deoptimization.cpp revision 6014:8a9bb7821e28
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "code/debugInfoRec.hpp"
28#include "code/nmethod.hpp"
29#include "code/pcDesc.hpp"
30#include "code/scopeDesc.hpp"
31#include "interpreter/bytecode.hpp"
32#include "interpreter/interpreter.hpp"
33#include "interpreter/oopMapCache.hpp"
34#include "memory/allocation.inline.hpp"
35#include "memory/oopFactory.hpp"
36#include "memory/resourceArea.hpp"
37#include "oops/method.hpp"
38#include "oops/oop.inline.hpp"
39#include "prims/jvmtiThreadState.hpp"
40#include "runtime/biasedLocking.hpp"
41#include "runtime/compilationPolicy.hpp"
42#include "runtime/deoptimization.hpp"
43#include "runtime/interfaceSupport.hpp"
44#include "runtime/sharedRuntime.hpp"
45#include "runtime/signature.hpp"
46#include "runtime/stubRoutines.hpp"
47#include "runtime/thread.hpp"
48#include "runtime/vframe.hpp"
49#include "runtime/vframeArray.hpp"
50#include "runtime/vframe_hp.hpp"
51#include "utilities/events.hpp"
52#include "utilities/xmlstream.hpp"
53#ifdef TARGET_ARCH_x86
54# include "vmreg_x86.inline.hpp"
55#endif
56#ifdef TARGET_ARCH_sparc
57# include "vmreg_sparc.inline.hpp"
58#endif
59#ifdef TARGET_ARCH_zero
60# include "vmreg_zero.inline.hpp"
61#endif
62#ifdef TARGET_ARCH_arm
63# include "vmreg_arm.inline.hpp"
64#endif
65#ifdef TARGET_ARCH_ppc
66# include "vmreg_ppc.inline.hpp"
67#endif
68#ifdef COMPILER2
69#ifdef TARGET_ARCH_MODEL_x86_32
70# include "adfiles/ad_x86_32.hpp"
71#endif
72#ifdef TARGET_ARCH_MODEL_x86_64
73# include "adfiles/ad_x86_64.hpp"
74#endif
75#ifdef TARGET_ARCH_MODEL_sparc
76# include "adfiles/ad_sparc.hpp"
77#endif
78#ifdef TARGET_ARCH_MODEL_zero
79# include "adfiles/ad_zero.hpp"
80#endif
81#ifdef TARGET_ARCH_MODEL_arm
82# include "adfiles/ad_arm.hpp"
83#endif
84#ifdef TARGET_ARCH_MODEL_ppc_32
85# include "adfiles/ad_ppc_32.hpp"
86#endif
87#ifdef TARGET_ARCH_MODEL_ppc_64
88# include "adfiles/ad_ppc_64.hpp"
89#endif
90#endif // COMPILER2
91
92bool DeoptimizationMarker::_is_active = false;
93
94Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
95                                         int  caller_adjustment,
96                                         int  caller_actual_parameters,
97                                         int  number_of_frames,
98                                         intptr_t* frame_sizes,
99                                         address* frame_pcs,
100                                         BasicType return_type) {
101  _size_of_deoptimized_frame = size_of_deoptimized_frame;
102  _caller_adjustment         = caller_adjustment;
103  _caller_actual_parameters  = caller_actual_parameters;
104  _number_of_frames          = number_of_frames;
105  _frame_sizes               = frame_sizes;
106  _frame_pcs                 = frame_pcs;
107  _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
108  _return_type               = return_type;
109  _initial_info              = 0;
110  // PD (x86 only)
111  _counter_temp              = 0;
112  _unpack_kind               = 0;
113  _sender_sp_temp            = 0;
114
115  _total_frame_sizes         = size_of_frames();
116}
117
118
119Deoptimization::UnrollBlock::~UnrollBlock() {
120  FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes, mtCompiler);
121  FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs, mtCompiler);
122  FREE_C_HEAP_ARRAY(intptr_t, _register_block, mtCompiler);
123}
124
125
126intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
127  assert(register_number < RegisterMap::reg_count, "checking register number");
128  return &_register_block[register_number * 2];
129}
130
131
132
133int Deoptimization::UnrollBlock::size_of_frames() const {
134  // Acount first for the adjustment of the initial frame
135  int result = _caller_adjustment;
136  for (int index = 0; index < number_of_frames(); index++) {
137    result += frame_sizes()[index];
138  }
139  return result;
140}
141
142
143void Deoptimization::UnrollBlock::print() {
144  ttyLocker ttyl;
145  tty->print_cr("UnrollBlock");
146  tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
147  tty->print(   "  frame_sizes: ");
148  for (int index = 0; index < number_of_frames(); index++) {
149    tty->print("%d ", frame_sizes()[index]);
150  }
151  tty->cr();
152}
153
154
155// In order to make fetch_unroll_info work properly with escape
156// analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
157// ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
158// of previously eliminated objects occurs in realloc_objects, which is
159// called from the method fetch_unroll_info_helper below.
160JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
161  // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
162  // but makes the entry a little slower. There is however a little dance we have to
163  // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
164
165  // fetch_unroll_info() is called at the beginning of the deoptimization
166  // handler. Note this fact before we start generating temporary frames
167  // that can confuse an asynchronous stack walker. This counter is
168  // decremented at the end of unpack_frames().
169  thread->inc_in_deopt_handler();
170
171  return fetch_unroll_info_helper(thread);
172JRT_END
173
174
175// This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
176Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
177
178  // Note: there is a safepoint safety issue here. No matter whether we enter
179  // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
180  // the vframeArray is created.
181  //
182
183  // Allocate our special deoptimization ResourceMark
184  DeoptResourceMark* dmark = new DeoptResourceMark(thread);
185  assert(thread->deopt_mark() == NULL, "Pending deopt!");
186  thread->set_deopt_mark(dmark);
187
188  frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
189  RegisterMap map(thread, true);
190  RegisterMap dummy_map(thread, false);
191  // Now get the deoptee with a valid map
192  frame deoptee = stub_frame.sender(&map);
193  // Set the deoptee nmethod
194  assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
195  thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
196
197  if (VerifyStack) {
198    thread->validate_frame_layout();
199  }
200
201  // Create a growable array of VFrames where each VFrame represents an inlined
202  // Java frame.  This storage is allocated with the usual system arena.
203  assert(deoptee.is_compiled_frame(), "Wrong frame type");
204  GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
205  vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
206  while (!vf->is_top()) {
207    assert(vf->is_compiled_frame(), "Wrong frame type");
208    chunk->push(compiledVFrame::cast(vf));
209    vf = vf->sender();
210  }
211  assert(vf->is_compiled_frame(), "Wrong frame type");
212  chunk->push(compiledVFrame::cast(vf));
213
214#ifdef COMPILER2
215  // Reallocate the non-escaping objects and restore their fields. Then
216  // relock objects if synchronization on them was eliminated.
217  if (DoEscapeAnalysis || EliminateNestedLocks) {
218    if (EliminateAllocations) {
219      assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
220      GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
221
222      // The flag return_oop() indicates call sites which return oop
223      // in compiled code. Such sites include java method calls,
224      // runtime calls (for example, used to allocate new objects/arrays
225      // on slow code path) and any other calls generated in compiled code.
226      // It is not guaranteed that we can get such information here only
227      // by analyzing bytecode in deoptimized frames. This is why this flag
228      // is set during method compilation (see Compile::Process_OopMap_Node()).
229      bool save_oop_result = chunk->at(0)->scope()->return_oop();
230      Handle return_value;
231      if (save_oop_result) {
232        // Reallocation may trigger GC. If deoptimization happened on return from
233        // call which returns oop we need to save it since it is not in oopmap.
234        oop result = deoptee.saved_oop_result(&map);
235        assert(result == NULL || result->is_oop(), "must be oop");
236        return_value = Handle(thread, result);
237        assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
238        if (TraceDeoptimization) {
239          ttyLocker ttyl;
240          tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, (void *)result, thread);
241        }
242      }
243      bool reallocated = false;
244      if (objects != NULL) {
245        JRT_BLOCK
246          reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
247        JRT_END
248      }
249      if (reallocated) {
250        reassign_fields(&deoptee, &map, objects);
251#ifndef PRODUCT
252        if (TraceDeoptimization) {
253          ttyLocker ttyl;
254          tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
255          print_objects(objects);
256        }
257#endif
258      }
259      if (save_oop_result) {
260        // Restore result.
