // The Spin failed -- Enqueue and park the thread ...
466    assert (_succ  != Self            , "invariant") ;
467    assert (_owner != Self            , "invariant") ;
468    assert (_Responsible != Self      , "invariant") ;
469
470    // Enqueue "Self" on ObjectMonitor's _cxq.
471    //
472    // Node acts as a proxy for Self.
473    // As an aside, if were to ever rewrite the synchronization code mostly
474    // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
475    // Java objects.  This would avoid awkward lifecycle and liveness issues,
476    // as well as eliminate a subset of ABA issues.
477    // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
478    //
479
480    ObjectWaiter node(Self) ;
481    Self->_ParkEvent->reset() ;
482    node._prev   = (ObjectWaiter *) 0xBAD ;
483    node.TState  = ObjectWaiter::TS_CXQ ;
484
485    // Push "Self" onto the front of the _cxq.
486    // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
487    // Note that spinning tends to reduce the rate at which threads
488    // enqueue and dequeue on EntryList|cxq.
489    ObjectWaiter * nxt ;
490    for (;;) {
491        node._next = nxt = _cxq ;
492        if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
493
494        // Interference - the CAS failed because _cxq changed.  Just retry.
495        // As an optional optimization we retry the lock.
496        if (TryLock (Self) > 0) {
497            assert (_succ != Self         , "invariant") ;
498            assert (_owner == Self        , "invariant") ;
499            assert (_Responsible != Self  , "invariant") ;
500            return ;
501        }
502    }
503
504    // Check for cxq|EntryList edge transition to non-null.  This indicates
505    // the onset of contention.  While contention persists exiting threads
506    // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
507    // operations revert to the faster 1-0 mode.  This enter operation may interleave
508    // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
509    // arrange for one of the contending thread to use a timed park() operations
510    // to detect and recover from the race.  (Stranding is form of progress failure
511    // where the monitor is unlocked but all the contending threads remain parked).
512    // That is, at least one of the contended threads will periodically poll _owner.
513    // One of the contending threads will become the designated "Responsible" thread.
514    // The Responsible thread uses a timed park instead of a normal indefinite park
515    // operation -- it periodically wakes and checks for and recovers from potential
516    // strandings admitted by 1-0 exit operations.   We need at most one Responsible
517    // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
518    // be responsible for a monitor.
519    //
520    // Currently, one of the contended threads takes on the added role of "Responsible".
521    // A viable alternative would be to use a dedicated "stranding checker" thread
522    // that periodically iterated over all the threads (or active monitors) and unparked
523    // successors where there was risk of stranding.  This would help eliminate the
524    // timer scalability issues we see on some platforms as we'd only have one thread
525    // -- the checker -- parked on a timer.
526
527    if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
528        // Try to assume the role of responsible thread for the monitor.
529        // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
530        Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
531    }
532
533    // The lock have been released while this thread was occupied queueing
534    // itself onto _cxq.  To close the race and avoid "stranding" and
535    // progress-liveness failure we must resample-retry _owner before parking.
536    // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
537    // In this case the ST-MEMBAR is accomplished with CAS().
538    //
539    // TODO: Defer all thread state transitions until park-time.
540    // Since state transitions are heavy and inefficient we'd like
541    // to defer the state transitions until absolutely necessary,
542    // and in doing so avoid some transitions ...
543
544    TEVENT (Inflated enter - Contention) ;
545    int nWakeups = 0 ;
546    int RecheckInterval = 1 ;
547
548    for (;;) {
549
550        if (TryLock (Self) > 0) break ;
551        assert (_owner != Self, "invariant") ;
552
553        if ((SyncFlags & 2) && _Responsible == NULL) {
554           Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
555        }
556
557        // park self
558        if (_Responsible == Self || (SyncFlags & 1)) {
559            TEVENT (Inflated enter - park TIMED) ;
560            Self->_ParkEvent->park ((jlong) RecheckInterval) ;
561            // Increase the RecheckInterval, but clamp the value.
562            RecheckInterval *= 8 ;
563            if (RecheckInterval > 1000) RecheckInterval = 1000 ;
564        } else {
565            TEVENT (Inflated enter - park UNTIMED) ;
566            Self->_ParkEvent->park() ;
567        }
568
569        if (TryLock(Self) > 0) break ;
570
571        // The lock is still contested.
572        // Keep a tally of the # of futile wakeups.
573        // Note that the counter is not protected by a lock or updated by atomics.
574        // That is by design - we trade "lossy" counters which are exposed to
575        // races during updates for a lower probe effect.
576        TEVENT (Inflated enter - Futile wakeup) ;
577        if (ObjectMonitor::_sync_FutileWakeups != NULL) {
578           ObjectMonitor::_sync_FutileWakeups->inc() ;
579        }
580        ++ nWakeups ;
581
582        // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
583        // We can defer clearing _succ until after the spin completes
584        // TrySpin() must tolerate being called with _succ == Self.
585        // Try yet another round of adaptive spinning.
586        if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
587
588        // We can find that we were unpark()ed and redesignated _succ while
589        // we were spinning.  That's harmless.  If we iterate and call park(),
590        // park() will consume the event and return immediately and we'll
591        // just spin again.  This pattern can repeat, leaving _succ to simply
592        // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
593        // Alternately, we can sample fired() here, and if set, forgo spinning
594        // in the next iteration.
595
596        if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
597           Self->_ParkEvent->reset() ;
598           OrderAccess::fence() ;
599        }
600        if (_succ == Self) _succ = NULL ;
601
602        // Invariant: after clearing _succ a thread *must* retry _owner before parking.
603        OrderAccess::fence() ;
604    }
605
606    // Egress :
607    // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
608    // Normally we'll find Self on the EntryList .
609    // From the perspective of the lock owner (this thread), the
610    // EntryList is stable and cxq is prepend-only.
611    // The head of cxq is volatile but the interior is stable.
612    // In addition, Self.TState is stable.
613
614    assert (_owner == Self      , "invariant") ;
615    assert (object() != NULL    , "invariant") ;
616    // I'd like to write:
617    //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
618    // but as we're at a safepoint that's not safe.
619
620    UnlinkAfterAcquire (Self, &node) ;
621    if (_succ == Self) _succ = NULL ;
622
623    assert (_succ != Self, "invariant") ;
624    if (_Responsible == Self) {
625        _Responsible = NULL ;
626        // Dekker pivot-point.
627        // Consider OrderAccess::storeload() here
628
629        // We may leave threads on cxq|EntryList without a designated
630        // "Responsible" thread.  This is benign.  When this thread subsequently
631        // exits the monitor it can "see" such preexisting "old" threads --
632        // threads that arrived on the cxq|EntryList before the fence, above --
633        // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
634        // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
635        // non-null and elect a new "Responsible" timer thread.
636        //
637        // This thread executes:
638        //    ST Responsible=null; MEMBAR    (in enter epilog - here)
639        //    LD cxq|EntryList               (in subsequent exit)
640        //
641        // Entering threads in the slow/contended path execute:
642        //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
643        //    The (ST cxq; MEMBAR) is accomplished with CAS().
644        //
645        // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
646        // exit operation from floating above the ST Responsible=null.
647        //
648        // In *practice* however, EnterI() is always followed by some atomic
649        // operation such as the decrement of _count in ::enter().  Those atomics
650        // obviate the need for the explicit MEMBAR, above.
651    }
652
653    // We've acquired ownership with CAS().
654    // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
655    // But since the CAS() this thread may have also stored into _succ,
656    // EntryList, cxq or Responsible.  These meta-data updates must be
657    // visible __before this thread subsequently drops the lock.
658    // Consider what could occur if we didn't enforce this constraint --
659    // STs to monitor meta-data and user-data could reorder with (become
660    // visible after) the ST in exit that drops ownership of the lock.
661    // Some other thread could then acquire the lock, but observe inconsistent
662    // or old monitor meta-data and heap data.  That violates the JMM.
663    // To that end, the 1-0 exit() operation must have at least STST|LDST
664    // "release" barrier semantics.  Specifically, there must be at least a
665    // STST|LDST barrier in exit() before the ST of null into _owner that drops
666    // the lock.   The barrier ensures that changes to monitor meta-data and data
667    // protected by the lock will be visible before we release the lock, and
668    // therefore before some other thread (CPU) has a chance to acquire the lock.
669    // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
670    //
671    // Critically, any prior STs to _succ or EntryList must be visible before
672    // the ST of null into _owner in the *subsequent* (following) corresponding
673    // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
674    // execute a serializing instruction.
675
676    if (SyncFlags & 8) {
677       OrderAccess::fence() ;
678    }
679    return ;
680}
681
682// ReenterI() is a specialized inline form of the latter half of the
683// contended slow-path from EnterI().  We use ReenterI() only for
684// monitor reentry in wait().
685//
686// In the future we should reconcile EnterI() and ReenterI(), adding
687// Knob_Reset and Knob_SpinAfterFutile support and restructuring the
688// loop accordingly.
689
690void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
691    assert (Self != NULL                , "invariant") ;
692    assert (SelfNode != NULL            , "invariant") ;
693    assert (SelfNode->_thread == Self   , "invariant") ;
694    assert (_waiters > 0                , "invariant") ;
695    assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
696    assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
697    JavaThread * jt = (JavaThread *) Self ;
698
699    int nWakeups = 0 ;
700    for (;;) {
701        ObjectWaiter::TStates v = SelfNode->TState ;
702        guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
703        assert    (_owner != Self, "invariant") ;
704
705        if (TryLock (Self) > 0) break ;
706        if (TrySpin (Self) > 0) break ;
707
708        TEVENT (Wait Reentry - parking) ;
709
710        // State transition wrappers around park() ...
