objectMonitor.cpp revision 1798:fa83ab460c54
1/*
2 * Copyright (c) 1998, 2009, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_objectMonitor.cpp.incl"
27
28#if defined(__GNUC__) && !defined(IA64)
29  // Need to inhibit inlining for older versions of GCC to avoid build-time failures
30  #define ATTR __attribute__((noinline))
31#else
32  #define ATTR
33#endif
34
35
36#ifdef DTRACE_ENABLED
37
38// Only bother with this argument setup if dtrace is available
39// TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
40
41HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
42  jlong, uintptr_t, char*, int);
43HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
44  jlong, uintptr_t, char*, int);
45HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
46  jlong, uintptr_t, char*, int);
47HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
48  jlong, uintptr_t, char*, int);
49HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
50  jlong, uintptr_t, char*, int);
51
52#define DTRACE_MONITOR_PROBE_COMMON(klassOop, thread)                      \
53  char* bytes = NULL;                                                      \
54  int len = 0;                                                             \
55  jlong jtid = SharedRuntime::get_java_tid(thread);                        \
56  symbolOop klassname = ((oop)(klassOop))->klass()->klass_part()->name();  \
57  if (klassname != NULL) {                                                 \
58    bytes = (char*)klassname->bytes();                                     \
59    len = klassname->utf8_length();                                        \
60  }
61
62#define DTRACE_MONITOR_WAIT_PROBE(monitor, klassOop, thread, millis)       \
63  {                                                                        \
64    if (DTraceMonitorProbes) {                                            \
65      DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
66      HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
67                       (monitor), bytes, len, (millis));                   \
68    }                                                                      \
69  }
70
71#define DTRACE_MONITOR_PROBE(probe, monitor, klassOop, thread)             \
72  {                                                                        \
73    if (DTraceMonitorProbes) {                                            \
74      DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
75      HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
76                       (uintptr_t)(monitor), bytes, len);                  \
77    }                                                                      \
78  }
79
80#else //  ndef DTRACE_ENABLED
81
82#define DTRACE_MONITOR_WAIT_PROBE(klassOop, thread, millis, mon)    {;}
83#define DTRACE_MONITOR_PROBE(probe, klassOop, thread, mon)          {;}
84
85#endif // ndef DTRACE_ENABLED
86
87// Tunables ...
88// The knob* variables are effectively final.  Once set they should
89// never be modified hence.  Consider using __read_mostly with GCC.
90
91int ObjectMonitor::Knob_Verbose    = 0 ;
92int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
93static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
94static int Knob_HandOff            = 0 ;
95static int Knob_ReportSettings     = 0 ;
96
97static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
98static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
99static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
100static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
101static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
102static int Knob_SpinEarly          = 1 ;
103static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
104static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
105static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
106static int Knob_Bonus              = 100 ;     // spin success bonus
107static int Knob_BonusB             = 100 ;     // spin success bonus
108static int Knob_Penalty            = 200 ;     // spin failure penalty
109static int Knob_Poverty            = 1000 ;
110static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
111static int Knob_FixedSpin          = 0 ;
112static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
113static int Knob_UsePause           = 1 ;
114static int Knob_ExitPolicy         = 0 ;
115static int Knob_PreSpin            = 10 ;      // 20-100 likely better
116static int Knob_ResetEvent         = 0 ;
117static int BackOffMask             = 0 ;
118
119static int Knob_FastHSSEC          = 0 ;
120static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
121static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
122static volatile int InitDone       = 0 ;
123
124#define TrySpin TrySpin_VaryDuration
125
126// -----------------------------------------------------------------------------
127// Theory of operations -- Monitors lists, thread residency, etc:
128//
129// * A thread acquires ownership of a monitor by successfully
130//   CAS()ing the _owner field from null to non-null.
131//
132// * Invariant: A thread appears on at most one monitor list --
133//   cxq, EntryList or WaitSet -- at any one time.
134//
135// * Contending threads "push" themselves onto the cxq with CAS
136//   and then spin/park.
137//
138// * After a contending thread eventually acquires the lock it must
139//   dequeue itself from either the EntryList or the cxq.
140//
141// * The exiting thread identifies and unparks an "heir presumptive"
142//   tentative successor thread on the EntryList.  Critically, the
143//   exiting thread doesn't unlink the successor thread from the EntryList.
144//   After having been unparked, the wakee will recontend for ownership of
145//   the monitor.   The successor (wakee) will either acquire the lock or
146//   re-park itself.
147//
148//   Succession is provided for by a policy of competitive handoff.
149//   The exiting thread does _not_ grant or pass ownership to the
150//   successor thread.  (This is also referred to as "handoff" succession").
151//   Instead the exiting thread releases ownership and possibly wakes
152//   a successor, so the successor can (re)compete for ownership of the lock.
153//   If the EntryList is empty but the cxq is populated the exiting
154//   thread will drain the cxq into the EntryList.  It does so by
155//   by detaching the cxq (installing null with CAS) and folding
156//   the threads from the cxq into the EntryList.  The EntryList is
157//   doubly linked, while the cxq is singly linked because of the
158//   CAS-based "push" used to enqueue recently arrived threads (RATs).
159//
160// * Concurrency invariants:
161//
162//   -- only the monitor owner may access or mutate the EntryList.
163//      The mutex property of the monitor itself protects the EntryList
164//      from concurrent interference.
165//   -- Only the monitor owner may detach the cxq.
166//
167// * The monitor entry list operations avoid locks, but strictly speaking
168//   they're not lock-free.  Enter is lock-free, exit is not.
169//   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
170//
171// * The cxq can have multiple concurrent "pushers" but only one concurrent
172//   detaching thread.  This mechanism is immune from the ABA corruption.
173//   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
174//
175// * Taken together, the cxq and the EntryList constitute or form a
176//   single logical queue of threads stalled trying to acquire the lock.
177//   We use two distinct lists to improve the odds of a constant-time
178//   dequeue operation after acquisition (in the ::enter() epilog) and
179//   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
180//   A key desideratum is to minimize queue & monitor metadata manipulation
181//   that occurs while holding the monitor lock -- that is, we want to
182//   minimize monitor lock holds times.  Note that even a small amount of
183//   fixed spinning will greatly reduce the # of enqueue-dequeue operations
184//   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
185//   locks and monitor metadata.
186//
187//   Cxq points to the the set of Recently Arrived Threads attempting entry.
188//   Because we push threads onto _cxq with CAS, the RATs must take the form of
189//   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
190//   the unlocking thread notices that EntryList is null but _cxq is != null.
191//
192//   The EntryList is ordered by the prevailing queue discipline and
193//   can be organized in any convenient fashion, such as a doubly-linked list or
194//   a circular doubly-linked list.  Critically, we want insert and delete operations
195//   to operate in constant-time.  If we need a priority queue then something akin
196//   to Solaris' sleepq would work nicely.  Viz.,
197//   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
198//   Queue discipline is enforced at ::exit() time, when the unlocking thread
199//   drains the cxq into the EntryList, and orders or reorders the threads on the
200//   EntryList accordingly.
201//
202//   Barring "lock barging", this mechanism provides fair cyclic ordering,
203//   somewhat similar to an elevator-scan.
204//
205// * The monitor synchronization subsystem avoids the use of native
206//   synchronization primitives except for the narrow platform-specific
207//   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
208//   the semantics of park-unpark.  Put another way, this monitor implementation
209//   depends only on atomic operations and park-unpark.  The monitor subsystem
210//   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
211//   underlying OS manages the READY<->RUN transitions.
212//
213// * Waiting threads reside on the WaitSet list -- wait() puts
214//   the caller onto the WaitSet.
215//
216// * notify() or notifyAll() simply transfers threads from the WaitSet to
217//   either the EntryList or cxq.  Subsequent exit() operations will
218//   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
219//   it's likely the notifyee would simply impale itself on the lock held
220//   by the notifier.
221//
222// * An interesting alternative is to encode cxq as (List,LockByte) where
223//   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
224//   variable, like _recursions, in the scheme.  The threads or Events that form
225//   the list would have to be aligned in 256-byte addresses.  A thread would
226//   try to acquire the lock or enqueue itself with CAS, but exiting threads
227//   could use a 1-0 protocol and simply STB to set the LockByte to 0.
228//   Note that is is *not* word-tearing, but it does presume that full-word
229//   CAS operations are coherent with intermix with STB operations.  That's true
230//   on most common processors.
231//
232// * See also http://blogs.sun.com/dave
233
234
235// -----------------------------------------------------------------------------
236// Enter support
237
238bool ObjectMonitor::try_enter(Thread* THREAD) {
239  if (THREAD != _owner) {
240    if (THREAD->is_lock_owned ((address)_owner)) {
241       assert(_recursions == 0, "internal state error");
242       _owner = THREAD ;
243       _recursions = 1 ;
244       OwnerIsThread = 1 ;
245       return true;
246    }
247    if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
248      return false;
249    }
250    return true;
251  } else {
252    _recursions++;
253    return true;
254  }
255}
256
257void ATTR ObjectMonitor::enter(TRAPS) {
258  // The following code is ordered to check the most common cases first
259  // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
260  Thread * const Self = THREAD ;
261  void * cur ;
262
263  cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
264  if (cur == NULL) {
265     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
266     assert (_recursions == 0   , "invariant") ;
267     assert (_owner      == Self, "invariant") ;
268     // CONSIDER: set or assert OwnerIsThread == 1
269     return ;
270  }
271
272  if (cur == Self) {
273     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
274     _recursions ++ ;
275     return ;
276  }
277
278  if (Self->is_lock_owned ((address)cur)) {
279    assert (_recursions == 0, "internal state error");
280    _recursions = 1 ;
281    // Commute owner from a thread-specific on-stack BasicLockObject address to
282    // a full-fledged "Thread *".
283    _owner = Self ;
284    OwnerIsThread = 1 ;
285    return ;
286  }
287
288  // We've encountered genuine contention.
289  assert (Self->_Stalled == 0, "invariant") ;
290  Self->_Stalled = intptr_t(this) ;
291
292  // Try one round of spinning *before* enqueueing Self
293  // and before going through the awkward and expensive state
294  // transitions.  The following spin is strictly optional ...
295  // Note that if we acquire the monitor from an initial spin
296  // we forgo posting JVMTI events and firing DTRACE probes.
297  if (Knob_SpinEarly && TrySpin (Self) > 0) {
298     assert (_owner == Self      , "invariant") ;
299     assert (_recursions == 0    , "invariant") ;
300     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
301     Self->_Stalled = 0 ;
302     return ;
303  }
304
305  assert (_owner != Self          , "invariant") ;
306  assert (_succ  != Self          , "invariant") ;
307  assert (Self->is_Java_thread()  , "invariant") ;
308  JavaThread * jt = (JavaThread *) Self ;
309  assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
310  assert (jt->thread_state() != _thread_blocked   , "invariant") ;
311  assert (this->object() != NULL  , "invariant") ;
312  assert (_count >= 0, "invariant") ;
313
314  // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
315  // Ensure the object-monitor relationship remains stable while there's contention.
316  Atomic::inc_ptr(&_count);
317
318  { // Change java thread status to indicate blocked on monitor enter.