261        deoptee.set_saved_oop_result(&map, return_value());
262      }
263    }
264    if (EliminateLocks) {
265#ifndef PRODUCT
266      bool first = true;
267#endif
268      for (int i = 0; i < chunk->length(); i++) {
269        compiledVFrame* cvf = chunk->at(i);
270        assert (cvf->scope() != NULL,"expect only compiled java frames");
271        GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
272        if (monitors->is_nonempty()) {
273          relock_objects(monitors, thread);
274#ifndef PRODUCT
275          if (TraceDeoptimization) {
276            ttyLocker ttyl;
277            for (int j = 0; j < monitors->length(); j++) {
278              MonitorInfo* mi = monitors->at(j);
279              if (mi->eliminated()) {
280                if (first) {
281                  first = false;
282                  tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
283                }
284                tty->print_cr("     object <" INTPTR_FORMAT "> locked", (void *)mi->owner());
285              }
286            }
287          }
288#endif
289        }
290      }
291    }
292  }
293#endif // COMPILER2
294  // Ensure that no safepoint is taken after pointers have been stored
295  // in fields of rematerialized objects.  If a safepoint occurs from here on
296  // out the java state residing in the vframeArray will be missed.
297  No_Safepoint_Verifier no_safepoint;
298
299  vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
300
301  assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
302  thread->set_vframe_array_head(array);
303
304  // Now that the vframeArray has been created if we have any deferred local writes
305  // added by jvmti then we can free up that structure as the data is now in the
306  // vframeArray
307
308  if (thread->deferred_locals() != NULL) {
309    GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
310    int i = 0;
311    do {
312      // Because of inlining we could have multiple vframes for a single frame
313      // and several of the vframes could have deferred writes. Find them all.
314      if (list->at(i)->id() == array->original().id()) {
315        jvmtiDeferredLocalVariableSet* dlv = list->at(i);
316        list->remove_at(i);
317        // individual jvmtiDeferredLocalVariableSet are CHeapObj's
318        delete dlv;
319      } else {
320        i++;
321      }
322    } while ( i < list->length() );
323    if (list->length() == 0) {
324      thread->set_deferred_locals(NULL);
325      // free the list and elements back to C heap.
326      delete list;
327    }
328
329  }
330
331#ifndef SHARK
332  // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
333  CodeBlob* cb = stub_frame.cb();
334  // Verify we have the right vframeArray
335  assert(cb->frame_size() >= 0, "Unexpected frame size");
336  intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
337
338  // If the deopt call site is a MethodHandle invoke call site we have
339  // to adjust the unpack_sp.
340  nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
341  if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
342    unpack_sp = deoptee.unextended_sp();
343
344#ifdef ASSERT
345  assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
346#endif
347#else
348  intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
349#endif // !SHARK
350
351  // This is a guarantee instead of an assert because if vframe doesn't match
352  // we will unpack the wrong deoptimized frame and wind up in strange places
353  // where it will be very difficult to figure out what went wrong. Better
354  // to die an early death here than some very obscure death later when the
355  // trail is cold.
356  // Note: on ia64 this guarantee can be fooled by frames with no memory stack
357  // in that it will fail to detect a problem when there is one. This needs
358  // more work in tiger timeframe.
359  guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
360
361  int number_of_frames = array->frames();
362
363  // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
364  // virtual activation, which is the reverse of the elements in the vframes array.
365  intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
366  // +1 because we always have an interpreter return address for the final slot.
367  address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
368  int popframe_extra_args = 0;
369  // Create an interpreter return address for the stub to use as its return
370  // address so the skeletal frames are perfectly walkable
371  frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
372
373  // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
374  // activation be put back on the expression stack of the caller for reexecution
375  if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
376    popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
377  }
378
379  // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
380  // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
381  // than simply use array->sender.pc(). This requires us to walk the current set of frames
382  //
383  frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
384  deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
385
386  // It's possible that the number of parameters at the call site is
387  // different than number of arguments in the callee when method
388  // handles are used.  If the caller is interpreted get the real
389  // value so that the proper amount of space can be added to it's
390  // frame.
391  bool caller_was_method_handle = false;
392  if (deopt_sender.is_interpreted_frame()) {
393    methodHandle method = deopt_sender.interpreter_frame_method();
394    Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
395    if (cur.is_invokedynamic() || cur.is_invokehandle()) {
396      // Method handle invokes may involve fairly arbitrary chains of
397      // calls so it's impossible to know how much actual space the
398      // caller has for locals.
399      caller_was_method_handle = true;
400    }
401  }
402
403  //
404  // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
405  // frame_sizes/frame_pcs[1] next oldest frame (int)
406  // frame_sizes/frame_pcs[n] youngest frame (int)
407  //
408  // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
409  // owns the space for the return address to it's caller).  Confusing ain't it.
410  //
411  // The vframe array can address vframes with indices running from
412  // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
413  // When we create the skeletal frames we need the oldest frame to be in the zero slot
414  // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
415  // so things look a little strange in this loop.
416  //
417  int callee_parameters = 0;
418  int callee_locals = 0;
419  for (int index = 0; index < array->frames(); index++ ) {
420    // frame[number_of_frames - 1 ] = on_stack_size(youngest)
421    // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
422    // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
423    int caller_parms = callee_parameters;
424    if ((index == array->frames() - 1) && caller_was_method_handle) {
425      caller_parms = 0;
426    }
427    frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(caller_parms,
428                                                                                                    callee_parameters,
429                                                                                                    callee_locals,
430                                                                                                    index == 0,
431                                                                                                    index == array->frames() - 1,
432                                                                                                    popframe_extra_args);
433    // This pc doesn't have to be perfect just good enough to identify the frame
434    // as interpreted so the skeleton frame will be walkable
435    // The correct pc will be set when the skeleton frame is completely filled out
436    // The final pc we store in the loop is wrong and will be overwritten below
437    frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
438
439    callee_parameters = array->element(index)->method()->size_of_parameters();
440    callee_locals = array->element(index)->method()->max_locals();
441    popframe_extra_args = 0;
442  }
443
444  // Compute whether the root vframe returns a float or double value.
445  BasicType return_type;
446  {
447    HandleMark hm;
448    methodHandle method(thread, array->element(0)->method());
449    Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
450    return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
451  }
452
453  // Compute information for handling adapters and adjusting the frame size of the caller.
454  int caller_adjustment = 0;
455
456  // Compute the amount the oldest interpreter frame will have to adjust
457  // its caller's stack by. If the caller is a compiled frame then
458  // we pretend that the callee has no parameters so that the
459  // extension counts for the full amount of locals and not just
460  // locals-parms. This is because without a c2i adapter the parm
461  // area as created by the compiled frame will not be usable by
462  // the interpreter. (Depending on the calling convention there
463  // may not even be enough space).
464
465  // QQQ I'd rather see this pushed down into last_frame_adjust
466  // and have it take the sender (aka caller).
467
468  if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
469    caller_adjustment = last_frame_adjust(0, callee_locals);
470  } else if (callee_locals > callee_parameters) {
471    // The caller frame may need extending to accommodate
472    // non-parameter locals of the first unpacked interpreted frame.
473    // Compute that adjustment.
474    caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
475  }
476
477  // If the sender is deoptimized the we must retrieve the address of the handler
478  // since the frame will "magically" show the original pc before the deopt
479  // and we'd undo the deopt.
480
481  frame_pcs[0] = deopt_sender.raw_pc();
482
483#ifndef SHARK
484  assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
485#endif // SHARK
486
487  UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
488                                      caller_adjustment * BytesPerWord,
489                                      caller_was_method_handle ? 0 : callee_parameters,
490                                      number_of_frames,
491                                      frame_sizes,
492                                      frame_pcs,
493                                      return_type);
494  // On some platforms, we need a way to pass some platform dependent
495  // information to the unpacking code so the skeletal frames come out
496  // correct (initial fp value, unextended sp, ...)
