deoptimization.cpp revision 13031:d6d39ac9a5bb
1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "code/codeCache.hpp"
28#include "code/debugInfoRec.hpp"
29#include "code/nmethod.hpp"
30#include "code/pcDesc.hpp"
31#include "code/scopeDesc.hpp"
32#include "interpreter/bytecode.hpp"
33#include "interpreter/interpreter.hpp"
34#include "interpreter/oopMapCache.hpp"
35#include "memory/allocation.inline.hpp"
36#include "memory/oopFactory.hpp"
37#include "memory/resourceArea.hpp"
38#include "oops/method.hpp"
39#include "oops/objArrayOop.inline.hpp"
40#include "oops/oop.inline.hpp"
41#include "oops/fieldStreams.hpp"
42#include "oops/verifyOopClosure.hpp"
43#include "prims/jvmtiThreadState.hpp"
44#include "runtime/biasedLocking.hpp"
45#include "runtime/compilationPolicy.hpp"
46#include "runtime/deoptimization.hpp"
47#include "runtime/interfaceSupport.hpp"
48#include "runtime/sharedRuntime.hpp"
49#include "runtime/signature.hpp"
50#include "runtime/stubRoutines.hpp"
51#include "runtime/thread.hpp"
52#include "runtime/vframe.hpp"
53#include "runtime/vframeArray.hpp"
54#include "runtime/vframe_hp.hpp"
55#include "utilities/events.hpp"
56#include "utilities/xmlstream.hpp"
57
58#if INCLUDE_JVMCI
59#include "jvmci/jvmciRuntime.hpp"
60#include "jvmci/jvmciJavaClasses.hpp"
61#endif
62
63
64bool DeoptimizationMarker::_is_active = false;
65
66Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
67                                         int  caller_adjustment,
68                                         int  caller_actual_parameters,
69                                         int  number_of_frames,
70                                         intptr_t* frame_sizes,
71                                         address* frame_pcs,
72                                         BasicType return_type,
73                                         int exec_mode) {
74  _size_of_deoptimized_frame = size_of_deoptimized_frame;
75  _caller_adjustment         = caller_adjustment;
76  _caller_actual_parameters  = caller_actual_parameters;
77  _number_of_frames          = number_of_frames;
78  _frame_sizes               = frame_sizes;
79  _frame_pcs                 = frame_pcs;
80  _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
81  _return_type               = return_type;
82  _initial_info              = 0;
83  // PD (x86 only)
84  _counter_temp              = 0;
85  _unpack_kind               = exec_mode;
86  _sender_sp_temp            = 0;
87
88  _total_frame_sizes         = size_of_frames();
89  assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
90}
91
92
93Deoptimization::UnrollBlock::~UnrollBlock() {
94  FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
95  FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
96  FREE_C_HEAP_ARRAY(intptr_t, _register_block);
97}
98
99
100intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
101  assert(register_number < RegisterMap::reg_count, "checking register number");
102  return &_register_block[register_number * 2];
103}
104
105
106
107int Deoptimization::UnrollBlock::size_of_frames() const {
108  // Acount first for the adjustment of the initial frame
109  int result = _caller_adjustment;
110  for (int index = 0; index < number_of_frames(); index++) {
111    result += frame_sizes()[index];
112  }
113  return result;
114}
115
116
117void Deoptimization::UnrollBlock::print() {
118  ttyLocker ttyl;
119  tty->print_cr("UnrollBlock");
120  tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
121  tty->print(   "  frame_sizes: ");
122  for (int index = 0; index < number_of_frames(); index++) {
123    tty->print(INTX_FORMAT " ", frame_sizes()[index]);
124  }
125  tty->cr();
126}
127
128
129// In order to make fetch_unroll_info work properly with escape
130// analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
131// ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
132// of previously eliminated objects occurs in realloc_objects, which is
133// called from the method fetch_unroll_info_helper below.
134JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
135  // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
136  // but makes the entry a little slower. There is however a little dance we have to
137  // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
138
139  // fetch_unroll_info() is called at the beginning of the deoptimization
140  // handler. Note this fact before we start generating temporary frames
141  // that can confuse an asynchronous stack walker. This counter is
142  // decremented at the end of unpack_frames().
143  if (TraceDeoptimization) {
144    tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
145  }
146  thread->inc_in_deopt_handler();
147
148  return fetch_unroll_info_helper(thread, exec_mode);
149JRT_END
150
151
152// This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
153Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
154
155  // Note: there is a safepoint safety issue here. No matter whether we enter
156  // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
157  // the vframeArray is created.
158  //
159
160  // Allocate our special deoptimization ResourceMark
161  DeoptResourceMark* dmark = new DeoptResourceMark(thread);
162  assert(thread->deopt_mark() == NULL, "Pending deopt!");
163  thread->set_deopt_mark(dmark);
164
165  frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
166  RegisterMap map(thread, true);
167  RegisterMap dummy_map(thread, false);
168  // Now get the deoptee with a valid map
169  frame deoptee = stub_frame.sender(&map);
170  // Set the deoptee nmethod
171  assert(thread->deopt_compiled_method() == NULL, "Pending deopt!");
172  CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
173  thread->set_deopt_compiled_method(cm);
174
175  if (VerifyStack) {
176    thread->validate_frame_layout();
177  }
178
179  // Create a growable array of VFrames where each VFrame represents an inlined
180  // Java frame.  This storage is allocated with the usual system arena.
181  assert(deoptee.is_compiled_frame(), "Wrong frame type");
182  GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
183  vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
184  while (!vf->is_top()) {
185    assert(vf->is_compiled_frame(), "Wrong frame type");
186    chunk->push(compiledVFrame::cast(vf));
187    vf = vf->sender();
188  }
189  assert(vf->is_compiled_frame(), "Wrong frame type");
190  chunk->push(compiledVFrame::cast(vf));
191
192  bool realloc_failures = false;
193
194#if defined(COMPILER2) || INCLUDE_JVMCI
195  // Reallocate the non-escaping objects and restore their fields. Then
196  // relock objects if synchronization on them was eliminated.
197#ifndef INCLUDE_JVMCI
198  if (DoEscapeAnalysis || EliminateNestedLocks) {
199    if (EliminateAllocations) {
200#endif // INCLUDE_JVMCI
201      assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
202      GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
203
204      // The flag return_oop() indicates call sites which return oop
205      // in compiled code. Such sites include java method calls,
206      // runtime calls (for example, used to allocate new objects/arrays
207      // on slow code path) and any other calls generated in compiled code.
208      // It is not guaranteed that we can get such information here only
209      // by analyzing bytecode in deoptimized frames. This is why this flag
210      // is set during method compilation (see Compile::Process_OopMap_Node()).
211      // If the previous frame was popped or if we are dispatching an exception,
212      // we don't have an oop result.
213      bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Unpack_deopt);
214      Handle return_value;
215      if (save_oop_result) {
216        // Reallocation may trigger GC. If deoptimization happened on return from
217        // call which returns oop we need to save it since it is not in oopmap.
218        oop result = deoptee.saved_oop_result(&map);
219        assert(result == NULL || result->is_oop(), "must be oop");
220        return_value = Handle(thread, result);
221        assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
222        if (TraceDeoptimization) {
223          ttyLocker ttyl;
224          tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
225        }
226      }
227      if (objects != NULL) {
228        JRT_BLOCK
229          realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
230        JRT_END
231        bool skip_internal = (cm != NULL) && !cm->is_compiled_by_jvmci();
232        reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
233#ifndef PRODUCT
234        if (TraceDeoptimization) {
235          ttyLocker ttyl;
236          tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
237          print_objects(objects, realloc_failures);
238        }
239#endif
240      }
241      if (save_oop_result) {
242        // Restore result.
243        deoptee.set_saved_oop_result(&map, return_value());
244      }
245#ifndef INCLUDE_JVMCI
246    }
247    if (EliminateLocks) {
248#endif // INCLUDE_JVMCI
249#ifndef PRODUCT
250      bool first = true;
251#endif
252      for (int i = 0; i < chunk->length(); i++) {
253        compiledVFrame* cvf = chunk->at(i);
254        assert (cvf->scope() != NULL,"expect only compiled java frames");
255        GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
256        if (monitors->is_nonempty()) {
257          relock_objects(monitors, thread, realloc_failures);
258#ifndef PRODUCT
259          if (PrintDeoptimizationDetails) {
260            ttyLocker ttyl;
261            for (int j = 0; j < monitors->length(); j++) {
262              MonitorInfo* mi = monitors->at(j);
263              if (mi->eliminated()) {
264                if (first) {
265                  first = false;
266                  tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
267                }
268                if (mi->owner_is_scalar_replaced()) {
269                  Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
270                  tty->print_cr("     failed reallocation for klass %s", k->external_name());
271                } else {
272                  tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
273                }
274              }
275            }
276          }
277#endif // !PRODUCT
278        }
279      }
280#ifndef INCLUDE_JVMCI
281    }
282  }
283#endif // INCLUDE_JVMCI
284#endif // COMPILER2 || INCLUDE_JVMCI
285
286  ScopeDesc* trap_scope = chunk->at(0)->scope();
287  Handle exceptionObject;
288  if (trap_scope->rethrow_exception()) {
289    if (PrintDeoptimizationDetails) {
290      tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
291    }
292    GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
293    guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
294    ScopeValue* topOfStack = expressions->top();
295    exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
296    guarantee(exceptionObject() != NULL, "exception oop can not be null");
297  }
298
299  // Ensure that no safepoint is taken after pointers have been stored
300  // in fields of rematerialized objects.  If a safepoint occurs from here on
301  // out the java state residing in the vframeArray will be missed.