319    JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
320
321    DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
322    if (JvmtiExport::should_post_monitor_contended_enter()) {
323      JvmtiExport::post_monitor_contended_enter(jt, this);
324    }
325
326    OSThreadContendState osts(Self->osthread());
327    ThreadBlockInVM tbivm(jt);
328
329    Self->set_current_pending_monitor(this);
330
331    // TODO-FIXME: change the following for(;;) loop to straight-line code.
332    for (;;) {
333      jt->set_suspend_equivalent();
334      // cleared by handle_special_suspend_equivalent_condition()
335      // or java_suspend_self()
336
337      EnterI (THREAD) ;
338
339      if (!ExitSuspendEquivalent(jt)) break ;
340
341      //
342      // We have acquired the contended monitor, but while we were
343      // waiting another thread suspended us. We don't want to enter
344      // the monitor while suspended because that would surprise the
345      // thread that suspended us.
346      //
347          _recursions = 0 ;
348      _succ = NULL ;
349      exit (Self) ;
350
351      jt->java_suspend_self();
352    }
353    Self->set_current_pending_monitor(NULL);
354  }
355
356  Atomic::dec_ptr(&_count);
357  assert (_count >= 0, "invariant") ;
358  Self->_Stalled = 0 ;
359
360  // Must either set _recursions = 0 or ASSERT _recursions == 0.
361  assert (_recursions == 0     , "invariant") ;
362  assert (_owner == Self       , "invariant") ;
363  assert (_succ  != Self       , "invariant") ;
364  assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
365
366  // The thread -- now the owner -- is back in vm mode.
367  // Report the glorious news via TI,DTrace and jvmstat.
368  // The probe effect is non-trivial.  All the reportage occurs
369  // while we hold the monitor, increasing the length of the critical
370  // section.  Amdahl's parallel speedup law comes vividly into play.
371  //
372  // Another option might be to aggregate the events (thread local or
373  // per-monitor aggregation) and defer reporting until a more opportune
374  // time -- such as next time some thread encounters contention but has
375  // yet to acquire the lock.  While spinning that thread could
376  // spinning we could increment JVMStat counters, etc.
377
378  DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
379  if (JvmtiExport::should_post_monitor_contended_entered()) {
380    JvmtiExport::post_monitor_contended_entered(jt, this);
381  }
382  if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
383     ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
384  }
385}
386
387
388// Caveat: TryLock() is not necessarily serializing if it returns failure.
389// Callers must compensate as needed.
390
391int ObjectMonitor::TryLock (Thread * Self) {
392   for (;;) {
393      void * own = _owner ;
394      if (own != NULL) return 0 ;
395      if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
396         // Either guarantee _recursions == 0 or set _recursions = 0.
397         assert (_recursions == 0, "invariant") ;
398         assert (_owner == Self, "invariant") ;
399         // CONSIDER: set or assert that OwnerIsThread == 1
400         return 1 ;
401      }
402      // The lock had been free momentarily, but we lost the race to the lock.
403      // Interference -- the CAS failed.
404      // We can either return -1 or retry.
405      // Retry doesn't make as much sense because the lock was just acquired.
406      if (true) return -1 ;
407   }
408}
409
410void ATTR ObjectMonitor::EnterI (TRAPS) {
411    Thread * Self = THREAD ;
412    assert (Self->is_Java_thread(), "invariant") ;
413    assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
414
415    // Try the lock - TATAS
416    if (TryLock (Self) > 0) {
417        assert (_succ != Self              , "invariant") ;
418        assert (_owner == Self             , "invariant") ;
419        assert (_Responsible != Self       , "invariant") ;
420        return ;
421    }
422
423    DeferredInitialize () ;
424
425    // We try one round of spinning *before* enqueueing Self.
426    //
427    // If the _owner is ready but OFFPROC we could use a YieldTo()
428    // operation to donate the remainder of this thread's quantum
429    // to the owner.  This has subtle but beneficial affinity
430    // effects.
431
432    if (TrySpin (Self) > 0) {
433        assert (_owner == Self        , "invariant") ;
434        assert (_succ != Self         , "invariant") ;
435        assert (_Responsible != Self  , "invariant") ;
436        return ;
437    }
438
439    // The Spin failed -- Enqueue and park the thread ...
440    assert (_succ  != Self            , "invariant") ;
441    assert (_owner != Self            , "invariant") ;
442    assert (_Responsible != Self      , "invariant") ;
443
444    // Enqueue "Self" on ObjectMonitor's _cxq.
445    //
446    // Node acts as a proxy for Self.
447    // As an aside, if were to ever rewrite the synchronization code mostly
448    // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
449    // Java objects.  This would avoid awkward lifecycle and liveness issues,
450    // as well as eliminate a subset of ABA issues.
451    // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
452    //
453
454    ObjectWaiter node(Self) ;
455    Self->_ParkEvent->reset() ;
456    node._prev   = (ObjectWaiter *) 0xBAD ;
457    node.TState  = ObjectWaiter::TS_CXQ ;
458
459    // Push "Self" onto the front of the _cxq.
460    // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
461    // Note that spinning tends to reduce the rate at which threads
462    // enqueue and dequeue on EntryList|cxq.
463    ObjectWaiter * nxt ;
464    for (;;) {
465        node._next = nxt = _cxq ;
466        if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
467
468        // Interference - the CAS failed because _cxq changed.  Just retry.
469        // As an optional optimization we retry the lock.
470        if (TryLock (Self) > 0) {
471            assert (_succ != Self         , "invariant") ;
472            assert (_owner == Self        , "invariant") ;
473            assert (_Responsible != Self  , "invariant") ;
474            return ;
475        }
476    }
477
478    // Check for cxq|EntryList edge transition to non-null.  This indicates
479    // the onset of contention.  While contention persists exiting threads
480    // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
481    // operations revert to the faster 1-0 mode.  This enter operation may interleave
482    // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
483    // arrange for one of the contending thread to use a timed park() operations
484    // to detect and recover from the race.  (Stranding is form of progress failure
485    // where the monitor is unlocked but all the contending threads remain parked).
486    // That is, at least one of the contended threads will periodically poll _owner.
487    // One of the contending threads will become the designated "Responsible" thread.
488    // The Responsible thread uses a timed park instead of a normal indefinite park
489    // operation -- it periodically wakes and checks for and recovers from potential
490    // strandings admitted by 1-0 exit operations.   We need at most one Responsible
491    // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
492    // be responsible for a monitor.
493    //
494    // Currently, one of the contended threads takes on the added role of "Responsible".
495    // A viable alternative would be to use a dedicated "stranding checker" thread
496    // that periodically iterated over all the threads (or active monitors) and unparked
497    // successors where there was risk of stranding.  This would help eliminate the
498    // timer scalability issues we see on some platforms as we'd only have one thread
499    // -- the checker -- parked on a timer.
500
501    if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
502        // Try to assume the role of responsible thread for the monitor.
503        // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
504        Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
505    }
506
507    // The lock have been released while this thread was occupied queueing
508    // itself onto _cxq.  To close the race and avoid "stranding" and
509    // progress-liveness failure we must resample-retry _owner before parking.
510    // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
511    // In this case the ST-MEMBAR is accomplished with CAS().
512    //
513    // TODO: Defer all thread state transitions until park-time.
514    // Since state transitions are heavy and inefficient we'd like
515    // to defer the state transitions until absolutely necessary,
516    // and in doing so avoid some transitions ...
517
518    TEVENT (Inflated enter - Contention) ;
519    int nWakeups = 0 ;
520    int RecheckInterval = 1 ;
521
522    for (;;) {
523
524        if (TryLock (Self) > 0) break ;
525        assert (_owner != Self, "invariant") ;
526
527        if ((SyncFlags & 2) && _Responsible == NULL) {
528           Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
529        }
530
531        // park self
532        if (_Responsible == Self || (SyncFlags & 1)) {
533            TEVENT (Inflated enter - park TIMED) ;
534            Self->_ParkEvent->park ((jlong) RecheckInterval) ;
535            // Increase the RecheckInterval, but clamp the value.
536            RecheckInterval *= 8 ;
537            if (RecheckInterval > 1000) RecheckInterval = 1000 ;
538        } else {
539            TEVENT (Inflated enter - park UNTIMED) ;
540            Self->_ParkEvent->park() ;
541        }
542
543        if (TryLock(Self) > 0) break ;
544
545        // The lock is still contested.
546        // Keep a tally of the # of futile wakeups.
547        // Note that the counter is not protected by a lock or updated by atomics.
548        // That is by design - we trade "lossy" counters which are exposed to
549        // races during updates for a lower probe effect.
550        TEVENT (Inflated enter - Futile wakeup) ;
551        if (ObjectMonitor::_sync_FutileWakeups != NULL) {
552           ObjectMonitor::_sync_FutileWakeups->inc() ;
553        }
554        ++ nWakeups ;
555
556        // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
557        // We can defer clearing _succ until after the spin completes
558        // TrySpin() must tolerate being called with _succ == Self.
559        // Try yet another round of adaptive spinning.
560        if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
561
562        // We can find that we were unpark()ed and redesignated _succ while
563        // we were spinning.  That's harmless.  If we iterate and call park(),
564        // park() will consume the event and return immediately and we'll
565        // just spin again.  This pattern can repeat, leaving _succ to simply
566        // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
567        // Alternately, we can sample fired() here, and if set, forgo spinning
568        // in the next iteration.
569
570        if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
571           Self->_ParkEvent->reset() ;
572           OrderAccess::fence() ;
573        }
574        if (_succ == Self) _succ = NULL ;
575
576        // Invariant: after clearing _succ a thread *must* retry _owner before parking.
577        OrderAccess::fence() ;
578    }
579
580    // Egress :
581    // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
582    // Normally we'll find Self on the EntryList .
583    // From the perspective of the lock owner (this thread), the
584    // EntryList is stable and cxq is prepend-only.
585    // The head of cxq is volatile but the interior is stable.
586    // In addition, Self.TState is stable.
587
588    assert (_owner == Self      , "invariant") ;
589    assert (object() != NULL    , "invariant") ;
590    // I'd like to write:
591    //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
592    // but as we're at a safepoint that's not safe.
593
594    UnlinkAfterAcquire (Self, &node) ;
595    if (_succ == Self) _succ = NULL ;
596
597    assert (_succ != Self, "invariant") ;
598    if (_Responsible == Self) {
599        _Responsible = NULL ;
600        // Dekker pivot-point.
601        // Consider OrderAccess::storeload() here
602
603        // We may leave threads on cxq|EntryList without a designated
604        // "Responsible" thread.  This is benign.  When this thread subsequently
605        // exits the monitor it can "see" such preexisting "old" threads --
606        // threads that arrived on the cxq|EntryList before the fence, above --
607        // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
608        // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
609        // non-null and elect a new "Responsible" timer thread.
610        //
611        // This thread executes:
612        //    ST Responsible=null; MEMBAR    (in enter epilog - here)
613        //    LD cxq|EntryList               (in subsequent exit)
614        //
615        // Entering threads in the slow/contended path execute:
616        //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
617        //    The (ST cxq; MEMBAR) is accomplished with CAS().
618        //
619        // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
620        // exit operation from floating above the ST Responsible=null.
621        //
622        // In *practice* however, EnterI() is always followed by some atomic
623        // operation such as the decrement of _count in ::enter().  Those atomics
624        // obviate the need for the explicit MEMBAR, above.