497  info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
498
499  if (array->frames() > 1) {
500    if (VerifyStack && TraceDeoptimization) {
501      ttyLocker ttyl;
502      tty->print_cr("Deoptimizing method containing inlining");
503    }
504  }
505
506  array->set_unroll_block(info);
507  return info;
508}
509
510// Called to cleanup deoptimization data structures in normal case
511// after unpacking to stack and when stack overflow error occurs
512void Deoptimization::cleanup_deopt_info(JavaThread *thread,
513                                        vframeArray *array) {
514
515  // Get array if coming from exception
516  if (array == NULL) {
517    array = thread->vframe_array_head();
518  }
519  thread->set_vframe_array_head(NULL);
520
521  // Free the previous UnrollBlock
522  vframeArray* old_array = thread->vframe_array_last();
523  thread->set_vframe_array_last(array);
524
525  if (old_array != NULL) {
526    UnrollBlock* old_info = old_array->unroll_block();
527    old_array->set_unroll_block(NULL);
528    delete old_info;
529    delete old_array;
530  }
531
532  // Deallocate any resource creating in this routine and any ResourceObjs allocated
533  // inside the vframeArray (StackValueCollections)
534
535  delete thread->deopt_mark();
536  thread->set_deopt_mark(NULL);
537  thread->set_deopt_nmethod(NULL);
538
539
540  if (JvmtiExport::can_pop_frame()) {
541#ifndef CC_INTERP
542    // Regardless of whether we entered this routine with the pending
543    // popframe condition bit set, we should always clear it now
544    thread->clear_popframe_condition();
545#else
546    // C++ interpreter will clear has_pending_popframe when it enters
547    // with method_resume. For deopt_resume2 we clear it now.
548    if (thread->popframe_forcing_deopt_reexecution())
549        thread->clear_popframe_condition();
550#endif /* CC_INTERP */
551  }
552
553  // unpack_frames() is called at the end of the deoptimization handler
554  // and (in C2) at the end of the uncommon trap handler. Note this fact
555  // so that an asynchronous stack walker can work again. This counter is
556  // incremented at the beginning of fetch_unroll_info() and (in C2) at
557  // the beginning of uncommon_trap().
558  thread->dec_in_deopt_handler();
559}
560
561
562// Return BasicType of value being returned
563JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
564
565  // We are already active int he special DeoptResourceMark any ResourceObj's we
566  // allocate will be freed at the end of the routine.
567
568  // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
569  // but makes the entry a little slower. There is however a little dance we have to
570  // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
571  ResetNoHandleMark rnhm; // No-op in release/product versions
572  HandleMark hm;
573
574  frame stub_frame = thread->last_frame();
575
576  // Since the frame to unpack is the top frame of this thread, the vframe_array_head
577  // must point to the vframeArray for the unpack frame.
578  vframeArray* array = thread->vframe_array_head();
579
580#ifndef PRODUCT
581  if (TraceDeoptimization) {
582    ttyLocker ttyl;
583    tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
584  }
585#endif
586  Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
587              stub_frame.pc(), stub_frame.sp(), exec_mode);
588
589  UnrollBlock* info = array->unroll_block();
590
591  // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
592  array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
593
594  BasicType bt = info->return_type();
595
596  // If we have an exception pending, claim that the return type is an oop
597  // so the deopt_blob does not overwrite the exception_oop.
598
599  if (exec_mode == Unpack_exception)
600    bt = T_OBJECT;
601
602  // Cleanup thread deopt data
603  cleanup_deopt_info(thread, array);
604
605#ifndef PRODUCT
606  if (VerifyStack) {
607    ResourceMark res_mark;
608
609    thread->validate_frame_layout();
610
611    // Verify that the just-unpacked frames match the interpreter's
612    // notions of expression stack and locals
613    vframeArray* cur_array = thread->vframe_array_last();
614    RegisterMap rm(thread, false);
615    rm.set_include_argument_oops(false);
616    bool is_top_frame = true;
617    int callee_size_of_parameters = 0;
618    int callee_max_locals = 0;
619    for (int i = 0; i < cur_array->frames(); i++) {
620      vframeArrayElement* el = cur_array->element(i);
621      frame* iframe = el->iframe();
622      guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
623
624      // Get the oop map for this bci
625      InterpreterOopMap mask;
626      int cur_invoke_parameter_size = 0;
627      bool try_next_mask = false;
628      int next_mask_expression_stack_size = -1;
629      int top_frame_expression_stack_adjustment = 0;
630      methodHandle mh(thread, iframe->interpreter_frame_method());
631      OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
632      BytecodeStream str(mh);
633      str.set_start(iframe->interpreter_frame_bci());
634      int max_bci = mh->code_size();
635      // Get to the next bytecode if possible
636      assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
637      // Check to see if we can grab the number of outgoing arguments
638      // at an uncommon trap for an invoke (where the compiler
639      // generates debug info before the invoke has executed)
640      Bytecodes::Code cur_code = str.next();
641      if (cur_code == Bytecodes::_invokevirtual   ||
642          cur_code == Bytecodes::_invokespecial   ||
643          cur_code == Bytecodes::_invokestatic    ||
644          cur_code == Bytecodes::_invokeinterface ||
645          cur_code == Bytecodes::_invokedynamic) {
646        Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
647        Symbol* signature = invoke.signature();
648        ArgumentSizeComputer asc(signature);
649        cur_invoke_parameter_size = asc.size();
650        if (invoke.has_receiver()) {
651          // Add in receiver
652          ++cur_invoke_parameter_size;
653        }
654        if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
655          callee_size_of_parameters++;
656        }
657      }
658      if (str.bci() < max_bci) {
659        Bytecodes::Code bc = str.next();
660        if (bc >= 0) {
661          // The interpreter oop map generator reports results before
662          // the current bytecode has executed except in the case of
663          // calls. It seems to be hard to tell whether the compiler
664          // has emitted debug information matching the "state before"
665          // a given bytecode or the state after, so we try both
666          switch (cur_code) {
667            case Bytecodes::_invokevirtual:
668            case Bytecodes::_invokespecial:
669            case Bytecodes::_invokestatic:
670            case Bytecodes::_invokeinterface:
671            case Bytecodes::_invokedynamic:
672            case Bytecodes::_athrow:
673              break;
674            default: {
675              InterpreterOopMap next_mask;
676              OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
677              next_mask_expression_stack_size = next_mask.expression_stack_size();
678              // Need to subtract off the size of the result type of
679              // the bytecode because this is not described in the
680              // debug info but returned to the interpreter in the TOS
681              // caching register
682              BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
683              if (bytecode_result_type != T_ILLEGAL) {
684                top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
685              }
686              assert(top_frame_expression_stack_adjustment >= 0, "");
687              try_next_mask = true;
688              break;
689            }
690          }
691        }
692      }
693
694      // Verify stack depth and oops in frame
695      // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
696      if (!(
697            /* SPARC */
698            (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
699            /* x86 */
700            (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
701            (try_next_mask &&
702             (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
703                                                                    top_frame_expression_stack_adjustment))) ||
704            (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
705            (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
706             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
707            )) {
708        ttyLocker ttyl;
709
710        // Print out some information that will help us debug the problem
711        tty->print_cr("Wrong number of expression stack elements during deoptimization");
712        tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
713        tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
714                      iframe->interpreter_frame_expression_stack_size());
715        tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
716        tty->print_cr("  try_next_mask = %d", try_next_mask);
717        tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
718        tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
719        tty->print_cr("  callee_max_locals = %d", callee_max_locals);
720        tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
721        tty->print_cr("  exec_mode = %d", exec_mode);
722        tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
723        tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
724        tty->print_cr("  Interpreted frames:");
725        for (int k = 0; k < cur_array->frames(); k++) {
726          vframeArrayElement* el = cur_array->element(k);
727          tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
728        }
729        cur_array->print_on_2(tty);
730        guarantee(false, "wrong number of expression stack elements during deopt");
731      }
732      VerifyOopClosure verify;
733      iframe->oops_interpreted_do(&verify, NULL, &rm, false);
734      callee_size_of_parameters = mh->size_of_parameters();
735      callee_max_locals = mh->max_locals();
736      is_top_frame = false;
737    }
738  }
739#endif /* !PRODUCT */
740
741
742  return bt;
743JRT_END
744
745
746int Deoptimization::deoptimize_dependents() {
747  Threads::deoptimized_wrt_marked_nmethods();
748  return 0;
749}
750
751
752#ifdef COMPILER2
753bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
754  Handle pending_exception(thread->pending_exception());
755  const char* exception_file = thread->exception_file();
756  int exception_line = thread->exception_line();
757  thread->clear_pending_exception();
758
759  for (int i = 0; i < objects->length(); i++) {
760    assert(objects->at(i)->is_object(), "invalid debug information");
761    ObjectValue* sv = (ObjectValue*) objects->at(i);
762
763    KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
764    oop obj = NULL;
765
766    if (k->oop_is_instance()) {
767      InstanceKlass* ik = InstanceKlass::cast(k());
768      obj = ik->allocate_instance(CHECK_(false));
769    } else if (k->oop_is_typeArray()) {
770      TypeArrayKlass* ak = TypeArrayKlass::cast(k());
771      assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
772      int len = sv->field_size() / type2size[ak->element_type()];
773      obj = ak->allocate(len, CHECK_(false));
774    } else if (k->oop_is_objArray()) {
775      ObjArrayKlass* ak = ObjArrayKlass::cast(k());
776      obj = ak->allocate(sv->field_size(), CHECK_(false));
777    }
778
779    assert(obj != NULL, "allocation failed");
780    assert(sv->value().is_null(), "redundant reallocation");
781    sv->set_value(obj);
782  }
783
784  if (pending_exception.not_null()) {
785    thread->set_pending_exception(pending_exception(), exception_file, exception_line);
786  }
787
788  return true;
789}
790
791// This assumes that the fields are stored in ObjectValue in the same order
792// they are yielded by do_nonstatic_fields.
