deoptimization.cpp revision 2073:b92c45f2bc75
1/*
2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "code/debugInfoRec.hpp"
28#include "code/nmethod.hpp"
29#include "code/pcDesc.hpp"
30#include "code/scopeDesc.hpp"
31#include "interpreter/bytecode.hpp"
32#include "interpreter/interpreter.hpp"
33#include "interpreter/oopMapCache.hpp"
34#include "memory/allocation.inline.hpp"
35#include "memory/oopFactory.hpp"
36#include "memory/resourceArea.hpp"
37#include "oops/methodOop.hpp"
38#include "oops/oop.inline.hpp"
39#include "prims/jvmtiThreadState.hpp"
40#include "runtime/biasedLocking.hpp"
41#include "runtime/compilationPolicy.hpp"
42#include "runtime/deoptimization.hpp"
43#include "runtime/interfaceSupport.hpp"
44#include "runtime/sharedRuntime.hpp"
45#include "runtime/signature.hpp"
46#include "runtime/stubRoutines.hpp"
47#include "runtime/thread.hpp"
48#include "runtime/vframe.hpp"
49#include "runtime/vframeArray.hpp"
50#include "runtime/vframe_hp.hpp"
51#include "utilities/events.hpp"
52#include "utilities/xmlstream.hpp"
53#ifdef TARGET_ARCH_x86
54# include "vmreg_x86.inline.hpp"
55#endif
56#ifdef TARGET_ARCH_sparc
57# include "vmreg_sparc.inline.hpp"
58#endif
59#ifdef TARGET_ARCH_zero
60# include "vmreg_zero.inline.hpp"
61#endif
62#ifdef TARGET_ARCH_arm
63# include "vmreg_arm.inline.hpp"
64#endif
65#ifdef TARGET_ARCH_ppc
66# include "vmreg_ppc.inline.hpp"
67#endif
68#ifdef COMPILER2
69#ifdef TARGET_ARCH_MODEL_x86_32
70# include "adfiles/ad_x86_32.hpp"
71#endif
72#ifdef TARGET_ARCH_MODEL_x86_64
73# include "adfiles/ad_x86_64.hpp"
74#endif
75#ifdef TARGET_ARCH_MODEL_sparc
76# include "adfiles/ad_sparc.hpp"
77#endif
78#ifdef TARGET_ARCH_MODEL_zero
79# include "adfiles/ad_zero.hpp"
80#endif
81#ifdef TARGET_ARCH_MODEL_arm
82# include "adfiles/ad_arm.hpp"
83#endif
84#ifdef TARGET_ARCH_MODEL_ppc
85# include "adfiles/ad_ppc.hpp"
86#endif
87#endif
88
89bool DeoptimizationMarker::_is_active = false;
90
91Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
92                                         int  caller_adjustment,
93                                         int  number_of_frames,
94                                         intptr_t* frame_sizes,
95                                         address* frame_pcs,
96                                         BasicType return_type) {
97  _size_of_deoptimized_frame = size_of_deoptimized_frame;
98  _caller_adjustment         = caller_adjustment;
99  _number_of_frames          = number_of_frames;
100  _frame_sizes               = frame_sizes;
101  _frame_pcs                 = frame_pcs;
102  _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2);
103  _return_type               = return_type;
104  // PD (x86 only)
105  _counter_temp              = 0;
106  _initial_fp                = 0;
107  _unpack_kind               = 0;
108  _sender_sp_temp            = 0;
109
110  _total_frame_sizes         = size_of_frames();
111}
112
113
114Deoptimization::UnrollBlock::~UnrollBlock() {
115  FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
116  FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
117  FREE_C_HEAP_ARRAY(intptr_t, _register_block);
118}
119
120
121intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
122  assert(register_number < RegisterMap::reg_count, "checking register number");
123  return &_register_block[register_number * 2];
124}
125
126
127
128int Deoptimization::UnrollBlock::size_of_frames() const {
129  // Acount first for the adjustment of the initial frame
130  int result = _caller_adjustment;
131  for (int index = 0; index < number_of_frames(); index++) {
132    result += frame_sizes()[index];
133  }
134  return result;
135}
136
137
138void Deoptimization::UnrollBlock::print() {
139  ttyLocker ttyl;
140  tty->print_cr("UnrollBlock");
141  tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
142  tty->print(   "  frame_sizes: ");
143  for (int index = 0; index < number_of_frames(); index++) {
144    tty->print("%d ", frame_sizes()[index]);
145  }
146  tty->cr();
147}
148
149
150// In order to make fetch_unroll_info work properly with escape
151// analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
152// ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
153// of previously eliminated objects occurs in realloc_objects, which is
154// called from the method fetch_unroll_info_helper below.
155JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
156  // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
157  // but makes the entry a little slower. There is however a little dance we have to
158  // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
159
160  // fetch_unroll_info() is called at the beginning of the deoptimization
161  // handler. Note this fact before we start generating temporary frames
162  // that can confuse an asynchronous stack walker. This counter is
163  // decremented at the end of unpack_frames().
164  thread->inc_in_deopt_handler();
165
166  return fetch_unroll_info_helper(thread);
167JRT_END
168
169
170// This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
171Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
172
173  // Note: there is a safepoint safety issue here. No matter whether we enter
174  // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
175  // the vframeArray is created.
176  //
177
178  // Allocate our special deoptimization ResourceMark
179  DeoptResourceMark* dmark = new DeoptResourceMark(thread);
180  assert(thread->deopt_mark() == NULL, "Pending deopt!");
181  thread->set_deopt_mark(dmark);
182
183  frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
184  RegisterMap map(thread, true);
185  RegisterMap dummy_map(thread, false);
186  // Now get the deoptee with a valid map
187  frame deoptee = stub_frame.sender(&map);
188  // Set the deoptee nmethod
189  assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
190  thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
191
192  // Create a growable array of VFrames where each VFrame represents an inlined
193  // Java frame.  This storage is allocated with the usual system arena.
194  assert(deoptee.is_compiled_frame(), "Wrong frame type");
195  GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
196  vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
197  while (!vf->is_top()) {
198    assert(vf->is_compiled_frame(), "Wrong frame type");
199    chunk->push(compiledVFrame::cast(vf));
200    vf = vf->sender();
201  }
202  assert(vf->is_compiled_frame(), "Wrong frame type");
203  chunk->push(compiledVFrame::cast(vf));
204
205#ifdef COMPILER2
206  // Reallocate the non-escaping objects and restore their fields. Then
207  // relock objects if synchronization on them was eliminated.
208  if (DoEscapeAnalysis) {
209    if (EliminateAllocations) {
210      assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
211      GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
212
213      // The flag return_oop() indicates call sites which return oop
214      // in compiled code. Such sites include java method calls,
215      // runtime calls (for example, used to allocate new objects/arrays
216      // on slow code path) and any other calls generated in compiled code.
217      // It is not guaranteed that we can get such information here only
218      // by analyzing bytecode in deoptimized frames. This is why this flag
219      // is set during method compilation (see Compile::Process_OopMap_Node()).
220      bool save_oop_result = chunk->at(0)->scope()->return_oop();
221      Handle return_value;
222      if (save_oop_result) {
223        // Reallocation may trigger GC. If deoptimization happened on return from
224        // call which returns oop we need to save it since it is not in oopmap.
225        oop result = deoptee.saved_oop_result(&map);
226        assert(result == NULL || result->is_oop(), "must be oop");
227        return_value = Handle(thread, result);
228        assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
229        if (TraceDeoptimization) {
230          tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, result, thread);
231        }
232      }
233      bool reallocated = false;
234      if (objects != NULL) {
235        JRT_BLOCK
236          reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
237        JRT_END
238      }
239      if (reallocated) {
240        reassign_fields(&deoptee, &map, objects);
241#ifndef PRODUCT
242        if (TraceDeoptimization) {
243          ttyLocker ttyl;
244          tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
245          print_objects(objects);
246        }
247#endif
248      }
249      if (save_oop_result) {
250        // Restore result.