711        // ReenterI() wisely defers state transitions until
712        // it's clear we must park the thread.
713        {
714           OSThreadContendState osts(Self->osthread());
715           ThreadBlockInVM tbivm(jt);
716
717           // cleared by handle_special_suspend_equivalent_condition()
718           // or java_suspend_self()
719           jt->set_suspend_equivalent();
720           if (SyncFlags & 1) {
721              Self->_ParkEvent->park ((jlong)1000) ;
722           } else {
723              Self->_ParkEvent->park () ;
724           }
725
726           // were we externally suspended while we were waiting?
727           for (;;) {
728              if (!ExitSuspendEquivalent (jt)) break ;
729              if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
730              jt->java_suspend_self();
731              jt->set_suspend_equivalent();
732           }
733        }
734
735        // Try again, but just so we distinguish between futile wakeups and
736        // successful wakeups.  The following test isn't algorithmically
737        // necessary, but it helps us maintain sensible statistics.
738        if (TryLock(Self) > 0) break ;
739
740        // The lock is still contested.
741        // Keep a tally of the # of futile wakeups.
742        // Note that the counter is not protected by a lock or updated by atomics.
743        // That is by design - we trade "lossy" counters which are exposed to
744        // races during updates for a lower probe effect.
745        TEVENT (Wait Reentry - futile wakeup) ;
746        ++ nWakeups ;
747
748        // Assuming this is not a spurious wakeup we'll normally
749        // find that _succ == Self.
750        if (_succ == Self) _succ = NULL ;
751
752        // Invariant: after clearing _succ a contending thread
753        // *must* retry  _owner before parking.
754        OrderAccess::fence() ;
755
756        if (ObjectMonitor::_sync_FutileWakeups != NULL) {
757          ObjectMonitor::_sync_FutileWakeups->inc() ;
758        }
759    }
760
761    // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
762    // Normally we'll find Self on the EntryList.
763    // Unlinking from the EntryList is constant-time and atomic-free.
764    // From the perspective of the lock owner (this thread), the
765    // EntryList is stable and cxq is prepend-only.
766    // The head of cxq is volatile but the interior is stable.
767    // In addition, Self.TState is stable.
768
769    assert (_owner == Self, "invariant") ;
770    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
771    UnlinkAfterAcquire (Self, SelfNode) ;
772    if (_succ == Self) _succ = NULL ;
773    assert (_succ != Self, "invariant") ;
774    SelfNode->TState = ObjectWaiter::TS_RUN ;
775    OrderAccess::fence() ;      // see comments at the end of EnterI()
776}
777
778// after the thread acquires the lock in ::enter().  Equally, we could defer
779// unlinking the thread until ::exit()-time.
780
781void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
782{
783    assert (_owner == Self, "invariant") ;
784    assert (SelfNode->_thread == Self, "invariant") ;
785
786    if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
787        // Normal case: remove Self from the DLL EntryList .
788        // This is a constant-time operation.
789        ObjectWaiter * nxt = SelfNode->_next ;
790        ObjectWaiter * prv = SelfNode->_prev ;
791        if (nxt != NULL) nxt->_prev = prv ;
792        if (prv != NULL) prv->_next = nxt ;
793        if (SelfNode == _EntryList ) _EntryList = nxt ;
794        assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
795        assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
796        TEVENT (Unlink from EntryList) ;
797    } else {
798        guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
799        // Inopportune interleaving -- Self is still on the cxq.
800        // This usually means the enqueue of self raced an exiting thread.
801        // Normally we'll find Self near the front of the cxq, so
802        // dequeueing is typically fast.  If needbe we can accelerate
803        // this with some MCS/CHL-like bidirectional list hints and advisory
804        // back-links so dequeueing from the interior will normally operate
805        // in constant-time.
806        // Dequeue Self from either the head (with CAS) or from the interior
807        // with a linear-time scan and normal non-atomic memory operations.
808        // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
809        // and then unlink Self from EntryList.  We have to drain eventually,
810        // so it might as well be now.
811
812        ObjectWaiter * v = _cxq ;
813        assert (v != NULL, "invariant") ;
814        if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
815            // The CAS above can fail from interference IFF a "RAT" arrived.
816            // In that case Self must be in the interior and can no longer be
817            // at the head of cxq.
818            if (v == SelfNode) {
819                assert (_cxq != v, "invariant") ;
820                v = _cxq ;          // CAS above failed - start scan at head of list
821            }
822            ObjectWaiter * p ;
823            ObjectWaiter * q = NULL ;
824            for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
825                q = p ;
826                assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
827            }
828            assert (v != SelfNode,  "invariant") ;
829            assert (p == SelfNode,  "Node not found on cxq") ;
830            assert (p != _cxq,      "invariant") ;
831            assert (q != NULL,      "invariant") ;
832            assert (q->_next == p,  "invariant") ;
833            q->_next = p->_next ;
834        }
835        TEVENT (Unlink from cxq) ;
836    }
837
838    // Diagnostic hygiene ...
839    SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
840    SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
841    SelfNode->TState = ObjectWaiter::TS_RUN ;
842}
843
844// -----------------------------------------------------------------------------
845// Exit support
846//
847// exit()
848// ~~~~~~
849// Note that the collector can't reclaim the objectMonitor or deflate
850// the object out from underneath the thread calling ::exit() as the
851// thread calling ::exit() never transitions to a stable state.
852// This inhibits GC, which in turn inhibits asynchronous (and
853// inopportune) reclamation of "this".
854//
855// We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
856// There's one exception to the claim above, however.  EnterI() can call
857// exit() to drop a lock if the acquirer has been externally suspended.
858// In that case exit() is called with _thread_state as _thread_blocked,
859// but the monitor's _count field is > 0, which inhibits reclamation.
860//
861// 1-0 exit
862// ~~~~~~~~
863// ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
864// the fast-path operators have been optimized so the common ::exit()
865// operation is 1-0.  See i486.ad fast_unlock(), for instance.
866// The code emitted by fast_unlock() elides the usual MEMBAR.  This
867// greatly improves latency -- MEMBAR and CAS having considerable local
868// latency on modern processors -- but at the cost of "stranding".  Absent the
869// MEMBAR, a thread in fast_unlock() can race a thread in the slow
870// ::enter() path, resulting in the entering thread being stranding
871// and a progress-liveness failure.   Stranding is extremely rare.
872// We use timers (timed park operations) & periodic polling to detect
873// and recover from stranding.  Potentially stranded threads periodically
874// wake up and poll the lock.  See the usage of the _Responsible variable.
875//
876// The CAS() in enter provides for safety and exclusion, while the CAS or
877// MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
878// eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
879// We detect and recover from stranding with timers.
880//
881// If a thread transiently strands it'll park until (a) another
882// thread acquires the lock and then drops the lock, at which time the
883// exiting thread will notice and unpark the stranded thread, or, (b)
884// the timer expires.  If the lock is high traffic then the stranding latency
885// will be low due to (a).  If the lock is low traffic then the odds of
886// stranding are lower, although the worst-case stranding latency
887// is longer.  Critically, we don't want to put excessive load in the
888// platform's timer subsystem.  We want to minimize both the timer injection
889// rate (timers created/sec) as well as the number of timers active at
890// any one time.  (more precisely, we want to minimize timer-seconds, which is
891// the integral of the # of active timers at any instant over time).
892// Both impinge on OS scalability.  Given that, at most one thread parked on
893// a monitor will use a timer.
894
895void ATTR ObjectMonitor::exit(TRAPS) {
896   Thread * Self = THREAD ;
897   if (THREAD != _owner) {
898     if (THREAD->is_lock_owned((address) _owner)) {
899       // Transmute _owner from a BasicLock pointer to a Thread address.
900       // We don't need to hold _mutex for this transition.
901       // Non-null to Non-null is safe as long as all readers can
902       // tolerate either flavor.
903       assert (_recursions == 0, "invariant") ;
904       _owner = THREAD ;
905       _recursions = 0 ;
906       OwnerIsThread = 1 ;
907     } else {
908       // NOTE: we need to handle unbalanced monitor enter/exit
909       // in native code by throwing an exception.
910       // TODO: Throw an IllegalMonitorStateException ?
911       TEVENT (Exit - Throw IMSX) ;
912       assert(false, "Non-balanced monitor enter/exit!");
913       if (false) {
914          THROW(vmSymbols::java_lang_IllegalMonitorStateException());
915       }
916       return;
917     }
918   }
919
920   if (_recursions != 0) {
921     _recursions--;        // this is simple recursive enter
922     TEVENT (Inflated exit - recursive) ;
923     return ;
924   }
925
926   // Invariant: after setting Responsible=null an thread must execute
927   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
928   if ((SyncFlags & 4) == 0) {
929      _Responsible = NULL ;
930   }
931
932   for (;;) {
933      assert (THREAD == _owner, "invariant") ;
934
935
936      if (Knob_ExitPolicy == 0) {
937         // release semantics: prior loads and stores from within the critical section
938         // must not float (reorder) past the following store that drops the lock.
939         // On SPARC that requires MEMBAR #loadstore|#storestore.
940         // But of course in TSO #loadstore|#storestore is not required.