793class FieldReassigner: public FieldClosure {
794  frame* _fr;
795  RegisterMap* _reg_map;
796  ObjectValue* _sv;
797  InstanceKlass* _ik;
798  oop _obj;
799
800  int _i;
801public:
802  FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
803    _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
804
805  int i() const { return _i; }
806
807
808  void do_field(fieldDescriptor* fd) {
809    intptr_t val;
810    StackValue* value =
811      StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
812    int offset = fd->offset();
813    switch (fd->field_type()) {
814    case T_OBJECT: case T_ARRAY:
815      assert(value->type() == T_OBJECT, "Agreement.");
816      _obj->obj_field_put(offset, value->get_obj()());
817      break;
818
819    case T_LONG: case T_DOUBLE: {
820      assert(value->type() == T_INT, "Agreement.");
821      StackValue* low =
822        StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
823#ifdef _LP64
824      jlong res = (jlong)low->get_int();
825#else
826#ifdef SPARC
827      // For SPARC we have to swap high and low words.
828      jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
829#else
830      jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
831#endif //SPARC
832#endif
833      _obj->long_field_put(offset, res);
834      break;
835    }
836    // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
837    case T_INT: case T_FLOAT: // 4 bytes.
838      assert(value->type() == T_INT, "Agreement.");
839      val = value->get_int();
840      _obj->int_field_put(offset, (jint)*((jint*)&val));
841      break;
842
843    case T_SHORT: case T_CHAR: // 2 bytes
844      assert(value->type() == T_INT, "Agreement.");
845      val = value->get_int();
846      _obj->short_field_put(offset, (jshort)*((jint*)&val));
847      break;
848
849    case T_BOOLEAN: case T_BYTE: // 1 byte
850      assert(value->type() == T_INT, "Agreement.");
851      val = value->get_int();
852      _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
853      break;
854
855    default:
856      ShouldNotReachHere();
857    }
858    _i++;
859  }
860};
861
862// restore elements of an eliminated type array
863void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
864  int index = 0;
865  intptr_t val;
866
867  for (int i = 0; i < sv->field_size(); i++) {
868    StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
869    switch(type) {
870    case T_LONG: case T_DOUBLE: {
871      assert(value->type() == T_INT, "Agreement.");
872      StackValue* low =
873        StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
874#ifdef _LP64
875      jlong res = (jlong)low->get_int();
876#else
877#ifdef SPARC
878      // For SPARC we have to swap high and low words.
879      jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
880#else
881      jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
882#endif //SPARC
883#endif
884      obj->long_at_put(index, res);
885      break;
886    }
887
888    // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
889    case T_INT: case T_FLOAT: // 4 bytes.
890      assert(value->type() == T_INT, "Agreement.");
891      val = value->get_int();
892      obj->int_at_put(index, (jint)*((jint*)&val));
893      break;
894
895    case T_SHORT: case T_CHAR: // 2 bytes
896      assert(value->type() == T_INT, "Agreement.");
897      val = value->get_int();
898      obj->short_at_put(index, (jshort)*((jint*)&val));
899      break;
900
901    case T_BOOLEAN: case T_BYTE: // 1 byte
902      assert(value->type() == T_INT, "Agreement.");
903      val = value->get_int();
904      obj->bool_at_put(index, (jboolean)*((jint*)&val));
905      break;
906
907      default:
908        ShouldNotReachHere();
909    }
910    index++;
911  }
912}
913
914
915// restore fields of an eliminated object array
916void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
917  for (int i = 0; i < sv->field_size(); i++) {
918    StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
919    assert(value->type() == T_OBJECT, "object element expected");
920    obj->obj_at_put(i, value->get_obj()());
921  }
922}
923
924
925// restore fields of all eliminated objects and arrays
926void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
927  for (int i = 0; i < objects->length(); i++) {
928    ObjectValue* sv = (ObjectValue*) objects->at(i);
929    KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
930    Handle obj = sv->value();
931    assert(obj.not_null(), "reallocation was missed");
932
933    if (k->oop_is_instance()) {
934      InstanceKlass* ik = InstanceKlass::cast(k());
935      FieldReassigner reassign(fr, reg_map, sv, obj());
936      ik->do_nonstatic_fields(&reassign);
937    } else if (k->oop_is_typeArray()) {
938      TypeArrayKlass* ak = TypeArrayKlass::cast(k());
939      reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
940    } else if (k->oop_is_objArray()) {
941      reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
942    }
943  }
944}
945
946
947// relock objects for which synchronization was eliminated
948void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
949  for (int i = 0; i < monitors->length(); i++) {
950    MonitorInfo* mon_info = monitors->at(i);
951    if (mon_info->eliminated()) {
952      assert(mon_info->owner() != NULL, "reallocation was missed");
953      Handle obj = Handle(mon_info->owner());
954      markOop mark = obj->mark();
955      if (UseBiasedLocking && mark->has_bias_pattern()) {
956        // New allocated objects may have the mark set to anonymously biased.
957        // Also the deoptimized method may called methods with synchronization
958        // where the thread-local object is bias locked to the current thread.
959        assert(mark->is_biased_anonymously() ||
960               mark->biased_locker() == thread, "should be locked to current thread");
961        // Reset mark word to unbiased prototype.
962        markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
963        obj->set_mark(unbiased_prototype);
964      }
965      BasicLock* lock = mon_info->lock();
966      ObjectSynchronizer::slow_enter(obj, lock, thread);
967    }
968    assert(mon_info->owner()->is_locked(), "object must be locked now");
969  }
970}
971
972
973#ifndef PRODUCT
974// print information about reallocated objects
975void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
976  fieldDescriptor fd;
977
978  for (int i = 0; i < objects->length(); i++) {
979    ObjectValue* sv = (ObjectValue*) objects->at(i);
980    KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
981    Handle obj = sv->value();
982
983    tty->print("     object <" INTPTR_FORMAT "> of type ", (void *)sv->value()());
984    k->print_value();
985    tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
986    tty->cr();
987
988    if (Verbose) {
989      k->oop_print_on(obj(), tty);
990    }
991  }
992}
993#endif
994#endif // COMPILER2
995
996vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
997  Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, fr.pc(), fr.sp());
998
999#ifndef PRODUCT
1000  if (TraceDeoptimization) {
1001    ttyLocker ttyl;
1002    tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
1003    fr.print_on(tty);
1004    tty->print_cr("     Virtual frames (innermost first):");
1005    for (int index = 0; index < chunk->length(); index++) {
1006      compiledVFrame* vf = chunk->at(index);
1007      tty->print("       %2d - ", index);
1008      vf->print_value();
1009      int bci = chunk->at(index)->raw_bci();
1010      const char* code_name;
1011      if (bci == SynchronizationEntryBCI) {
1012        code_name = "sync entry";
1013      } else {
1014        Bytecodes::Code code = vf->method()->code_at(bci);
1015        code_name = Bytecodes::name(code);
1016      }
1017      tty->print(" - %s", code_name);
1018      tty->print_cr(" @ bci %d ", bci);
1019      if (Verbose) {
1020        vf->print();
1021        tty->cr();
1022      }
1023    }
1024  }
1025#endif
1026
1027  // Register map for next frame (used for stack crawl).  We capture
1028  // the state of the deopt'ing frame's caller.  Thus if we need to
1029  // stuff a C2I adapter we can properly fill in the callee-save
1030  // register locations.