625    }
626
627    // We've acquired ownership with CAS().
628    // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
629    // But since the CAS() this thread may have also stored into _succ,
630    // EntryList, cxq or Responsible.  These meta-data updates must be
631    // visible __before this thread subsequently drops the lock.
632    // Consider what could occur if we didn't enforce this constraint --
633    // STs to monitor meta-data and user-data could reorder with (become
634    // visible after) the ST in exit that drops ownership of the lock.
635    // Some other thread could then acquire the lock, but observe inconsistent
636    // or old monitor meta-data and heap data.  That violates the JMM.
637    // To that end, the 1-0 exit() operation must have at least STST|LDST
638    // "release" barrier semantics.  Specifically, there must be at least a
639    // STST|LDST barrier in exit() before the ST of null into _owner that drops
640    // the lock.   The barrier ensures that changes to monitor meta-data and data
641    // protected by the lock will be visible before we release the lock, and
642    // therefore before some other thread (CPU) has a chance to acquire the lock.
643    // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
644    //
645    // Critically, any prior STs to _succ or EntryList must be visible before
646    // the ST of null into _owner in the *subsequent* (following) corresponding
647    // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
648    // execute a serializing instruction.
649
650    if (SyncFlags & 8) {
651       OrderAccess::fence() ;
652    }
653    return ;
654}
655
656// ReenterI() is a specialized inline form of the latter half of the
657// contended slow-path from EnterI().  We use ReenterI() only for
658// monitor reentry in wait().
659//
660// In the future we should reconcile EnterI() and ReenterI(), adding
661// Knob_Reset and Knob_SpinAfterFutile support and restructuring the
662// loop accordingly.
663
664void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
665    assert (Self != NULL                , "invariant") ;
666    assert (SelfNode != NULL            , "invariant") ;
667    assert (SelfNode->_thread == Self   , "invariant") ;
668    assert (_waiters > 0                , "invariant") ;
669    assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
670    assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
671    JavaThread * jt = (JavaThread *) Self ;
672
673    int nWakeups = 0 ;
674    for (;;) {
675        ObjectWaiter::TStates v = SelfNode->TState ;
676        guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
677        assert    (_owner != Self, "invariant") ;
678
679        if (TryLock (Self) > 0) break ;
680        if (TrySpin (Self) > 0) break ;
681
682        TEVENT (Wait Reentry - parking) ;
683
684        // State transition wrappers around park() ...
685        // ReenterI() wisely defers state transitions until
686        // it's clear we must park the thread.
687        {
688           OSThreadContendState osts(Self->osthread());
689           ThreadBlockInVM tbivm(jt);
690
691           // cleared by handle_special_suspend_equivalent_condition()
692           // or java_suspend_self()
693           jt->set_suspend_equivalent();
694           if (SyncFlags & 1) {
695              Self->_ParkEvent->park ((jlong)1000) ;
696           } else {
697              Self->_ParkEvent->park () ;
698           }
699
700           // were we externally suspended while we were waiting?
701           for (;;) {
702              if (!ExitSuspendEquivalent (jt)) break ;
703              if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
704              jt->java_suspend_self();
705              jt->set_suspend_equivalent();
706           }
707        }
708
709        // Try again, but just so we distinguish between futile wakeups and
710        // successful wakeups.  The following test isn't algorithmically
711        // necessary, but it helps us maintain sensible statistics.
712        if (TryLock(Self) > 0) break ;
713
714        // The lock is still contested.
715        // Keep a tally of the # of futile wakeups.
716        // Note that the counter is not protected by a lock or updated by atomics.
717        // That is by design - we trade "lossy" counters which are exposed to
718        // races during updates for a lower probe effect.
719        TEVENT (Wait Reentry - futile wakeup) ;
720        ++ nWakeups ;
721
722        // Assuming this is not a spurious wakeup we'll normally
723        // find that _succ == Self.
724        if (_succ == Self) _succ = NULL ;
725
726        // Invariant: after clearing _succ a contending thread
727        // *must* retry  _owner before parking.
728        OrderAccess::fence() ;
729
730        if (ObjectMonitor::_sync_FutileWakeups != NULL) {
731          ObjectMonitor::_sync_FutileWakeups->inc() ;
732        }
733    }
734
735    // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
736    // Normally we'll find Self on the EntryList.
737    // Unlinking from the EntryList is constant-time and atomic-free.
738    // From the perspective of the lock owner (this thread), the
739    // EntryList is stable and cxq is prepend-only.
740    // The head of cxq is volatile but the interior is stable.
741    // In addition, Self.TState is stable.
742
743    assert (_owner == Self, "invariant") ;
744    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
745    UnlinkAfterAcquire (Self, SelfNode) ;
746    if (_succ == Self) _succ = NULL ;
747    assert (_succ != Self, "invariant") ;
748    SelfNode->TState = ObjectWaiter::TS_RUN ;
749    OrderAccess::fence() ;      // see comments at the end of EnterI()
750}
751
752// after the thread acquires the lock in ::enter().  Equally, we could defer
753// unlinking the thread until ::exit()-time.
754
755void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
756{
757    assert (_owner == Self, "invariant") ;
758    assert (SelfNode->_thread == Self, "invariant") ;
759
760    if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
761        // Normal case: remove Self from the DLL EntryList .
762        // This is a constant-time operation.
763        ObjectWaiter * nxt = SelfNode->_next ;
764        ObjectWaiter * prv = SelfNode->_prev ;
765        if (nxt != NULL) nxt->_prev = prv ;
766        if (prv != NULL) prv->_next = nxt ;
767        if (SelfNode == _EntryList ) _EntryList = nxt ;
768        assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
769        assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
770        TEVENT (Unlink from EntryList) ;
771    } else {
772        guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
773        // Inopportune interleaving -- Self is still on the cxq.
774        // This usually means the enqueue of self raced an exiting thread.
775        // Normally we'll find Self near the front of the cxq, so
776        // dequeueing is typically fast.  If needbe we can accelerate
777        // this with some MCS/CHL-like bidirectional list hints and advisory
778        // back-links so dequeueing from the interior will normally operate
779        // in constant-time.
780        // Dequeue Self from either the head (with CAS) or from the interior
781        // with a linear-time scan and normal non-atomic memory operations.
782        // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
783        // and then unlink Self from EntryList.  We have to drain eventually,
784        // so it might as well be now.
785
786        ObjectWaiter * v = _cxq ;
787        assert (v != NULL, "invariant") ;
788        if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
789            // The CAS above can fail from interference IFF a "RAT" arrived.
790            // In that case Self must be in the interior and can no longer be
791            // at the head of cxq.
792            if (v == SelfNode) {
793                assert (_cxq != v, "invariant") ;
794                v = _cxq ;          // CAS above failed - start scan at head of list
795            }
796            ObjectWaiter * p ;
797            ObjectWaiter * q = NULL ;
798            for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
799                q = p ;
800                assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
801            }
802            assert (v != SelfNode,  "invariant") ;
803            assert (p == SelfNode,  "Node not found on cxq") ;
804            assert (p != _cxq,      "invariant") ;
805            assert (q != NULL,      "invariant") ;
806            assert (q->_next == p,  "invariant") ;
807            q->_next = p->_next ;
808        }
809        TEVENT (Unlink from cxq) ;
810    }
811
812    // Diagnostic hygiene ...
813    SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
814    SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
815    SelfNode->TState = ObjectWaiter::TS_RUN ;
816}
817
818// -----------------------------------------------------------------------------
819// Exit support
820//
821// exit()
822// ~~~~~~
823// Note that the collector can't reclaim the objectMonitor or deflate
824// the object out from underneath the thread calling ::exit() as the
825// thread calling ::exit() never transitions to a stable state.
826// This inhibits GC, which in turn inhibits asynchronous (and
827// inopportune) reclamation of "this".
828//
829// We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
830// There's one exception to the claim above, however.  EnterI() can call
831// exit() to drop a lock if the acquirer has been externally suspended.
832// In that case exit() is called with _thread_state as _thread_blocked,
833// but the monitor's _count field is > 0, which inhibits reclamation.
834//
835// 1-0 exit
836// ~~~~~~~~
837// ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
838// the fast-path operators have been optimized so the common ::exit()
839// operation is 1-0.  See i486.ad fast_unlock(), for instance.
840// The code emitted by fast_unlock() elides the usual MEMBAR.  This
841// greatly improves latency -- MEMBAR and CAS having considerable local
842// latency on modern processors -- but at the cost of "stranding".  Absent the
843// MEMBAR, a thread in fast_unlock() can race a thread in the slow
844// ::enter() path, resulting in the entering thread being stranding
845// and a progress-liveness failure.   Stranding is extremely rare.
846// We use timers (timed park operations) & periodic polling to detect
847// and recover from stranding.  Potentially stranded threads periodically
848// wake up and poll the lock.  See the usage of the _Responsible variable.
849//
850// The CAS() in enter provides for safety and exclusion, while the CAS or
851// MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
852// eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
853// We detect and recover from stranding with timers.
854//
855// If a thread transiently strands it'll park until (a) another
856// thread acquires the lock and then drops the lock, at which time the
857// exiting thread will notice and unpark the stranded thread, or, (b)
858// the timer expires.  If the lock is high traffic then the stranding latency
859// will be low due to (a).  If the lock is low traffic then the odds of
860// stranding are lower, although the worst-case stranding latency
861// is longer.  Critically, we don't want to put excessive load in the
862// platform's timer subsystem.  We want to minimize both the timer injection
863// rate (timers created/sec) as well as the number of timers active at
864// any one time.  (more precisely, we want to minimize timer-seconds, which is
865// the integral of the # of active timers at any instant over time).
866// Both impinge on OS scalability.  Given that, at most one thread parked on
867// a monitor will use a timer.
868
869void ATTR ObjectMonitor::exit(TRAPS) {
870   Thread * Self = THREAD ;
871   if (THREAD != _owner) {
872     if (THREAD->is_lock_owned((address) _owner)) {
873       // Transmute _owner from a BasicLock pointer to a Thread address.
874       // We don't need to hold _mutex for this transition.
875       // Non-null to Non-null is safe as long as all readers can
876       // tolerate either flavor.
877       assert (_recursions == 0, "invariant") ;
878       _owner = THREAD ;
879       _recursions = 0 ;
880       OwnerIsThread = 1 ;
881     } else {
882       // NOTE: we need to handle unbalanced monitor enter/exit
883       // in native code by throwing an exception.
884       // TODO: Throw an IllegalMonitorStateException ?
885       TEVENT (Exit - Throw IMSX) ;
886       assert(false, "Non-balanced monitor enter/exit!");
887       if (false) {
888          THROW(vmSymbols::java_lang_IllegalMonitorStateException());
889       }
890       return;
891     }
892   }
893
894   if (_recursions != 0) {
895     _recursions--;        // this is simple recursive enter
896     TEVENT (Inflated exit - recursive) ;
897     return ;
898   }
899
900   // Invariant: after setting Responsible=null an thread must execute
901   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
902   if ((SyncFlags & 4) == 0) {
903      _Responsible = NULL ;
904   }
905
906   for (;;) {
907      assert (THREAD == _owner, "invariant") ;
908
909
910      if (Knob_ExitPolicy == 0) {
911         // release semantics: prior loads and stores from within the critical section
912         // must not float (reorder) past the following store that drops the lock.