941         // I'd like to write one of the following:
942         // A.  OrderAccess::release() ; _owner = NULL
943         // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
944         // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
945         // store into a _dummy variable.  That store is not needed, but can result
946         // in massive wasteful coherency traffic on classic SMP systems.
947         // Instead, I use release_store(), which is implemented as just a simple
948         // ST on x64, x86 and SPARC.
949         OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
950         OrderAccess::storeload() ;                         // See if we need to wake a successor
951         if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
952            TEVENT (Inflated exit - simple egress) ;
953            return ;
954         }
955         TEVENT (Inflated exit - complex egress) ;
956
957         // Normally the exiting thread is responsible for ensuring succession,
958         // but if other successors are ready or other entering threads are spinning
959         // then this thread can simply store NULL into _owner and exit without
960         // waking a successor.  The existence of spinners or ready successors
961         // guarantees proper succession (liveness).  Responsibility passes to the
962         // ready or running successors.  The exiting thread delegates the duty.
963         // More precisely, if a successor already exists this thread is absolved
964         // of the responsibility of waking (unparking) one.
965         //
966         // The _succ variable is critical to reducing futile wakeup frequency.
967         // _succ identifies the "heir presumptive" thread that has been made
968         // ready (unparked) but that has not yet run.  We need only one such
969         // successor thread to guarantee progress.
970         // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
971         // section 3.3 "Futile Wakeup Throttling" for details.
972         //
973         // Note that spinners in Enter() also set _succ non-null.
974         // In the current implementation spinners opportunistically set
975         // _succ so that exiting threads might avoid waking a successor.
976         // Another less appealing alternative would be for the exiting thread
977         // to drop the lock and then spin briefly to see if a spinner managed
978         // to acquire the lock.  If so, the exiting thread could exit
979         // immediately without waking a successor, otherwise the exiting
980         // thread would need to dequeue and wake a successor.
981         // (Note that we'd need to make the post-drop spin short, but no
982         // shorter than the worst-case round-trip cache-line migration time.
983         // The dropped lock needs to become visible to the spinner, and then
984         // the acquisition of the lock by the spinner must become visible to
985         // the exiting thread).
986         //
987
988         // It appears that an heir-presumptive (successor) must be made ready.
989         // Only the current lock owner can manipulate the EntryList or
990         // drain _cxq, so we need to reacquire the lock.  If we fail
991         // to reacquire the lock the responsibility for ensuring succession
992         // falls to the new owner.
993         //
994         if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
995            return ;
996         }
997         TEVENT (Exit - Reacquired) ;
998      } else {
999         if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1000            OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
1001            OrderAccess::storeload() ;
1002            // Ratify the previously observed values.
1003            if (_cxq == NULL || _succ != NULL) {
1004                TEVENT (Inflated exit - simple egress) ;
1005                return ;
1006            }
1007
1008            // inopportune interleaving -- the exiting thread (this thread)
1009            // in the fast-exit path raced an entering thread in the slow-enter
1010            // path.
1011            // We have two choices:
1012            // A.  Try to reacquire the lock.
1013            //     If the CAS() fails return immediately, otherwise
1014            //     we either restart/rerun the exit operation, or simply
1015            //     fall-through into the code below which wakes a successor.
1016            // B.  If the elements forming the EntryList|cxq are TSM
1017            //     we could simply unpark() the lead thread and return
1018            //     without having set _succ.
1019            if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1020               TEVENT (Inflated exit - reacquired succeeded) ;
1021               return ;
1022            }
1023            TEVENT (Inflated exit - reacquired failed) ;
1024         } else {
1025            TEVENT (Inflated exit - complex egress) ;
1026         }
1027      }
1028
1029      guarantee (_owner == THREAD, "invariant") ;
1030
1031      ObjectWaiter * w = NULL ;
1032      int QMode = Knob_QMode ;
1033
1034      if (QMode == 2 && _cxq != NULL) {
1035          // QMode == 2 : cxq has precedence over EntryList.
1036          // Try to directly wake a successor from the cxq.
1037          // If successful, the successor will need to unlink itself from cxq.
1038          w = _cxq ;
1039          assert (w != NULL, "invariant") ;
1040          assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1041          ExitEpilog (Self, w) ;
1042          return ;
1043      }
1044
1045      if (QMode == 3 && _cxq != NULL) {
1046          // Aggressively drain cxq into EntryList at the first opportunity.
1047          // This policy ensure that recently-run threads live at the head of EntryList.
1048          // Drain _cxq into EntryList - bulk transfer.
1049          // First, detach _cxq.
1050          // The following loop is tantamount to: w = swap (&cxq, NULL)
1051          w = _cxq ;
1052          for (;;) {
1053             assert (w != NULL, "Invariant") ;
1054             ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1055             if (u == w) break ;
1056             w = u ;
1057          }
1058          assert (w != NULL              , "invariant") ;
1059
1060          ObjectWaiter * q = NULL ;
1061          ObjectWaiter * p ;
1062          for (p = w ; p != NULL ; p = p->_next) {
1063              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1064              p->TState = ObjectWaiter::TS_ENTER ;
1065              p->_prev = q ;
1066              q = p ;
1067          }
1068
1069          // Append the RATs to the EntryList
1070          // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1071          ObjectWaiter * Tail ;
1072          for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
1073          if (Tail == NULL) {
1074              _EntryList = w ;
1075          } else {
1076              Tail->_next = w ;
1077              w->_prev = Tail ;
1078          }
1079
1080          // Fall thru into code that tries to wake a successor from EntryList
1081      }
1082
1083      if (QMode == 4 && _cxq != NULL) {
1084          // Aggressively drain cxq into EntryList at the first opportunity.
1085          // This policy ensure that recently-run threads live at the head of EntryList.
1086
1087          // Drain _cxq into EntryList - bulk transfer.
1088          // First, detach _cxq.
1089          // The following loop is tantamount to: w = swap (&cxq, NULL)
1090          w = _cxq ;
1091          for (;;) {
1092             assert (w != NULL, "Invariant") ;
1093             ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1094             if (u == w) break ;
1095             w = u ;
1096          }
1097          assert (w != NULL              , "invariant") ;
1098
1099          ObjectWaiter * q = NULL ;
1100          ObjectWaiter * p ;
1101          for (p = w ; p != NULL ; p = p->_next) {
1102              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1103              p->TState = ObjectWaiter::TS_ENTER ;
1104              p->_prev = q ;
1105              q = p ;
1106          }
1107
1108          // Prepend the RATs to the EntryList
1109          if (_EntryList != NULL) {
1110              q->_next = _EntryList ;
1111              _EntryList->_prev = q ;
1112          }
1113          _EntryList = w ;
1114
1115          // Fall thru into code that tries to wake a successor from EntryList
1116      }
1117
1118      w = _EntryList  ;
1119      if (w != NULL) {
1120          // I'd like to write: guarantee (w->_thread != Self).
1121          // But in practice an exiting thread may find itself on the EntryList.
1122          // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1123          // then calls exit().  Exit release the lock by setting O._owner to NULL.
1124          // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
1125          // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1126          // release the lock "O".  T2 resumes immediately after the ST of null into
1127          // _owner, above.  T2 notices that the EntryList is populated, so it
1128          // reacquires the lock and then finds itself on the EntryList.
1129          // Given all that, we have to tolerate the circumstance where "w" is
1130          // associated with Self.
1131          assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1132          ExitEpilog (Self, w) ;
1133          return ;
1134      }
1135
1136      // If we find that both _cxq and EntryList are null then just
1137      // re-run the exit protocol from the top.
1138      w = _cxq ;
1139      if (w == NULL) continue ;
1140
1141      // Drain _cxq into EntryList - bulk transfer.
1142      // First, detach _cxq.
1143      // The following loop is tantamount to: w = swap (&cxq, NULL)
1144      for (;;) {
1145          assert (w != NULL, "Invariant") ;
1146          ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1147          if (u == w) break ;
1148          w = u ;
1149      }
1150      TEVENT (Inflated exit - drain cxq into EntryList) ;
1151
1152      assert (w != NULL              , "invariant") ;
1153      assert (_EntryList  == NULL    , "invariant") ;
1154
1155      // Convert the LIFO SLL anchored by _cxq into a DLL.
1156      // The list reorganization step operates in O(LENGTH(w)) time.
1157      // It's critical that this step operate quickly as
1158      // "Self" still holds the outer-lock, restricting parallelism
1159      // and effectively lengthening the critical section.
1160      // Invariant: s chases t chases u.
1161      // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1162      // we have faster access to the tail.
1163
1164      if (QMode == 1) {
1165         // QMode == 1 : drain cxq to EntryList, reversing order
1166         // We also reverse the order of the list.
1167         ObjectWaiter * s = NULL ;
1168         ObjectWaiter * t = w ;
1169         ObjectWaiter * u = NULL ;
1170         while (t != NULL) {
1171             guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
1172             t->TState = ObjectWaiter::TS_ENTER ;
1173             u = t->_next ;
1174             t->_prev = u ;
1175             t->_next = s ;
1176             s = t;
1177             t = u ;
1178         }
1179         _EntryList  = s ;
1180         assert (s != NULL, "invariant") ;
1181      } else {
1182         // QMode == 0 or QMode == 2
1183         _EntryList = w ;
1184         ObjectWaiter * q = NULL ;
1185         ObjectWaiter * p ;
1186         for (p = w ; p != NULL ; p = p->_next) {
1187             guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1188             p->TState = ObjectWaiter::TS_ENTER ;
1189             p->_prev = q ;
1190             q = p ;
1191         }
1192      }
1193
1194      // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1195      // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1196
1197      // See if we can abdicate to a spinner instead of waking a thread.