1031  frame caller = fr.sender(reg_map);
1032  int frame_size = caller.sp() - fr.sp();
1033
1034  frame sender = caller;
1035
1036  // Since the Java thread being deoptimized will eventually adjust it's own stack,
1037  // the vframeArray containing the unpacking information is allocated in the C heap.
1038  // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1039  vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
1040
1041  // Compare the vframeArray to the collected vframes
1042  assert(array->structural_compare(thread, chunk), "just checking");
1043
1044#ifndef PRODUCT
1045  if (TraceDeoptimization) {
1046    ttyLocker ttyl;
1047    tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
1048  }
1049#endif // PRODUCT
1050
1051  return array;
1052}
1053
1054
1055static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1056  GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1057  for (int i = 0; i < monitors->length(); i++) {
1058    MonitorInfo* mon_info = monitors->at(i);
1059    if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1060      objects_to_revoke->append(Handle(mon_info->owner()));
1061    }
1062  }
1063}
1064
1065
1066void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1067  if (!UseBiasedLocking) {
1068    return;
1069  }
1070
1071  GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1072
1073  // Unfortunately we don't have a RegisterMap available in most of
1074  // the places we want to call this routine so we need to walk the
1075  // stack again to update the register map.
1076  if (map == NULL || !map->update_map()) {
1077    StackFrameStream sfs(thread, true);
1078    bool found = false;
1079    while (!found && !sfs.is_done()) {
1080      frame* cur = sfs.current();
1081      sfs.next();
1082      found = cur->id() == fr.id();
1083    }
1084    assert(found, "frame to be deoptimized not found on target thread's stack");
1085    map = sfs.register_map();
1086  }
1087
1088  vframe* vf = vframe::new_vframe(&fr, map, thread);
1089  compiledVFrame* cvf = compiledVFrame::cast(vf);
1090  // Revoke monitors' biases in all scopes
1091  while (!cvf->is_top()) {
1092    collect_monitors(cvf, objects_to_revoke);
1093    cvf = compiledVFrame::cast(cvf->sender());
1094  }
1095  collect_monitors(cvf, objects_to_revoke);
1096
1097  if (SafepointSynchronize::is_at_safepoint()) {
1098    BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1099  } else {
1100    BiasedLocking::revoke(objects_to_revoke);
1101  }
1102}
1103
1104
1105void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1106  if (!UseBiasedLocking) {
1107    return;
1108  }
1109
1110  assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1111  GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1112  for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1113    if (jt->has_last_Java_frame()) {
1114      StackFrameStream sfs(jt, true);
1115      while (!sfs.is_done()) {
1116        frame* cur = sfs.current();
1117        if (cb->contains(cur->pc())) {
1118          vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1119          compiledVFrame* cvf = compiledVFrame::cast(vf);
1120          // Revoke monitors' biases in all scopes
1121          while (!cvf->is_top()) {
1122            collect_monitors(cvf, objects_to_revoke);
1123            cvf = compiledVFrame::cast(cvf->sender());
1124          }
1125          collect_monitors(cvf, objects_to_revoke);
1126        }
1127        sfs.next();
1128      }
1129    }
1130  }
1131  BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1132}
1133
1134
1135void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
1136  assert(fr.can_be_deoptimized(), "checking frame type");
1137
1138  gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
1139
1140  // Patch the nmethod so that when execution returns to it we will
1141  // deopt the execution state and return to the interpreter.
1142  fr.deoptimize(thread);
1143}
1144
1145void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1146  // Deoptimize only if the frame comes from compile code.
1147  // Do not deoptimize the frame which is already patched
1148  // during the execution of the loops below.
1149  if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1150    return;
1151  }
1152  ResourceMark rm;
1153  DeoptimizationMarker dm;
1154  if (UseBiasedLocking) {
1155    revoke_biases_of_monitors(thread, fr, map);
1156  }
1157  deoptimize_single_frame(thread, fr);
1158
1159}
1160
1161
1162void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
1163  assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1164         "can only deoptimize other thread at a safepoint");
1165  // Compute frame and register map based on thread and sp.
1166  RegisterMap reg_map(thread, UseBiasedLocking);
1167  frame fr = thread->last_frame();
1168  while (fr.id() != id) {
1169    fr = fr.sender(&reg_map);
1170  }
1171  deoptimize(thread, fr, &reg_map);
1172}
1173
1174
1175void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1176  if (thread == Thread::current()) {
1177    Deoptimization::deoptimize_frame_internal(thread, id);
1178  } else {
1179    VM_DeoptimizeFrame deopt(thread, id);
1180    VMThread::execute(&deopt);
1181  }
1182}
1183
1184
1185// JVMTI PopFrame support
1186JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1187{
1188  thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1189}
1190JRT_END
1191
1192
1193#if defined(COMPILER2) || defined(SHARK)
1194void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
1195  // in case of an unresolved klass entry, load the class.
1196  if (constant_pool->tag_at(index).is_unresolved_klass()) {
1197    Klass* tk = constant_pool->klass_at(index, CHECK);
1198    return;
1199  }
1200
1201  if (!constant_pool->tag_at(index).is_symbol()) return;
1202
1203  Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1204  Symbol*  symbol  = constant_pool->symbol_at(index);
1205
1206  // class name?
1207  if (symbol->byte_at(0) != '(') {
1208    Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1209    SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1210    return;
1211  }
1212
1213  // then it must be a signature!
1214  ResourceMark rm(THREAD);
1215  for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1216    if (ss.is_object()) {
1217      Symbol* class_name = ss.as_symbol(CHECK);
1218      Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1219      SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1220    }
1221  }
1222}
1223
1224
1225void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
1226  EXCEPTION_MARK;
1227  load_class_by_index(constant_pool, index, THREAD);
1228  if (HAS_PENDING_EXCEPTION) {
1229    // Exception happened during classloading. We ignore the exception here, since it
1230    // is going to be rethrown since the current activation is going to be deoptimized and
1231    // the interpreter will re-execute the bytecode.
1232    CLEAR_PENDING_EXCEPTION;
1233    // Class loading called java code which may have caused a stack
1234    // overflow. If the exception was thrown right before the return
1235    // to the runtime the stack is no longer guarded. Reguard the
1236    // stack otherwise if we return to the uncommon trap blob and the
1237    // stack bang causes a stack overflow we crash.
1238    assert(THREAD->is_Java_thread(), "only a java thread can be here");
1239    JavaThread* thread = (JavaThread*)THREAD;
1240    bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
1241    if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1242    assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1243  }
1244}
1245
1246JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1247  HandleMark hm;
1248
1249  // uncommon_trap() is called at the beginning of the uncommon trap
1250  // handler. Note this fact before we start generating temporary frames
1251  // that can confuse an asynchronous stack walker. This counter is
1252  // decremented at the end of unpack_frames().
1253  thread->inc_in_deopt_handler();
1254
1255  // We need to update the map if we have biased locking.
1256  RegisterMap reg_map(thread, UseBiasedLocking);
1257  frame stub_frame = thread->last_frame();
1258  frame fr = stub_frame.sender(&reg_map);
1259  // Make sure the calling nmethod is not getting deoptimized and removed
1260  // before we are done with it.
1261  nmethodLocker nl(fr.pc());
1262
1263  // Log a message
1264  Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT,
1265              trap_request, fr.pc());
1266
1267  {
1268    ResourceMark rm;
1269
1270    // Revoke biases of any monitors in the frame to ensure we can migrate them
1271    revoke_biases_of_monitors(thread, fr, &reg_map);
1272
1273    DeoptReason reason = trap_request_reason(trap_request);
1274    DeoptAction action = trap_request_action(trap_request);
1275    jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1276
1277    vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1278    compiledVFrame* cvf = compiledVFrame::cast(vf);
1279
1280    nmethod* nm = cvf->code();
1281
1282    ScopeDesc*      trap_scope  = cvf->scope();
1283    methodHandle    trap_method = trap_scope->method();
1284    int             trap_bci    = trap_scope->bci();
1285    Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1286
1287    // Record this event in the histogram.
1288    gather_statistics(reason, action, trap_bc);
1289
1290    // Ensure that we can record deopt. history:
1291    bool create_if_missing = ProfileTraps;
1292
1293    MethodData* trap_mdo =
1294      get_method_data(thread, trap_method, create_if_missing);
1295
1296    // Log a message
1297    Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
1298                              trap_reason_name(reason), trap_action_name(action), fr.pc(),
1299                              trap_method->name_and_sig_as_C_string(), trap_bci);
1300
1301    // Print a bunch of diagnostics, if requested.