913         // On SPARC that requires MEMBAR #loadstore|#storestore.
914         // But of course in TSO #loadstore|#storestore is not required.
915         // I'd like to write one of the following:
916         // A.  OrderAccess::release() ; _owner = NULL
917         // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
918         // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
919         // store into a _dummy variable.  That store is not needed, but can result
920         // in massive wasteful coherency traffic on classic SMP systems.
921         // Instead, I use release_store(), which is implemented as just a simple
922         // ST on x64, x86 and SPARC.
923         OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
924         OrderAccess::storeload() ;                         // See if we need to wake a successor
925         if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
926            TEVENT (Inflated exit - simple egress) ;
927            return ;
928         }
929         TEVENT (Inflated exit - complex egress) ;
930
931         // Normally the exiting thread is responsible for ensuring succession,
932         // but if other successors are ready or other entering threads are spinning
933         // then this thread can simply store NULL into _owner and exit without
934         // waking a successor.  The existence of spinners or ready successors
935         // guarantees proper succession (liveness).  Responsibility passes to the
936         // ready or running successors.  The exiting thread delegates the duty.
937         // More precisely, if a successor already exists this thread is absolved
938         // of the responsibility of waking (unparking) one.
939         //
940         // The _succ variable is critical to reducing futile wakeup frequency.
941         // _succ identifies the "heir presumptive" thread that has been made
942         // ready (unparked) but that has not yet run.  We need only one such
943         // successor thread to guarantee progress.
944         // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
945         // section 3.3 "Futile Wakeup Throttling" for details.
946         //
947         // Note that spinners in Enter() also set _succ non-null.
948         // In the current implementation spinners opportunistically set
949         // _succ so that exiting threads might avoid waking a successor.
950         // Another less appealing alternative would be for the exiting thread
951         // to drop the lock and then spin briefly to see if a spinner managed
952         // to acquire the lock.  If so, the exiting thread could exit
953         // immediately without waking a successor, otherwise the exiting
954         // thread would need to dequeue and wake a successor.
955         // (Note that we'd need to make the post-drop spin short, but no
956         // shorter than the worst-case round-trip cache-line migration time.
957         // The dropped lock needs to become visible to the spinner, and then
958         // the acquisition of the lock by the spinner must become visible to
959         // the exiting thread).
960         //
961
962         // It appears that an heir-presumptive (successor) must be made ready.
963         // Only the current lock owner can manipulate the EntryList or
964         // drain _cxq, so we need to reacquire the lock.  If we fail
965         // to reacquire the lock the responsibility for ensuring succession
966         // falls to the new owner.
967         //
968         if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
969            return ;
970         }
971         TEVENT (Exit - Reacquired) ;
972      } else {
973         if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
974            OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
975            OrderAccess::storeload() ;
976            // Ratify the previously observed values.
977            if (_cxq == NULL || _succ != NULL) {
978                TEVENT (Inflated exit - simple egress) ;
979                return ;
980            }
981
982            // inopportune interleaving -- the exiting thread (this thread)
983            // in the fast-exit path raced an entering thread in the slow-enter
984            // path.
985            // We have two choices:
986            // A.  Try to reacquire the lock.
987            //     If the CAS() fails return immediately, otherwise
988            //     we either restart/rerun the exit operation, or simply
989            //     fall-through into the code below which wakes a successor.
990            // B.  If the elements forming the EntryList|cxq are TSM
991            //     we could simply unpark() the lead thread and return
992            //     without having set _succ.
993            if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
994               TEVENT (Inflated exit - reacquired succeeded) ;
995               return ;
996            }
997            TEVENT (Inflated exit - reacquired failed) ;
998         } else {
999            TEVENT (Inflated exit - complex egress) ;
1000         }
1001      }
1002
1003      guarantee (_owner == THREAD, "invariant") ;
1004
1005      ObjectWaiter * w = NULL ;
1006      int QMode = Knob_QMode ;
1007
1008      if (QMode == 2 && _cxq != NULL) {
1009          // QMode == 2 : cxq has precedence over EntryList.
1010          // Try to directly wake a successor from the cxq.
1011          // If successful, the successor will need to unlink itself from cxq.
1012          w = _cxq ;
1013          assert (w != NULL, "invariant") ;
1014          assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1015          ExitEpilog (Self, w) ;
1016          return ;
1017      }
1018
1019      if (QMode == 3 && _cxq != NULL) {
1020          // Aggressively drain cxq into EntryList at the first opportunity.
1021          // This policy ensure that recently-run threads live at the head of EntryList.
1022          // Drain _cxq into EntryList - bulk transfer.
1023          // First, detach _cxq.
1024          // The following loop is tantamount to: w = swap (&cxq, NULL)
1025          w = _cxq ;
1026          for (;;) {
1027             assert (w != NULL, "Invariant") ;
1028             ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1029             if (u == w) break ;
1030             w = u ;
1031          }
1032          assert (w != NULL              , "invariant") ;
1033
1034          ObjectWaiter * q = NULL ;
1035          ObjectWaiter * p ;
1036          for (p = w ; p != NULL ; p = p->_next) {
1037              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1038              p->TState = ObjectWaiter::TS_ENTER ;
1039              p->_prev = q ;
1040              q = p ;
1041          }
1042
1043          // Append the RATs to the EntryList
1044          // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1045          ObjectWaiter * Tail ;
1046          for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
1047          if (Tail == NULL) {
1048              _EntryList = w ;
1049          } else {
1050              Tail->_next = w ;
1051              w->_prev = Tail ;
1052          }
1053
1054          // Fall thru into code that tries to wake a successor from EntryList
1055      }
1056
1057      if (QMode == 4 && _cxq != NULL) {
1058          // Aggressively drain cxq into EntryList at the first opportunity.
1059          // This policy ensure that recently-run threads live at the head of EntryList.
1060
1061          // Drain _cxq into EntryList - bulk transfer.
1062          // First, detach _cxq.
1063          // The following loop is tantamount to: w = swap (&cxq, NULL)
1064          w = _cxq ;
1065          for (;;) {
1066             assert (w != NULL, "Invariant") ;
1067             ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1068             if (u == w) break ;
1069             w = u ;
1070          }
1071          assert (w != NULL              , "invariant") ;
1072
1073          ObjectWaiter * q = NULL ;
1074          ObjectWaiter * p ;
1075          for (p = w ; p != NULL ; p = p->_next) {
1076              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1077              p->TState = ObjectWaiter::TS_ENTER ;
1078              p->_prev = q ;
1079              q = p ;
1080          }
1081
1082          // Prepend the RATs to the EntryList
1083          if (_EntryList != NULL) {
1084              q->_next = _EntryList ;
1085              _EntryList->_prev = q ;
1086          }
1087          _EntryList = w ;
1088
1089          // Fall thru into code that tries to wake a successor from EntryList
1090      }
1091
1092      w = _EntryList  ;
1093      if (w != NULL) {
1094          // I'd like to write: guarantee (w->_thread != Self).
1095          // But in practice an exiting thread may find itself on the EntryList.
1096          // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1097          // then calls exit().  Exit release the lock by setting O._owner to NULL.
1098          // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
1099          // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1100          // release the lock "O".  T2 resumes immediately after the ST of null into
1101          // _owner, above.  T2 notices that the EntryList is populated, so it
1102          // reacquires the lock and then finds itself on the EntryList.
1103          // Given all that, we have to tolerate the circumstance where "w" is
1104          // associated with Self.
1105          assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1106          ExitEpilog (Self, w) ;
1107          return ;
1108      }
1109
1110      // If we find that both _cxq and EntryList are null then just
1111      // re-run the exit protocol from the top.
1112      w = _cxq ;
1113      if (w == NULL) continue ;
1114
1115      // Drain _cxq into EntryList - bulk transfer.
1116      // First, detach _cxq.
1117      // The following loop is tantamount to: w = swap (&cxq, NULL)
1118      for (;;) {
1119          assert (w != NULL, "Invariant") ;
1120          ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1121          if (u == w) break ;
1122          w = u ;
1123      }
1124      TEVENT (Inflated exit - drain cxq into EntryList) ;
1125
1126      assert (w != NULL              , "invariant") ;
1127      assert (_EntryList  == NULL    , "invariant") ;
1128
1129      // Convert the LIFO SLL anchored by _cxq into a DLL.
1130      // The list reorganization step operates in O(LENGTH(w)) time.
1131      // It's critical that this step operate quickly as
1132      // "Self" still holds the outer-lock, restricting parallelism
1133      // and effectively lengthening the critical section.
1134      // Invariant: s chases t chases u.
1135      // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1136      // we have faster access to the tail.
1137
1138      if (QMode == 1) {
1139         // QMode == 1 : drain cxq to EntryList, reversing order
1140         // We also reverse the order of the list.
1141         ObjectWaiter * s = NULL ;
1142         ObjectWaiter * t = w ;
1143         ObjectWaiter * u = NULL ;
1144         while (t != NULL) {
1145             guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
1146             t->TState = ObjectWaiter::TS_ENTER ;
1147             u = t->_next ;
1148             t->_prev = u ;
1149             t->_next = s ;
1150             s = t;
1151             t = u ;
1152         }
1153         _EntryList  = s ;
1154         assert (s != NULL, "invariant") ;
1155      } else {
1156         // QMode == 0 or QMode == 2
1157         _EntryList = w ;
1158         ObjectWaiter * q = NULL ;
1159         ObjectWaiter * p ;
1160         for (p = w ; p != NULL ; p = p->_next) {
1161             guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1162             p->TState = ObjectWaiter::TS_ENTER ;
1163             p->_prev = q ;
1164             q = p ;
1165         }
1166      }
1167
1168      // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1169      // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1170
1171      // See if we can abdicate to a spinner instead of waking a thread.
1172      // A primary goal of the implementation is to reduce the
1173      // context-switch rate.
1174      if (_succ != NULL) continue;
1175
1176      w = _EntryList  ;
1177      if (w != NULL) {
1178          guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1179          ExitEpilog (Self, w) ;
1180          return ;
1181      }
1182   }
1183}
1184
1185// ExitSuspendEquivalent:
1186// A faster alternate to handle_special_suspend_equivalent_condition()
1187//
1188// handle_special_suspend_equivalent_condition() unconditionally
1189// acquires the SR_lock.  On some platforms uncontended MutexLocker()
1190// operations have high latency.  Note that in ::enter() we call HSSEC
1191// while holding the monitor, so we effectively lengthen the critical sections.
1192//
1193// There are a number of possible solutions:
1194//
1195// A.  To ameliorate the problem we might also defer state transitions
1196//     to as late as possible -- just prior to parking.
1197//     Given that, we'd call HSSEC after having returned from park(),
1198//     but before attempting to acquire the monitor.  This is only a
1199//     partial solution.  It avoids calling HSSEC while holding the
1200//     monitor (good), but it still increases successor reacquisition latency --
1201//     the interval between unparking a successor and the time the successor
1202//     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1203//     If we use this technique we can also avoid EnterI()-exit() loop
1204//     in ::enter() where we iteratively drop the lock and then attempt
1205//     to reacquire it after suspending.
1206//
1207// B.  In the future we might fold all the suspend bits into a
1208//     composite per-thread suspend flag and then update it with CAS().