1198      // A primary goal of the implementation is to reduce the
1199      // context-switch rate.
1200      if (_succ != NULL) continue;
1201
1202      w = _EntryList  ;
1203      if (w != NULL) {
1204          guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1205          ExitEpilog (Self, w) ;
1206          return ;
1207      }
1208   }
1209}
1210
1211// ExitSuspendEquivalent:
1212// A faster alternate to handle_special_suspend_equivalent_condition()
1213//
1214// handle_special_suspend_equivalent_condition() unconditionally
1215// acquires the SR_lock.  On some platforms uncontended MutexLocker()
1216// operations have high latency.  Note that in ::enter() we call HSSEC
1217// while holding the monitor, so we effectively lengthen the critical sections.
1218//
1219// There are a number of possible solutions:
1220//
1221// A.  To ameliorate the problem we might also defer state transitions
1222//     to as late as possible -- just prior to parking.
1223//     Given that, we'd call HSSEC after having returned from park(),
1224//     but before attempting to acquire the monitor.  This is only a
1225//     partial solution.  It avoids calling HSSEC while holding the
1226//     monitor (good), but it still increases successor reacquisition latency --
1227//     the interval between unparking a successor and the time the successor
1228//     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1229//     If we use this technique we can also avoid EnterI()-exit() loop
1230//     in ::enter() where we iteratively drop the lock and then attempt
1231//     to reacquire it after suspending.
1232//
1233// B.  In the future we might fold all the suspend bits into a
1234//     composite per-thread suspend flag and then update it with CAS().
1235//     Alternately, a Dekker-like mechanism with multiple variables
1236//     would suffice:
1237//       ST Self->_suspend_equivalent = false
1238//       MEMBAR
1239//       LD Self_>_suspend_flags
1240//
1241
1242
1243bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
1244   int Mode = Knob_FastHSSEC ;
1245   if (Mode && !jSelf->is_external_suspend()) {
1246      assert (jSelf->is_suspend_equivalent(), "invariant") ;
1247      jSelf->clear_suspend_equivalent() ;
1248      if (2 == Mode) OrderAccess::storeload() ;
1249      if (!jSelf->is_external_suspend()) return false ;
1250      // We raced a suspension -- fall thru into the slow path
1251      TEVENT (ExitSuspendEquivalent - raced) ;
1252      jSelf->set_suspend_equivalent() ;
1253   }
1254   return jSelf->handle_special_suspend_equivalent_condition() ;
1255}
1256
1257
1258void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
1259   assert (_owner == Self, "invariant") ;
1260
1261   // Exit protocol:
1262   // 1. ST _succ = wakee
1263   // 2. membar #loadstore|#storestore;
1264   // 2. ST _owner = NULL
1265   // 3. unpark(wakee)
1266
1267   _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
1268   ParkEvent * Trigger = Wakee->_event ;
1269
1270   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1271   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1272   // out-of-scope (non-extant).
1273   Wakee  = NULL ;
1274
1275   // Drop the lock
1276   OrderAccess::release_store_ptr (&_owner, NULL) ;
1277   OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
1278
1279   if (SafepointSynchronize::do_call_back()) {
1280      TEVENT (unpark before SAFEPOINT) ;
1281   }
1282
1283   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1284   Trigger->unpark() ;
1285
1286   // Maintain stats and report events to JVMTI
1287   if (ObjectMonitor::_sync_Parks != NULL) {
1288      ObjectMonitor::_sync_Parks->inc() ;
1289   }
1290}
1291
1292
1293// -----------------------------------------------------------------------------
1294// Class Loader deadlock handling.
1295//
1296// complete_exit exits a lock returning recursion count
1297// complete_exit/reenter operate as a wait without waiting
1298// complete_exit requires an inflated monitor
1299// The _owner field is not always the Thread addr even with an
1300// inflated monitor, e.g. the monitor can be inflated by a non-owning
1301// thread due to contention.
1302intptr_t ObjectMonitor::complete_exit(TRAPS) {
1303   Thread * const Self = THREAD;
1304   assert(Self->is_Java_thread(), "Must be Java thread!");
1305   JavaThread *jt = (JavaThread *)THREAD;
1306
1307   DeferredInitialize();
1308
1309   if (THREAD != _owner) {
1310    if (THREAD->is_lock_owned ((address)_owner)) {
1311       assert(_recursions == 0, "internal state error");
1312       _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
1313       _recursions = 0 ;
1314       OwnerIsThread = 1 ;
1315    }
1316   }
1317
1318   guarantee(Self == _owner, "complete_exit not owner");
1319   intptr_t save = _recursions; // record the old recursion count
1320   _recursions = 0;        // set the recursion level to be 0
1321   exit (Self) ;           // exit the monitor
1322   guarantee (_owner != Self, "invariant");
1323   return save;
1324}
1325
1326// reenter() enters a lock and sets recursion count
1327// complete_exit/reenter operate as a wait without waiting
1328void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1329   Thread * const Self = THREAD;
1330   assert(Self->is_Java_thread(), "Must be Java thread!");
1331   JavaThread *jt = (JavaThread *)THREAD;
1332
1333   guarantee(_owner != Self, "reenter already owner");
1334   enter (THREAD);       // enter the monitor
1335   guarantee (_recursions == 0, "reenter recursion");
1336   _recursions = recursions;
1337   return;
1338}
1339
1340
1341// -----------------------------------------------------------------------------
1342// A macro is used below because there may already be a pending
1343// exception which should not abort the execution of the routines
1344// which use this (which is why we don't put this into check_slow and
1345// call it with a CHECK argument).
1346
1347#define CHECK_OWNER()                                                             \
1348  do {                                                                            \
1349    if (THREAD != _owner) {                                                       \
1350      if (THREAD->is_lock_owned((address) _owner)) {                              \
1351        _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
1352        _recursions = 0;                                                          \
1353        OwnerIsThread = 1 ;                                                       \
1354      } else {                                                                    \
1355        TEVENT (Throw IMSX) ;                                                     \
1356        THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
1357      }                                                                           \
1358    }                                                                             \
1359  } while (false)
1360
1361// check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1362// TODO-FIXME: remove check_slow() -- it's likely dead.
1363
1364void ObjectMonitor::check_slow(TRAPS) {
1365  TEVENT (check_slow - throw IMSX) ;
1366  assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1367  THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1368}
1369
1370static int Adjust (volatile int * adr, int dx) {
1371  int v ;
1372  for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
1373  return v ;
1374}
1375// -----------------------------------------------------------------------------
1376// Wait/Notify/NotifyAll
1377//
1378// Note: a subset of changes to ObjectMonitor::wait()
1379// will need to be replicated in complete_exit above
1380void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1381   Thread * const Self = THREAD ;
1382   assert(Self->is_Java_thread(), "Must be Java thread!");
1383   JavaThread *jt = (JavaThread *)THREAD;
1384
1385   DeferredInitialize () ;
1386
1387   // Throw IMSX or IEX.
1388   CHECK_OWNER();
1389
1390   // check for a pending interrupt
1391   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1392     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1393     if (JvmtiExport::should_post_monitor_waited()) {
1394        // Note: 'false' parameter is passed here because the
1395        // wait was not timed out due to thread interrupt.
1396        JvmtiExport::post_monitor_waited(jt, this, false);
1397     }
1398     TEVENT (Wait - Throw IEX) ;
1399     THROW(vmSymbols::java_lang_InterruptedException());
1400     return ;
1401   }
1402   TEVENT (Wait) ;
1403
1404   assert (Self->_Stalled == 0, "invariant") ;
1405   Self->_Stalled = intptr_t(this) ;
1406   jt->set_current_waiting_monitor(this);
1407
1408   // create a node to be put into the queue
1409   // Critically, after we reset() the event but prior to park(), we must check
1410   // for a pending interrupt.
1411   ObjectWaiter node(Self);
1412   node.TState = ObjectWaiter::TS_WAIT ;
1413   Self->_ParkEvent->reset() ;
1414   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1415
1416   // Enter the waiting queue, which is a circular doubly linked list in this case
1417   // but it could be a priority queue or any data structure.
1418   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1419   // by the the owner of the monitor *except* in the case where park()
1420   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1421   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1422
1423   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
1424   AddWaiter (&node) ;
1425   Thread::SpinRelease (&_WaitSetLock) ;
1426
1427   if ((SyncFlags & 4) == 0) {
1428      _Responsible = NULL ;
1429   }
1430   intptr_t save = _recursions; // record the old recursion count
1431   _waiters++;                  // increment the number of waiters
1432   _recursions = 0;             // set the recursion level to be 1
1433   exit (Self) ;                    // exit the monitor
1434   guarantee (_owner != Self, "invariant") ;
1435
1436   // As soon as the ObjectMonitor's ownership is dropped in the exit()
1437   // call above, another thread can enter() the ObjectMonitor, do the
1438   // notify(), and exit() the ObjectMonitor. If the other thread's
1439   // exit() call chooses this thread as the successor and the unpark()
1440   // call happens to occur while this thread is posting a
1441   // MONITOR_CONTENDED_EXIT event, then we run the risk of the event
1442   // handler using RawMonitors and consuming the unpark().