1302    if (TraceDeoptimization || LogCompilation) {
1303      ResourceMark rm;
1304      ttyLocker ttyl;
1305      char buf[100];
1306      if (xtty != NULL) {
1307        xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
1308                         os::current_thread_id(),
1309                         format_trap_request(buf, sizeof(buf), trap_request));
1310        nm->log_identity(xtty);
1311      }
1312      Symbol* class_name = NULL;
1313      bool unresolved = false;
1314      if (unloaded_class_index >= 0) {
1315        constantPoolHandle constants (THREAD, trap_method->constants());
1316        if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1317          class_name = constants->klass_name_at(unloaded_class_index);
1318          unresolved = true;
1319          if (xtty != NULL)
1320            xtty->print(" unresolved='1'");
1321        } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1322          class_name = constants->symbol_at(unloaded_class_index);
1323        }
1324        if (xtty != NULL)
1325          xtty->name(class_name);
1326      }
1327      if (xtty != NULL && trap_mdo != NULL) {
1328        // Dump the relevant MDO state.
1329        // This is the deopt count for the current reason, any previous
1330        // reasons or recompiles seen at this point.
1331        int dcnt = trap_mdo->trap_count(reason);
1332        if (dcnt != 0)
1333          xtty->print(" count='%d'", dcnt);
1334        ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1335        int dos = (pdata == NULL)? 0: pdata->trap_state();
1336        if (dos != 0) {
1337          xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1338          if (trap_state_is_recompiled(dos)) {
1339            int recnt2 = trap_mdo->overflow_recompile_count();
1340            if (recnt2 != 0)
1341              xtty->print(" recompiles2='%d'", recnt2);
1342          }
1343        }
1344      }
1345      if (xtty != NULL) {
1346        xtty->stamp();
1347        xtty->end_head();
1348      }
1349      if (TraceDeoptimization) {  // make noise on the tty
1350        tty->print("Uncommon trap occurred in");
1351        nm->method()->print_short_name(tty);
1352        tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d",
1353                   fr.pc(),
1354                   os::current_thread_id(),
1355                   trap_reason_name(reason),
1356                   trap_action_name(action),
1357                   unloaded_class_index);
1358        if (class_name != NULL) {
1359          tty->print(unresolved ? " unresolved class: " : " symbol: ");
1360          class_name->print_symbol_on(tty);
1361        }
1362        tty->cr();
1363      }
1364      if (xtty != NULL) {
1365        // Log the precise location of the trap.
1366        for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1367          xtty->begin_elem("jvms bci='%d'", sd->bci());
1368          xtty->method(sd->method());
1369          xtty->end_elem();
1370          if (sd->is_top())  break;
1371        }
1372        xtty->tail("uncommon_trap");
1373      }
1374    }
1375    // (End diagnostic printout.)
1376
1377    // Load class if necessary
1378    if (unloaded_class_index >= 0) {
1379      constantPoolHandle constants(THREAD, trap_method->constants());
1380      load_class_by_index(constants, unloaded_class_index);
1381    }
1382
1383    // Flush the nmethod if necessary and desirable.
1384    //
1385    // We need to avoid situations where we are re-flushing the nmethod
1386    // because of a hot deoptimization site.  Repeated flushes at the same
1387    // point need to be detected by the compiler and avoided.  If the compiler
1388    // cannot avoid them (or has a bug and "refuses" to avoid them), this
1389    // module must take measures to avoid an infinite cycle of recompilation
1390    // and deoptimization.  There are several such measures:
1391    //
1392    //   1. If a recompilation is ordered a second time at some site X
1393    //   and for the same reason R, the action is adjusted to 'reinterpret',
1394    //   to give the interpreter time to exercise the method more thoroughly.
1395    //   If this happens, the method's overflow_recompile_count is incremented.
1396    //
1397    //   2. If the compiler fails to reduce the deoptimization rate, then
1398    //   the method's overflow_recompile_count will begin to exceed the set
1399    //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1400    //   is adjusted to 'make_not_compilable', and the method is abandoned
1401    //   to the interpreter.  This is a performance hit for hot methods,
1402    //   but is better than a disastrous infinite cycle of recompilations.
1403    //   (Actually, only the method containing the site X is abandoned.)
1404    //
1405    //   3. In parallel with the previous measures, if the total number of
1406    //   recompilations of a method exceeds the much larger set limit
1407    //   PerMethodRecompilationCutoff, the method is abandoned.
1408    //   This should only happen if the method is very large and has
1409    //   many "lukewarm" deoptimizations.  The code which enforces this
1410    //   limit is elsewhere (class nmethod, class Method).
1411    //
1412    // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1413    // to recompile at each bytecode independently of the per-BCI cutoff.
1414    //
1415    // The decision to update code is up to the compiler, and is encoded
1416    // in the Action_xxx code.  If the compiler requests Action_none
1417    // no trap state is changed, no compiled code is changed, and the
1418    // computation suffers along in the interpreter.
1419    //
1420    // The other action codes specify various tactics for decompilation
1421    // and recompilation.  Action_maybe_recompile is the loosest, and
1422    // allows the compiled code to stay around until enough traps are seen,
1423    // and until the compiler gets around to recompiling the trapping method.
1424    //
1425    // The other actions cause immediate removal of the present code.
1426
1427    bool update_trap_state = true;
1428    bool make_not_entrant = false;
1429    bool make_not_compilable = false;
1430    bool reprofile = false;
1431    switch (action) {
1432    case Action_none:
1433      // Keep the old code.
1434      update_trap_state = false;
1435      break;
1436    case Action_maybe_recompile:
1437      // Do not need to invalidate the present code, but we can
1438      // initiate another
1439      // Start compiler without (necessarily) invalidating the nmethod.
1440      // The system will tolerate the old code, but new code should be
1441      // generated when possible.
1442      break;
1443    case Action_reinterpret:
1444      // Go back into the interpreter for a while, and then consider
1445      // recompiling form scratch.
1446      make_not_entrant = true;
1447      // Reset invocation counter for outer most method.
1448      // This will allow the interpreter to exercise the bytecodes
1449      // for a while before recompiling.
1450      // By contrast, Action_make_not_entrant is immediate.
1451      //
1452      // Note that the compiler will track null_check, null_assert,
1453      // range_check, and class_check events and log them as if they
1454      // had been traps taken from compiled code.  This will update
1455      // the MDO trap history so that the next compilation will
1456      // properly detect hot trap sites.
1457      reprofile = true;
1458      break;
1459    case Action_make_not_entrant:
1460      // Request immediate recompilation, and get rid of the old code.
1461      // Make them not entrant, so next time they are called they get
1462      // recompiled.  Unloaded classes are loaded now so recompile before next
1463      // time they are called.  Same for uninitialized.  The interpreter will
1464      // link the missing class, if any.
1465      make_not_entrant = true;
1466      break;
1467    case Action_make_not_compilable:
1468      // Give up on compiling this method at all.
1469      make_not_entrant = true;
1470      make_not_compilable = true;
1471      break;
1472    default:
1473      ShouldNotReachHere();
1474    }
1475
1476    // Setting +ProfileTraps fixes the following, on all platforms:
1477    // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1478    // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1479    // recompile relies on a MethodData* to record heroic opt failures.
1480
1481    // Whether the interpreter is producing MDO data or not, we also need
1482    // to use the MDO to detect hot deoptimization points and control
1483    // aggressive optimization.
1484    bool inc_recompile_count = false;
1485    ProfileData* pdata = NULL;
1486    if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
1487      assert(trap_mdo == get_method_data(thread, trap_method, false), "sanity");
1488      uint this_trap_count = 0;
1489      bool maybe_prior_trap = false;
1490      bool maybe_prior_recompile = false;
1491      pdata = query_update_method_data(trap_mdo, trap_bci, reason,
1492                                   //outputs:
1493                                   this_trap_count,
1494                                   maybe_prior_trap,
1495                                   maybe_prior_recompile);
1496      // Because the interpreter also counts null, div0, range, and class
1497      // checks, these traps from compiled code are double-counted.
1498      // This is harmless; it just means that the PerXTrapLimit values
1499      // are in effect a little smaller than they look.
1500
1501      DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1502      if (per_bc_reason != Reason_none) {
1503        // Now take action based on the partially known per-BCI history.