251        deoptee.set_saved_oop_result(&map, return_value());
252      }
253    }
254    if (EliminateLocks) {
255#ifndef PRODUCT
256      bool first = true;
257#endif
258      for (int i = 0; i < chunk->length(); i++) {
259        compiledVFrame* cvf = chunk->at(i);
260        assert (cvf->scope() != NULL,"expect only compiled java frames");
261        GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
262        if (monitors->is_nonempty()) {
263          relock_objects(monitors, thread);
264#ifndef PRODUCT
265          if (TraceDeoptimization) {
266            ttyLocker ttyl;
267            for (int j = 0; j < monitors->length(); j++) {
268              MonitorInfo* mi = monitors->at(j);
269              if (mi->eliminated()) {
270                if (first) {
271                  first = false;
272                  tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
273                }
274                tty->print_cr("     object <" INTPTR_FORMAT "> locked", mi->owner());
275              }
276            }
277          }
278#endif
279        }
280      }
281    }
282  }
283#endif // COMPILER2
284  // Ensure that no safepoint is taken after pointers have been stored
285  // in fields of rematerialized objects.  If a safepoint occurs from here on
286  // out the java state residing in the vframeArray will be missed.
287  No_Safepoint_Verifier no_safepoint;
288
289  vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
290
291  assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
292  thread->set_vframe_array_head(array);
293
294  // Now that the vframeArray has been created if we have any deferred local writes
295  // added by jvmti then we can free up that structure as the data is now in the
296  // vframeArray
297
298  if (thread->deferred_locals() != NULL) {
299    GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
300    int i = 0;
301    do {
302      // Because of inlining we could have multiple vframes for a single frame
303      // and several of the vframes could have deferred writes. Find them all.
304      if (list->at(i)->id() == array->original().id()) {
305        jvmtiDeferredLocalVariableSet* dlv = list->at(i);
306        list->remove_at(i);
307        // individual jvmtiDeferredLocalVariableSet are CHeapObj's
308        delete dlv;
309      } else {
310        i++;
311      }
312    } while ( i < list->length() );
313    if (list->length() == 0) {
314      thread->set_deferred_locals(NULL);
315      // free the list and elements back to C heap.
316      delete list;
317    }
318
319  }
320
321#ifndef SHARK
322  // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
323  CodeBlob* cb = stub_frame.cb();
324  // Verify we have the right vframeArray
325  assert(cb->frame_size() >= 0, "Unexpected frame size");
326  intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
327
328  // If the deopt call site is a MethodHandle invoke call site we have
329  // to adjust the unpack_sp.
330  nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
331  if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
332    unpack_sp = deoptee.unextended_sp();
333
334#ifdef ASSERT
335  assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
336  Events::log("fetch unroll sp " INTPTR_FORMAT, unpack_sp);
337#endif
338#else
339  intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
340#endif // !SHARK
341
342  // This is a guarantee instead of an assert because if vframe doesn't match
343  // we will unpack the wrong deoptimized frame and wind up in strange places
344  // where it will be very difficult to figure out what went wrong. Better
345  // to die an early death here than some very obscure death later when the
346  // trail is cold.
347  // Note: on ia64 this guarantee can be fooled by frames with no memory stack
348  // in that it will fail to detect a problem when there is one. This needs
349  // more work in tiger timeframe.
350  guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
351
352  int number_of_frames = array->frames();
353
354  // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
355  // virtual activation, which is the reverse of the elements in the vframes array.
356  intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames);
357  // +1 because we always have an interpreter return address for the final slot.
358  address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1);
359  int callee_parameters = 0;
360  int callee_locals = 0;
361  int popframe_extra_args = 0;
362  // Create an interpreter return address for the stub to use as its return
363  // address so the skeletal frames are perfectly walkable
364  frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
365
366  // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
367  // activation be put back on the expression stack of the caller for reexecution
368  if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
369    popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
370  }
371
372  //
373  // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
374  // frame_sizes/frame_pcs[1] next oldest frame (int)
375  // frame_sizes/frame_pcs[n] youngest frame (int)
376  //
377  // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
378  // owns the space for the return address to it's caller).  Confusing ain't it.
379  //
380  // The vframe array can address vframes with indices running from
381  // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
382  // When we create the skeletal frames we need the oldest frame to be in the zero slot
383  // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
384  // so things look a little strange in this loop.
385  //
386  for (int index = 0; index < array->frames(); index++ ) {
387    // frame[number_of_frames - 1 ] = on_stack_size(youngest)
388    // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
389    // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
390    frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
391                                                                                                    callee_locals,
392                                                                                                    index == 0,
393                                                                                                    popframe_extra_args);
394    // This pc doesn't have to be perfect just good enough to identify the frame
395    // as interpreted so the skeleton frame will be walkable
396    // The correct pc will be set when the skeleton frame is completely filled out
397    // The final pc we store in the loop is wrong and will be overwritten below
398    frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
399
400    callee_parameters = array->element(index)->method()->size_of_parameters();
401    callee_locals = array->element(index)->method()->max_locals();
402    popframe_extra_args = 0;
403  }
404
405  // Compute whether the root vframe returns a float or double value.
406  BasicType return_type;
407  {
408    HandleMark hm;
409    methodHandle method(thread, array->element(0)->method());
410    Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
411    return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
412  }
413
414  // Compute information for handling adapters and adjusting the frame size of the caller.
415  int caller_adjustment = 0;
416
417  // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
418  // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
419  // than simply use array->sender.pc(). This requires us to walk the current set of frames
420  //
421  frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
422  deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
423
424  // Compute the amount the oldest interpreter frame will have to adjust
425  // its caller's stack by. If the caller is a compiled frame then
426  // we pretend that the callee has no parameters so that the
427  // extension counts for the full amount of locals and not just
428  // locals-parms. This is because without a c2i adapter the parm
429  // area as created by the compiled frame will not be usable by
430  // the interpreter. (Depending on the calling convention there
431  // may not even be enough space).
432
433  // QQQ I'd rather see this pushed down into last_frame_adjust
434  // and have it take the sender (aka caller).
435
436  if (deopt_sender.is_compiled_frame()) {
437    caller_adjustment = last_frame_adjust(0, callee_locals);
438  } else if (callee_locals > callee_parameters) {
439    // The caller frame may need extending to accommodate
440    // non-parameter locals of the first unpacked interpreted frame.
441    // Compute that adjustment.
442    caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
443  }
444
445
446  // If the sender is deoptimized the we must retrieve the address of the handler
447  // since the frame will "magically" show the original pc before the deopt
448  // and we'd undo the deopt.
449
450  frame_pcs[0] = deopt_sender.raw_pc();
451
452#ifndef SHARK
453  assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
454#endif // SHARK
455
456  UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
457                                      caller_adjustment * BytesPerWord,
458                                      number_of_frames,
459                                      frame_sizes,
460                                      frame_pcs,
461                                      return_type);
462#if defined(IA32) || defined(AMD64)
463  // We need a way to pass fp to the unpacking code so the skeletal frames
464  // come out correct. This is only needed for x86 because of c2 using ebp
465  // as an allocatable register. So this update is useless (and harmless)
466  // on the other platforms. It would be nice to do this in a different
467  // way but even the old style deoptimization had a problem with deriving
468  // this value. NEEDS_CLEANUP
469  // Note: now that c1 is using c2's deopt blob we must do this on all
470  // x86 based platforms
471  intptr_t** fp_addr = (intptr_t**) (((address)info) + info->initial_fp_offset_in_bytes());
472  *fp_addr = array->sender().fp(); // was adapter_caller
473#endif /* IA32 || AMD64 */
474
475  if (array->frames() > 1) {
476    if (VerifyStack && TraceDeoptimization) {
477      tty->print_cr("Deoptimizing method containing inlining");
478    }
479  }
480
481  array->set_unroll_block(info);
482  return info;
483}
484
485// Called to cleanup deoptimization data structures in normal case
486// after unpacking to stack and when stack overflow error occurs
487void Deoptimization::cleanup_deopt_info(JavaThread *thread,
488                                        vframeArray *array) {
489
490  // Get array if coming from exception
491  if (array == NULL) {
492    array = thread->vframe_array_head();
493  }
494  thread->set_vframe_array_head(NULL);
495
496  // Free the previous UnrollBlock
497  vframeArray* old_array = thread->vframe_array_last();
498  thread->set_vframe_array_last(array);
499
500  if (old_array != NULL) {
501    UnrollBlock* old_info = old_array->unroll_block();
502    old_array->set_unroll_block(NULL);
503    delete old_info;
504    delete old_array;
505  }
506
507  // Deallocate any resource creating in this routine and any ResourceObjs allocated
508  // inside the vframeArray (StackValueCollections)
509
510  delete thread->deopt_mark();
511  thread->set_deopt_mark(NULL);
512  thread->set_deopt_nmethod(NULL);
513
514
515  if (JvmtiExport::can_pop_frame()) {
516#ifndef CC_INTERP
517    // Regardless of whether we entered this routine with the pending
518    // popframe condition bit set, we should always clear it now
519    thread->clear_popframe_condition();
520#else
521    // C++ interpeter will clear has_pending_popframe when it enters
522    // with method_resume. For deopt_resume2 we clear it now.