1443   //
1444   // To avoid the problem, we re-post the event. This does no harm
1445   // even if the original unpark() was not consumed because we are the
1446   // chosen successor for this monitor.
1447   if (node._notified != 0 && _succ == Self) {
1448      node._event->unpark();
1449   }
1450
1451   // The thread is on the WaitSet list - now park() it.
1452   // On MP systems it's conceivable that a brief spin before we park
1453   // could be profitable.
1454   //
1455   // TODO-FIXME: change the following logic to a loop of the form
1456   //   while (!timeout && !interrupted && _notified == 0) park()
1457
1458   int ret = OS_OK ;
1459   int WasNotified = 0 ;
1460   { // State transition wrappers
1461     OSThread* osthread = Self->osthread();
1462     OSThreadWaitState osts(osthread, true);
1463     {
1464       ThreadBlockInVM tbivm(jt);
1465       // Thread is in thread_blocked state and oop access is unsafe.
1466       jt->set_suspend_equivalent();
1467
1468       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1469           // Intentionally empty
1470       } else
1471       if (node._notified == 0) {
1472         if (millis <= 0) {
1473            Self->_ParkEvent->park () ;
1474         } else {
1475            ret = Self->_ParkEvent->park (millis) ;
1476         }
1477       }
1478
1479       // were we externally suspended while we were waiting?
1480       if (ExitSuspendEquivalent (jt)) {
1481          // TODO-FIXME: add -- if succ == Self then succ = null.
1482          jt->java_suspend_self();
1483       }
1484
1485     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1486
1487
1488     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1489     // from the WaitSet to the EntryList.
1490     // See if we need to remove Node from the WaitSet.
1491     // We use double-checked locking to avoid grabbing _WaitSetLock
1492     // if the thread is not on the wait queue.
1493     //
1494     // Note that we don't need a fence before the fetch of TState.
1495     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1496     // written by the is thread. (perhaps the fetch might even be satisfied
1497     // by a look-aside into the processor's own store buffer, although given
1498     // the length of the code path between the prior ST and this load that's
1499     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1500     // then we'll acquire the lock and then re-fetch a fresh TState value.
1501     // That is, we fail toward safety.
1502
1503     if (node.TState == ObjectWaiter::TS_WAIT) {
1504         Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
1505         if (node.TState == ObjectWaiter::TS_WAIT) {
1506            DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
1507            assert(node._notified == 0, "invariant");
1508            node.TState = ObjectWaiter::TS_RUN ;
1509         }
1510         Thread::SpinRelease (&_WaitSetLock) ;
1511     }
1512
1513     // The thread is now either on off-list (TS_RUN),
1514     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1515     // The Node's TState variable is stable from the perspective of this thread.
1516     // No other threads will asynchronously modify TState.
1517     guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
1518     OrderAccess::loadload() ;
1519     if (_succ == Self) _succ = NULL ;
1520     WasNotified = node._notified ;
1521
1522     // Reentry phase -- reacquire the monitor.
1523     // re-enter contended monitor after object.wait().
1524     // retain OBJECT_WAIT state until re-enter successfully completes
1525     // Thread state is thread_in_vm and oop access is again safe,
1526     // although the raw address of the object may have changed.
1527     // (Don't cache naked oops over safepoints, of course).
1528
1529     // post monitor waited event. Note that this is past-tense, we are done waiting.
1530     if (JvmtiExport::should_post_monitor_waited()) {
1531       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1532     }
1533     OrderAccess::fence() ;
1534
1535     assert (Self->_Stalled != 0, "invariant") ;
1536     Self->_Stalled = 0 ;
1537
1538     assert (_owner != Self, "invariant") ;
1539     ObjectWaiter::TStates v = node.TState ;
1540     if (v == ObjectWaiter::TS_RUN) {
1541         enter (Self) ;
1542     } else {
1543         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
1544         ReenterI (Self, &node) ;
1545         node.wait_reenter_end(this);
1546     }
1547
1548     // Self has reacquired the lock.
1549     // Lifecycle - the node representing Self must not appear on any queues.
1550     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1551     // want residual elements associated with this thread left on any lists.
1552     guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
1553     assert    (_owner == Self, "invariant") ;
1554     assert    (_succ != Self , "invariant") ;
1555   } // OSThreadWaitState()
1556
1557   jt->set_current_waiting_monitor(NULL);
1558
1559   guarantee (_recursions == 0, "invariant") ;
1560   _recursions = save;     // restore the old recursion count
1561   _waiters--;             // decrement the number of waiters
1562
1563   // Verify a few postconditions
1564   assert (_owner == Self       , "invariant") ;
1565   assert (_succ  != Self       , "invariant") ;
1566   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
1567
1568   if (SyncFlags & 32) {
1569      OrderAccess::fence() ;
1570   }
1571
1572   // check if the notification happened
1573   if (!WasNotified) {
1574     // no, it could be timeout or Thread.interrupt() or both
1575     // check for interrupt event, otherwise it is timeout
1576     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1577       TEVENT (Wait - throw IEX from epilog) ;
1578       THROW(vmSymbols::java_lang_InterruptedException());
1579     }
1580   }
1581
1582   // NOTE: Spurious wake up will be consider as timeout.
1583   // Monitor notify has precedence over thread interrupt.
1584}
1585
1586
1587// Consider:
1588// If the lock is cool (cxq == null && succ == null) and we're on an MP system
1589// then instead of transferring a thread from the WaitSet to the EntryList
1590// we might just dequeue a thread from the WaitSet and directly unpark() it.
1591
1592void ObjectMonitor::notify(TRAPS) {
1593  CHECK_OWNER();
1594  if (_WaitSet == NULL) {
1595     TEVENT (Empty-Notify) ;
1596     return ;
1597  }
1598  DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1599
1600  int Policy = Knob_MoveNotifyee ;
1601
1602  Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
1603  ObjectWaiter * iterator = DequeueWaiter() ;
1604  if (iterator != NULL) {
1605     TEVENT (Notify1 - Transfer) ;
1606     guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1607     guarantee (iterator->_notified == 0, "invariant") ;
1608     if (Policy != 4) {
1609        iterator->TState = ObjectWaiter::TS_ENTER ;
1610     }
1611     iterator->_notified = 1 ;
1612
1613     ObjectWaiter * List = _EntryList ;
1614     if (List != NULL) {
1615        assert (List->_prev == NULL, "invariant") ;
1616        assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1617        assert (List != iterator, "invariant") ;
1618     }
1619
1620     if (Policy == 0) {       // prepend to EntryList
1621         if (List == NULL) {
1622             iterator->_next = iterator->_prev = NULL ;
1623             _EntryList = iterator ;
1624         } else {
1625             List->_prev = iterator ;
1626             iterator->_next = List ;
1627             iterator->_prev = NULL ;
1628             _EntryList = iterator ;
1629        }
1630     } else
1631     if (Policy == 1) {      // append to EntryList
1632         if (List == NULL) {
1633             iterator->_next = iterator->_prev = NULL ;
1634             _EntryList = iterator ;
1635         } else {
1636            // CONSIDER:  finding the tail currently requires a linear-time walk of
1637            // the EntryList.  We can make tail access constant-time by converting to
1638            // a CDLL instead of using our current DLL.
1639            ObjectWaiter * Tail ;
1640            for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1641            assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1642            Tail->_next = iterator ;
1643            iterator->_prev = Tail ;
1644            iterator->_next = NULL ;
1645        }
1646     } else
1647     if (Policy == 2) {      // prepend to cxq
1648         // prepend to cxq
1649         if (List == NULL) {
1650             iterator->_next = iterator->_prev = NULL ;
1651             _EntryList = iterator ;
1652         } else {
1653            iterator->TState = ObjectWaiter::TS_CXQ ;
1654            for (;;) {
1655                ObjectWaiter * Front = _cxq ;
1656                iterator->_next = Front ;
1657                if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1658                    break ;
1659                }
1660            }
1661         }
1662     } else
1663     if (Policy == 3) {      // append to cxq
1664        iterator->TState = ObjectWaiter::TS_CXQ ;
1665        for (;;) {
1666            ObjectWaiter * Tail ;
1667            Tail = _cxq ;
1668            if (Tail == NULL) {
1669                iterator->_next = NULL ;
1670                if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1671                   break ;
1672                }
1673            } else {
1674                while (Tail->_next != NULL) Tail = Tail->_next ;
1675                Tail->_next = iterator ;
1676                iterator->_prev = Tail ;
1677                iterator->_next = NULL ;
1678                break ;
1679            }
1680        }
1681     } else {
1682        ParkEvent * ev = iterator->_event ;
1683        iterator->TState = ObjectWaiter::TS_RUN ;
1684        OrderAccess::fence() ;
1685        ev->unpark() ;
1686     }
1687
1688     if (Policy < 4) {
1689       iterator->wait_reenter_begin(this);
1690     }
1691
1692     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1693     // move the add-to-EntryList operation, above, outside the critical section
1694     // protected by _WaitSetLock.  In practice that's not useful.  With the
1695     // exception of  wait() timeouts and interrupts the monitor owner
1696     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1697     // on _WaitSetLock so it's not profitable to reduce the length of the
1698     // critical section.