1504        if (maybe_prior_trap
1505            && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1506          // If there are too many traps at this BCI, force a recompile.
1507          // This will allow the compiler to see the limit overflow, and
1508          // take corrective action, if possible.  The compiler generally
1509          // does not use the exact PerBytecodeTrapLimit value, but instead
1510          // changes its tactics if it sees any traps at all.  This provides
1511          // a little hysteresis, delaying a recompile until a trap happens
1512          // several times.
1513          //
1514          // Actually, since there is only one bit of counter per BCI,
1515          // the possible per-BCI counts are {0,1,(per-method count)}.
1516          // This produces accurate results if in fact there is only
1517          // one hot trap site, but begins to get fuzzy if there are
1518          // many sites.  For example, if there are ten sites each
1519          // trapping two or more times, they each get the blame for
1520          // all of their traps.
1521          make_not_entrant = true;
1522        }
1523
1524        // Detect repeated recompilation at the same BCI, and enforce a limit.
1525        if (make_not_entrant && maybe_prior_recompile) {
1526          // More than one recompile at this point.
1527          inc_recompile_count = maybe_prior_trap;
1528        }
1529      } else {
1530        // For reasons which are not recorded per-bytecode, we simply
1531        // force recompiles unconditionally.
1532        // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1533        make_not_entrant = true;
1534      }
1535
1536      // Go back to the compiler if there are too many traps in this method.
1537      if (this_trap_count >= (uint)PerMethodTrapLimit) {
1538        // If there are too many traps in this method, force a recompile.
1539        // This will allow the compiler to see the limit overflow, and
1540        // take corrective action, if possible.
1541        // (This condition is an unlikely backstop only, because the
1542        // PerBytecodeTrapLimit is more likely to take effect first,
1543        // if it is applicable.)
1544        make_not_entrant = true;
1545      }
1546
1547      // Here's more hysteresis:  If there has been a recompile at
1548      // this trap point already, run the method in the interpreter
1549      // for a while to exercise it more thoroughly.
1550      if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1551        reprofile = true;
1552      }
1553
1554    }
1555
1556    // Take requested actions on the method:
1557
1558    // Recompile
1559    if (make_not_entrant) {
1560      if (!nm->make_not_entrant()) {
1561        return; // the call did not change nmethod's state
1562      }
1563
1564      if (pdata != NULL) {
1565        // Record the recompilation event, if any.
1566        int tstate0 = pdata->trap_state();
1567        int tstate1 = trap_state_set_recompiled(tstate0, true);
1568        if (tstate1 != tstate0)
1569          pdata->set_trap_state(tstate1);
1570      }
1571    }
1572
1573    if (inc_recompile_count) {
1574      trap_mdo->inc_overflow_recompile_count();
1575      if ((uint)trap_mdo->overflow_recompile_count() >
1576          (uint)PerBytecodeRecompilationCutoff) {
1577        // Give up on the method containing the bad BCI.
1578        if (trap_method() == nm->method()) {
1579          make_not_compilable = true;
1580        } else {
1581          trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1582          // But give grace to the enclosing nm->method().
1583        }
1584      }
1585    }
1586
1587    // Reprofile
1588    if (reprofile) {
1589      CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1590    }
1591
1592    // Give up compiling
1593    if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1594      assert(make_not_entrant, "consistent");
1595      nm->method()->set_not_compilable(CompLevel_full_optimization);
1596    }
1597
1598  } // Free marked resources
1599
1600}
1601JRT_END
1602
1603MethodData*
1604Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1605                                bool create_if_missing) {
1606  Thread* THREAD = thread;
1607  MethodData* mdo = m()->method_data();
1608  if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1609    // Build an MDO.  Ignore errors like OutOfMemory;
1610    // that simply means we won't have an MDO to update.
1611    Method::build_interpreter_method_data(m, THREAD);
1612    if (HAS_PENDING_EXCEPTION) {
1613      assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1614      CLEAR_PENDING_EXCEPTION;
1615    }
1616    mdo = m()->method_data();
1617  }
1618  return mdo;
1619}
1620
1621ProfileData*
1622Deoptimization::query_update_method_data(MethodData* trap_mdo,
1623                                         int trap_bci,
1624                                         Deoptimization::DeoptReason reason,
1625                                         //outputs:
1626                                         uint& ret_this_trap_count,
1627                                         bool& ret_maybe_prior_trap,
1628                                         bool& ret_maybe_prior_recompile) {
1629  uint prior_trap_count = trap_mdo->trap_count(reason);
1630  uint this_trap_count  = trap_mdo->inc_trap_count(reason);
1631
1632  // If the runtime cannot find a place to store trap history,
1633  // it is estimated based on the general condition of the method.
1634  // If the method has ever been recompiled, or has ever incurred
1635  // a trap with the present reason , then this BCI is assumed
1636  // (pessimistically) to be the culprit.
1637  bool maybe_prior_trap      = (prior_trap_count != 0);
1638  bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1639  ProfileData* pdata = NULL;
1640
1641
1642  // For reasons which are recorded per bytecode, we check per-BCI data.
1643  DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1644  if (per_bc_reason != Reason_none) {
1645    // Find the profile data for this BCI.  If there isn't one,
1646    // try to allocate one from the MDO's set of spares.
1647    // This will let us detect a repeated trap at this point.
1648    pdata = trap_mdo->allocate_bci_to_data(trap_bci);
1649
1650    if (pdata != NULL) {
1651      // Query the trap state of this profile datum.
1652      int tstate0 = pdata->trap_state();
1653      if (!trap_state_has_reason(tstate0, per_bc_reason))
1654        maybe_prior_trap = false;
1655      if (!trap_state_is_recompiled(tstate0))
1656        maybe_prior_recompile = false;
1657
1658      // Update the trap state of this profile datum.
1659      int tstate1 = tstate0;
1660      // Record the reason.
1661      tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1662      // Store the updated state on the MDO, for next time.
1663      if (tstate1 != tstate0)
1664        pdata->set_trap_state(tstate1);
1665    } else {
1666      if (LogCompilation && xtty != NULL) {
1667        ttyLocker ttyl;
1668        // Missing MDP?  Leave a small complaint in the log.
1669        xtty->elem("missing_mdp bci='%d'", trap_bci);
1670      }
1671    }
1672  }
1673
1674  // Return results:
1675  ret_this_trap_count = this_trap_count;
1676  ret_maybe_prior_trap = maybe_prior_trap;
1677  ret_maybe_prior_recompile = maybe_prior_recompile;
1678  return pdata;
1679}
1680
1681void
1682Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
1683  ResourceMark rm;
1684  // Ignored outputs:
1685  uint ignore_this_trap_count;
1686  bool ignore_maybe_prior_trap;
1687  bool ignore_maybe_prior_recompile;
1688  query_update_method_data(trap_mdo, trap_bci,
1689                           (DeoptReason)reason,
1690                           ignore_this_trap_count,
1691                           ignore_maybe_prior_trap,
1692                           ignore_maybe_prior_recompile);
1693}
1694
1695Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
1696
1697  // Still in Java no safepoints
1698  {
1699    // This enters VM and may safepoint
1700    uncommon_trap_inner(thread, trap_request);
1701  }
1702  return fetch_unroll_info_helper(thread);
1703}
1704
1705// Local derived constants.
1706// Further breakdown of DataLayout::trap_state, as promised by DataLayout.
1707const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
1708const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
1709
1710//---------------------------trap_state_reason---------------------------------
1711Deoptimization::DeoptReason
1712Deoptimization::trap_state_reason(int trap_state) {
1713  // This assert provides the link between the width of DataLayout::trap_bits
1714  // and the encoding of "recorded" reasons.  It ensures there are enough
1715  // bits to store all needed reasons in the per-BCI MDO profile.