523    if (thread->popframe_forcing_deopt_reexecution())
524        thread->clear_popframe_condition();
525#endif /* CC_INTERP */
526  }
527
528  // unpack_frames() is called at the end of the deoptimization handler
529  // and (in C2) at the end of the uncommon trap handler. Note this fact
530  // so that an asynchronous stack walker can work again. This counter is
531  // incremented at the beginning of fetch_unroll_info() and (in C2) at
532  // the beginning of uncommon_trap().
533  thread->dec_in_deopt_handler();
534}
535
536
537// Return BasicType of value being returned
538JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
539
540  // We are already active int he special DeoptResourceMark any ResourceObj's we
541  // allocate will be freed at the end of the routine.
542
543  // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
544  // but makes the entry a little slower. There is however a little dance we have to
545  // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
546  ResetNoHandleMark rnhm; // No-op in release/product versions
547  HandleMark hm;
548
549  frame stub_frame = thread->last_frame();
550
551  // Since the frame to unpack is the top frame of this thread, the vframe_array_head
552  // must point to the vframeArray for the unpack frame.
553  vframeArray* array = thread->vframe_array_head();
554
555#ifndef PRODUCT
556  if (TraceDeoptimization) {
557    tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
558  }
559#endif
560
561  UnrollBlock* info = array->unroll_block();
562
563  // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
564  array->unpack_to_stack(stub_frame, exec_mode);
565
566  BasicType bt = info->return_type();
567
568  // If we have an exception pending, claim that the return type is an oop
569  // so the deopt_blob does not overwrite the exception_oop.
570
571  if (exec_mode == Unpack_exception)
572    bt = T_OBJECT;
573
574  // Cleanup thread deopt data
575  cleanup_deopt_info(thread, array);
576
577#ifndef PRODUCT
578  if (VerifyStack) {
579    ResourceMark res_mark;
580
581    // Verify that the just-unpacked frames match the interpreter's
582    // notions of expression stack and locals
583    vframeArray* cur_array = thread->vframe_array_last();
584    RegisterMap rm(thread, false);
585    rm.set_include_argument_oops(false);
586    bool is_top_frame = true;
587    int callee_size_of_parameters = 0;
588    int callee_max_locals = 0;
589    for (int i = 0; i < cur_array->frames(); i++) {
590      vframeArrayElement* el = cur_array->element(i);
591      frame* iframe = el->iframe();
592      guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
593
594      // Get the oop map for this bci
595      InterpreterOopMap mask;
596      int cur_invoke_parameter_size = 0;
597      bool try_next_mask = false;
598      int next_mask_expression_stack_size = -1;
599      int top_frame_expression_stack_adjustment = 0;
600      methodHandle mh(thread, iframe->interpreter_frame_method());
601      OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
602      BytecodeStream str(mh);
603      str.set_start(iframe->interpreter_frame_bci());
604      int max_bci = mh->code_size();
605      // Get to the next bytecode if possible
606      assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
607      // Check to see if we can grab the number of outgoing arguments
608      // at an uncommon trap for an invoke (where the compiler
609      // generates debug info before the invoke has executed)
610      Bytecodes::Code cur_code = str.next();
611      if (cur_code == Bytecodes::_invokevirtual ||
612          cur_code == Bytecodes::_invokespecial ||
613          cur_code == Bytecodes::_invokestatic  ||
614          cur_code == Bytecodes::_invokeinterface) {
615        Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
616        Symbol* signature = invoke.signature();
617        ArgumentSizeComputer asc(signature);
618        cur_invoke_parameter_size = asc.size();
619        if (cur_code != Bytecodes::_invokestatic) {
620          // Add in receiver
621          ++cur_invoke_parameter_size;
622        }
623      }
624      if (str.bci() < max_bci) {
625        Bytecodes::Code bc = str.next();
626        if (bc >= 0) {
627          // The interpreter oop map generator reports results before
628          // the current bytecode has executed except in the case of
629          // calls. It seems to be hard to tell whether the compiler
630          // has emitted debug information matching the "state before"
631          // a given bytecode or the state after, so we try both
632          switch (cur_code) {
633            case Bytecodes::_invokevirtual:
634            case Bytecodes::_invokespecial:
635            case Bytecodes::_invokestatic:
636            case Bytecodes::_invokeinterface:
637            case Bytecodes::_athrow:
638              break;
639            default: {
640              InterpreterOopMap next_mask;
641              OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
642              next_mask_expression_stack_size = next_mask.expression_stack_size();
643              // Need to subtract off the size of the result type of
644              // the bytecode because this is not described in the
645              // debug info but returned to the interpreter in the TOS
646              // caching register
647              BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
648              if (bytecode_result_type != T_ILLEGAL) {
649                top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
650              }
651              assert(top_frame_expression_stack_adjustment >= 0, "");
652              try_next_mask = true;
653              break;
654            }
655          }
656        }
657      }
658
659      // Verify stack depth and oops in frame
660      // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
661      if (!(
662            /* SPARC */
663            (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
664            /* x86 */
665            (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
666            (try_next_mask &&
667             (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
668                                                                    top_frame_expression_stack_adjustment))) ||
669            (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
670            (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
671             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
672            )) {
673        ttyLocker ttyl;
674
675        // Print out some information that will help us debug the problem
676        tty->print_cr("Wrong number of expression stack elements during deoptimization");
677        tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
678        tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
679                      iframe->interpreter_frame_expression_stack_size());
680        tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
681        tty->print_cr("  try_next_mask = %d", try_next_mask);
682        tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
683        tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
684        tty->print_cr("  callee_max_locals = %d", callee_max_locals);
685        tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
686        tty->print_cr("  exec_mode = %d", exec_mode);
687        tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
688        tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
689        tty->print_cr("  Interpreted frames:");
690        for (int k = 0; k < cur_array->frames(); k++) {
691          vframeArrayElement* el = cur_array->element(k);
692          tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
693        }
694        cur_array->print_on_2(tty);
695        guarantee(false, "wrong number of expression stack elements during deopt");
696      }
697      VerifyOopClosure verify;
698      iframe->oops_interpreted_do(&verify, &rm, false);
699      callee_size_of_parameters = mh->size_of_parameters();
700      callee_max_locals = mh->max_locals();
701      is_top_frame = false;
702    }
703  }
704#endif /* !PRODUCT */
705
706
707  return bt;
708JRT_END
709
710
711int Deoptimization::deoptimize_dependents() {
712  Threads::deoptimized_wrt_marked_nmethods();
713  return 0;
714}
715
716
717#ifdef COMPILER2
718bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
719  Handle pending_exception(thread->pending_exception());
720  const char* exception_file = thread->exception_file();
721  int exception_line = thread->exception_line();
722  thread->clear_pending_exception();
723
724  for (int i = 0; i < objects->length(); i++) {
725    assert(objects->at(i)->is_object(), "invalid debug information");
726    ObjectValue* sv = (ObjectValue*) objects->at(i);
727
728    KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
729    oop obj = NULL;
730
731    if (k->oop_is_instance()) {
732      instanceKlass* ik = instanceKlass::cast(k());
733      obj = ik->allocate_instance(CHECK_(false));
734    } else if (k->oop_is_typeArray()) {
735      typeArrayKlass* ak = typeArrayKlass::cast(k());
736      assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
737      int len = sv->field_size() / type2size[ak->element_type()];
738      obj = ak->allocate(len, CHECK_(false));
739    } else if (k->oop_is_objArray()) {
740      objArrayKlass* ak = objArrayKlass::cast(k());
741      obj = ak->allocate(sv->field_size(), CHECK_(false));
742    }
743
744    assert(obj != NULL, "allocation failed");
745    assert(sv->value().is_null(), "redundant reallocation");
746    sv->set_value(obj);
747  }
748
749  if (pending_exception.not_null()) {
750    thread->set_pending_exception(pending_exception(), exception_file, exception_line);
751  }
752
753  return true;
754}
755
756// This assumes that the fields are stored in ObjectValue in the same order
757// they are yielded by do_nonstatic_fields.