302  NoSafepointVerifier no_safepoint;
303
304  vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
305#if defined(COMPILER2) || INCLUDE_JVMCI
306  if (realloc_failures) {
307    pop_frames_failed_reallocs(thread, array);
308  }
309#endif
310
311  assert(thread->vframe_array_head() == NULL, "Pending deopt!");
312  thread->set_vframe_array_head(array);
313
314  // Now that the vframeArray has been created if we have any deferred local writes
315  // added by jvmti then we can free up that structure as the data is now in the
316  // vframeArray
317
318  if (thread->deferred_locals() != NULL) {
319    GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
320    int i = 0;
321    do {
322      // Because of inlining we could have multiple vframes for a single frame
323      // and several of the vframes could have deferred writes. Find them all.
324      if (list->at(i)->id() == array->original().id()) {
325        jvmtiDeferredLocalVariableSet* dlv = list->at(i);
326        list->remove_at(i);
327        // individual jvmtiDeferredLocalVariableSet are CHeapObj's
328        delete dlv;
329      } else {
330        i++;
331      }
332    } while ( i < list->length() );
333    if (list->length() == 0) {
334      thread->set_deferred_locals(NULL);
335      // free the list and elements back to C heap.
336      delete list;
337    }
338
339  }
340
341#ifndef SHARK
342  // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
343  CodeBlob* cb = stub_frame.cb();
344  // Verify we have the right vframeArray
345  assert(cb->frame_size() >= 0, "Unexpected frame size");
346  intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
347
348  // If the deopt call site is a MethodHandle invoke call site we have
349  // to adjust the unpack_sp.
350  nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
351  if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
352    unpack_sp = deoptee.unextended_sp();
353
354#ifdef ASSERT
355  assert(cb->is_deoptimization_stub() ||
356         cb->is_uncommon_trap_stub() ||
357         strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
358         strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
359         "unexpected code blob: %s", cb->name());
360#endif
361#else
362  intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
363#endif // !SHARK
364
365  // This is a guarantee instead of an assert because if vframe doesn't match
366  // we will unpack the wrong deoptimized frame and wind up in strange places
367  // where it will be very difficult to figure out what went wrong. Better
368  // to die an early death here than some very obscure death later when the
369  // trail is cold.
370  // Note: on ia64 this guarantee can be fooled by frames with no memory stack
371  // in that it will fail to detect a problem when there is one. This needs
372  // more work in tiger timeframe.
373  guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
374
375  int number_of_frames = array->frames();
376
377  // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
378  // virtual activation, which is the reverse of the elements in the vframes array.
379  intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
380  // +1 because we always have an interpreter return address for the final slot.
381  address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
382  int popframe_extra_args = 0;
383  // Create an interpreter return address for the stub to use as its return
384  // address so the skeletal frames are perfectly walkable
385  frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
386
387  // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
388  // activation be put back on the expression stack of the caller for reexecution
389  if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
390    popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
391  }
392
393  // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
394  // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
395  // than simply use array->sender.pc(). This requires us to walk the current set of frames
396  //
397  frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
398  deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
399
400  // It's possible that the number of parameters at the call site is
401  // different than number of arguments in the callee when method
402  // handles are used.  If the caller is interpreted get the real
403  // value so that the proper amount of space can be added to it's
404  // frame.
405  bool caller_was_method_handle = false;
406  if (deopt_sender.is_interpreted_frame()) {
407    methodHandle method = deopt_sender.interpreter_frame_method();
408    Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
409    if (cur.is_invokedynamic() || cur.is_invokehandle()) {
410      // Method handle invokes may involve fairly arbitrary chains of
411      // calls so it's impossible to know how much actual space the
412      // caller has for locals.
413      caller_was_method_handle = true;
414    }
415  }
416
417  //
418  // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
419  // frame_sizes/frame_pcs[1] next oldest frame (int)
420  // frame_sizes/frame_pcs[n] youngest frame (int)
421  //
422  // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
423  // owns the space for the return address to it's caller).  Confusing ain't it.
424  //
425  // The vframe array can address vframes with indices running from
426  // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
427  // When we create the skeletal frames we need the oldest frame to be in the zero slot
428  // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
429  // so things look a little strange in this loop.
430  //
431  int callee_parameters = 0;
432  int callee_locals = 0;
433  for (int index = 0; index < array->frames(); index++ ) {
434    // frame[number_of_frames - 1 ] = on_stack_size(youngest)
435    // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
436    // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
437    frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
438                                                                                                    callee_locals,
439                                                                                                    index == 0,
440                                                                                                    popframe_extra_args);
441    // This pc doesn't have to be perfect just good enough to identify the frame
442    // as interpreted so the skeleton frame will be walkable
443    // The correct pc will be set when the skeleton frame is completely filled out
444    // The final pc we store in the loop is wrong and will be overwritten below
445    frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
446
447    callee_parameters = array->element(index)->method()->size_of_parameters();
448    callee_locals = array->element(index)->method()->max_locals();
449    popframe_extra_args = 0;
450  }
451
452  // Compute whether the root vframe returns a float or double value.
453  BasicType return_type;
454  {
455    methodHandle method(thread, array->element(0)->method());
456    Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
457    return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
458  }
459
460  // Compute information for handling adapters and adjusting the frame size of the caller.
461  int caller_adjustment = 0;
462
463  // Compute the amount the oldest interpreter frame will have to adjust
464  // its caller's stack by. If the caller is a compiled frame then
465  // we pretend that the callee has no parameters so that the
466  // extension counts for the full amount of locals and not just
467  // locals-parms. This is because without a c2i adapter the parm
468  // area as created by the compiled frame will not be usable by
469  // the interpreter. (Depending on the calling convention there
470  // may not even be enough space).
471
472  // QQQ I'd rather see this pushed down into last_frame_adjust
473  // and have it take the sender (aka caller).
474
475  if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
476    caller_adjustment = last_frame_adjust(0, callee_locals);
477  } else if (callee_locals > callee_parameters) {
478    // The caller frame may need extending to accommodate
479    // non-parameter locals of the first unpacked interpreted frame.
480    // Compute that adjustment.
481    caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
482  }
483
484  // If the sender is deoptimized the we must retrieve the address of the handler
485  // since the frame will "magically" show the original pc before the deopt
486  // and we'd undo the deopt.
487
488  frame_pcs[0] = deopt_sender.raw_pc();
489
490#ifndef SHARK
491  assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
492#endif // SHARK
493
494#ifdef INCLUDE_JVMCI
495  if (exceptionObject() != NULL) {
496    thread->set_exception_oop(exceptionObject());
497    exec_mode = Unpack_exception;
498  }
499#endif
500
501  if (thread->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
502    assert(thread->has_pending_exception(), "should have thrown OOME");
503    thread->set_exception_oop(thread->pending_exception());
504    thread->clear_pending_exception();
505    exec_mode = Unpack_exception;
506  }
507
508#if INCLUDE_JVMCI
509  if (thread->frames_to_pop_failed_realloc() > 0) {
510    thread->set_pending_monitorenter(false);
511  }
512#endif
513
514  UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
515                                      caller_adjustment * BytesPerWord,
516                                      caller_was_method_handle ? 0 : callee_parameters,
517                                      number_of_frames,
518                                      frame_sizes,
519                                      frame_pcs,
520                                      return_type,
521                                      exec_mode);
522  // On some platforms, we need a way to pass some platform dependent
523  // information to the unpacking code so the skeletal frames come out
524  // correct (initial fp value, unextended sp, ...)