1209//     Alternately, a Dekker-like mechanism with multiple variables
1210//     would suffice:
1211//       ST Self->_suspend_equivalent = false
1212//       MEMBAR
1213//       LD Self_>_suspend_flags
1214//
1215
1216
1217bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
1218   int Mode = Knob_FastHSSEC ;
1219   if (Mode && !jSelf->is_external_suspend()) {
1220      assert (jSelf->is_suspend_equivalent(), "invariant") ;
1221      jSelf->clear_suspend_equivalent() ;
1222      if (2 == Mode) OrderAccess::storeload() ;
1223      if (!jSelf->is_external_suspend()) return false ;
1224      // We raced a suspension -- fall thru into the slow path
1225      TEVENT (ExitSuspendEquivalent - raced) ;
1226      jSelf->set_suspend_equivalent() ;
1227   }
1228   return jSelf->handle_special_suspend_equivalent_condition() ;
1229}
1230
1231
1232void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
1233   assert (_owner == Self, "invariant") ;
1234
1235   // Exit protocol:
1236   // 1. ST _succ = wakee
1237   // 2. membar #loadstore|#storestore;
1238   // 2. ST _owner = NULL
1239   // 3. unpark(wakee)
1240
1241   _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
1242   ParkEvent * Trigger = Wakee->_event ;
1243
1244   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1245   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1246   // out-of-scope (non-extant).
1247   Wakee  = NULL ;
1248
1249   // Drop the lock
1250   OrderAccess::release_store_ptr (&_owner, NULL) ;
1251   OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
1252
1253   if (SafepointSynchronize::do_call_back()) {
1254      TEVENT (unpark before SAFEPOINT) ;
1255   }
1256
1257   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1258   Trigger->unpark() ;
1259
1260   // Maintain stats and report events to JVMTI
1261   if (ObjectMonitor::_sync_Parks != NULL) {
1262      ObjectMonitor::_sync_Parks->inc() ;
1263   }
1264}
1265
1266
1267// -----------------------------------------------------------------------------
1268// Class Loader deadlock handling.
1269//
1270// complete_exit exits a lock returning recursion count
1271// complete_exit/reenter operate as a wait without waiting
1272// complete_exit requires an inflated monitor
1273// The _owner field is not always the Thread addr even with an
1274// inflated monitor, e.g. the monitor can be inflated by a non-owning
1275// thread due to contention.
1276intptr_t ObjectMonitor::complete_exit(TRAPS) {
1277   Thread * const Self = THREAD;
1278   assert(Self->is_Java_thread(), "Must be Java thread!");
1279   JavaThread *jt = (JavaThread *)THREAD;
1280
1281   DeferredInitialize();
1282
1283   if (THREAD != _owner) {
1284    if (THREAD->is_lock_owned ((address)_owner)) {
1285       assert(_recursions == 0, "internal state error");
1286       _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
1287       _recursions = 0 ;
1288       OwnerIsThread = 1 ;
1289    }
1290   }
1291
1292   guarantee(Self == _owner, "complete_exit not owner");
1293   intptr_t save = _recursions; // record the old recursion count
1294   _recursions = 0;        // set the recursion level to be 0
1295   exit (Self) ;           // exit the monitor
1296   guarantee (_owner != Self, "invariant");
1297   return save;
1298}
1299
1300// reenter() enters a lock and sets recursion count
1301// complete_exit/reenter operate as a wait without waiting
1302void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1303   Thread * const Self = THREAD;
1304   assert(Self->is_Java_thread(), "Must be Java thread!");
1305   JavaThread *jt = (JavaThread *)THREAD;
1306
1307   guarantee(_owner != Self, "reenter already owner");
1308   enter (THREAD);       // enter the monitor
1309   guarantee (_recursions == 0, "reenter recursion");
1310   _recursions = recursions;
1311   return;
1312}
1313
1314
1315// -----------------------------------------------------------------------------
1316// A macro is used below because there may already be a pending
1317// exception which should not abort the execution of the routines
1318// which use this (which is why we don't put this into check_slow and
1319// call it with a CHECK argument).
1320
1321#define CHECK_OWNER()                                                             \
1322  do {                                                                            \
1323    if (THREAD != _owner) {                                                       \
1324      if (THREAD->is_lock_owned((address) _owner)) {                              \
1325        _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
1326        _recursions = 0;                                                          \
1327        OwnerIsThread = 1 ;                                                       \
1328      } else {                                                                    \
1329        TEVENT (Throw IMSX) ;                                                     \
1330        THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
1331      }                                                                           \
1332    }                                                                             \
1333  } while (false)
1334
1335// check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1336// TODO-FIXME: remove check_slow() -- it's likely dead.
1337
1338void ObjectMonitor::check_slow(TRAPS) {
1339  TEVENT (check_slow - throw IMSX) ;
1340  assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1341  THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1342}
1343
1344static int Adjust (volatile int * adr, int dx) {
1345  int v ;
1346  for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
1347  return v ;
1348}
1349// -----------------------------------------------------------------------------
1350// Wait/Notify/NotifyAll
1351//
1352// Note: a subset of changes to ObjectMonitor::wait()
1353// will need to be replicated in complete_exit above
1354void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1355   Thread * const Self = THREAD ;
1356   assert(Self->is_Java_thread(), "Must be Java thread!");
1357   JavaThread *jt = (JavaThread *)THREAD;
1358
1359   DeferredInitialize () ;
1360
1361   // Throw IMSX or IEX.
1362   CHECK_OWNER();
1363
1364   // check for a pending interrupt
1365   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1366     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1367     if (JvmtiExport::should_post_monitor_waited()) {
1368        // Note: 'false' parameter is passed here because the
1369        // wait was not timed out due to thread interrupt.
1370        JvmtiExport::post_monitor_waited(jt, this, false);
1371     }
1372     TEVENT (Wait - Throw IEX) ;
1373     THROW(vmSymbols::java_lang_InterruptedException());
1374     return ;
1375   }
1376   TEVENT (Wait) ;
1377
1378   assert (Self->_Stalled == 0, "invariant") ;
1379   Self->_Stalled = intptr_t(this) ;
1380   jt->set_current_waiting_monitor(this);
1381
1382   // create a node to be put into the queue
1383   // Critically, after we reset() the event but prior to park(), we must check
1384   // for a pending interrupt.
1385   ObjectWaiter node(Self);
1386   node.TState = ObjectWaiter::TS_WAIT ;
1387   Self->_ParkEvent->reset() ;
1388   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1389
1390   // Enter the waiting queue, which is a circular doubly linked list in this case
1391   // but it could be a priority queue or any data structure.
1392   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1393   // by the the owner of the monitor *except* in the case where park()
1394   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1395   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1396
1397   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
1398   AddWaiter (&node) ;
1399   Thread::SpinRelease (&_WaitSetLock) ;
1400
1401   if ((SyncFlags & 4) == 0) {
1402      _Responsible = NULL ;
1403   }
1404   intptr_t save = _recursions; // record the old recursion count
1405   _waiters++;                  // increment the number of waiters
1406   _recursions = 0;             // set the recursion level to be 1
1407   exit (Self) ;                    // exit the monitor
1408   guarantee (_owner != Self, "invariant") ;
1409
1410   // As soon as the ObjectMonitor's ownership is dropped in the exit()
1411   // call above, another thread can enter() the ObjectMonitor, do the
1412   // notify(), and exit() the ObjectMonitor. If the other thread's
1413   // exit() call chooses this thread as the successor and the unpark()
1414   // call happens to occur while this thread is posting a
1415   // MONITOR_CONTENDED_EXIT event, then we run the risk of the event
1416   // handler using RawMonitors and consuming the unpark().
1417   //
1418   // To avoid the problem, we re-post the event. This does no harm
1419   // even if the original unpark() was not consumed because we are the
1420   // chosen successor for this monitor.
1421   if (node._notified != 0 && _succ == Self) {
1422      node._event->unpark();
1423   }
1424
1425   // The thread is on the WaitSet list - now park() it.
1426   // On MP systems it's conceivable that a brief spin before we park
1427   // could be profitable.
1428   //
1429   // TODO-FIXME: change the following logic to a loop of the form
1430   //   while (!timeout && !interrupted && _notified == 0) park()
1431
1432   int ret = OS_OK ;
1433   int WasNotified = 0 ;
1434   { // State transition wrappers
1435     OSThread* osthread = Self->osthread();
1436     OSThreadWaitState osts(osthread, true);
1437     {
1438       ThreadBlockInVM tbivm(jt);
1439       // Thread is in thread_blocked state and oop access is unsafe.
1440       jt->set_suspend_equivalent();
1441
1442       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1443           // Intentionally empty
1444       } else
1445       if (node._notified == 0) {
1446         if (millis <= 0) {
1447            Self->_ParkEvent->park () ;
1448         } else {
1449            ret = Self->_ParkEvent->park (millis) ;
1450         }
1451       }
1452
1453       // were we externally suspended while we were waiting?
1454       if (ExitSuspendEquivalent (jt)) {
1455          // TODO-FIXME: add -- if succ == Self then succ = null.
1456          jt->java_suspend_self();
1457       }
1458
1459     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1460
1461
1462     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1463     // from the WaitSet to the EntryList.
1464     // See if we need to remove Node from the WaitSet.
1465     // We use double-checked locking to avoid grabbing _WaitSetLock
1466     // if the thread is not on the wait queue.
1467     //
1468     // Note that we don't need a fence before the fetch of TState.
1469     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1470     // written by the is thread. (perhaps the fetch might even be satisfied
1471     // by a look-aside into the processor's own store buffer, although given
1472     // the length of the code path between the prior ST and this load that's
1473     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1474     // then we'll acquire the lock and then re-fetch a fresh TState value.
1475     // That is, we fail toward safety.
1476
1477     if (node.TState == ObjectWaiter::TS_WAIT) {
1478         Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
1479         if (node.TState == ObjectWaiter::TS_WAIT) {
1480            DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
1481            assert(node._notified == 0, "invariant");
1482            node.TState = ObjectWaiter::TS_RUN ;
1483         }
1484         Thread::SpinRelease (&_WaitSetLock) ;
1485     }
1486
1487     // The thread is now either on off-list (TS_RUN),
1488     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1489     // The Node's TState variable is stable from the perspective of this thread.
1490     // No other threads will asynchronously modify TState.
1491     guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
1492     OrderAccess::loadload() ;
1493     if (_succ == Self) _succ = NULL ;
1494     WasNotified = node._notified ;
1495
1496     // Reentry phase -- reacquire the monitor.
1497     // re-enter contended monitor after object.wait().
1498     // retain OBJECT_WAIT state until re-enter successfully completes
1499     // Thread state is thread_in_vm and oop access is again safe,
1500     // although the raw address of the object may have changed.
1501     // (Don't cache naked oops over safepoints, of course).
1502
1503     // post monitor waited event. Note that this is past-tense, we are done waiting.
1504     if (JvmtiExport::should_post_monitor_waited()) {
1505       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1506     }
1507     OrderAccess::fence() ;
1508
1509     assert (Self->_Stalled != 0, "invariant") ;
1510     Self->_Stalled = 0 ;
1511
1512     assert (_owner != Self, "invariant") ;
1513     ObjectWaiter::TStates v = node.TState ;
1514     if (v == ObjectWaiter::TS_RUN) {
1515         enter (Self) ;
1516     } else {
1517         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
1518         ReenterI (Self, &node) ;
1519         node.wait_reenter_end(this);
1520     }
1521
1522     // Self has reacquired the lock.