758class FieldReassigner: public FieldClosure {
759  frame* _fr;
760  RegisterMap* _reg_map;
761  ObjectValue* _sv;
762  instanceKlass* _ik;
763  oop _obj;
764
765  int _i;
766public:
767  FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
768    _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
769
770  int i() const { return _i; }
771
772
773  void do_field(fieldDescriptor* fd) {
774    intptr_t val;
775    StackValue* value =
776      StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
777    int offset = fd->offset();
778    switch (fd->field_type()) {
779    case T_OBJECT: case T_ARRAY:
780      assert(value->type() == T_OBJECT, "Agreement.");
781      _obj->obj_field_put(offset, value->get_obj()());
782      break;
783
784    case T_LONG: case T_DOUBLE: {
785      assert(value->type() == T_INT, "Agreement.");
786      StackValue* low =
787        StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
788#ifdef _LP64
789      jlong res = (jlong)low->get_int();
790#else
791#ifdef SPARC
792      // For SPARC we have to swap high and low words.
793      jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
794#else
795      jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
796#endif //SPARC
797#endif
798      _obj->long_field_put(offset, res);
799      break;
800    }
801    // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
802    case T_INT: case T_FLOAT: // 4 bytes.
803      assert(value->type() == T_INT, "Agreement.");
804      val = value->get_int();
805      _obj->int_field_put(offset, (jint)*((jint*)&val));
806      break;
807
808    case T_SHORT: case T_CHAR: // 2 bytes
809      assert(value->type() == T_INT, "Agreement.");
810      val = value->get_int();
811      _obj->short_field_put(offset, (jshort)*((jint*)&val));
812      break;
813
814    case T_BOOLEAN: case T_BYTE: // 1 byte
815      assert(value->type() == T_INT, "Agreement.");
816      val = value->get_int();
817      _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
818      break;
819
820    default:
821      ShouldNotReachHere();
822    }
823    _i++;
824  }
825};
826
827// restore elements of an eliminated type array
828void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
829  int index = 0;
830  intptr_t val;
831
832  for (int i = 0; i < sv->field_size(); i++) {
833    StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
834    switch(type) {
835    case T_LONG: case T_DOUBLE: {
836      assert(value->type() == T_INT, "Agreement.");
837      StackValue* low =
838        StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
839#ifdef _LP64
840      jlong res = (jlong)low->get_int();
841#else
842#ifdef SPARC
843      // For SPARC we have to swap high and low words.
844      jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
845#else
846      jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
847#endif //SPARC
848#endif
849      obj->long_at_put(index, res);
850      break;
851    }
852
853    // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
854    case T_INT: case T_FLOAT: // 4 bytes.
855      assert(value->type() == T_INT, "Agreement.");
856      val = value->get_int();
857      obj->int_at_put(index, (jint)*((jint*)&val));
858      break;
859
860    case T_SHORT: case T_CHAR: // 2 bytes
861      assert(value->type() == T_INT, "Agreement.");
862      val = value->get_int();
863      obj->short_at_put(index, (jshort)*((jint*)&val));
864      break;
865
866    case T_BOOLEAN: case T_BYTE: // 1 byte
867      assert(value->type() == T_INT, "Agreement.");
868      val = value->get_int();
869      obj->bool_at_put(index, (jboolean)*((jint*)&val));
870      break;
871
872      default:
873        ShouldNotReachHere();
874    }
875    index++;
876  }
877}
878
879
880// restore fields of an eliminated object array
881void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
882  for (int i = 0; i < sv->field_size(); i++) {
883    StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
884    assert(value->type() == T_OBJECT, "object element expected");
885    obj->obj_at_put(i, value->get_obj()());
886  }
887}
888
889
890// restore fields of all eliminated objects and arrays
891void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
892  for (int i = 0; i < objects->length(); i++) {
893    ObjectValue* sv = (ObjectValue*) objects->at(i);
894    KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
895    Handle obj = sv->value();
896    assert(obj.not_null(), "reallocation was missed");
897
898    if (k->oop_is_instance()) {
899      instanceKlass* ik = instanceKlass::cast(k());
900      FieldReassigner reassign(fr, reg_map, sv, obj());
901      ik->do_nonstatic_fields(&reassign);
902    } else if (k->oop_is_typeArray()) {
903      typeArrayKlass* ak = typeArrayKlass::cast(k());
904      reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
905    } else if (k->oop_is_objArray()) {
906      reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
907    }
908  }
909}
910
911
912// relock objects for which synchronization was eliminated
913void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
914  for (int i = 0; i < monitors->length(); i++) {
915    MonitorInfo* mon_info = monitors->at(i);
916    if (mon_info->eliminated()) {
917      assert(mon_info->owner() != NULL, "reallocation was missed");
918      Handle obj = Handle(mon_info->owner());
919      markOop mark = obj->mark();
920      if (UseBiasedLocking && mark->has_bias_pattern()) {
921        // New allocated objects may have the mark set to anonymously biased.
922        // Also the deoptimized method may called methods with synchronization
923        // where the thread-local object is bias locked to the current thread.
924        assert(mark->is_biased_anonymously() ||
925               mark->biased_locker() == thread, "should be locked to current thread");
926        // Reset mark word to unbiased prototype.
927        markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
928        obj->set_mark(unbiased_prototype);
929      }
930      BasicLock* lock = mon_info->lock();
931      ObjectSynchronizer::slow_enter(obj, lock, thread);
932    }
933    assert(mon_info->owner()->is_locked(), "object must be locked now");
934  }
935}
936
937
938#ifndef PRODUCT
939// print information about reallocated objects
940void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
941  fieldDescriptor fd;
942
943  for (int i = 0; i < objects->length(); i++) {
944    ObjectValue* sv = (ObjectValue*) objects->at(i);
945    KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
946    Handle obj = sv->value();
947
948    tty->print("     object <" INTPTR_FORMAT "> of type ", sv->value()());
949    k->as_klassOop()->print_value();
950    tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
951    tty->cr();
952
953    if (Verbose) {
954      k->oop_print_on(obj(), tty);
955    }
956  }
957}
958#endif
959#endif // COMPILER2
960
961vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
962
963#ifndef PRODUCT
964  if (TraceDeoptimization) {
965    ttyLocker ttyl;
966    tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
967    fr.print_on(tty);
968    tty->print_cr("     Virtual frames (innermost first):");
969    for (int index = 0; index < chunk->length(); index++) {
970      compiledVFrame* vf = chunk->at(index);
971      tty->print("       %2d - ", index);
972      vf->print_value();
973      int bci = chunk->at(index)->raw_bci();
974      const char* code_name;
975      if (bci == SynchronizationEntryBCI) {
976        code_name = "sync entry";
977      } else {
978        Bytecodes::Code code = vf->method()->code_at(bci);
979        code_name = Bytecodes::name(code);
980      }
981      tty->print(" - %s", code_name);
982      tty->print_cr(" @ bci %d ", bci);
983      if (Verbose) {
984        vf->print();
985        tty->cr();
986      }
987    }
988  }
989#endif
990
991  // Register map for next frame (used for stack crawl).  We capture
992  // the state of the deopt'ing frame's caller.  Thus if we need to
993  // stuff a C2I adapter we can properly fill in the callee-save
994  // register locations.
995  frame caller = fr.sender(reg_map);
996  int frame_size = caller.sp() - fr.sp();
997
998  frame sender = caller;
999
1000  // Since the Java thread being deoptimized will eventually adjust it's own stack,
1001  // the vframeArray containing the unpacking information is allocated in the C heap.