525  info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
526
527  if (array->frames() > 1) {
528    if (VerifyStack && TraceDeoptimization) {
529      ttyLocker ttyl;
530      tty->print_cr("Deoptimizing method containing inlining");
531    }
532  }
533
534  array->set_unroll_block(info);
535  return info;
536}
537
538// Called to cleanup deoptimization data structures in normal case
539// after unpacking to stack and when stack overflow error occurs
540void Deoptimization::cleanup_deopt_info(JavaThread *thread,
541                                        vframeArray *array) {
542
543  // Get array if coming from exception
544  if (array == NULL) {
545    array = thread->vframe_array_head();
546  }
547  thread->set_vframe_array_head(NULL);
548
549  // Free the previous UnrollBlock
550  vframeArray* old_array = thread->vframe_array_last();
551  thread->set_vframe_array_last(array);
552
553  if (old_array != NULL) {
554    UnrollBlock* old_info = old_array->unroll_block();
555    old_array->set_unroll_block(NULL);
556    delete old_info;
557    delete old_array;
558  }
559
560  // Deallocate any resource creating in this routine and any ResourceObjs allocated
561  // inside the vframeArray (StackValueCollections)
562
563  delete thread->deopt_mark();
564  thread->set_deopt_mark(NULL);
565  thread->set_deopt_compiled_method(NULL);
566
567
568  if (JvmtiExport::can_pop_frame()) {
569#ifndef CC_INTERP
570    // Regardless of whether we entered this routine with the pending
571    // popframe condition bit set, we should always clear it now
572    thread->clear_popframe_condition();
573#else
574    // C++ interpreter will clear has_pending_popframe when it enters
575    // with method_resume. For deopt_resume2 we clear it now.
576    if (thread->popframe_forcing_deopt_reexecution())
577        thread->clear_popframe_condition();
578#endif /* CC_INTERP */
579  }
580
581  // unpack_frames() is called at the end of the deoptimization handler
582  // and (in C2) at the end of the uncommon trap handler. Note this fact
583  // so that an asynchronous stack walker can work again. This counter is
584  // incremented at the beginning of fetch_unroll_info() and (in C2) at
585  // the beginning of uncommon_trap().
586  thread->dec_in_deopt_handler();
587}
588
589// Moved from cpu directories because none of the cpus has callee save values.
590// If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
591void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
592
593  // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
594  // the days we had adapter frames. When we deoptimize a situation where a
595  // compiled caller calls a compiled caller will have registers it expects
596  // to survive the call to the callee. If we deoptimize the callee the only
597  // way we can restore these registers is to have the oldest interpreter
598  // frame that we create restore these values. That is what this routine
599  // will accomplish.
600
601  // At the moment we have modified c2 to not have any callee save registers
602  // so this problem does not exist and this routine is just a place holder.
603
604  assert(f->is_interpreted_frame(), "must be interpreted");
605}
606
607// Return BasicType of value being returned
608JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
609
610  // We are already active int he special DeoptResourceMark any ResourceObj's we
611  // allocate will be freed at the end of the routine.
612
613  // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
614  // but makes the entry a little slower. There is however a little dance we have to
615  // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
616  ResetNoHandleMark rnhm; // No-op in release/product versions
617  HandleMark hm;
618
619  frame stub_frame = thread->last_frame();
620
621  // Since the frame to unpack is the top frame of this thread, the vframe_array_head
622  // must point to the vframeArray for the unpack frame.
623  vframeArray* array = thread->vframe_array_head();
624
625#ifndef PRODUCT
626  if (TraceDeoptimization) {
627    ttyLocker ttyl;
628    tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
629                  p2i(thread), p2i(array), exec_mode);
630  }
631#endif
632  Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
633              p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
634
635  UnrollBlock* info = array->unroll_block();
636
637  // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
638  array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
639
640  BasicType bt = info->return_type();
641
642  // If we have an exception pending, claim that the return type is an oop
643  // so the deopt_blob does not overwrite the exception_oop.
644
645  if (exec_mode == Unpack_exception)
646    bt = T_OBJECT;
647
648  // Cleanup thread deopt data
649  cleanup_deopt_info(thread, array);
650
651#ifndef PRODUCT
652  if (VerifyStack) {
653    ResourceMark res_mark;
654
655    thread->validate_frame_layout();
656
657    // Verify that the just-unpacked frames match the interpreter's
658    // notions of expression stack and locals
659    vframeArray* cur_array = thread->vframe_array_last();
660    RegisterMap rm(thread, false);
661    rm.set_include_argument_oops(false);
662    bool is_top_frame = true;
663    int callee_size_of_parameters = 0;
664    int callee_max_locals = 0;
665    for (int i = 0; i < cur_array->frames(); i++) {
666      vframeArrayElement* el = cur_array->element(i);
667      frame* iframe = el->iframe();
668      guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
669
670      // Get the oop map for this bci
671      InterpreterOopMap mask;
672      int cur_invoke_parameter_size = 0;
673      bool try_next_mask = false;
674      int next_mask_expression_stack_size = -1;
675      int top_frame_expression_stack_adjustment = 0;
676      methodHandle mh(thread, iframe->interpreter_frame_method());
677      OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
678      BytecodeStream str(mh);
679      str.set_start(iframe->interpreter_frame_bci());
680      int max_bci = mh->code_size();
681      // Get to the next bytecode if possible
682      assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
683      // Check to see if we can grab the number of outgoing arguments
684      // at an uncommon trap for an invoke (where the compiler
685      // generates debug info before the invoke has executed)
686      Bytecodes::Code cur_code = str.next();
687      if (cur_code == Bytecodes::_invokevirtual   ||
688          cur_code == Bytecodes::_invokespecial   ||
689          cur_code == Bytecodes::_invokestatic    ||
690          cur_code == Bytecodes::_invokeinterface ||
691          cur_code == Bytecodes::_invokedynamic) {
692        Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
693        Symbol* signature = invoke.signature();
694        ArgumentSizeComputer asc(signature);
695        cur_invoke_parameter_size = asc.size();
696        if (invoke.has_receiver()) {
697          // Add in receiver
698          ++cur_invoke_parameter_size;
699        }
700        if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
701          callee_size_of_parameters++;
702        }
703      }
704      if (str.bci() < max_bci) {
705        Bytecodes::Code bc = str.next();
706        if (bc >= 0) {
707          // The interpreter oop map generator reports results before
708          // the current bytecode has executed except in the case of
709          // calls. It seems to be hard to tell whether the compiler
710          // has emitted debug information matching the "state before"
711          // a given bytecode or the state after, so we try both
712          switch (cur_code) {
713            case Bytecodes::_invokevirtual:
714            case Bytecodes::_invokespecial:
715            case Bytecodes::_invokestatic:
716            case Bytecodes::_invokeinterface:
717            case Bytecodes::_invokedynamic:
718            case Bytecodes::_athrow:
719              break;
720            default: {
721              InterpreterOopMap next_mask;
722              OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
723              next_mask_expression_stack_size = next_mask.expression_stack_size();
724              // Need to subtract off the size of the result type of
725              // the bytecode because this is not described in the
726              // debug info but returned to the interpreter in the TOS
727              // caching register
728              BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
729              if (bytecode_result_type != T_ILLEGAL) {
730                top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
731              }
732              assert(top_frame_expression_stack_adjustment >= 0, "");
733              try_next_mask = true;
734              break;
735            }
736          }
737        }
738      }
739
740      // Verify stack depth and oops in frame
741      // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
742      if (!(
743            /* SPARC */
744            (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
745            /* x86 */
746            (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
747            (try_next_mask &&
748             (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
749                                                                    top_frame_expression_stack_adjustment))) ||
750            (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
751            (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
752             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
753            )) {
754        ttyLocker ttyl;
755
756        // Print out some information that will help us debug the problem
757        tty->print_cr("Wrong number of expression stack elements during deoptimization");
758        tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
759        tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
760                      iframe->interpreter_frame_expression_stack_size());
761        tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
762        tty->print_cr("  try_next_mask = %d", try_next_mask);
763        tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
764        tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
765        tty->print_cr("  callee_max_locals = %d", callee_max_locals);
766        tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
767        tty->print_cr("  exec_mode = %d", exec_mode);
768        tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
769        tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
770        tty->print_cr("  Interpreted frames:");
771        for (int k = 0; k < cur_array->frames(); k++) {
772          vframeArrayElement* el = cur_array->element(k);
773          tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
774        }
775        cur_array->print_on_2(tty);
776        guarantee(false, "wrong number of expression stack elements during deopt");
777      }
778      VerifyOopClosure verify;
779      iframe->oops_interpreted_do(&verify, &rm, false);
780      callee_size_of_parameters = mh->size_of_parameters();
781      callee_max_locals = mh->max_locals();
782      is_top_frame = false;
783    }
784  }
785#endif /* !PRODUCT */
786
787
788  return bt;
789JRT_END
790
791
792int Deoptimization::deoptimize_dependents() {
793  Threads::deoptimized_wrt_marked_nmethods();
794  return 0;
795}
796
797Deoptimization::DeoptAction Deoptimization::_unloaded_action
798  = Deoptimization::Action_reinterpret;
799
800#if defined(COMPILER2) || INCLUDE_JVMCI
801bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
802  Handle pending_exception(THREAD, thread->pending_exception());
803  const char* exception_file = thread->exception_file();
804  int exception_line = thread->exception_line();
805  thread->clear_pending_exception();
806
807  bool failures = false;
808
809  for (int i = 0; i < objects->length(); i++) {
810    assert(objects->at(i)->is_object(), "invalid debug information");
811    ObjectValue* sv = (ObjectValue*) objects->at(i);
812
813    Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
814    oop obj = NULL;
815
816    if (k->is_instance_klass()) {
817      InstanceKlass* ik = InstanceKlass::cast(k);
818      obj = ik->allocate_instance(THREAD);
819    } else if (k->is_typeArray_klass()) {
820      TypeArrayKlass* ak = TypeArrayKlass::cast(k);
821      assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
822      int len = sv->field_size() / type2size[ak->element_type()];
823      obj = ak->allocate(len, THREAD);
824    } else if (k->is_objArray_klass()) {
825      ObjArrayKlass* ak = ObjArrayKlass::cast(k);
826      obj = ak->allocate(sv->field_size(), THREAD);
827    }
828
829    if (obj == NULL) {
830      failures = true;
831    }
832
833    assert(sv->value().is_null(), "redundant reallocation");
834    assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
835    CLEAR_PENDING_EXCEPTION;
836    sv->set_value(obj);
837  }
838
839  if (failures) {
840    THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
841  } else if (pending_exception.not_null()) {
842    thread->set_pending_exception(pending_exception(), exception_file, exception_line);
843  }
844
845  return failures;
846}
847
848// restore elements of an eliminated type array
849void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
850  int index = 0;
851  intptr_t val;
852
853  for (int i = 0; i < sv->field_size(); i++) {
854    StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
855    switch(type) {
856    case T_LONG: case T_DOUBLE: {
857      assert(value->type() == T_INT, "Agreement.");
858      StackValue* low =
859        StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
860#ifdef _LP64
861      jlong res = (jlong)low->get_int();
862#else
863#ifdef SPARC
864      // For SPARC we have to swap high and low words.