1699  }
1700
1701  Thread::SpinRelease (&_WaitSetLock) ;
1702
1703  if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
1704     ObjectMonitor::_sync_Notifications->inc() ;
1705  }
1706}
1707
1708
1709void ObjectMonitor::notifyAll(TRAPS) {
1710  CHECK_OWNER();
1711  ObjectWaiter* iterator;
1712  if (_WaitSet == NULL) {
1713      TEVENT (Empty-NotifyAll) ;
1714      return ;
1715  }
1716  DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1717
1718  int Policy = Knob_MoveNotifyee ;
1719  int Tally = 0 ;
1720  Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
1721
1722  for (;;) {
1723     iterator = DequeueWaiter () ;
1724     if (iterator == NULL) break ;
1725     TEVENT (NotifyAll - Transfer1) ;
1726     ++Tally ;
1727
1728     // Disposition - what might we do with iterator ?
1729     // a.  add it directly to the EntryList - either tail or head.
1730     // b.  push it onto the front of the _cxq.
1731     // For now we use (a).
1732
1733     guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1734     guarantee (iterator->_notified == 0, "invariant") ;
1735     iterator->_notified = 1 ;
1736     if (Policy != 4) {
1737        iterator->TState = ObjectWaiter::TS_ENTER ;
1738     }
1739
1740     ObjectWaiter * List = _EntryList ;
1741     if (List != NULL) {
1742        assert (List->_prev == NULL, "invariant") ;
1743        assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1744        assert (List != iterator, "invariant") ;
1745     }
1746
1747     if (Policy == 0) {       // prepend to EntryList
1748         if (List == NULL) {
1749             iterator->_next = iterator->_prev = NULL ;
1750             _EntryList = iterator ;
1751         } else {
1752             List->_prev = iterator ;
1753             iterator->_next = List ;
1754             iterator->_prev = NULL ;
1755             _EntryList = iterator ;
1756        }
1757     } else
1758     if (Policy == 1) {      // append to EntryList
1759         if (List == NULL) {
1760             iterator->_next = iterator->_prev = NULL ;
1761             _EntryList = iterator ;
1762         } else {
1763            // CONSIDER:  finding the tail currently requires a linear-time walk of
1764            // the EntryList.  We can make tail access constant-time by converting to
1765            // a CDLL instead of using our current DLL.
1766            ObjectWaiter * Tail ;
1767            for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1768            assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1769            Tail->_next = iterator ;
1770            iterator->_prev = Tail ;
1771            iterator->_next = NULL ;
1772        }
1773     } else
1774     if (Policy == 2) {      // prepend to cxq
1775         // prepend to cxq
1776         iterator->TState = ObjectWaiter::TS_CXQ ;
1777         for (;;) {
1778             ObjectWaiter * Front = _cxq ;
1779             iterator->_next = Front ;
1780             if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1781                 break ;
1782             }
1783         }
1784     } else
1785     if (Policy == 3) {      // append to cxq
1786        iterator->TState = ObjectWaiter::TS_CXQ ;
1787        for (;;) {
1788            ObjectWaiter * Tail ;
1789            Tail = _cxq ;
1790            if (Tail == NULL) {
1791                iterator->_next = NULL ;
1792                if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1793                   break ;
1794                }
1795            } else {
1796                while (Tail->_next != NULL) Tail = Tail->_next ;
1797                Tail->_next = iterator ;
1798                iterator->_prev = Tail ;
1799                iterator->_next = NULL ;
1800                break ;
1801            }
1802        }
1803     } else {
1804        ParkEvent * ev = iterator->_event ;
1805        iterator->TState = ObjectWaiter::TS_RUN ;
1806        OrderAccess::fence() ;
1807        ev->unpark() ;
1808     }
1809
1810     if (Policy < 4) {
1811       iterator->wait_reenter_begin(this);
1812     }
1813
1814     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1815     // move the add-to-EntryList operation, above, outside the critical section
1816     // protected by _WaitSetLock.  In practice that's not useful.  With the
1817     // exception of  wait() timeouts and interrupts the monitor owner
1818     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1819     // on _WaitSetLock so it's not profitable to reduce the length of the
1820     // critical section.
1821  }
1822
1823  Thread::SpinRelease (&_WaitSetLock) ;
1824
1825  if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
1826     ObjectMonitor::_sync_Notifications->inc(Tally) ;
1827  }
1828}
1829
1830// -----------------------------------------------------------------------------
1831// Adaptive Spinning Support
1832//
1833// Adaptive spin-then-block - rational spinning
1834//
1835// Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1836// algorithm.  On high order SMP systems it would be better to start with
1837// a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1838// a contending thread could enqueue itself on the cxq and then spin locally
1839// on a thread-specific variable such as its ParkEvent._Event flag.
1840// That's left as an exercise for the reader.  Note that global spinning is
1841// not problematic on Niagara, as the L2$ serves the interconnect and has both
1842// low latency and massive bandwidth.
1843//
1844// Broadly, we can fix the spin frequency -- that is, the % of contended lock
1845// acquisition attempts where we opt to spin --  at 100% and vary the spin count
1846// (duration) or we can fix the count at approximately the duration of
1847// a context switch and vary the frequency.   Of course we could also
1848// vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1849// See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
1850//
1851// This implementation varies the duration "D", where D varies with
1852// the success rate of recent spin attempts. (D is capped at approximately
1853// length of a round-trip context switch).  The success rate for recent
1854// spin attempts is a good predictor of the success rate of future spin
1855// attempts.  The mechanism adapts automatically to varying critical
1856// section length (lock modality), system load and degree of parallelism.
1857// D is maintained per-monitor in _SpinDuration and is initialized
1858// optimistically.  Spin frequency is fixed at 100%.
1859//
1860// Note that _SpinDuration is volatile, but we update it without locks
1861// or atomics.  The code is designed so that _SpinDuration stays within
1862// a reasonable range even in the presence of races.  The arithmetic
1863// operations on _SpinDuration are closed over the domain of legal values,
1864// so at worst a race will install and older but still legal value.
1865// At the very worst this introduces some apparent non-determinism.
1866// We might spin when we shouldn't or vice-versa, but since the spin
1867// count are relatively short, even in the worst case, the effect is harmless.
1868//
1869// Care must be taken that a low "D" value does not become an
1870// an absorbing state.  Transient spinning failures -- when spinning
1871// is overall profitable -- should not cause the system to converge
1872// on low "D" values.  We want spinning to be stable and predictable
1873// and fairly responsive to change and at the same time we don't want
1874// it to oscillate, become metastable, be "too" non-deterministic,
1875// or converge on or enter undesirable stable absorbing states.
1876//
1877// We implement a feedback-based control system -- using past behavior
1878// to predict future behavior.  We face two issues: (a) if the
1879// input signal is random then the spin predictor won't provide optimal
1880// results, and (b) if the signal frequency is too high then the control
1881// system, which has some natural response lag, will "chase" the signal.
1882// (b) can arise from multimodal lock hold times.  Transient preemption
1883// can also result in apparent bimodal lock hold times.
1884// Although sub-optimal, neither condition is particularly harmful, as
1885// in the worst-case we'll spin when we shouldn't or vice-versa.
1886// The maximum spin duration is rather short so the failure modes aren't bad.
1887// To be conservative, I've tuned the gain in system to bias toward
1888// _not spinning.  Relatedly, the system can sometimes enter a mode where it
1889// "rings" or oscillates between spinning and not spinning.  This happens
1890// when spinning is just on the cusp of profitability, however, so the
1891// situation is not dire.  The state is benign -- there's no need to add
1892// hysteresis control to damp the transition rate between spinning and
1893// not spinning.
1894//
1895
1896intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
1897int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
1898
1899// Spinning: Fixed frequency (100%), vary duration
1900
1901
1902int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
1903
1904    // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1905    int ctr = Knob_FixedSpin ;
1906    if (ctr != 0) {
1907        while (--ctr >= 0) {
1908            if (TryLock (Self) > 0) return 1 ;
1909            SpinPause () ;
1910        }
1911        return 0 ;
1912    }
1913
1914    for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
1915      if (TryLock(Self) > 0) {
1916        // Increase _SpinDuration ...
1917        // Note that we don't clamp SpinDuration precisely at SpinLimit.
1918        // Raising _SpurDuration to the poverty line is key.
1919        int x = _SpinDuration ;
1920        if (x < Knob_SpinLimit) {
1921           if (x < Knob_Poverty) x = Knob_Poverty ;
1922           _SpinDuration = x + Knob_BonusB ;
1923        }
1924        return 1 ;
1925      }
1926      SpinPause () ;
1927    }
1928
1929    // Admission control - verify preconditions for spinning
1930    //
1931    // We always spin a little bit, just to prevent _SpinDuration == 0 from
1932    // becoming an absorbing state.  Put another way, we spin briefly to
1933    // sample, just in case the system load, parallelism, contention, or lock
1934    // modality changed.
1935    //
1936    // Consider the following alternative:
1937    // Periodically set _SpinDuration = _SpinLimit and try a long/full
1938    // spin attempt.  "Periodically" might mean after a tally of
1939    // the # of failed spin attempts (or iterations) reaches some threshold.
1940    // This takes us into the realm of 1-out-of-N spinning, where we
1941    // hold the duration constant but vary the frequency.