1002  // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1003  vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
1004
1005  // Compare the vframeArray to the collected vframes
1006  assert(array->structural_compare(thread, chunk), "just checking");
1007  Events::log("# vframes = %d", (intptr_t)chunk->length());
1008
1009#ifndef PRODUCT
1010  if (TraceDeoptimization) {
1011    ttyLocker ttyl;
1012    tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
1013  }
1014#endif // PRODUCT
1015
1016  return array;
1017}
1018
1019
1020static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1021  GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1022  for (int i = 0; i < monitors->length(); i++) {
1023    MonitorInfo* mon_info = monitors->at(i);
1024    if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1025      objects_to_revoke->append(Handle(mon_info->owner()));
1026    }
1027  }
1028}
1029
1030
1031void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1032  if (!UseBiasedLocking) {
1033    return;
1034  }
1035
1036  GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1037
1038  // Unfortunately we don't have a RegisterMap available in most of
1039  // the places we want to call this routine so we need to walk the
1040  // stack again to update the register map.
1041  if (map == NULL || !map->update_map()) {
1042    StackFrameStream sfs(thread, true);
1043    bool found = false;
1044    while (!found && !sfs.is_done()) {
1045      frame* cur = sfs.current();
1046      sfs.next();
1047      found = cur->id() == fr.id();
1048    }
1049    assert(found, "frame to be deoptimized not found on target thread's stack");
1050    map = sfs.register_map();
1051  }
1052
1053  vframe* vf = vframe::new_vframe(&fr, map, thread);
1054  compiledVFrame* cvf = compiledVFrame::cast(vf);
1055  // Revoke monitors' biases in all scopes
1056  while (!cvf->is_top()) {
1057    collect_monitors(cvf, objects_to_revoke);
1058    cvf = compiledVFrame::cast(cvf->sender());
1059  }
1060  collect_monitors(cvf, objects_to_revoke);
1061
1062  if (SafepointSynchronize::is_at_safepoint()) {
1063    BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1064  } else {
1065    BiasedLocking::revoke(objects_to_revoke);
1066  }
1067}
1068
1069
1070void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1071  if (!UseBiasedLocking) {
1072    return;
1073  }
1074
1075  assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1076  GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1077  for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1078    if (jt->has_last_Java_frame()) {
1079      StackFrameStream sfs(jt, true);
1080      while (!sfs.is_done()) {
1081        frame* cur = sfs.current();
1082        if (cb->contains(cur->pc())) {
1083          vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1084          compiledVFrame* cvf = compiledVFrame::cast(vf);
1085          // Revoke monitors' biases in all scopes
1086          while (!cvf->is_top()) {
1087            collect_monitors(cvf, objects_to_revoke);
1088            cvf = compiledVFrame::cast(cvf->sender());
1089          }
1090          collect_monitors(cvf, objects_to_revoke);
1091        }
1092        sfs.next();
1093      }
1094    }
1095  }
1096  BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1097}
1098
1099
1100void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
1101  assert(fr.can_be_deoptimized(), "checking frame type");
1102
1103  gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
1104
1105  EventMark m("Deoptimization (pc=" INTPTR_FORMAT ", sp=" INTPTR_FORMAT ")", fr.pc(), fr.id());
1106
1107  // Patch the nmethod so that when execution returns to it we will
1108  // deopt the execution state and return to the interpreter.
1109  fr.deoptimize(thread);
1110}
1111
1112void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1113  // Deoptimize only if the frame comes from compile code.
1114  // Do not deoptimize the frame which is already patched
1115  // during the execution of the loops below.
1116  if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1117    return;
1118  }
1119  ResourceMark rm;
1120  DeoptimizationMarker dm;
1121  if (UseBiasedLocking) {
1122    revoke_biases_of_monitors(thread, fr, map);
1123  }
1124  deoptimize_single_frame(thread, fr);
1125
1126}
1127
1128
1129void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
1130  assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1131         "can only deoptimize other thread at a safepoint");
1132  // Compute frame and register map based on thread and sp.
1133  RegisterMap reg_map(thread, UseBiasedLocking);
1134  frame fr = thread->last_frame();
1135  while (fr.id() != id) {
1136    fr = fr.sender(&reg_map);
1137  }
1138  deoptimize(thread, fr, &reg_map);
1139}
1140
1141
1142void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1143  if (thread == Thread::current()) {
1144    Deoptimization::deoptimize_frame_internal(thread, id);
1145  } else {
1146    VM_DeoptimizeFrame deopt(thread, id);
1147    VMThread::execute(&deopt);
1148  }
1149}
1150
1151
1152// JVMTI PopFrame support
1153JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1154{
1155  thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1156}
1157JRT_END
1158
1159
1160#if defined(COMPILER2) || defined(SHARK)
1161void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
1162  // in case of an unresolved klass entry, load the class.
1163  if (constant_pool->tag_at(index).is_unresolved_klass()) {
1164    klassOop tk = constant_pool->klass_at(index, CHECK);
1165    return;
1166  }
1167
1168  if (!constant_pool->tag_at(index).is_symbol()) return;
1169
1170  Handle class_loader (THREAD, instanceKlass::cast(constant_pool->pool_holder())->class_loader());
1171  Symbol*  symbol  = constant_pool->symbol_at(index);
1172
1173  // class name?
1174  if (symbol->byte_at(0) != '(') {
1175    Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
1176    SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1177    return;
1178  }
1179
1180  // then it must be a signature!
1181  ResourceMark rm(THREAD);
1182  for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1183    if (ss.is_object()) {
1184      Symbol* class_name = ss.as_symbol(CHECK);
1185      Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
1186      SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1187    }
1188  }
1189}
1190
1191
1192void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
1193  EXCEPTION_MARK;
1194  load_class_by_index(constant_pool, index, THREAD);
1195  if (HAS_PENDING_EXCEPTION) {
1196    // Exception happened during classloading. We ignore the exception here, since it
1197    // is going to be rethrown since the current activation is going to be deoptimzied and
1198    // the interpreter will re-execute the bytecode.
1199    CLEAR_PENDING_EXCEPTION;
1200  }
1201}
1202
1203JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1204  HandleMark hm;
1205
1206  // uncommon_trap() is called at the beginning of the uncommon trap
1207  // handler. Note this fact before we start generating temporary frames
1208  // that can confuse an asynchronous stack walker. This counter is
1209  // decremented at the end of unpack_frames().
1210  thread->inc_in_deopt_handler();
1211
1212  // We need to update the map if we have biased locking.
1213  RegisterMap reg_map(thread, UseBiasedLocking);
1214  frame stub_frame = thread->last_frame();
1215  frame fr = stub_frame.sender(&reg_map);
1216  // Make sure the calling nmethod is not getting deoptimized and removed
1217  // before we are done with it.
1218  nmethodLocker nl(fr.pc());
1219
1220  {
1221    ResourceMark rm;
1222
1223    // Revoke biases of any monitors in the frame to ensure we can migrate them
1224    revoke_biases_of_monitors(thread, fr, &reg_map);
1225
1226    DeoptReason reason = trap_request_reason(trap_request);
1227    DeoptAction action = trap_request_action(trap_request);
1228    jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1229
1230    Events::log("Uncommon trap occurred @" INTPTR_FORMAT " unloaded_class_index = %d", fr.pc(), (int) trap_request);
1231    vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1232    compiledVFrame* cvf = compiledVFrame::cast(vf);
1233
1234    nmethod* nm = cvf->code();
1235
1236    ScopeDesc*      trap_scope  = cvf->scope();
1237    methodHandle    trap_method = trap_scope->method();
1238    int             trap_bci    = trap_scope->bci();
1239    Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1240
1241    // Record this event in the histogram.
1242    gather_statistics(reason, action, trap_bc);
1243
1244    // Ensure that we can record deopt. history:
1245    bool create_if_missing = ProfileTraps;
1246
1247    methodDataHandle trap_mdo
1248      (THREAD, get_method_data(thread, trap_method, create_if_missing));
1249
1250    // Print a bunch of diagnostics, if requested.
1251    if (TraceDeoptimization || LogCompilation) {
1252      ResourceMark rm;
1253      ttyLocker ttyl;
1254      char buf[100];
1255      if (xtty != NULL) {
1256        xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
1257                         os::current_thread_id(),
1258                         format_trap_request(buf, sizeof(buf), trap_request));
1259        nm->log_identity(xtty);
1260      }
1261      Symbol* class_name = NULL;
1262      bool unresolved = false;
1263      if (unloaded_class_index >= 0) {
1264        constantPoolHandle constants (THREAD, trap_method->constants());
1265        if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1266          class_name = constants->klass_name_at(unloaded_class_index);
1267          unresolved = true;
1268          if (xtty != NULL)
1269            xtty->print(" unresolved='1'");
1270        } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1271          class_name = constants->symbol_at(unloaded_class_index);
1272        }
1273        if (xtty != NULL)
1274          xtty->name(class_name);
1275      }
1276      if (xtty != NULL && trap_mdo.not_null()) {
1277        // Dump the relevant MDO state.