865      jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
866#else
867      jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
868#endif //SPARC
869#endif
870      obj->long_at_put(index, res);
871      break;
872    }
873
874    // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
875    case T_INT: case T_FLOAT: { // 4 bytes.
876      assert(value->type() == T_INT, "Agreement.");
877      bool big_value = false;
878      if (i + 1 < sv->field_size() && type == T_INT) {
879        if (sv->field_at(i)->is_location()) {
880          Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
881          if (type == Location::dbl || type == Location::lng) {
882            big_value = true;
883          }
884        } else if (sv->field_at(i)->is_constant_int()) {
885          ScopeValue* next_scope_field = sv->field_at(i + 1);
886          if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
887            big_value = true;
888          }
889        }
890      }
891
892      if (big_value) {
893        StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
894  #ifdef _LP64
895        jlong res = (jlong)low->get_int();
896  #else
897  #ifdef SPARC
898        // For SPARC we have to swap high and low words.
899        jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
900  #else
901        jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
902  #endif //SPARC
903  #endif
904        obj->int_at_put(index, (jint)*((jint*)&res));
905        obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
906      } else {
907        val = value->get_int();
908        obj->int_at_put(index, (jint)*((jint*)&val));
909      }
910      break;
911    }
912
913    case T_SHORT:
914      assert(value->type() == T_INT, "Agreement.");
915      val = value->get_int();
916      obj->short_at_put(index, (jshort)*((jint*)&val));
917      break;
918
919    case T_CHAR:
920      assert(value->type() == T_INT, "Agreement.");
921      val = value->get_int();
922      obj->char_at_put(index, (jchar)*((jint*)&val));
923      break;
924
925    case T_BYTE:
926      assert(value->type() == T_INT, "Agreement.");
927      val = value->get_int();
928      obj->byte_at_put(index, (jbyte)*((jint*)&val));
929      break;
930
931    case T_BOOLEAN:
932      assert(value->type() == T_INT, "Agreement.");
933      val = value->get_int();
934      obj->bool_at_put(index, (jboolean)*((jint*)&val));
935      break;
936
937      default:
938        ShouldNotReachHere();
939    }
940    index++;
941  }
942}
943
944
945// restore fields of an eliminated object array
946void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
947  for (int i = 0; i < sv->field_size(); i++) {
948    StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
949    assert(value->type() == T_OBJECT, "object element expected");
950    obj->obj_at_put(i, value->get_obj()());
951  }
952}
953
954class ReassignedField {
955public:
956  int _offset;
957  BasicType _type;
958public:
959  ReassignedField() {
960    _offset = 0;
961    _type = T_ILLEGAL;
962  }
963};
964
965int compare(ReassignedField* left, ReassignedField* right) {
966  return left->_offset - right->_offset;
967}
968
969// Restore fields of an eliminated instance object using the same field order
970// returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
971static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
972  if (klass->superklass() != NULL) {
973    svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal);
974  }
975
976  GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
977  for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
978    if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
979      ReassignedField field;
980      field._offset = fs.offset();
981      field._type = FieldType::basic_type(fs.signature());
982      fields->append(field);
983    }
984  }
985  fields->sort(compare);
986  for (int i = 0; i < fields->length(); i++) {
987    intptr_t val;
988    ScopeValue* scope_field = sv->field_at(svIndex);
989    StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
990    int offset = fields->at(i)._offset;
991    BasicType type = fields->at(i)._type;
992    switch (type) {
993      case T_OBJECT: case T_ARRAY:
994        assert(value->type() == T_OBJECT, "Agreement.");
995        obj->obj_field_put(offset, value->get_obj()());
996        break;
997
998      // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
999      case T_INT: case T_FLOAT: { // 4 bytes.
1000        assert(value->type() == T_INT, "Agreement.");
1001        bool big_value = false;
1002        if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1003          if (scope_field->is_location()) {
1004            Location::Type type = ((LocationValue*) scope_field)->location().type();
1005            if (type == Location::dbl || type == Location::lng) {
1006              big_value = true;
1007            }
1008          }
1009          if (scope_field->is_constant_int()) {
1010            ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1011            if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1012              big_value = true;
1013            }
1014          }
1015        }
1016
1017        if (big_value) {
1018          i++;
1019          assert(i < fields->length(), "second T_INT field needed");
1020          assert(fields->at(i)._type == T_INT, "T_INT field needed");
1021        } else {
1022          val = value->get_int();
1023          obj->int_field_put(offset, (jint)*((jint*)&val));
1024          break;
1025        }
1026      }
1027        /* no break */
1028
1029      case T_LONG: case T_DOUBLE: {
1030        assert(value->type() == T_INT, "Agreement.");
1031        StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1032#ifdef _LP64
1033        jlong res = (jlong)low->get_int();
1034#else
1035#ifdef SPARC
1036        // For SPARC we have to swap high and low words.
1037        jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1038#else
1039        jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1040#endif //SPARC
1041#endif
1042        obj->long_field_put(offset, res);
1043        break;
1044      }
1045
1046      case T_SHORT:
1047        assert(value->type() == T_INT, "Agreement.");
1048        val = value->get_int();
1049        obj->short_field_put(offset, (jshort)*((jint*)&val));
1050        break;
1051
1052      case T_CHAR:
1053        assert(value->type() == T_INT, "Agreement.");
1054        val = value->get_int();
1055        obj->char_field_put(offset, (jchar)*((jint*)&val));
1056        break;
1057
1058      case T_BYTE:
1059        assert(value->type() == T_INT, "Agreement.");
1060        val = value->get_int();
1061        obj->byte_field_put(offset, (jbyte)*((jint*)&val));
1062        break;
1063
1064      case T_BOOLEAN:
1065        assert(value->type() == T_INT, "Agreement.");
1066        val = value->get_int();
1067        obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1068        break;
1069
1070      default:
1071        ShouldNotReachHere();
1072    }
1073    svIndex++;
1074  }
1075  return svIndex;
1076}
1077
1078// restore fields of all eliminated objects and arrays
1079void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1080  for (int i = 0; i < objects->length(); i++) {
1081    ObjectValue* sv = (ObjectValue*) objects->at(i);
1082    Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1083    Handle obj = sv->value();
1084    assert(obj.not_null() || realloc_failures, "reallocation was missed");
1085    if (PrintDeoptimizationDetails) {
1086      tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1087    }
1088    if (obj.is_null()) {
1089      continue;
1090    }
1091
1092    if (k->is_instance_klass()) {
1093      InstanceKlass* ik = InstanceKlass::cast(k);
1094      reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1095    } else if (k->is_typeArray_klass()) {
1096      TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1097      reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1098    } else if (k->is_objArray_klass()) {
1099      reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1100    }
1101  }
1102}
1103
1104
1105// relock objects for which synchronization was eliminated
1106void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1107  for (int i = 0; i < monitors->length(); i++) {
1108    MonitorInfo* mon_info = monitors->at(i);
1109    if (mon_info->eliminated()) {
1110      assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1111      if (!mon_info->owner_is_scalar_replaced()) {
1112        Handle obj(thread, mon_info->owner());
1113        markOop mark = obj->mark();
1114        if (UseBiasedLocking && mark->has_bias_pattern()) {
1115          // New allocated objects may have the mark set to anonymously biased.
1116          // Also the deoptimized method may called methods with synchronization
1117          // where the thread-local object is bias locked to the current thread.