1942
1943    ctr = _SpinDuration  ;
1944    if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
1945    if (ctr <= 0) return 0 ;
1946
1947    if (Knob_SuccRestrict && _succ != NULL) return 0 ;
1948    if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
1949       TEVENT (Spin abort - notrunnable [TOP]);
1950       return 0 ;
1951    }
1952
1953    int MaxSpin = Knob_MaxSpinners ;
1954    if (MaxSpin >= 0) {
1955       if (_Spinner > MaxSpin) {
1956          TEVENT (Spin abort -- too many spinners) ;
1957          return 0 ;
1958       }
1959       // Slighty racy, but benign ...
1960       Adjust (&_Spinner, 1) ;
1961    }
1962
1963    // We're good to spin ... spin ingress.
1964    // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1965    // when preparing to LD...CAS _owner, etc and the CAS is likely
1966    // to succeed.
1967    int hits    = 0 ;
1968    int msk     = 0 ;
1969    int caspty  = Knob_CASPenalty ;
1970    int oxpty   = Knob_OXPenalty ;
1971    int sss     = Knob_SpinSetSucc ;
1972    if (sss && _succ == NULL ) _succ = Self ;
1973    Thread * prv = NULL ;
1974
1975    // There are three ways to exit the following loop:
1976    // 1.  A successful spin where this thread has acquired the lock.
1977    // 2.  Spin failure with prejudice
1978    // 3.  Spin failure without prejudice
1979
1980    while (--ctr >= 0) {
1981
1982      // Periodic polling -- Check for pending GC
1983      // Threads may spin while they're unsafe.
1984      // We don't want spinning threads to delay the JVM from reaching
1985      // a stop-the-world safepoint or to steal cycles from GC.
1986      // If we detect a pending safepoint we abort in order that
1987      // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1988      // this thread, if safe, doesn't steal cycles from GC.
1989      // This is in keeping with the "no loitering in runtime" rule.
1990      // We periodically check to see if there's a safepoint pending.
1991      if ((ctr & 0xFF) == 0) {
1992         if (SafepointSynchronize::do_call_back()) {
1993            TEVENT (Spin: safepoint) ;
1994            goto Abort ;           // abrupt spin egress
1995         }
1996         if (Knob_UsePause & 1) SpinPause () ;
1997
1998         int (*scb)(intptr_t,int) = SpinCallbackFunction ;
1999         if (hits > 50 && scb != NULL) {
2000            int abend = (*scb)(SpinCallbackArgument, 0) ;
2001         }
2002      }
2003
2004      if (Knob_UsePause & 2) SpinPause() ;
2005
2006      // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
2007      // This is useful on classic SMP systems, but is of less utility on
2008      // N1-style CMT platforms.
2009      //
2010      // Trade-off: lock acquisition latency vs coherency bandwidth.
2011      // Lock hold times are typically short.  A histogram
2012      // of successful spin attempts shows that we usually acquire
2013      // the lock early in the spin.  That suggests we want to
2014      // sample _owner frequently in the early phase of the spin,
2015      // but then back-off and sample less frequently as the spin
2016      // progresses.  The back-off makes a good citizen on SMP big
2017      // SMP systems.  Oversampling _owner can consume excessive
2018      // coherency bandwidth.  Relatedly, if we _oversample _owner we
2019      // can inadvertently interfere with the the ST m->owner=null.
2020      // executed by the lock owner.
2021      if (ctr & msk) continue ;
2022      ++hits ;
2023      if ((hits & 0xF) == 0) {
2024        // The 0xF, above, corresponds to the exponent.
2025        // Consider: (msk+1)|msk
2026        msk = ((msk << 2)|3) & BackOffMask ;
2027      }
2028
2029      // Probe _owner with TATAS
2030      // If this thread observes the monitor transition or flicker
2031      // from locked to unlocked to locked, then the odds that this
2032      // thread will acquire the lock in this spin attempt go down
2033      // considerably.  The same argument applies if the CAS fails
2034      // or if we observe _owner change from one non-null value to
2035      // another non-null value.   In such cases we might abort
2036      // the spin without prejudice or apply a "penalty" to the
2037      // spin count-down variable "ctr", reducing it by 100, say.
2038
2039      Thread * ox = (Thread *) _owner ;
2040      if (ox == NULL) {
2041         ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
2042         if (ox == NULL) {
2043            // The CAS succeeded -- this thread acquired ownership
2044            // Take care of some bookkeeping to exit spin state.
2045            if (sss && _succ == Self) {
2046               _succ = NULL ;
2047            }
2048            if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
2049
2050            // Increase _SpinDuration :
2051            // The spin was successful (profitable) so we tend toward
2052            // longer spin attempts in the future.
2053            // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2054            // If we acquired the lock early in the spin cycle it
2055            // makes sense to increase _SpinDuration proportionally.
2056            // Note that we don't clamp SpinDuration precisely at SpinLimit.
2057            int x = _SpinDuration ;
2058            if (x < Knob_SpinLimit) {
2059                if (x < Knob_Poverty) x = Knob_Poverty ;
2060                _SpinDuration = x + Knob_Bonus ;
2061            }
2062            return 1 ;
2063         }
2064
2065         // The CAS failed ... we can take any of the following actions:
2066         // * penalize: ctr -= Knob_CASPenalty
2067         // * exit spin with prejudice -- goto Abort;
2068         // * exit spin without prejudice.
2069         // * Since CAS is high-latency, retry again immediately.
2070         prv = ox ;
2071         TEVENT (Spin: cas failed) ;
2072         if (caspty == -2) break ;
2073         if (caspty == -1) goto Abort ;
2074         ctr -= caspty ;
2075         continue ;
2076      }
2077
2078      // Did lock ownership change hands ?
2079      if (ox != prv && prv != NULL ) {
2080          TEVENT (spin: Owner changed)
2081          if (oxpty == -2) break ;
2082          if (oxpty == -1) goto Abort ;
2083          ctr -= oxpty ;
2084      }
2085      prv = ox ;
2086
2087      // Abort the spin if the owner is not executing.
2088      // The owner must be executing in order to drop the lock.
2089      // Spinning while the owner is OFFPROC is idiocy.
2090      // Consider: ctr -= RunnablePenalty ;
2091      if (Knob_OState && NotRunnable (Self, ox)) {
2092         TEVENT (Spin abort - notrunnable);
2093         goto Abort ;
2094      }
2095      if (sss && _succ == NULL ) _succ = Self ;
2096   }
2097
2098   // Spin failed with prejudice -- reduce _SpinDuration.
2099   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2100   // AIMD is globally stable.
2101   TEVENT (Spin failure) ;
2102   {
2103     int x = _SpinDuration ;
2104     if (x > 0) {
2105        // Consider an AIMD scheme like: x -= (x >> 3) + 100
2106        // This is globally sample and tends to damp the response.
2107        x -= Knob_Penalty ;
2108        if (x < 0) x = 0 ;
2109        _SpinDuration = x ;
2110     }
2111   }
2112
2113 Abort:
2114   if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
2115   if (sss && _succ == Self) {
2116      _succ = NULL ;
2117      // Invariant: after setting succ=null a contending thread
2118      // must recheck-retry _owner before parking.  This usually happens
2119      // in the normal usage of TrySpin(), but it's safest
2120      // to make TrySpin() as foolproof as possible.
2121      OrderAccess::fence() ;
2122      if (TryLock(Self) > 0) return 1 ;
2123   }
2124   return 0 ;
2125}
2126
2127// NotRunnable() -- informed spinning
2128//
2129// Don't bother spinning if the owner is not eligible to drop the lock.
2130// Peek at the owner's schedctl.sc_state and Thread._thread_values and
2131// spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2132// The thread must be runnable in order to drop the lock in timely fashion.
2133// If the _owner is not runnable then spinning will not likely be
2134// successful (profitable).
2135//
2136// Beware -- the thread referenced by _owner could have died
2137// so a simply fetch from _owner->_thread_state might trap.
2138// Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2139// Because of the lifecycle issues the schedctl and _thread_state values
2140// observed by NotRunnable() might be garbage.  NotRunnable must
2141// tolerate this and consider the observed _thread_state value
2142// as advisory.
2143//
2144// Beware too, that _owner is sometimes a BasicLock address and sometimes
2145// a thread pointer.  We differentiate the two cases with OwnerIsThread.
2146// Alternately, we might tag the type (thread pointer vs basiclock pointer)
2147// with the LSB of _owner.  Another option would be to probablistically probe
2148// the putative _owner->TypeTag value.
2149//
2150// Checking _thread_state isn't perfect.  Even if the thread is
2151// in_java it might be blocked on a page-fault or have been preempted
2152// and sitting on a ready/dispatch queue.  _thread state in conjunction
2153// with schedctl.sc_state gives us a good picture of what the
2154// thread is doing, however.
2155//
2156// TODO: check schedctl.sc_state.
2157// We'll need to use SafeFetch32() to read from the schedctl block.
2158// See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2159//
2160// The return value from NotRunnable() is *advisory* -- the
2161// result is based on sampling and is not necessarily coherent.
2162// The caller must tolerate false-negative and false-positive errors.
2163// Spinning, in general, is probabilistic anyway.
2164
2165
2166int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
2167    // Check either OwnerIsThread or ox->TypeTag == 2BAD.
2168    if (!OwnerIsThread) return 0 ;
2169
2170    if (ox == NULL) return 0 ;
2171
2172    // Avoid transitive spinning ...
2173    // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2174    // Immediately after T1 acquires L it's possible that T2, also
2175    // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2176    // This occurs transiently after T1 acquired L but before
2177    // T1 managed to clear T1.Stalled.  T2 does not need to abort
2178    // its spin in this circumstance.