1278        // This is the deopt count for the current reason, any previous
1279        // reasons or recompiles seen at this point.
1280        int dcnt = trap_mdo->trap_count(reason);
1281        if (dcnt != 0)
1282          xtty->print(" count='%d'", dcnt);
1283        ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1284        int dos = (pdata == NULL)? 0: pdata->trap_state();
1285        if (dos != 0) {
1286          xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1287          if (trap_state_is_recompiled(dos)) {
1288            int recnt2 = trap_mdo->overflow_recompile_count();
1289            if (recnt2 != 0)
1290              xtty->print(" recompiles2='%d'", recnt2);
1291          }
1292        }
1293      }
1294      if (xtty != NULL) {
1295        xtty->stamp();
1296        xtty->end_head();
1297      }
1298      if (TraceDeoptimization) {  // make noise on the tty
1299        tty->print("Uncommon trap occurred in");
1300        nm->method()->print_short_name(tty);
1301        tty->print(" (@" INTPTR_FORMAT ") thread=%d reason=%s action=%s unloaded_class_index=%d",
1302                   fr.pc(),
1303                   (int) os::current_thread_id(),
1304                   trap_reason_name(reason),
1305                   trap_action_name(action),
1306                   unloaded_class_index);
1307        if (class_name != NULL) {
1308          tty->print(unresolved ? " unresolved class: " : " symbol: ");
1309          class_name->print_symbol_on(tty);
1310        }
1311        tty->cr();
1312      }
1313      if (xtty != NULL) {
1314        // Log the precise location of the trap.
1315        for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1316          xtty->begin_elem("jvms bci='%d'", sd->bci());
1317          xtty->method(sd->method());
1318          xtty->end_elem();
1319          if (sd->is_top())  break;
1320        }
1321        xtty->tail("uncommon_trap");
1322      }
1323    }
1324    // (End diagnostic printout.)
1325
1326    // Load class if necessary
1327    if (unloaded_class_index >= 0) {
1328      constantPoolHandle constants(THREAD, trap_method->constants());
1329      load_class_by_index(constants, unloaded_class_index);
1330    }
1331
1332    // Flush the nmethod if necessary and desirable.
1333    //
1334    // We need to avoid situations where we are re-flushing the nmethod
1335    // because of a hot deoptimization site.  Repeated flushes at the same
1336    // point need to be detected by the compiler and avoided.  If the compiler
1337    // cannot avoid them (or has a bug and "refuses" to avoid them), this
1338    // module must take measures to avoid an infinite cycle of recompilation
1339    // and deoptimization.  There are several such measures:
1340    //
1341    //   1. If a recompilation is ordered a second time at some site X
1342    //   and for the same reason R, the action is adjusted to 'reinterpret',
1343    //   to give the interpreter time to exercise the method more thoroughly.
1344    //   If this happens, the method's overflow_recompile_count is incremented.
1345    //
1346    //   2. If the compiler fails to reduce the deoptimization rate, then
1347    //   the method's overflow_recompile_count will begin to exceed the set
1348    //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1349    //   is adjusted to 'make_not_compilable', and the method is abandoned
1350    //   to the interpreter.  This is a performance hit for hot methods,
1351    //   but is better than a disastrous infinite cycle of recompilations.
1352    //   (Actually, only the method containing the site X is abandoned.)
1353    //
1354    //   3. In parallel with the previous measures, if the total number of
1355    //   recompilations of a method exceeds the much larger set limit
1356    //   PerMethodRecompilationCutoff, the method is abandoned.
1357    //   This should only happen if the method is very large and has
1358    //   many "lukewarm" deoptimizations.  The code which enforces this
1359    //   limit is elsewhere (class nmethod, class methodOopDesc).
1360    //
1361    // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1362    // to recompile at each bytecode independently of the per-BCI cutoff.
1363    //
1364    // The decision to update code is up to the compiler, and is encoded
1365    // in the Action_xxx code.  If the compiler requests Action_none
1366    // no trap state is changed, no compiled code is changed, and the
1367    // computation suffers along in the interpreter.
1368    //
1369    // The other action codes specify various tactics for decompilation
1370    // and recompilation.  Action_maybe_recompile is the loosest, and
1371    // allows the compiled code to stay around until enough traps are seen,
1372    // and until the compiler gets around to recompiling the trapping method.
1373    //
1374    // The other actions cause immediate removal of the present code.
1375
1376    bool update_trap_state = true;
1377    bool make_not_entrant = false;
1378    bool make_not_compilable = false;
1379    bool reprofile = false;
1380    switch (action) {
1381    case Action_none:
1382      // Keep the old code.
1383      update_trap_state = false;
1384      break;
1385    case Action_maybe_recompile:
1386      // Do not need to invalidate the present code, but we can
1387      // initiate another
1388      // Start compiler without (necessarily) invalidating the nmethod.
1389      // The system will tolerate the old code, but new code should be
1390      // generated when possible.
1391      break;
1392    case Action_reinterpret:
1393      // Go back into the interpreter for a while, and then consider
1394      // recompiling form scratch.
1395      make_not_entrant = true;
1396      // Reset invocation counter for outer most method.
1397      // This will allow the interpreter to exercise the bytecodes
1398      // for a while before recompiling.
1399      // By contrast, Action_make_not_entrant is immediate.
1400      //
1401      // Note that the compiler will track null_check, null_assert,
1402      // range_check, and class_check events and log them as if they
1403      // had been traps taken from compiled code.  This will update
1404      // the MDO trap history so that the next compilation will
1405      // properly detect hot trap sites.
1406      reprofile = true;
1407      break;
1408    case Action_make_not_entrant:
1409      // Request immediate recompilation, and get rid of the old code.
1410      // Make them not entrant, so next time they are called they get
1411      // recompiled.  Unloaded classes are loaded now so recompile before next
1412      // time they are called.  Same for uninitialized.  The interpreter will
1413      // link the missing class, if any.
1414      make_not_entrant = true;
1415      break;
1416    case Action_make_not_compilable:
1417      // Give up on compiling this method at all.
1418      make_not_entrant = true;
1419      make_not_compilable = true;
1420      break;
1421    default:
1422      ShouldNotReachHere();
1423    }
1424
1425    // Setting +ProfileTraps fixes the following, on all platforms:
1426    // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1427    // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1428    // recompile relies on a methodDataOop to record heroic opt failures.
1429
1430    // Whether the interpreter is producing MDO data or not, we also need
1431    // to use the MDO to detect hot deoptimization points and control
1432    // aggressive optimization.
1433    bool inc_recompile_count = false;
1434    ProfileData* pdata = NULL;
1435    if (ProfileTraps && update_trap_state && trap_mdo.not_null()) {
1436      assert(trap_mdo() == get_method_data(thread, trap_method, false), "sanity");
1437      uint this_trap_count = 0;
1438      bool maybe_prior_trap = false;
1439      bool maybe_prior_recompile = false;
1440      pdata = query_update_method_data(trap_mdo, trap_bci, reason,
1441                                   //outputs:
1442                                   this_trap_count,
1443                                   maybe_prior_trap,
1444                                   maybe_prior_recompile);
1445      // Because the interpreter also counts null, div0, range, and class
1446      // checks, these traps from compiled code are double-counted.
1447      // This is harmless; it just means that the PerXTrapLimit values
1448      // are in effect a little smaller than they look.
1449
1450      DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1451      if (per_bc_reason != Reason_none) {
1452        // Now take action based on the partially known per-BCI history.
1453        if (maybe_prior_trap
1454            && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1455          // If there are too many traps at this BCI, force a recompile.
1456          // This will allow the compiler to see the limit overflow, and
1457          // take corrective action, if possible.  The compiler generally
1458          // does not use the exact PerBytecodeTrapLimit value, but instead
1459          // changes its tactics if it sees any traps at all.  This provides
1460          // a little hysteresis, delaying a recompile until a trap happens
1461          // several times.