1523     // Lifecycle - the node representing Self must not appear on any queues.
1524     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1525     // want residual elements associated with this thread left on any lists.
1526     guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
1527     assert    (_owner == Self, "invariant") ;
1528     assert    (_succ != Self , "invariant") ;
1529   } // OSThreadWaitState()
1530
1531   jt->set_current_waiting_monitor(NULL);
1532
1533   guarantee (_recursions == 0, "invariant") ;
1534   _recursions = save;     // restore the old recursion count
1535   _waiters--;             // decrement the number of waiters
1536
1537   // Verify a few postconditions
1538   assert (_owner == Self       , "invariant") ;
1539   assert (_succ  != Self       , "invariant") ;
1540   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
1541
1542   if (SyncFlags & 32) {
1543      OrderAccess::fence() ;
1544   }
1545
1546   // check if the notification happened
1547   if (!WasNotified) {
1548     // no, it could be timeout or Thread.interrupt() or both
1549     // check for interrupt event, otherwise it is timeout
1550     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1551       TEVENT (Wait - throw IEX from epilog) ;
1552       THROW(vmSymbols::java_lang_InterruptedException());
1553     }
1554   }
1555
1556   // NOTE: Spurious wake up will be consider as timeout.
1557   // Monitor notify has precedence over thread interrupt.
1558}
1559
1560
1561// Consider:
1562// If the lock is cool (cxq == null && succ == null) and we're on an MP system
1563// then instead of transferring a thread from the WaitSet to the EntryList
1564// we might just dequeue a thread from the WaitSet and directly unpark() it.
1565
1566void ObjectMonitor::notify(TRAPS) {
1567  CHECK_OWNER();
1568  if (_WaitSet == NULL) {
1569     TEVENT (Empty-Notify) ;
1570     return ;
1571  }
1572  DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1573
1574  int Policy = Knob_MoveNotifyee ;
1575
1576  Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
1577  ObjectWaiter * iterator = DequeueWaiter() ;
1578  if (iterator != NULL) {
1579     TEVENT (Notify1 - Transfer) ;
1580     guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1581     guarantee (iterator->_notified == 0, "invariant") ;
1582     if (Policy != 4) {
1583        iterator->TState = ObjectWaiter::TS_ENTER ;
1584     }
1585     iterator->_notified = 1 ;
1586
1587     ObjectWaiter * List = _EntryList ;
1588     if (List != NULL) {
1589        assert (List->_prev == NULL, "invariant") ;
1590        assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1591        assert (List != iterator, "invariant") ;
1592     }
1593
1594     if (Policy == 0) {       // prepend to EntryList
1595         if (List == NULL) {
1596             iterator->_next = iterator->_prev = NULL ;
1597             _EntryList = iterator ;
1598         } else {
1599             List->_prev = iterator ;
1600             iterator->_next = List ;
1601             iterator->_prev = NULL ;
1602             _EntryList = iterator ;
1603        }
1604     } else
1605     if (Policy == 1) {      // append to EntryList
1606         if (List == NULL) {
1607             iterator->_next = iterator->_prev = NULL ;
1608             _EntryList = iterator ;
1609         } else {
1610            // CONSIDER:  finding the tail currently requires a linear-time walk of
1611            // the EntryList.  We can make tail access constant-time by converting to
1612            // a CDLL instead of using our current DLL.
1613            ObjectWaiter * Tail ;
1614            for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1615            assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1616            Tail->_next = iterator ;
1617            iterator->_prev = Tail ;
1618            iterator->_next = NULL ;
1619        }
1620     } else
1621     if (Policy == 2) {      // prepend to cxq
1622         // prepend to cxq
1623         if (List == NULL) {
1624             iterator->_next = iterator->_prev = NULL ;
1625             _EntryList = iterator ;
1626         } else {
1627            iterator->TState = ObjectWaiter::TS_CXQ ;
1628            for (;;) {
1629                ObjectWaiter * Front = _cxq ;
1630                iterator->_next = Front ;
1631                if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1632                    break ;
1633                }
1634            }
1635         }
1636     } else
1637     if (Policy == 3) {      // append to cxq
1638        iterator->TState = ObjectWaiter::TS_CXQ ;
1639        for (;;) {
1640            ObjectWaiter * Tail ;
1641            Tail = _cxq ;
1642            if (Tail == NULL) {
1643                iterator->_next = NULL ;
1644                if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1645                   break ;
1646                }
1647            } else {
1648                while (Tail->_next != NULL) Tail = Tail->_next ;
1649                Tail->_next = iterator ;
1650                iterator->_prev = Tail ;
1651                iterator->_next = NULL ;
1652                break ;
1653            }
1654        }
1655     } else {
1656        ParkEvent * ev = iterator->_event ;
1657        iterator->TState = ObjectWaiter::TS_RUN ;
1658        OrderAccess::fence() ;
1659        ev->unpark() ;
1660     }
1661
1662     if (Policy < 4) {
1663       iterator->wait_reenter_begin(this);
1664     }
1665
1666     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1667     // move the add-to-EntryList operation, above, outside the critical section
1668     // protected by _WaitSetLock.  In practice that's not useful.  With the
1669     // exception of  wait() timeouts and interrupts the monitor owner
1670     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1671     // on _WaitSetLock so it's not profitable to reduce the length of the
1672     // critical section.
1673  }
1674
1675  Thread::SpinRelease (&_WaitSetLock) ;
1676
1677  if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
1678     ObjectMonitor::_sync_Notifications->inc() ;
1679  }
1680}
1681
1682
1683void ObjectMonitor::notifyAll(TRAPS) {
1684  CHECK_OWNER();
1685  ObjectWaiter* iterator;
1686  if (_WaitSet == NULL) {
1687      TEVENT (Empty-NotifyAll) ;
1688      return ;
1689  }
1690  DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1691
1692  int Policy = Knob_MoveNotifyee ;
1693  int Tally = 0 ;
1694  Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
1695
1696  for (;;) {
1697     iterator = DequeueWaiter () ;
1698     if (iterator == NULL) break ;
1699     TEVENT (NotifyAll - Transfer1) ;
1700     ++Tally ;
1701
1702     // Disposition - what might we do with iterator ?
1703     // a.  add it directly to the EntryList - either tail or head.
1704     // b.  push it onto the front of the _cxq.
1705     // For now we use (a).
1706
1707     guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1708     guarantee (iterator->_notified == 0, "invariant") ;
1709     iterator->_notified = 1 ;
1710     if (Policy != 4) {
1711        iterator->TState = ObjectWaiter::TS_ENTER ;
1712     }
1713
1714     ObjectWaiter * List = _EntryList ;
1715     if (List != NULL) {
1716        assert (List->_prev == NULL, "invariant") ;
1717        assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1718        assert (List != iterator, "invariant") ;
1719     }
1720
1721     if (Policy == 0) {       // prepend to EntryList
1722         if (List == NULL) {
1723             iterator->_next = iterator->_prev = NULL ;
1724             _EntryList = iterator ;
1725         } else {
1726             List->_prev = iterator ;
1727             iterator->_next = List ;
1728             iterator->_prev = NULL ;
1729             _EntryList = iterator ;
1730        }
1731     } else
1732     if (Policy == 1) {      // append to EntryList
1733         if (List == NULL) {
1734             iterator->_next = iterator->_prev = NULL ;
1735             _EntryList = iterator ;
1736         } else {
1737            // CONSIDER:  finding the tail currently requires a linear-time walk of
1738            // the EntryList.  We can make tail access constant-time by converting to
1739            // a CDLL instead of using our current DLL.
1740            ObjectWaiter * Tail ;
1741            for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1742            assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1743            Tail->_next = iterator ;
1744            iterator->_prev = Tail ;
1745            iterator->_next = NULL ;
1746        }
1747     } else
1748     if (Policy == 2) {      // prepend to cxq
1749         // prepend to cxq
1750         iterator->TState = ObjectWaiter::TS_CXQ ;
1751         for (;;) {
1752             ObjectWaiter * Front = _cxq ;
1753             iterator->_next = Front ;
1754             if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1755                 break ;
1756             }
1757         }
1758     } else
1759     if (Policy == 3) {      // append to cxq
1760        iterator->TState = ObjectWaiter::TS_CXQ ;
1761        for (;;) {
1762            ObjectWaiter * Tail ;
1763            Tail = _cxq ;
1764            if (Tail == NULL) {
1765                iterator->_next = NULL ;
1766                if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1767                   break ;
1768                }
1769            } else {
1770                while (Tail->_next != NULL) Tail = Tail->_next ;
1771                Tail->_next = iterator ;
1772                iterator->_prev = Tail ;
1773                iterator->_next = NULL ;
1774                break ;
1775            }
1776        }
1777     } else {
1778        ParkEvent * ev = iterator->_event ;
1779        iterator->TState = ObjectWaiter::TS_RUN ;
1780        OrderAccess::fence() ;
1781        ev->unpark() ;
1782     }
1783
1784     if (Policy < 4) {
1785       iterator->wait_reenter_begin(this);
1786     }
1787
1788     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1789     // move the add-to-EntryList operation, above, outside the critical section
1790     // protected by _WaitSetLock.  In practice that's not useful.  With the
1791     // exception of  wait() timeouts and interrupts the monitor owner
1792     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1793     // on _WaitSetLock so it's not profitable to reduce the length of the
1794     // critical section.
1795  }
1796
1797  Thread::SpinRelease (&_WaitSetLock) ;
1798
1799  if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
1800     ObjectMonitor::_sync_Notifications->inc(Tally) ;
1801  }
1802}
1803
1804// -----------------------------------------------------------------------------
1805// Adaptive Spinning Support
1806//
1807// Adaptive spin-then-block - rational spinning
1808//
1809// Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1810// algorithm.  On high order SMP systems it would be better to start with
1811// a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1812// a contending thread could enqueue itself on the cxq and then spin locally
1813// on a thread-specific variable such as its ParkEvent._Event flag.
1814// That's left as an exercise for the reader.  Note that global spinning is
1815// not problematic on Niagara, as the L2$ serves the interconnect and has both
1816// low latency and massive bandwidth.
1817//
1818// Broadly, we can fix the spin frequency -- that is, the % of contended lock
1819// acquisition attempts where we opt to spin --  at 100% and vary the spin count
1820// (duration) or we can fix the count at approximately the duration of
1821// a context switch and vary the frequency.   Of course we could also
1822// vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1823// See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
1824//
1825// This implementation varies the duration "D", where D varies with
1826// the success rate of recent spin attempts. (D is capped at approximately
1827// length of a round-trip context switch).  The success rate for recent
1828// spin attempts is a good predictor of the success rate of future spin
1829// attempts.  The mechanism adapts automatically to varying critical
1830// section length (lock modality), system load and degree of parallelism.
1831// D is maintained per-monitor in _SpinDuration and is initialized
1832// optimistically.  Spin frequency is fixed at 100%.