2179    intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
2180
2181    if (BlockedOn == 1) return 1 ;
2182    if (BlockedOn != 0) {
2183      return BlockedOn != intptr_t(this) && _owner == ox ;
2184    }
2185
2186    assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
2187    int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
2188    // consider also: jst != _thread_in_Java -- but that's overspecific.
2189    return jst == _thread_blocked || jst == _thread_in_native ;
2190}
2191
2192
2193// -----------------------------------------------------------------------------
2194// WaitSet management ...
2195
2196ObjectWaiter::ObjectWaiter(Thread* thread) {
2197  _next     = NULL;
2198  _prev     = NULL;
2199  _notified = 0;
2200  TState    = TS_RUN ;
2201  _thread   = thread;
2202  _event    = thread->_ParkEvent ;
2203  _active   = false;
2204  assert (_event != NULL, "invariant") ;
2205}
2206
2207void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
2208  JavaThread *jt = (JavaThread *)this->_thread;
2209  _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2210}
2211
2212void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
2213  JavaThread *jt = (JavaThread *)this->_thread;
2214  JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2215}
2216
2217inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2218  assert(node != NULL, "should not dequeue NULL node");
2219  assert(node->_prev == NULL, "node already in list");
2220  assert(node->_next == NULL, "node already in list");
2221  // put node at end of queue (circular doubly linked list)
2222  if (_WaitSet == NULL) {
2223    _WaitSet = node;
2224    node->_prev = node;
2225    node->_next = node;
2226  } else {
2227    ObjectWaiter* head = _WaitSet ;
2228    ObjectWaiter* tail = head->_prev;
2229    assert(tail->_next == head, "invariant check");
2230    tail->_next = node;
2231    head->_prev = node;
2232    node->_next = head;
2233    node->_prev = tail;
2234  }
2235}
2236
2237inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2238  // dequeue the very first waiter
2239  ObjectWaiter* waiter = _WaitSet;
2240  if (waiter) {
2241    DequeueSpecificWaiter(waiter);
2242  }
2243  return waiter;
2244}
2245
2246inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2247  assert(node != NULL, "should not dequeue NULL node");
2248  assert(node->_prev != NULL, "node already removed from list");
2249  assert(node->_next != NULL, "node already removed from list");
2250  // when the waiter has woken up because of interrupt,
2251  // timeout or other spurious wake-up, dequeue the
2252  // waiter from waiting list
2253  ObjectWaiter* next = node->_next;
2254  if (next == node) {
2255    assert(node->_prev == node, "invariant check");
2256    _WaitSet = NULL;
2257  } else {
2258    ObjectWaiter* prev = node->_prev;
2259    assert(prev->_next == node, "invariant check");
2260    assert(next->_prev == node, "invariant check");
2261    next->_prev = prev;
2262    prev->_next = next;
2263    if (_WaitSet == node) {
2264      _WaitSet = next;
2265    }
2266  }
2267  node->_next = NULL;
2268  node->_prev = NULL;
2269}
2270
2271// -----------------------------------------------------------------------------
2272// PerfData support
2273PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
2274PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
2275PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
2276PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
2277PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
2278PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
2279PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
2280PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
2281PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
2282PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
2283PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
2284PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
2285PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
2286PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
2287PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
2288PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
2289PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
2290PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;
2291
2292// One-shot global initialization for the sync subsystem.
2293// We could also defer initialization and initialize on-demand
2294// the first time we call inflate().  Initialization would
2295// be protected - like so many things - by the MonitorCache_lock.
2296
2297void ObjectMonitor::Initialize () {
2298  static int InitializationCompleted = 0 ;
2299  assert (InitializationCompleted == 0, "invariant") ;
2300  InitializationCompleted = 1 ;
2301  if (UsePerfData) {
2302      EXCEPTION_MARK ;
2303      #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
2304      #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
2305      NEWPERFCOUNTER(_sync_Inflations) ;
2306      NEWPERFCOUNTER(_sync_Deflations) ;
2307      NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
2308      NEWPERFCOUNTER(_sync_FutileWakeups) ;
2309      NEWPERFCOUNTER(_sync_Parks) ;
2310      NEWPERFCOUNTER(_sync_EmptyNotifications) ;
2311      NEWPERFCOUNTER(_sync_Notifications) ;
2312      NEWPERFCOUNTER(_sync_SlowEnter) ;
2313      NEWPERFCOUNTER(_sync_SlowExit) ;
2314      NEWPERFCOUNTER(_sync_SlowNotify) ;
2315      NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
2316      NEWPERFCOUNTER(_sync_FailedSpins) ;
2317      NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
2318      NEWPERFCOUNTER(_sync_PrivateA) ;
2319      NEWPERFCOUNTER(_sync_PrivateB) ;
2320      NEWPERFCOUNTER(_sync_MonInCirculation) ;
2321      NEWPERFCOUNTER(_sync_MonScavenged) ;
2322      NEWPERFVARIABLE(_sync_MonExtant) ;
2323      #undef NEWPERFCOUNTER
2324  }
2325}
2326
2327
2328// Compile-time asserts
2329// When possible, it's better to catch errors deterministically at
2330// compile-time than at runtime.  The down-side to using compile-time
2331// asserts is that error message -- often something about negative array
2332// indices -- is opaque.
2333
2334#define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
2335
2336void ObjectMonitor::ctAsserts() {
2337  CTASSERT(offset_of (ObjectMonitor, _header) == 0);
2338}
2339
2340
2341static char * kvGet (char * kvList, const char * Key) {
2342    if (kvList == NULL) return NULL ;
2343    size_t n = strlen (Key) ;
2344    char * Search ;
2345    for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
2346        if (strncmp (Search, Key, n) == 0) {
2347            if (Search[n] == '=') return Search + n + 1 ;
2348            if (Search[n] == 0)   return (char *) "1" ;
2349        }
2350    }
2351    return NULL ;
2352}
2353
2354static int kvGetInt (char * kvList, const char * Key, int Default) {
2355    char * v = kvGet (kvList, Key) ;
2356    int rslt = v ? ::strtol (v, NULL, 0) : Default ;
2357    if (Knob_ReportSettings && v != NULL) {
2358        ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
2359        ::fflush (stdout) ;
2360    }
2361    return rslt ;
2362}
2363
2364void ObjectMonitor::DeferredInitialize () {
2365  if (InitDone > 0) return ;
2366  if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2367      while (InitDone != 1) ;
2368      return ;
2369  }
2370
2371  // One-shot global initialization ...
2372  // The initialization is idempotent, so we don't need locks.
2373  // In the future consider doing this via os::init_2().
2374  // SyncKnobs consist of <Key>=<Value> pairs in the style
2375  // of environment variables.  Start by converting ':' to NUL.
2376
2377  if (SyncKnobs == NULL) SyncKnobs = "" ;
2378
2379  size_t sz = strlen (SyncKnobs) ;
2380  char * knobs = (char *) malloc (sz + 2) ;
2381  if (knobs == NULL) {
2382     vm_exit_out_of_memory (sz + 2, "Parse SyncKnobs") ;
2383     guarantee (0, "invariant") ;
2384  }
2385  strcpy (knobs, SyncKnobs) ;
2386  knobs[sz+1] = 0 ;
2387  for (char * p = knobs ; *p ; p++) {
2388     if (*p == ':') *p = 0 ;
2389  }
2390
2391  #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
2392  SETKNOB(ReportSettings) ;
2393  SETKNOB(Verbose) ;
2394  SETKNOB(FixedSpin) ;
2395  SETKNOB(SpinLimit) ;
2396  SETKNOB(SpinBase) ;
2397  SETKNOB(SpinBackOff);
2398  SETKNOB(CASPenalty) ;
2399  SETKNOB(OXPenalty) ;
2400  SETKNOB(LogSpins) ;
2401  SETKNOB(SpinSetSucc) ;
2402  SETKNOB(SuccEnabled) ;
2403  SETKNOB(SuccRestrict) ;
2404  SETKNOB(Penalty) ;
2405  SETKNOB(Bonus) ;
2406  SETKNOB(BonusB) ;
2407  SETKNOB(Poverty) ;
2408  SETKNOB(SpinAfterFutile) ;
2409  SETKNOB(UsePause) ;
2410  SETKNOB(SpinEarly) ;
2411  SETKNOB(OState) ;
2412  SETKNOB(MaxSpinners) ;
2413  SETKNOB(PreSpin) ;
2414  SETKNOB(ExitPolicy) ;
2415  SETKNOB(QMode);
2416  SETKNOB(ResetEvent) ;
2417  SETKNOB(MoveNotifyee) ;
2418  SETKNOB(FastHSSEC) ;
2419  #undef SETKNOB
2420
2421  if (os::is_MP()) {
2422     BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
2423     if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
2424     // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2425  } else {
2426     Knob_SpinLimit = 0 ;
2427     Knob_SpinBase  = 0 ;
2428     Knob_PreSpin   = 0 ;
2429     Knob_FixedSpin = -1 ;
2430  }
2431
2432  if (Knob_LogSpins == 0) {
2433     ObjectMonitor::_sync_FailedSpins = NULL ;
2434  }
2435
2436  free (knobs) ;
2437  OrderAccess::fence() ;
2438  InitDone = 1 ;
2439}
2440
2441#ifndef PRODUCT
2442void ObjectMonitor::verify() {
2443}
2444
2445void ObjectMonitor::print() {
2446}
2447#endif
2448