1462          //
1463          // Actually, since there is only one bit of counter per BCI,
1464          // the possible per-BCI counts are {0,1,(per-method count)}.
1465          // This produces accurate results if in fact there is only
1466          // one hot trap site, but begins to get fuzzy if there are
1467          // many sites.  For example, if there are ten sites each
1468          // trapping two or more times, they each get the blame for
1469          // all of their traps.
1470          make_not_entrant = true;
1471        }
1472
1473        // Detect repeated recompilation at the same BCI, and enforce a limit.
1474        if (make_not_entrant && maybe_prior_recompile) {
1475          // More than one recompile at this point.
1476          inc_recompile_count = maybe_prior_trap;
1477        }
1478      } else {
1479        // For reasons which are not recorded per-bytecode, we simply
1480        // force recompiles unconditionally.
1481        // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1482        make_not_entrant = true;
1483      }
1484
1485      // Go back to the compiler if there are too many traps in this method.
1486      if (this_trap_count >= (uint)PerMethodTrapLimit) {
1487        // If there are too many traps in this method, force a recompile.
1488        // This will allow the compiler to see the limit overflow, and
1489        // take corrective action, if possible.
1490        // (This condition is an unlikely backstop only, because the
1491        // PerBytecodeTrapLimit is more likely to take effect first,
1492        // if it is applicable.)
1493        make_not_entrant = true;
1494      }
1495
1496      // Here's more hysteresis:  If there has been a recompile at
1497      // this trap point already, run the method in the interpreter
1498      // for a while to exercise it more thoroughly.
1499      if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1500        reprofile = true;
1501      }
1502
1503    }
1504
1505    // Take requested actions on the method:
1506
1507    // Recompile
1508    if (make_not_entrant) {
1509      if (!nm->make_not_entrant()) {
1510        return; // the call did not change nmethod's state
1511      }
1512
1513      if (pdata != NULL) {
1514        // Record the recompilation event, if any.
1515        int tstate0 = pdata->trap_state();
1516        int tstate1 = trap_state_set_recompiled(tstate0, true);
1517        if (tstate1 != tstate0)
1518          pdata->set_trap_state(tstate1);
1519      }
1520    }
1521
1522    if (inc_recompile_count) {
1523      trap_mdo->inc_overflow_recompile_count();
1524      if ((uint)trap_mdo->overflow_recompile_count() >
1525          (uint)PerBytecodeRecompilationCutoff) {
1526        // Give up on the method containing the bad BCI.
1527        if (trap_method() == nm->method()) {
1528          make_not_compilable = true;
1529        } else {
1530          trap_method->set_not_compilable(CompLevel_full_optimization);
1531          // But give grace to the enclosing nm->method().
1532        }
1533      }
1534    }
1535
1536    // Reprofile
1537    if (reprofile) {
1538      CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1539    }
1540
1541    // Give up compiling
1542    if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1543      assert(make_not_entrant, "consistent");
1544      nm->method()->set_not_compilable(CompLevel_full_optimization);
1545    }
1546
1547  } // Free marked resources
1548
1549}
1550JRT_END
1551
1552methodDataOop
1553Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1554                                bool create_if_missing) {
1555  Thread* THREAD = thread;
1556  methodDataOop mdo = m()->method_data();
1557  if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1558    // Build an MDO.  Ignore errors like OutOfMemory;
1559    // that simply means we won't have an MDO to update.
1560    methodOopDesc::build_interpreter_method_data(m, THREAD);
1561    if (HAS_PENDING_EXCEPTION) {
1562      assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1563      CLEAR_PENDING_EXCEPTION;
1564    }
1565    mdo = m()->method_data();
1566  }
1567  return mdo;
1568}
1569
1570ProfileData*
1571Deoptimization::query_update_method_data(methodDataHandle trap_mdo,
1572                                         int trap_bci,
1573                                         Deoptimization::DeoptReason reason,
1574                                         //outputs:
1575                                         uint& ret_this_trap_count,
1576                                         bool& ret_maybe_prior_trap,
1577                                         bool& ret_maybe_prior_recompile) {
1578  uint prior_trap_count = trap_mdo->trap_count(reason);
1579  uint this_trap_count  = trap_mdo->inc_trap_count(reason);
1580
1581  // If the runtime cannot find a place to store trap history,
1582  // it is estimated based on the general condition of the method.
1583  // If the method has ever been recompiled, or has ever incurred
1584  // a trap with the present reason , then this BCI is assumed
1585  // (pessimistically) to be the culprit.
1586  bool maybe_prior_trap      = (prior_trap_count != 0);
1587  bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1588  ProfileData* pdata = NULL;
1589
1590
1591  // For reasons which are recorded per bytecode, we check per-BCI data.
1592  DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1593  if (per_bc_reason != Reason_none) {
1594    // Find the profile data for this BCI.  If there isn't one,
1595    // try to allocate one from the MDO's set of spares.
1596    // This will let us detect a repeated trap at this point.
1597    pdata = trap_mdo->allocate_bci_to_data(trap_bci);
1598
1599    if (pdata != NULL) {
1600      // Query the trap state of this profile datum.
1601      int tstate0 = pdata->trap_state();
1602      if (!trap_state_has_reason(tstate0, per_bc_reason))
1603        maybe_prior_trap = false;
1604      if (!trap_state_is_recompiled(tstate0))
1605        maybe_prior_recompile = false;
1606
1607      // Update the trap state of this profile datum.
1608      int tstate1 = tstate0;
1609      // Record the reason.
1610      tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1611      // Store the updated state on the MDO, for next time.
1612      if (tstate1 != tstate0)
1613        pdata->set_trap_state(tstate1);
1614    } else {
1615      if (LogCompilation && xtty != NULL) {
1616        ttyLocker ttyl;
1617        // Missing MDP?  Leave a small complaint in the log.
1618        xtty->elem("missing_mdp bci='%d'", trap_bci);
1619      }
1620    }
1621  }
1622
1623  // Return results:
1624  ret_this_trap_count = this_trap_count;
1625  ret_maybe_prior_trap = maybe_prior_trap;
1626  ret_maybe_prior_recompile = maybe_prior_recompile;
1627  return pdata;
1628}
1629
1630void
1631Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
1632  ResourceMark rm;
1633  // Ignored outputs:
1634  uint ignore_this_trap_count;
1635  bool ignore_maybe_prior_trap;
1636  bool ignore_maybe_prior_recompile;
1637  query_update_method_data(trap_mdo, trap_bci,
1638                           (DeoptReason)reason,
1639                           ignore_this_trap_count,
1640                           ignore_maybe_prior_trap,
1641                           ignore_maybe_prior_recompile);
1642}
1643
1644Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
1645
1646  // Still in Java no safepoints
1647  {
1648    // This enters VM and may safepoint
1649    uncommon_trap_inner(thread, trap_request);
1650  }
1651  return fetch_unroll_info_helper(thread);
1652}
1653
1654// Local derived constants.
1655// Further breakdown of DataLayout::trap_state, as promised by DataLayout.
1656const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
1657const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
1658
1659//---------------------------trap_state_reason---------------------------------
1660Deoptimization::DeoptReason
1661Deoptimization::trap_state_reason(int trap_state) {
1662  // This assert provides the link between the width of DataLayout::trap_bits
1663  // and the encoding of "recorded" reasons.  It ensures there are enough
1664  // bits to store all needed reasons in the per-BCI MDO profile.