1118          assert(mark->is_biased_anonymously() ||
1119                 mark->biased_locker() == thread, "should be locked to current thread");
1120          // Reset mark word to unbiased prototype.
1121          markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
1122          obj->set_mark(unbiased_prototype);
1123        }
1124        BasicLock* lock = mon_info->lock();
1125        ObjectSynchronizer::slow_enter(obj, lock, thread);
1126        assert(mon_info->owner()->is_locked(), "object must be locked now");
1127      }
1128    }
1129  }
1130}
1131
1132
1133#ifndef PRODUCT
1134// print information about reallocated objects
1135void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1136  fieldDescriptor fd;
1137
1138  for (int i = 0; i < objects->length(); i++) {
1139    ObjectValue* sv = (ObjectValue*) objects->at(i);
1140    Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1141    Handle obj = sv->value();
1142
1143    tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1144    k->print_value();
1145    assert(obj.not_null() || realloc_failures, "reallocation was missed");
1146    if (obj.is_null()) {
1147      tty->print(" allocation failed");
1148    } else {
1149      tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1150    }
1151    tty->cr();
1152
1153    if (Verbose && !obj.is_null()) {
1154      k->oop_print_on(obj(), tty);
1155    }
1156  }
1157}
1158#endif
1159#endif // COMPILER2 || INCLUDE_JVMCI
1160
1161vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1162  Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1163
1164#ifndef PRODUCT
1165  if (PrintDeoptimizationDetails) {
1166    ttyLocker ttyl;
1167    tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1168    fr.print_on(tty);
1169    tty->print_cr("     Virtual frames (innermost first):");
1170    for (int index = 0; index < chunk->length(); index++) {
1171      compiledVFrame* vf = chunk->at(index);
1172      tty->print("       %2d - ", index);
1173      vf->print_value();
1174      int bci = chunk->at(index)->raw_bci();
1175      const char* code_name;
1176      if (bci == SynchronizationEntryBCI) {
1177        code_name = "sync entry";
1178      } else {
1179        Bytecodes::Code code = vf->method()->code_at(bci);
1180        code_name = Bytecodes::name(code);
1181      }
1182      tty->print(" - %s", code_name);
1183      tty->print_cr(" @ bci %d ", bci);
1184      if (Verbose) {
1185        vf->print();
1186        tty->cr();
1187      }
1188    }
1189  }
1190#endif
1191
1192  // Register map for next frame (used for stack crawl).  We capture
1193  // the state of the deopt'ing frame's caller.  Thus if we need to
1194  // stuff a C2I adapter we can properly fill in the callee-save
1195  // register locations.
1196  frame caller = fr.sender(reg_map);
1197  int frame_size = caller.sp() - fr.sp();
1198
1199  frame sender = caller;
1200
1201  // Since the Java thread being deoptimized will eventually adjust it's own stack,
1202  // the vframeArray containing the unpacking information is allocated in the C heap.
1203  // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1204  vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1205
1206  // Compare the vframeArray to the collected vframes
1207  assert(array->structural_compare(thread, chunk), "just checking");
1208
1209#ifndef PRODUCT
1210  if (PrintDeoptimizationDetails) {
1211    ttyLocker ttyl;
1212    tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1213  }
1214#endif // PRODUCT
1215
1216  return array;
1217}
1218
1219#if defined(COMPILER2) || INCLUDE_JVMCI
1220void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1221  // Reallocation of some scalar replaced objects failed. Record
1222  // that we need to pop all the interpreter frames for the
1223  // deoptimized compiled frame.
1224  assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1225  thread->set_frames_to_pop_failed_realloc(array->frames());
1226  // Unlock all monitors here otherwise the interpreter will see a
1227  // mix of locked and unlocked monitors (because of failed
1228  // reallocations of synchronized objects) and be confused.
1229  for (int i = 0; i < array->frames(); i++) {
1230    MonitorChunk* monitors = array->element(i)->monitors();
1231    if (monitors != NULL) {
1232      for (int j = 0; j < monitors->number_of_monitors(); j++) {
1233        BasicObjectLock* src = monitors->at(j);
1234        if (src->obj() != NULL) {
1235          ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1236        }
1237      }
1238      array->element(i)->free_monitors(thread);
1239#ifdef ASSERT
1240      array->element(i)->set_removed_monitors();
1241#endif
1242    }
1243  }
1244}
1245#endif
1246
1247static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1248  GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1249  Thread* thread = Thread::current();
1250  for (int i = 0; i < monitors->length(); i++) {
1251    MonitorInfo* mon_info = monitors->at(i);
1252    if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1253      objects_to_revoke->append(Handle(thread, mon_info->owner()));
1254    }
1255  }
1256}
1257
1258
1259void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1260  if (!UseBiasedLocking) {
1261    return;
1262  }
1263
1264  GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1265
1266  // Unfortunately we don't have a RegisterMap available in most of
1267  // the places we want to call this routine so we need to walk the
1268  // stack again to update the register map.
1269  if (map == NULL || !map->update_map()) {
1270    StackFrameStream sfs(thread, true);
1271    bool found = false;
1272    while (!found && !sfs.is_done()) {
1273      frame* cur = sfs.current();
1274      sfs.next();
1275      found = cur->id() == fr.id();
1276    }
1277    assert(found, "frame to be deoptimized not found on target thread's stack");
1278    map = sfs.register_map();
1279  }
1280
1281  vframe* vf = vframe::new_vframe(&fr, map, thread);
1282  compiledVFrame* cvf = compiledVFrame::cast(vf);
1283  // Revoke monitors' biases in all scopes
1284  while (!cvf->is_top()) {
1285    collect_monitors(cvf, objects_to_revoke);
1286    cvf = compiledVFrame::cast(cvf->sender());
1287  }
1288  collect_monitors(cvf, objects_to_revoke);
1289
1290  if (SafepointSynchronize::is_at_safepoint()) {
1291    BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1292  } else {
1293    BiasedLocking::revoke(objects_to_revoke);
1294  }
1295}
1296
1297
1298void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1299  if (!UseBiasedLocking) {
1300    return;
1301  }
1302
1303  assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1304  GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1305  for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1306    if (jt->has_last_Java_frame()) {
1307      StackFrameStream sfs(jt, true);
1308      while (!sfs.is_done()) {
1309        frame* cur = sfs.current();
1310        if (cb->contains(cur->pc())) {
1311          vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1312          compiledVFrame* cvf = compiledVFrame::cast(vf);
1313          // Revoke monitors' biases in all scopes
1314          while (!cvf->is_top()) {
1315            collect_monitors(cvf, objects_to_revoke);
1316            cvf = compiledVFrame::cast(cvf->sender());
1317          }
1318          collect_monitors(cvf, objects_to_revoke);
1319        }
1320        sfs.next();
1321      }
1322    }
1323  }
1324  BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1325}
1326
1327
1328void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1329  assert(fr.can_be_deoptimized(), "checking frame type");
1330
1331  gather_statistics(reason, Action_none, Bytecodes::_illegal);
1332
1333  if (LogCompilation && xtty != NULL) {
1334    CompiledMethod* cm = fr.cb()->as_compiled_method_or_null();
1335    assert(cm != NULL, "only compiled methods can deopt");
1336
1337    ttyLocker ttyl;
1338    xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1339    cm->log_identity(xtty);
1340    xtty->end_head();
1341    for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1342      xtty->begin_elem("jvms bci='%d'", sd->bci());
1343      xtty->method(sd->method());
1344      xtty->end_elem();
1345      if (sd->is_top())  break;
1346    }
1347    xtty->tail("deoptimized");
1348  }
1349
1350  // Patch the compiled method so that when execution returns to it we will
1351  // deopt the execution state and return to the interpreter.
1352  fr.deoptimize(thread);
1353}
1354
1355void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1356  deoptimize(thread, fr, map, Reason_constraint);
1357}
1358
1359void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1360  // Deoptimize only if the frame comes from compile code.
1361  // Do not deoptimize the frame which is already patched
1362  // during the execution of the loops below.
1363  if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1364    return;
1365  }
1366  ResourceMark rm;
1367  DeoptimizationMarker dm;
1368  if (UseBiasedLocking) {
1369    revoke_biases_of_monitors(thread, fr, map);
1370  }
1371  deoptimize_single_frame(thread, fr, reason);
1372
1373}
1374
1375
1376void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1377  assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1378         "can only deoptimize other thread at a safepoint");
1379  // Compute frame and register map based on thread and sp.
1380  RegisterMap reg_map(thread, UseBiasedLocking);
1381  frame fr = thread->last_frame();
1382  while (fr.id() != id) {
1383    fr = fr.sender(&reg_map);
1384  }
1385  deoptimize(thread, fr, &reg_map, reason);
1386}
1387
1388
1389void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1390  if (thread == Thread::current()) {
1391    Deoptimization::deoptimize_frame_internal(thread, id, reason);
1392  } else {
1393    VM_DeoptimizeFrame deopt(thread, id, reason);
1394    VMThread::execute(&deopt);
1395  }
1396}
1397
1398void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1399  deoptimize_frame(thread, id, Reason_constraint);
1400}
1401
1402// JVMTI PopFrame support
1403JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1404{
1405  thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1406}
1407JRT_END
1408
1409MethodData*
1410Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1411                                bool create_if_missing) {
1412  Thread* THREAD = thread;
1413  MethodData* mdo = m()->method_data();
1414  if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1415    // Build an MDO.  Ignore errors like OutOfMemory;
1416    // that simply means we won't have an MDO to update.