1716  assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1717  int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1718  trap_state -= recompile_bit;
1719  if (trap_state == DS_REASON_MASK) {
1720    return Reason_many;
1721  } else {
1722    assert((int)Reason_none == 0, "state=0 => Reason_none");
1723    return (DeoptReason)trap_state;
1724  }
1725}
1726//-------------------------trap_state_has_reason-------------------------------
1727int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1728  assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
1729  assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1730  int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1731  trap_state -= recompile_bit;
1732  if (trap_state == DS_REASON_MASK) {
1733    return -1;  // true, unspecifically (bottom of state lattice)
1734  } else if (trap_state == reason) {
1735    return 1;   // true, definitely
1736  } else if (trap_state == 0) {
1737    return 0;   // false, definitely (top of state lattice)
1738  } else {
1739    return 0;   // false, definitely
1740  }
1741}
1742//-------------------------trap_state_add_reason-------------------------------
1743int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
1744  assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
1745  int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1746  trap_state -= recompile_bit;
1747  if (trap_state == DS_REASON_MASK) {
1748    return trap_state + recompile_bit;     // already at state lattice bottom
1749  } else if (trap_state == reason) {
1750    return trap_state + recompile_bit;     // the condition is already true
1751  } else if (trap_state == 0) {
1752    return reason + recompile_bit;          // no condition has yet been true
1753  } else {
1754    return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
1755  }
1756}
1757//-----------------------trap_state_is_recompiled------------------------------
1758bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1759  return (trap_state & DS_RECOMPILE_BIT) != 0;
1760}
1761//-----------------------trap_state_set_recompiled-----------------------------
1762int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
1763  if (z)  return trap_state |  DS_RECOMPILE_BIT;
1764  else    return trap_state & ~DS_RECOMPILE_BIT;
1765}
1766//---------------------------format_trap_state---------------------------------
1767// This is used for debugging and diagnostics, including LogFile output.
1768const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1769                                              int trap_state) {
1770  DeoptReason reason      = trap_state_reason(trap_state);
1771  bool        recomp_flag = trap_state_is_recompiled(trap_state);
1772  // Re-encode the state from its decoded components.
1773  int decoded_state = 0;
1774  if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
1775    decoded_state = trap_state_add_reason(decoded_state, reason);
1776  if (recomp_flag)
1777    decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
1778  // If the state re-encodes properly, format it symbolically.
1779  // Because this routine is used for debugging and diagnostics,
1780  // be robust even if the state is a strange value.
1781  size_t len;
1782  if (decoded_state != trap_state) {
1783    // Random buggy state that doesn't decode??
1784    len = jio_snprintf(buf, buflen, "#%d", trap_state);
1785  } else {
1786    len = jio_snprintf(buf, buflen, "%s%s",
1787                       trap_reason_name(reason),
1788                       recomp_flag ? " recompiled" : "");
1789  }
1790  if (len >= buflen)
1791    buf[buflen-1] = '\0';
1792  return buf;
1793}
1794
1795
1796//--------------------------------statics--------------------------------------
1797Deoptimization::DeoptAction Deoptimization::_unloaded_action
1798  = Deoptimization::Action_reinterpret;
1799const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
1800  // Note:  Keep this in sync. with enum DeoptReason.
1801  "none",
1802  "null_check",
1803  "null_assert",
1804  "range_check",
1805  "class_check",
1806  "array_check",
1807  "intrinsic",
1808  "bimorphic",
1809  "unloaded",
1810  "uninitialized",
1811  "unreached",
1812  "unhandled",
1813  "constraint",
1814  "div0_check",
1815  "age",
1816  "predicate",
1817  "loop_limit_check"
1818};
1819const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
1820  // Note:  Keep this in sync. with enum DeoptAction.
1821  "none",
1822  "maybe_recompile",
1823  "reinterpret",
1824  "make_not_entrant",
1825  "make_not_compilable"
1826};
1827
1828const char* Deoptimization::trap_reason_name(int reason) {
1829  if (reason == Reason_many)  return "many";
1830  if ((uint)reason < Reason_LIMIT)
1831    return _trap_reason_name[reason];
1832  static char buf[20];
1833  sprintf(buf, "reason%d", reason);
1834  return buf;
1835}
1836const char* Deoptimization::trap_action_name(int action) {
1837  if ((uint)action < Action_LIMIT)
1838    return _trap_action_name[action];
1839  static char buf[20];
1840  sprintf(buf, "action%d", action);
1841  return buf;
1842}
1843
1844// This is used for debugging and diagnostics, including LogFile output.
1845const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
1846                                                int trap_request) {
1847  jint unloaded_class_index = trap_request_index(trap_request);
1848  const char* reason = trap_reason_name(trap_request_reason(trap_request));
1849  const char* action = trap_action_name(trap_request_action(trap_request));
1850  size_t len;
1851  if (unloaded_class_index < 0) {
1852    len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
1853                       reason, action);
1854  } else {
1855    len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
1856                       reason, action, unloaded_class_index);
1857  }
1858  if (len >= buflen)
1859    buf[buflen-1] = '\0';
1860  return buf;
1861}
1862
1863juint Deoptimization::_deoptimization_hist
1864        [Deoptimization::Reason_LIMIT]
1865    [1 + Deoptimization::Action_LIMIT]
1866        [Deoptimization::BC_CASE_LIMIT]
1867  = {0};
1868
1869enum {
1870  LSB_BITS = 8,
1871  LSB_MASK = right_n_bits(LSB_BITS)
1872};
1873
1874void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1875                                       Bytecodes::Code bc) {
1876  assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1877  assert(action >= 0 && action < Action_LIMIT, "oob");
1878  _deoptimization_hist[Reason_none][0][0] += 1;  // total
1879  _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
1880  juint* cases = _deoptimization_hist[reason][1+action];
1881  juint* bc_counter_addr = NULL;
1882  juint  bc_counter      = 0;
1883  // Look for an unused counter, or an exact match to this BC.
1884  if (bc != Bytecodes::_illegal) {
1885    for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1886      juint* counter_addr = &cases[bc_case];
1887      juint  counter = *counter_addr;
1888      if ((counter == 0 && bc_counter_addr == NULL)
1889          || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
1890        // this counter is either free or is already devoted to this BC
1891        bc_counter_addr = counter_addr;
1892        bc_counter = counter | bc;
1893      }
1894    }
1895  }
1896  if (bc_counter_addr == NULL) {
1897    // Overflow, or no given bytecode.
1898    bc_counter_addr = &cases[BC_CASE_LIMIT-1];
1899    bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
1900  }
1901  *bc_counter_addr = bc_counter + (1 << LSB_BITS);
1902}
1903
1904jint Deoptimization::total_deoptimization_count() {
1905  return _deoptimization_hist[Reason_none][0][0];
1906}
1907
1908jint Deoptimization::deoptimization_count(DeoptReason reason) {
1909  assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1910  return _deoptimization_hist[reason][0][0];
1911}
1912
1913void Deoptimization::print_statistics() {
1914  juint total = total_deoptimization_count();
1915  juint account = total;
1916  if (total != 0) {
1917    ttyLocker ttyl;
1918    if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
1919    tty->print_cr("Deoptimization traps recorded:");
1920    #define PRINT_STAT_LINE(name, r) \
1921      tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
1922    PRINT_STAT_LINE("total", total);
1923    // For each non-zero entry in the histogram, print the reason,
1924    // the action, and (if specifically known) the type of bytecode.
1925    for (int reason = 0; reason < Reason_LIMIT; reason++) {
1926      for (int action = 0; action < Action_LIMIT; action++) {
1927        juint* cases = _deoptimization_hist[reason][1+action];
1928        for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1929          juint counter = cases[bc_case];
1930          if (counter != 0) {
1931            char name[1*K];
1932            Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
1933            if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
1934              bc = Bytecodes::_illegal;
1935            sprintf(name, "%s/%s/%s",
1936                    trap_reason_name(reason),
1937                    trap_action_name(action),
1938                    Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
1939            juint r = counter >> LSB_BITS;
1940            tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
1941            account -= r;
1942          }
1943        }
1944      }
1945    }
1946    if (account != 0) {
1947      PRINT_STAT_LINE("unaccounted", account);
1948    }
1949    #undef PRINT_STAT_LINE
1950    if (xtty != NULL)  xtty->tail("statistics");
1951  }
1952}
1953#else // COMPILER2 || SHARK
1954
1955
1956// Stubs for C1 only system.
1957bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1958  return false;
1959}
1960
1961const char* Deoptimization::trap_reason_name(int reason) {
1962  return "unknown";
1963}
1964
1965void Deoptimization::print_statistics() {
1966  // no output
1967}
1968
1969void
1970Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
1971  // no udpate
1972}
1973
1974int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1975  return 0;
1976}
1977
1978void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1979                                       Bytecodes::Code bc) {
1980  // no update
1981}
1982
1983const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1984                                              int trap_state) {
1985  jio_snprintf(buf, buflen, "#%d", trap_state);
1986  return buf;
1987}
1988
1989#endif // COMPILER2 || SHARK
1990