1833//
1834// Note that _SpinDuration is volatile, but we update it without locks
1835// or atomics.  The code is designed so that _SpinDuration stays within
1836// a reasonable range even in the presence of races.  The arithmetic
1837// operations on _SpinDuration are closed over the domain of legal values,
1838// so at worst a race will install and older but still legal value.
1839// At the very worst this introduces some apparent non-determinism.
1840// We might spin when we shouldn't or vice-versa, but since the spin
1841// count are relatively short, even in the worst case, the effect is harmless.
1842//
1843// Care must be taken that a low "D" value does not become an
1844// an absorbing state.  Transient spinning failures -- when spinning
1845// is overall profitable -- should not cause the system to converge
1846// on low "D" values.  We want spinning to be stable and predictable
1847// and fairly responsive to change and at the same time we don't want
1848// it to oscillate, become metastable, be "too" non-deterministic,
1849// or converge on or enter undesirable stable absorbing states.
1850//
1851// We implement a feedback-based control system -- using past behavior
1852// to predict future behavior.  We face two issues: (a) if the
1853// input signal is random then the spin predictor won't provide optimal
1854// results, and (b) if the signal frequency is too high then the control
1855// system, which has some natural response lag, will "chase" the signal.
1856// (b) can arise from multimodal lock hold times.  Transient preemption
1857// can also result in apparent bimodal lock hold times.
1858// Although sub-optimal, neither condition is particularly harmful, as
1859// in the worst-case we'll spin when we shouldn't or vice-versa.
1860// The maximum spin duration is rather short so the failure modes aren't bad.
1861// To be conservative, I've tuned the gain in system to bias toward
1862// _not spinning.  Relatedly, the system can sometimes enter a mode where it
1863// "rings" or oscillates between spinning and not spinning.  This happens
1864// when spinning is just on the cusp of profitability, however, so the
1865// situation is not dire.  The state is benign -- there's no need to add
1866// hysteresis control to damp the transition rate between spinning and
1867// not spinning.
1868//
1869
1870intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
1871int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
1872
1873// Spinning: Fixed frequency (100%), vary duration
1874
1875
1876int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
1877
1878    // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1879    int ctr = Knob_FixedSpin ;
1880    if (ctr != 0) {
1881        while (--ctr >= 0) {
1882            if (TryLock (Self) > 0) return 1 ;
1883            SpinPause () ;
1884        }
1885        return 0 ;
1886    }
1887
1888    for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
1889      if (TryLock(Self) > 0) {
1890        // Increase _SpinDuration ...
1891        // Note that we don't clamp SpinDuration precisely at SpinLimit.
1892        // Raising _SpurDuration to the poverty line is key.
1893        int x = _SpinDuration ;
1894        if (x < Knob_SpinLimit) {
1895           if (x < Knob_Poverty) x = Knob_Poverty ;
1896           _SpinDuration = x + Knob_BonusB ;
1897        }
1898        return 1 ;
1899      }
1900      SpinPause () ;
1901    }
1902
1903    // Admission control - verify preconditions for spinning
1904    //
1905    // We always spin a little bit, just to prevent _SpinDuration == 0 from
1906    // becoming an absorbing state.  Put another way, we spin briefly to
1907    // sample, just in case the system load, parallelism, contention, or lock
1908    // modality changed.
1909    //
1910    // Consider the following alternative:
1911    // Periodically set _SpinDuration = _SpinLimit and try a long/full
1912    // spin attempt.  "Periodically" might mean after a tally of
1913    // the # of failed spin attempts (or iterations) reaches some threshold.
1914    // This takes us into the realm of 1-out-of-N spinning, where we
1915    // hold the duration constant but vary the frequency.
1916
1917    ctr = _SpinDuration  ;
1918    if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
1919    if (ctr <= 0) return 0 ;
1920
1921    if (Knob_SuccRestrict && _succ != NULL) return 0 ;
1922    if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
1923       TEVENT (Spin abort - notrunnable [TOP]);
1924       return 0 ;
1925    }
1926
1927    int MaxSpin = Knob_MaxSpinners ;
1928    if (MaxSpin >= 0) {
1929       if (_Spinner > MaxSpin) {
1930          TEVENT (Spin abort -- too many spinners) ;
1931          return 0 ;
1932       }
1933       // Slighty racy, but benign ...
1934       Adjust (&_Spinner, 1) ;
1935    }
1936
1937    // We're good to spin ... spin ingress.
1938    // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1939    // when preparing to LD...CAS _owner, etc and the CAS is likely
1940    // to succeed.
1941    int hits    = 0 ;
1942    int msk     = 0 ;
1943    int caspty  = Knob_CASPenalty ;
1944    int oxpty   = Knob_OXPenalty ;
1945    int sss     = Knob_SpinSetSucc ;
1946    if (sss && _succ == NULL ) _succ = Self ;
1947    Thread * prv = NULL ;
1948
1949    // There are three ways to exit the following loop:
1950    // 1.  A successful spin where this thread has acquired the lock.
1951    // 2.  Spin failure with prejudice
1952    // 3.  Spin failure without prejudice
1953
1954    while (--ctr >= 0) {
1955
1956      // Periodic polling -- Check for pending GC
1957      // Threads may spin while they're unsafe.
1958      // We don't want spinning threads to delay the JVM from reaching
1959      // a stop-the-world safepoint or to steal cycles from GC.
1960      // If we detect a pending safepoint we abort in order that
1961      // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1962      // this thread, if safe, doesn't steal cycles from GC.
1963      // This is in keeping with the "no loitering in runtime" rule.
1964      // We periodically check to see if there's a safepoint pending.
1965      if ((ctr & 0xFF) == 0) {
1966         if (SafepointSynchronize::do_call_back()) {
1967            TEVENT (Spin: safepoint) ;
1968            goto Abort ;           // abrupt spin egress
1969         }
1970         if (Knob_UsePause & 1) SpinPause () ;
1971
1972         int (*scb)(intptr_t,int) = SpinCallbackFunction ;
1973         if (hits > 50 && scb != NULL) {
1974            int abend = (*scb)(SpinCallbackArgument, 0) ;
1975         }
1976      }
1977
1978      if (Knob_UsePause & 2) SpinPause() ;
1979
1980      // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
1981      // This is useful on classic SMP systems, but is of less utility on
1982      // N1-style CMT platforms.
1983      //
1984      // Trade-off: lock acquisition latency vs coherency bandwidth.
1985      // Lock hold times are typically short.  A histogram
1986      // of successful spin attempts shows that we usually acquire
1987      // the lock early in the spin.  That suggests we want to
1988      // sample _owner frequently in the early phase of the spin,
1989      // but then back-off and sample less frequently as the spin
1990      // progresses.  The back-off makes a good citizen on SMP big
1991      // SMP systems.  Oversampling _owner can consume excessive
1992      // coherency bandwidth.  Relatedly, if we _oversample _owner we
1993      // can inadvertently interfere with the the ST m->owner=null.
1994      // executed by the lock owner.
1995      if (ctr & msk) continue ;
1996      ++hits ;
1997      if ((hits & 0xF) == 0) {
1998        // The 0xF, above, corresponds to the exponent.
1999        // Consider: (msk+1)|msk
2000        msk = ((msk << 2)|3) & BackOffMask ;
2001      }
2002
2003      // Probe _owner with TATAS
2004      // If this thread observes the monitor transition or flicker
2005      // from locked to unlocked to locked, then the odds that this
2006      // thread will acquire the lock in this spin attempt go down
2007      // considerably.  The same argument applies if the CAS fails
2008      // or if we observe _owner change from one non-null value to
2009      // another non-null value.   In such cases we might abort
2010      // the spin without prejudice or apply a "penalty" to the
2011      // spin count-down variable "ctr", reducing it by 100, say.
2012
2013      Thread * ox = (Thread *) _owner ;
2014      if (ox == NULL) {
2015         ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
2016         if (ox == NULL) {
2017            // The CAS succeeded -- this thread acquired ownership
2018            // Take care of some bookkeeping to exit spin state.
2019            if (sss && _succ == Self) {
2020               _succ = NULL ;
2021            }
2022            if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
2023
2024            // Increase _SpinDuration :
2025            // The spin was successful (profitable) so we tend toward
2026            // longer spin attempts in the future.
2027            // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2028            // If we acquired the lock early in the spin cycle it
2029            // makes sense to increase _SpinDuration proportionally.
2030            // Note that we don't clamp SpinDuration precisely at SpinLimit.
2031            int x = _SpinDuration ;
2032            if (x < Knob_SpinLimit) {
2033                if (x < Knob_Poverty) x = Knob_Poverty ;
2034                _SpinDuration = x + Knob_Bonus ;
2035            }
2036            return 1 ;
2037         }
2038
2039         // The CAS failed ... we can take any of the following actions:
2040         // * penalize: ctr -= Knob_CASPenalty
2041         // * exit spin with prejudice -- goto Abort;
2042         // * exit spin without prejudice.
2043         // * Since CAS is high-latency, retry again immediately.
2044         prv = ox ;
2045         TEVENT (Spin: cas failed) ;
2046         if (caspty == -2) break ;
2047         if (caspty == -1) goto Abort ;
2048         ctr -= caspty ;
2049         continue ;
2050      }
2051
2052      // Did lock ownership change hands ?
2053      if (ox != prv && prv != NULL ) {
2054          TEVENT (spin: Owner changed)
2055          if (oxpty == -2) break ;
2056          if (oxpty == -1) goto Abort ;
2057          ctr -= oxpty ;
2058      }
2059      prv = ox ;
2060
2061      // Abort the spin if the owner is not executing.
2062      // The owner must be executing in order to drop the lock.
2063      // Spinning while the owner is OFFPROC is idiocy.
2064      // Consider: ctr -= RunnablePenalty ;
2065      if (Knob_OState && NotRunnable (Self, ox)) {
2066         TEVENT (Spin abort - notrunnable);
2067         goto Abort ;
2068      }
2069      if (sss && _succ == NULL ) _succ = Self ;
2070   }
2071
2072   // Spin failed with prejudice -- reduce _SpinDuration.
2073   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2074   // AIMD is globally stable.
2075   TEVENT (Spin failure) ;
2076   {
2077     int x = _SpinDuration ;
2078     if (x > 0) {
2079        // Consider an AIMD scheme like: x -= (x >> 3) + 100
2080        // This is globally sample and tends to damp the response.
2081        x -= Knob_Penalty ;
2082        if (x < 0) x = 0 ;
2083        _SpinDuration = x ;
2084     }
2085   }
2086
2087 Abort:
2088   if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
2089   if (sss && _succ == Self) {
2090      _succ = NULL ;
2091      // Invariant: after setting succ=null a contending thread
2092      // must recheck-retry _owner before parking.  This usually happens
2093      // in the normal usage of TrySpin(), but it's safest
2094      // to make TrySpin() as foolproof as possible.
2095      OrderAccess::fence() ;
2096      if (TryLock(Self) > 0) return 1 ;
2097   }
2098   return 0 ;
2099}
2100
2101// NotRunnable() -- informed spinning
2102//
2103// Don't bother spinning if the owner is not eligible to drop the lock.
2104// Peek at the owner's schedctl.sc_state and Thread._thread_values and
2105// spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2106// The thread must be runnable in order to drop the lock in timely fashion.
2107// If the _owner is not runnable then spinning will not likely be
2108// successful (profitable).