1417    Method::build_interpreter_method_data(m, THREAD);
1418    if (HAS_PENDING_EXCEPTION) {
1419      assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1420      CLEAR_PENDING_EXCEPTION;
1421    }
1422    mdo = m()->method_data();
1423  }
1424  return mdo;
1425}
1426
1427#if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
1428void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1429  // in case of an unresolved klass entry, load the class.
1430  if (constant_pool->tag_at(index).is_unresolved_klass()) {
1431    Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1432    return;
1433  }
1434
1435  if (!constant_pool->tag_at(index).is_symbol()) return;
1436
1437  Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1438  Symbol*  symbol  = constant_pool->symbol_at(index);
1439
1440  // class name?
1441  if (symbol->byte_at(0) != '(') {
1442    Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1443    SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1444    return;
1445  }
1446
1447  // then it must be a signature!
1448  ResourceMark rm(THREAD);
1449  for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1450    if (ss.is_object()) {
1451      Symbol* class_name = ss.as_symbol(CHECK);
1452      Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1453      SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1454    }
1455  }
1456}
1457
1458
1459void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
1460  EXCEPTION_MARK;
1461  load_class_by_index(constant_pool, index, THREAD);
1462  if (HAS_PENDING_EXCEPTION) {
1463    // Exception happened during classloading. We ignore the exception here, since it
1464    // is going to be rethrown since the current activation is going to be deoptimized and
1465    // the interpreter will re-execute the bytecode.
1466    CLEAR_PENDING_EXCEPTION;
1467    // Class loading called java code which may have caused a stack
1468    // overflow. If the exception was thrown right before the return
1469    // to the runtime the stack is no longer guarded. Reguard the
1470    // stack otherwise if we return to the uncommon trap blob and the
1471    // stack bang causes a stack overflow we crash.
1472    assert(THREAD->is_Java_thread(), "only a java thread can be here");
1473    JavaThread* thread = (JavaThread*)THREAD;
1474    bool guard_pages_enabled = thread->stack_guards_enabled();
1475    if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1476    assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1477  }
1478}
1479
1480JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1481  HandleMark hm;
1482
1483  // uncommon_trap() is called at the beginning of the uncommon trap
1484  // handler. Note this fact before we start generating temporary frames
1485  // that can confuse an asynchronous stack walker. This counter is
1486  // decremented at the end of unpack_frames().
1487  thread->inc_in_deopt_handler();
1488
1489  // We need to update the map if we have biased locking.
1490#if INCLUDE_JVMCI
1491  // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1492  RegisterMap reg_map(thread, true);
1493#else
1494  RegisterMap reg_map(thread, UseBiasedLocking);
1495#endif
1496  frame stub_frame = thread->last_frame();
1497  frame fr = stub_frame.sender(&reg_map);
1498  // Make sure the calling nmethod is not getting deoptimized and removed
1499  // before we are done with it.
1500  nmethodLocker nl(fr.pc());
1501
1502  // Log a message
1503  Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1504              trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1505
1506  {
1507    ResourceMark rm;
1508
1509    // Revoke biases of any monitors in the frame to ensure we can migrate them
1510    revoke_biases_of_monitors(thread, fr, &reg_map);
1511
1512    DeoptReason reason = trap_request_reason(trap_request);
1513    DeoptAction action = trap_request_action(trap_request);
1514#if INCLUDE_JVMCI
1515    int debug_id = trap_request_debug_id(trap_request);
1516#endif
1517    jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1518
1519    vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1520    compiledVFrame* cvf = compiledVFrame::cast(vf);
1521
1522    CompiledMethod* nm = cvf->code();
1523
1524    ScopeDesc*      trap_scope  = cvf->scope();
1525
1526    if (TraceDeoptimization) {
1527      ttyLocker ttyl;
1528      tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1529#if INCLUDE_JVMCI
1530          , debug_id
1531#endif
1532          );
1533    }
1534
1535    methodHandle    trap_method = trap_scope->method();
1536    int             trap_bci    = trap_scope->bci();
1537#if INCLUDE_JVMCI
1538    oop speculation = thread->pending_failed_speculation();
1539    if (nm->is_compiled_by_jvmci()) {
1540      if (speculation != NULL) {
1541        oop speculation_log = nm->as_nmethod()->speculation_log();
1542        if (speculation_log != NULL) {
1543          if (TraceDeoptimization || TraceUncollectedSpeculations) {
1544            if (HotSpotSpeculationLog::lastFailed(speculation_log) != NULL) {
1545              tty->print_cr("A speculation that was not collected by the compiler is being overwritten");
1546            }
1547          }
1548          if (TraceDeoptimization) {
1549            tty->print_cr("Saving speculation to speculation log");
1550          }
1551          HotSpotSpeculationLog::set_lastFailed(speculation_log, speculation);
1552        } else {
1553          if (TraceDeoptimization) {
1554            tty->print_cr("Speculation present but no speculation log");
1555          }
1556        }
1557        thread->set_pending_failed_speculation(NULL);
1558      } else {
1559        if (TraceDeoptimization) {
1560          tty->print_cr("No speculation");
1561        }
1562      }
1563    } else {
1564      assert(speculation == NULL, "There should not be a speculation for method compiled by non-JVMCI compilers");
1565    }
1566
1567    if (trap_bci == SynchronizationEntryBCI) {
1568      trap_bci = 0;
1569      thread->set_pending_monitorenter(true);
1570    }
1571
1572    if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1573      thread->set_pending_transfer_to_interpreter(true);
1574    }
1575#endif
1576
1577    Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1578    // Record this event in the histogram.
1579    gather_statistics(reason, action, trap_bc);
1580
1581    // Ensure that we can record deopt. history:
1582    // Need MDO to record RTM code generation state.
1583    bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1584
1585    methodHandle profiled_method;
1586#if INCLUDE_JVMCI
1587    if (nm->is_compiled_by_jvmci()) {
1588      profiled_method = nm->method();
1589    } else {
1590      profiled_method = trap_method;
1591    }
1592#else
1593    profiled_method = trap_method;
1594#endif
1595
1596    MethodData* trap_mdo =
1597      get_method_data(thread, profiled_method, create_if_missing);
1598
1599    // Log a message
1600    Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
1601                              trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1602                              trap_method->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
1603
1604    // Print a bunch of diagnostics, if requested.
1605    if (TraceDeoptimization || LogCompilation) {
1606      ResourceMark rm;
1607      ttyLocker ttyl;
1608      char buf[100];
1609      if (xtty != NULL) {
1610        xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1611                         os::current_thread_id(),
1612                         format_trap_request(buf, sizeof(buf), trap_request));
1613        nm->log_identity(xtty);
1614      }
1615      Symbol* class_name = NULL;
1616      bool unresolved = false;
1617      if (unloaded_class_index >= 0) {
1618        constantPoolHandle constants (THREAD, trap_method->constants());
1619        if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1620          class_name = constants->klass_name_at(unloaded_class_index);
1621          unresolved = true;
1622          if (xtty != NULL)
1623            xtty->print(" unresolved='1'");
1624        } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1625          class_name = constants->symbol_at(unloaded_class_index);
1626        }
1627        if (xtty != NULL)
1628          xtty->name(class_name);
1629      }
1630      if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1631        // Dump the relevant MDO state.
1632        // This is the deopt count for the current reason, any previous
1633        // reasons or recompiles seen at this point.