1665  assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1666  int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1667  trap_state -= recompile_bit;
1668  if (trap_state == DS_REASON_MASK) {
1669    return Reason_many;
1670  } else {
1671    assert((int)Reason_none == 0, "state=0 => Reason_none");
1672    return (DeoptReason)trap_state;
1673  }
1674}
1675//-------------------------trap_state_has_reason-------------------------------
1676int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1677  assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
1678  assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1679  int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1680  trap_state -= recompile_bit;
1681  if (trap_state == DS_REASON_MASK) {
1682    return -1;  // true, unspecifically (bottom of state lattice)
1683  } else if (trap_state == reason) {
1684    return 1;   // true, definitely
1685  } else if (trap_state == 0) {
1686    return 0;   // false, definitely (top of state lattice)
1687  } else {
1688    return 0;   // false, definitely
1689  }
1690}
1691//-------------------------trap_state_add_reason-------------------------------
1692int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
1693  assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
1694  int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1695  trap_state -= recompile_bit;
1696  if (trap_state == DS_REASON_MASK) {
1697    return trap_state + recompile_bit;     // already at state lattice bottom
1698  } else if (trap_state == reason) {
1699    return trap_state + recompile_bit;     // the condition is already true
1700  } else if (trap_state == 0) {
1701    return reason + recompile_bit;          // no condition has yet been true
1702  } else {
1703    return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
1704  }
1705}
1706//-----------------------trap_state_is_recompiled------------------------------
1707bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1708  return (trap_state & DS_RECOMPILE_BIT) != 0;
1709}
1710//-----------------------trap_state_set_recompiled-----------------------------
1711int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
1712  if (z)  return trap_state |  DS_RECOMPILE_BIT;
1713  else    return trap_state & ~DS_RECOMPILE_BIT;
1714}
1715//---------------------------format_trap_state---------------------------------
1716// This is used for debugging and diagnostics, including hotspot.log output.
1717const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1718                                              int trap_state) {
1719  DeoptReason reason      = trap_state_reason(trap_state);
1720  bool        recomp_flag = trap_state_is_recompiled(trap_state);
1721  // Re-encode the state from its decoded components.
1722  int decoded_state = 0;
1723  if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
1724    decoded_state = trap_state_add_reason(decoded_state, reason);
1725  if (recomp_flag)
1726    decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
1727  // If the state re-encodes properly, format it symbolically.
1728  // Because this routine is used for debugging and diagnostics,
1729  // be robust even if the state is a strange value.
1730  size_t len;
1731  if (decoded_state != trap_state) {
1732    // Random buggy state that doesn't decode??
1733    len = jio_snprintf(buf, buflen, "#%d", trap_state);
1734  } else {
1735    len = jio_snprintf(buf, buflen, "%s%s",
1736                       trap_reason_name(reason),
1737                       recomp_flag ? " recompiled" : "");
1738  }
1739  if (len >= buflen)
1740    buf[buflen-1] = '\0';
1741  return buf;
1742}
1743
1744
1745//--------------------------------statics--------------------------------------
1746Deoptimization::DeoptAction Deoptimization::_unloaded_action
1747  = Deoptimization::Action_reinterpret;
1748const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
1749  // Note:  Keep this in sync. with enum DeoptReason.
1750  "none",
1751  "null_check",
1752  "null_assert",
1753  "range_check",
1754  "class_check",
1755  "array_check",
1756  "intrinsic",
1757  "bimorphic",
1758  "unloaded",
1759  "uninitialized",
1760  "unreached",
1761  "unhandled",
1762  "constraint",
1763  "div0_check",
1764  "age",
1765  "predicate"
1766};
1767const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
1768  // Note:  Keep this in sync. with enum DeoptAction.
1769  "none",
1770  "maybe_recompile",
1771  "reinterpret",
1772  "make_not_entrant",
1773  "make_not_compilable"
1774};
1775
1776const char* Deoptimization::trap_reason_name(int reason) {
1777  if (reason == Reason_many)  return "many";
1778  if ((uint)reason < Reason_LIMIT)
1779    return _trap_reason_name[reason];
1780  static char buf[20];
1781  sprintf(buf, "reason%d", reason);
1782  return buf;
1783}
1784const char* Deoptimization::trap_action_name(int action) {
1785  if ((uint)action < Action_LIMIT)
1786    return _trap_action_name[action];
1787  static char buf[20];
1788  sprintf(buf, "action%d", action);
1789  return buf;
1790}
1791
1792// This is used for debugging and diagnostics, including hotspot.log output.
1793const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
1794                                                int trap_request) {
1795  jint unloaded_class_index = trap_request_index(trap_request);
1796  const char* reason = trap_reason_name(trap_request_reason(trap_request));
1797  const char* action = trap_action_name(trap_request_action(trap_request));
1798  size_t len;
1799  if (unloaded_class_index < 0) {
1800    len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
1801                       reason, action);
1802  } else {
1803    len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
1804                       reason, action, unloaded_class_index);
1805  }
1806  if (len >= buflen)
1807    buf[buflen-1] = '\0';
1808  return buf;
1809}
1810
1811juint Deoptimization::_deoptimization_hist
1812        [Deoptimization::Reason_LIMIT]
1813    [1 + Deoptimization::Action_LIMIT]
1814        [Deoptimization::BC_CASE_LIMIT]
1815  = {0};
1816
1817enum {
1818  LSB_BITS = 8,
1819  LSB_MASK = right_n_bits(LSB_BITS)
1820};
1821
1822void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1823                                       Bytecodes::Code bc) {
1824  assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1825  assert(action >= 0 && action < Action_LIMIT, "oob");
1826  _deoptimization_hist[Reason_none][0][0] += 1;  // total
1827  _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
1828  juint* cases = _deoptimization_hist[reason][1+action];
1829  juint* bc_counter_addr = NULL;
1830  juint  bc_counter      = 0;
1831  // Look for an unused counter, or an exact match to this BC.
1832  if (bc != Bytecodes::_illegal) {
1833    for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1834      juint* counter_addr = &cases[bc_case];
1835      juint  counter = *counter_addr;
1836      if ((counter == 0 && bc_counter_addr == NULL)
1837          || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
1838        // this counter is either free or is already devoted to this BC
1839        bc_counter_addr = counter_addr;
1840        bc_counter = counter | bc;
1841      }
1842    }
1843  }
1844  if (bc_counter_addr == NULL) {
1845    // Overflow, or no given bytecode.
1846    bc_counter_addr = &cases[BC_CASE_LIMIT-1];
1847    bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
1848  }
1849  *bc_counter_addr = bc_counter + (1 << LSB_BITS);
1850}
1851
1852jint Deoptimization::total_deoptimization_count() {
1853  return _deoptimization_hist[Reason_none][0][0];
1854}
1855
1856jint Deoptimization::deoptimization_count(DeoptReason reason) {
1857  assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1858  return _deoptimization_hist[reason][0][0];
1859}
1860
1861void Deoptimization::print_statistics() {
1862  juint total = total_deoptimization_count();
1863  juint account = total;
1864  if (total != 0) {
1865    ttyLocker ttyl;
1866    if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
1867    tty->print_cr("Deoptimization traps recorded:");
1868    #define PRINT_STAT_LINE(name, r) \
1869      tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
1870    PRINT_STAT_LINE("total", total);
1871    // For each non-zero entry in the histogram, print the reason,
1872    // the action, and (if specifically known) the type of bytecode.
1873    for (int reason = 0; reason < Reason_LIMIT; reason++) {
1874      for (int action = 0; action < Action_LIMIT; action++) {
1875        juint* cases = _deoptimization_hist[reason][1+action];
1876        for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1877          juint counter = cases[bc_case];
1878          if (counter != 0) {
1879            char name[1*K];
1880            Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
1881            if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
1882              bc = Bytecodes::_illegal;
1883            sprintf(name, "%s/%s/%s",
1884                    trap_reason_name(reason),
1885                    trap_action_name(action),
1886                    Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
1887            juint r = counter >> LSB_BITS;
1888            tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
1889            account -= r;
1890          }
1891        }
1892      }
1893    }
1894    if (account != 0) {
1895      PRINT_STAT_LINE("unaccounted", account);
1896    }
1897    #undef PRINT_STAT_LINE
1898    if (xtty != NULL)  xtty->tail("statistics");
1899  }
1900}
1901#else // COMPILER2 || SHARK
1902
1903
1904// Stubs for C1 only system.
1905bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1906  return false;
1907}
1908
1909const char* Deoptimization::trap_reason_name(int reason) {
1910  return "unknown";
1911}
1912
1913void Deoptimization::print_statistics() {
1914  // no output
1915}
1916
1917void
1918Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
1919  // no udpate
1920}
1921
1922int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1923  return 0;
1924}
1925
1926void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1927                                       Bytecodes::Code bc) {
1928  // no update
1929}
1930
1931const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1932                                              int trap_state) {
1933  jio_snprintf(buf, buflen, "#%d", trap_state);
1934  return buf;
1935}
1936
1937#endif // COMPILER2 || SHARK
1938