2109//
2110// Beware -- the thread referenced by _owner could have died
2111// so a simply fetch from _owner->_thread_state might trap.
2112// Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2113// Because of the lifecycle issues the schedctl and _thread_state values
2114// observed by NotRunnable() might be garbage.  NotRunnable must
2115// tolerate this and consider the observed _thread_state value
2116// as advisory.
2117//
2118// Beware too, that _owner is sometimes a BasicLock address and sometimes
2119// a thread pointer.  We differentiate the two cases with OwnerIsThread.
2120// Alternately, we might tag the type (thread pointer vs basiclock pointer)
2121// with the LSB of _owner.  Another option would be to probablistically probe
2122// the putative _owner->TypeTag value.
2123//
2124// Checking _thread_state isn't perfect.  Even if the thread is
2125// in_java it might be blocked on a page-fault or have been preempted
2126// and sitting on a ready/dispatch queue.  _thread state in conjunction
2127// with schedctl.sc_state gives us a good picture of what the
2128// thread is doing, however.
2129//
2130// TODO: check schedctl.sc_state.
2131// We'll need to use SafeFetch32() to read from the schedctl block.
2132// See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2133//
2134// The return value from NotRunnable() is *advisory* -- the
2135// result is based on sampling and is not necessarily coherent.
2136// The caller must tolerate false-negative and false-positive errors.
2137// Spinning, in general, is probabilistic anyway.
2138
2139
2140int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
2141    // Check either OwnerIsThread or ox->TypeTag == 2BAD.
2142    if (!OwnerIsThread) return 0 ;
2143
2144    if (ox == NULL) return 0 ;
2145
2146    // Avoid transitive spinning ...
2147    // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2148    // Immediately after T1 acquires L it's possible that T2, also
2149    // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2150    // This occurs transiently after T1 acquired L but before
2151    // T1 managed to clear T1.Stalled.  T2 does not need to abort
2152    // its spin in this circumstance.
2153    intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
2154
2155    if (BlockedOn == 1) return 1 ;
2156    if (BlockedOn != 0) {
2157      return BlockedOn != intptr_t(this) && _owner == ox ;
2158    }
2159
2160    assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
2161    int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
2162    // consider also: jst != _thread_in_Java -- but that's overspecific.
2163    return jst == _thread_blocked || jst == _thread_in_native ;
2164}
2165
2166
2167// -----------------------------------------------------------------------------
2168// WaitSet management ...
2169
2170ObjectWaiter::ObjectWaiter(Thread* thread) {
2171  _next     = NULL;
2172  _prev     = NULL;
2173  _notified = 0;
2174  TState    = TS_RUN ;
2175  _thread   = thread;
2176  _event    = thread->_ParkEvent ;
2177  _active   = false;
2178  assert (_event != NULL, "invariant") ;
2179}
2180
2181void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
2182  JavaThread *jt = (JavaThread *)this->_thread;
2183  _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2184}
2185
2186void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
2187  JavaThread *jt = (JavaThread *)this->_thread;
2188  JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2189}
2190
2191inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2192  assert(node != NULL, "should not dequeue NULL node");
2193  assert(node->_prev == NULL, "node already in list");
2194  assert(node->_next == NULL, "node already in list");
2195  // put node at end of queue (circular doubly linked list)
2196  if (_WaitSet == NULL) {
2197    _WaitSet = node;
2198    node->_prev = node;
2199    node->_next = node;
2200  } else {
2201    ObjectWaiter* head = _WaitSet ;
2202    ObjectWaiter* tail = head->_prev;
2203    assert(tail->_next == head, "invariant check");
2204    tail->_next = node;
2205    head->_prev = node;
2206    node->_next = head;
2207    node->_prev = tail;
2208  }
2209}
2210
2211inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2212  // dequeue the very first waiter
2213  ObjectWaiter* waiter = _WaitSet;
2214  if (waiter) {
2215    DequeueSpecificWaiter(waiter);
2216  }
2217  return waiter;
2218}
2219
2220inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2221  assert(node != NULL, "should not dequeue NULL node");
2222  assert(node->_prev != NULL, "node already removed from list");
2223  assert(node->_next != NULL, "node already removed from list");
2224  // when the waiter has woken up because of interrupt,
2225  // timeout or other spurious wake-up, dequeue the
2226  // waiter from waiting list
2227  ObjectWaiter* next = node->_next;
2228  if (next == node) {
2229    assert(node->_prev == node, "invariant check");
2230    _WaitSet = NULL;
2231  } else {
2232    ObjectWaiter* prev = node->_prev;
2233    assert(prev->_next == node, "invariant check");
2234    assert(next->_prev == node, "invariant check");
2235    next->_prev = prev;
2236    prev->_next = next;
2237    if (_WaitSet == node) {
2238      _WaitSet = next;
2239    }
2240  }
2241  node->_next = NULL;
2242  node->_prev = NULL;
2243}
2244
2245// -----------------------------------------------------------------------------
2246// PerfData support
2247PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
2248PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
2249PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
2250PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
2251PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
2252PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
2253PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
2254PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
2255PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
2256PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
2257PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
2258PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
2259PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
2260PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
2261PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
2262PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
2263PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
2264PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;
2265
2266// One-shot global initialization for the sync subsystem.
2267// We could also defer initialization and initialize on-demand
2268// the first time we call inflate().  Initialization would
2269// be protected - like so many things - by the MonitorCache_lock.
2270
2271void ObjectMonitor::Initialize () {
2272  static int InitializationCompleted = 0 ;
2273  assert (InitializationCompleted == 0, "invariant") ;
2274  InitializationCompleted = 1 ;
2275  if (UsePerfData) {
2276      EXCEPTION_MARK ;
2277      #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
2278      #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
2279      NEWPERFCOUNTER(_sync_Inflations) ;
2280      NEWPERFCOUNTER(_sync_Deflations) ;
2281      NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
2282      NEWPERFCOUNTER(_sync_FutileWakeups) ;
2283      NEWPERFCOUNTER(_sync_Parks) ;
2284      NEWPERFCOUNTER(_sync_EmptyNotifications) ;
2285      NEWPERFCOUNTER(_sync_Notifications) ;
2286      NEWPERFCOUNTER(_sync_SlowEnter) ;
2287      NEWPERFCOUNTER(_sync_SlowExit) ;
2288      NEWPERFCOUNTER(_sync_SlowNotify) ;
2289      NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
2290      NEWPERFCOUNTER(_sync_FailedSpins) ;
2291      NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
2292      NEWPERFCOUNTER(_sync_PrivateA) ;
2293      NEWPERFCOUNTER(_sync_PrivateB) ;
2294      NEWPERFCOUNTER(_sync_MonInCirculation) ;
2295      NEWPERFCOUNTER(_sync_MonScavenged) ;
2296      NEWPERFVARIABLE(_sync_MonExtant) ;
2297      #undef NEWPERFCOUNTER
2298  }
2299}
2300
2301
2302// Compile-time asserts
2303// When possible, it's better to catch errors deterministically at
2304// compile-time than at runtime.  The down-side to using compile-time
2305// asserts is that error message -- often something about negative array
2306// indices -- is opaque.
2307
2308#define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
2309
2310void ObjectMonitor::ctAsserts() {
2311  CTASSERT(offset_of (ObjectMonitor, _header) == 0);
2312}
2313
2314
2315static char * kvGet (char * kvList, const char * Key) {
2316    if (kvList == NULL) return NULL ;
2317    size_t n = strlen (Key) ;
2318    char * Search ;
2319    for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
2320        if (strncmp (Search, Key, n) == 0) {
2321            if (Search[n] == '=') return Search + n + 1 ;
2322            if (Search[n] == 0)   return (char *) "1" ;
2323        }
2324    }
2325    return NULL ;
2326}
2327
2328static int kvGetInt (char * kvList, const char * Key, int Default) {
2329    char * v = kvGet (kvList, Key) ;
2330    int rslt = v ? ::strtol (v, NULL, 0) : Default ;
2331    if (Knob_ReportSettings && v != NULL) {
2332        ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
2333        ::fflush (stdout) ;
2334    }
2335    return rslt ;
2336}
2337
2338void ObjectMonitor::DeferredInitialize () {
2339  if (InitDone > 0) return ;
2340  if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2341      while (InitDone != 1) ;
2342      return ;
2343  }
2344
2345  // One-shot global initialization ...
2346  // The initialization is idempotent, so we don't need locks.
2347  // In the future consider doing this via os::init_2().
2348  // SyncKnobs consist of <Key>=<Value> pairs in the style
2349  // of environment variables.  Start by converting ':' to NUL.
2350
2351  if (SyncKnobs == NULL) SyncKnobs = "" ;
2352
2353  size_t sz = strlen (SyncKnobs) ;
2354  char * knobs = (char *) malloc (sz + 2) ;
2355  if (knobs == NULL) {
2356     vm_exit_out_of_memory (sz + 2, "Parse SyncKnobs") ;
2357     guarantee (0, "invariant") ;
2358  }
2359  strcpy (knobs, SyncKnobs) ;
2360  knobs[sz+1] = 0 ;
2361  for (char * p = knobs ; *p ; p++) {
2362     if (*p == ':') *p = 0 ;
2363  }
2364
2365  #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
2366  SETKNOB(ReportSettings) ;
2367  SETKNOB(Verbose) ;
2368  SETKNOB(FixedSpin) ;
2369  SETKNOB(SpinLimit) ;
2370  SETKNOB(SpinBase) ;
2371  SETKNOB(SpinBackOff);
2372  SETKNOB(CASPenalty) ;
2373  SETKNOB(OXPenalty) ;
2374  SETKNOB(LogSpins) ;
2375  SETKNOB(SpinSetSucc) ;
2376  SETKNOB(SuccEnabled) ;
2377  SETKNOB(SuccRestrict) ;
2378  SETKNOB(Penalty) ;
2379  SETKNOB(Bonus) ;
2380  SETKNOB(BonusB) ;
2381  SETKNOB(Poverty) ;
2382  SETKNOB(SpinAfterFutile) ;
2383  SETKNOB(UsePause) ;
2384  SETKNOB(SpinEarly) ;
2385  SETKNOB(OState) ;
2386  SETKNOB(MaxSpinners) ;
2387  SETKNOB(PreSpin) ;
2388  SETKNOB(ExitPolicy) ;
2389  SETKNOB(QMode);
2390  SETKNOB(ResetEvent) ;
2391  SETKNOB(MoveNotifyee) ;
2392  SETKNOB(FastHSSEC) ;
2393  #undef SETKNOB
2394
2395  if (os::is_MP()) {
2396     BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
2397     if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
2398     // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2399  } else {
2400     Knob_SpinLimit = 0 ;
2401     Knob_SpinBase  = 0 ;
2402     Knob_PreSpin   = 0 ;
2403     Knob_FixedSpin = -1 ;
2404  }
2405
2406  if (Knob_LogSpins == 0) {
2407     ObjectMonitor::_sync_FailedSpins = NULL ;
2408  }
2409
2410  free (knobs) ;
2411  OrderAccess::fence() ;
2412  InitDone = 1 ;
2413}
2414
2415#ifndef PRODUCT
2416void ObjectMonitor::verify() {
2417}
2418
2419void ObjectMonitor::print() {
2420}
2421#endif
2422