1634        int dcnt = trap_mdo->trap_count(reason);
1635        if (dcnt != 0)
1636          xtty->print(" count='%d'", dcnt);
1637        ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1638        int dos = (pdata == NULL)? 0: pdata->trap_state();
1639        if (dos != 0) {
1640          xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1641          if (trap_state_is_recompiled(dos)) {
1642            int recnt2 = trap_mdo->overflow_recompile_count();
1643            if (recnt2 != 0)
1644              xtty->print(" recompiles2='%d'", recnt2);
1645          }
1646        }
1647      }
1648      if (xtty != NULL) {
1649        xtty->stamp();
1650        xtty->end_head();
1651      }
1652      if (TraceDeoptimization) {  // make noise on the tty
1653        tty->print("Uncommon trap occurred in");
1654        nm->method()->print_short_name(tty);
1655        tty->print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
1656#if INCLUDE_JVMCI
1657        if (nm->is_nmethod()) {
1658          oop installedCode = nm->as_nmethod()->jvmci_installed_code();
1659          if (installedCode != NULL) {
1660            oop installedCodeName = NULL;
1661            if (installedCode->is_a(InstalledCode::klass())) {
1662              installedCodeName = InstalledCode::name(installedCode);
1663            }
1664            if (installedCodeName != NULL) {
1665              tty->print(" (JVMCI: installedCodeName=%s) ", java_lang_String::as_utf8_string(installedCodeName));
1666            } else {
1667              tty->print(" (JVMCI: installed code has no name) ");
1668            }
1669          } else if (nm->is_compiled_by_jvmci()) {
1670            tty->print(" (JVMCI: no installed code) ");
1671          }
1672        }
1673#endif
1674        tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1675                   p2i(fr.pc()),
1676                   os::current_thread_id(),
1677                   trap_reason_name(reason),
1678                   trap_action_name(action),
1679                   unloaded_class_index
1680#if INCLUDE_JVMCI
1681                   , debug_id
1682#endif
1683                   );
1684        if (class_name != NULL) {
1685          tty->print(unresolved ? " unresolved class: " : " symbol: ");
1686          class_name->print_symbol_on(tty);
1687        }
1688        tty->cr();
1689      }
1690      if (xtty != NULL) {
1691        // Log the precise location of the trap.
1692        for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1693          xtty->begin_elem("jvms bci='%d'", sd->bci());
1694          xtty->method(sd->method());
1695          xtty->end_elem();
1696          if (sd->is_top())  break;
1697        }
1698        xtty->tail("uncommon_trap");
1699      }
1700    }
1701    // (End diagnostic printout.)
1702
1703    // Load class if necessary
1704    if (unloaded_class_index >= 0) {
1705      constantPoolHandle constants(THREAD, trap_method->constants());
1706      load_class_by_index(constants, unloaded_class_index);
1707    }
1708
1709    // Flush the nmethod if necessary and desirable.
1710    //
1711    // We need to avoid situations where we are re-flushing the nmethod
1712    // because of a hot deoptimization site.  Repeated flushes at the same
1713    // point need to be detected by the compiler and avoided.  If the compiler
1714    // cannot avoid them (or has a bug and "refuses" to avoid them), this
1715    // module must take measures to avoid an infinite cycle of recompilation
1716    // and deoptimization.  There are several such measures:
1717    //
1718    //   1. If a recompilation is ordered a second time at some site X
1719    //   and for the same reason R, the action is adjusted to 'reinterpret',
1720    //   to give the interpreter time to exercise the method more thoroughly.
1721    //   If this happens, the method's overflow_recompile_count is incremented.
1722    //
1723    //   2. If the compiler fails to reduce the deoptimization rate, then
1724    //   the method's overflow_recompile_count will begin to exceed the set
1725    //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1726    //   is adjusted to 'make_not_compilable', and the method is abandoned
1727    //   to the interpreter.  This is a performance hit for hot methods,
1728    //   but is better than a disastrous infinite cycle of recompilations.
1729    //   (Actually, only the method containing the site X is abandoned.)
1730    //
1731    //   3. In parallel with the previous measures, if the total number of
1732    //   recompilations of a method exceeds the much larger set limit
1733    //   PerMethodRecompilationCutoff, the method is abandoned.
1734    //   This should only happen if the method is very large and has
1735    //   many "lukewarm" deoptimizations.  The code which enforces this
1736    //   limit is elsewhere (class nmethod, class Method).
1737    //
1738    // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1739    // to recompile at each bytecode independently of the per-BCI cutoff.
1740    //
1741    // The decision to update code is up to the compiler, and is encoded
1742    // in the Action_xxx code.  If the compiler requests Action_none
1743    // no trap state is changed, no compiled code is changed, and the
1744    // computation suffers along in the interpreter.
1745    //
1746    // The other action codes specify various tactics for decompilation
1747    // and recompilation.  Action_maybe_recompile is the loosest, and
1748    // allows the compiled code to stay around until enough traps are seen,
1749    // and until the compiler gets around to recompiling the trapping method.
1750    //
1751    // The other actions cause immediate removal of the present code.
1752
1753    // Traps caused by injected profile shouldn't pollute trap counts.
1754    bool injected_profile_trap = trap_method->has_injected_profile() &&
1755                                 (reason == Reason_intrinsic || reason == Reason_unreached);
1756
1757    bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1758    bool make_not_entrant = false;
1759    bool make_not_compilable = false;
1760    bool reprofile = false;
1761    switch (action) {
1762    case Action_none:
1763      // Keep the old code.
1764      update_trap_state = false;
1765      break;
1766    case Action_maybe_recompile:
1767      // Do not need to invalidate the present code, but we can
1768      // initiate another
1769      // Start compiler without (necessarily) invalidating the nmethod.
1770      // The system will tolerate the old code, but new code should be
1771      // generated when possible.
1772      break;
1773    case Action_reinterpret:
1774      // Go back into the interpreter for a while, and then consider
1775      // recompiling form scratch.
1776      make_not_entrant = true;
1777      // Reset invocation counter for outer most method.
1778      // This will allow the interpreter to exercise the bytecodes
1779      // for a while before recompiling.
1780      // By contrast, Action_make_not_entrant is immediate.
1781      //
1782      // Note that the compiler will track null_check, null_assert,
1783      // range_check, and class_check events and log them as if they
1784      // had been traps taken from compiled code.  This will update
1785      // the MDO trap history so that the next compilation will
1786      // properly detect hot trap sites.
1787      reprofile = true;
1788      break;
1789    case Action_make_not_entrant:
1790      // Request immediate recompilation, and get rid of the old code.
1791      // Make them not entrant, so next time they are called they get
1792      // recompiled.  Unloaded classes are loaded now so recompile before next
1793      // time they are called.  Same for uninitialized.  The interpreter will
1794      // link the missing class, if any.
1795      make_not_entrant = true;
1796      break;
1797    case Action_make_not_compilable:
1798      // Give up on compiling this method at all.
1799      make_not_entrant = true;
1800      make_not_compilable = true;
1801      break;
1802    default:
1803      ShouldNotReachHere();
1804    }
1805
1806    // Setting +ProfileTraps fixes the following, on all platforms:
1807    // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1808    // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1809    // recompile relies on a MethodData* to record heroic opt failures.
1810
1811    // Whether the interpreter is producing MDO data or not, we also need
1812    // to use the MDO to detect hot deoptimization points and control
1813    // aggressive optimization.
1814    bool inc_recompile_count = false;
1815    ProfileData* pdata = NULL;
1816    if (ProfileTraps && !is_client_compilation_mode_vm() && update_trap_state && trap_mdo != NULL) {
1817      assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1818      uint this_trap_count = 0;
1819      bool maybe_prior_trap = false;
1820      bool maybe_prior_recompile = false;
1821      pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1822#if INCLUDE_JVMCI
1823                                   nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1824#endif
1825                                   nm->method(),
1826                                   //outputs:
1827                                   this_trap_count,
1828                                   maybe_prior_trap,
1829                                   maybe_prior_recompile);
1830      // Because the interpreter also counts null, div0, range, and class
1831      // checks, these traps from compiled code are double-counted.
1832      // This is harmless; it just means that the PerXTrapLimit values
1833      // are in effect a little smaller than they look.
1834
1835      DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1836      if (per_bc_reason != Reason_none) {
1837        // Now take action based on the partially known per-BCI history.
1838        if (maybe_prior_trap
1839            && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1840          // If there are too many traps at this BCI, force a recompile.
1841          // This will allow the compiler to see the limit overflow, and
1842          // take corrective action, if possible.  The compiler generally
1843          // does not use the exact PerBytecodeTrapLimit value, but instead
1844          // changes its tactics if it sees any traps at all.  This provides
1845          // a little hysteresis, delaying a recompile until a trap happens
1846          // several times.
1847          //
1848          // Actually, since there is only one bit of counter per BCI,
1849          // the possible per-BCI counts are {0,1,(per-method count)}.
1850          // This produces accurate results if in fact there is only
1851          // one hot trap site, but begins to get fuzzy if there are
1852          // many sites.  For example, if there are ten sites each
1853          // trapping two or more times, they each get the blame for
1854          // all of their traps.
1855          make_not_entrant = true;
1856        }
1857
1858        // Detect repeated recompilation at the same BCI, and enforce a limit.
1859        if (make_not_entrant && maybe_prior_recompile) {
1860          // More than one recompile at this point.
1861          inc_recompile_count = maybe_prior_trap;
1862        }
1863      } else {
1864        // For reasons which are not recorded per-bytecode, we simply
1865        // force recompiles unconditionally.
1866        // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1867        make_not_entrant = true;
1868      }
1869
1870      // Go back to the compiler if there are too many traps in this method.
1871      if (this_trap_count >= per_method_trap_limit(reason)) {
1872        // If there are too many traps in this method, force a recompile.
1873        // This will allow the compiler to see the limit overflow, and
1874        // take corrective action, if possible.
1875        // (This condition is an unlikely backstop only, because the
1876        // PerBytecodeTrapLimit is more likely to take effect first,
1877        // if it is applicable.)
1878        make_not_entrant = true;
1879      }
1880
1881      // Here's more hysteresis:  If there has been a recompile at
1882      // this trap point already, run the method in the interpreter
1883      // for a while to exercise it more thoroughly.
1884      if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1885        reprofile = true;
1886      }
1887    }
1888
1889    // Take requested actions on the method:
1890
1891    // Recompile
1892    if (make_not_entrant) {
1893      if (!nm->make_not_entrant()) {
1894        return; // the call did not change nmethod's state
1895      }
1896
1897      if (pdata != NULL) {
1898        // Record the recompilation event, if any.
1899        int tstate0 = pdata->trap_state();
1900        int tstate1 = trap_state_set_recompiled(tstate0, true);
1901        if (tstate1 != tstate0)
1902          pdata->set_trap_state(tstate1);
1903      }
1904
1905#if INCLUDE_RTM_OPT
1906      // Restart collecting RTM locking abort statistic if the method
1907      // is recompiled for a reason other than RTM state change.
1908      // Assume that in new recompiled code the statistic could be different,
1909      // for example, due to different inlining.
1910      if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1911          UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) {
1912        trap_mdo->atomic_set_rtm_state(ProfileRTM);
1913      }
1914#endif
1915      // For code aging we count traps separately here, using make_not_entrant()
1916      // as a guard against simultaneous deopts in multiple threads.
1917      if (reason == Reason_tenured && trap_mdo != NULL) {
1918        trap_mdo->inc_tenure_traps();
1919      }
1920    }
1921
1922    if (inc_recompile_count) {
1923      trap_mdo->inc_overflow_recompile_count();
1924      if ((uint)trap_mdo->overflow_recompile_count() >
1925          (uint)PerBytecodeRecompilationCutoff) {
1926        // Give up on the method containing the bad BCI.
1927        if (trap_method() == nm->method()) {
1928          make_not_compilable = true;
1929        } else {
1930          trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1931          // But give grace to the enclosing nm->method().
1932        }
1933      }
1934    }
1935
1936    // Reprofile
1937    if (reprofile) {
1938      CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1939    }
1940
1941    // Give up compiling
1942    if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1943      assert(make_not_entrant, "consistent");
1944      nm->method()->set_not_compilable(CompLevel_full_optimization);
1945    }
1946
1947  } // Free marked resources
1948
1949}
1950JRT_END
1951
1952ProfileData*
1953Deoptimization::query_update_method_data(MethodData* trap_mdo,
1954                                         int trap_bci,
1955                                         Deoptimization::DeoptReason reason,
1956                                         bool update_total_trap_count,
1957#if INCLUDE_JVMCI
1958                                         bool is_osr,
1959#endif
1960                                         Method* compiled_method,
1961                                         //outputs:
1962                                         uint& ret_this_trap_count,
1963                                         bool& ret_maybe_prior_trap,
1964                                         bool& ret_maybe_prior_recompile) {
1965  bool maybe_prior_trap = false;
1966  bool maybe_prior_recompile = false;
1967  uint this_trap_count = 0;
1968  if (update_total_trap_count) {
1969    uint idx = reason;
1970#if INCLUDE_JVMCI
1971    if (is_osr) {
1972      idx += Reason_LIMIT;
1973    }
1974#endif
1975    uint prior_trap_count = trap_mdo->trap_count(idx);
1976    this_trap_count  = trap_mdo->inc_trap_count(idx);
1977
1978    // If the runtime cannot find a place to store trap history,
1979    // it is estimated based on the general condition of the method.
1980    // If the method has ever been recompiled, or has ever incurred
1981    // a trap with the present reason , then this BCI is assumed
1982    // (pessimistically) to be the culprit.
1983    maybe_prior_trap      = (prior_trap_count != 0);
1984    maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1985  }
1986  ProfileData* pdata = NULL;
1987
1988
1989  // For reasons which are recorded per bytecode, we check per-BCI data.
1990  DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1991  assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
1992  if (per_bc_reason != Reason_none) {
1993    // Find the profile data for this BCI.  If there isn't one,
1994    // try to allocate one from the MDO's set of spares.
1995    // This will let us detect a repeated trap at this point.
1996    pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
1997
1998    if (pdata != NULL) {
1999      if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2000        if (LogCompilation && xtty != NULL) {
2001          ttyLocker ttyl;
2002          // no more room for speculative traps in this MDO
2003          xtty->elem("speculative_traps_oom");
2004        }
2005      }
2006      // Query the trap state of this profile datum.
2007      int tstate0 = pdata->trap_state();
2008      if (!trap_state_has_reason(tstate0, per_bc_reason))
2009        maybe_prior_trap = false;
2010      if (!trap_state_is_recompiled(tstate0))
2011        maybe_prior_recompile = false;
2012
2013      // Update the trap state of this profile datum.
2014      int tstate1 = tstate0;
2015      // Record the reason.
2016      tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2017      // Store the updated state on the MDO, for next time.
2018      if (tstate1 != tstate0)
2019        pdata->set_trap_state(tstate1);
2020    } else {
2021      if (LogCompilation && xtty != NULL) {
2022        ttyLocker ttyl;
2023        // Missing MDP?  Leave a small complaint in the log.
2024        xtty->elem("missing_mdp bci='%d'", trap_bci);
2025      }
2026    }
2027  }
2028
2029  // Return results:
2030  ret_this_trap_count = this_trap_count;
2031  ret_maybe_prior_trap = maybe_prior_trap;
2032  ret_maybe_prior_recompile = maybe_prior_recompile;
2033  return pdata;
2034}
2035
2036void
2037Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2038  ResourceMark rm;
2039  // Ignored outputs:
2040  uint ignore_this_trap_count;
2041  bool ignore_maybe_prior_trap;
2042  bool ignore_maybe_prior_recompile;
2043  assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2044  // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2045  bool update_total_counts = JVMCI_ONLY(false) NOT_JVMCI(true);
2046  query_update_method_data(trap_mdo, trap_bci,
2047                           (DeoptReason)reason,
2048                           update_total_counts,
2049#if INCLUDE_JVMCI
2050                           false,
2051#endif
2052                           NULL,
2053                           ignore_this_trap_count,
2054                           ignore_maybe_prior_trap,
2055                           ignore_maybe_prior_recompile);
2056}
2057
2058Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
2059  if (TraceDeoptimization) {
2060    tty->print("Uncommon trap ");
2061  }
2062  // Still in Java no safepoints
2063  {
2064    // This enters VM and may safepoint
2065    uncommon_trap_inner(thread, trap_request);
2066  }
2067  return fetch_unroll_info_helper(thread, exec_mode);
2068}
2069
2070// Local derived constants.
2071// Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2072const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
2073const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2074
2075//---------------------------trap_state_reason---------------------------------
2076Deoptimization::DeoptReason
2077Deoptimization::trap_state_reason(int trap_state) {
2078  // This assert provides the link between the width of DataLayout::trap_bits
2079  // and the encoding of "recorded" reasons.  It ensures there are enough
2080  // bits to store all needed reasons in the per-BCI MDO profile.
2081  assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2082  int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2083  trap_state -= recompile_bit;
2084  if (trap_state == DS_REASON_MASK) {
2085    return Reason_many;
2086  } else {
2087    assert((int)Reason_none == 0, "state=0 => Reason_none");
2088    return (DeoptReason)trap_state;
2089  }
2090}
2091//-------------------------trap_state_has_reason-------------------------------
2092int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2093  assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2094  assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2095  int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2096  trap_state -= recompile_bit;
2097  if (trap_state == DS_REASON_MASK) {
2098    return -1;  // true, unspecifically (bottom of state lattice)
2099  } else if (trap_state == reason) {
2100    return 1;   // true, definitely
2101  } else if (trap_state == 0) {
2102    return 0;   // false, definitely (top of state lattice)
2103  } else {
2104    return 0;   // false, definitely
2105  }
2106}
2107//-------------------------trap_state_add_reason-------------------------------
2108int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2109  assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2110  int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2111  trap_state -= recompile_bit;
2112  if (trap_state == DS_REASON_MASK) {
2113    return trap_state + recompile_bit;     // already at state lattice bottom
2114  } else if (trap_state == reason) {
2115    return trap_state + recompile_bit;     // the condition is already true
2116  } else if (trap_state == 0) {
2117    return reason + recompile_bit;          // no condition has yet been true
2118  } else {
2119    return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2120  }
2121}
2122//-----------------------trap_state_is_recompiled------------------------------
2123bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2124  return (trap_state & DS_RECOMPILE_BIT) != 0;
2125}
2126//-----------------------trap_state_set_recompiled-----------------------------
2127int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2128  if (z)  return trap_state |  DS_RECOMPILE_BIT;
2129  else    return trap_state & ~DS_RECOMPILE_BIT;
2130}
2131//---------------------------format_trap_state---------------------------------
2132// This is used for debugging and diagnostics, including LogFile output.
2133const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2134                                              int trap_state) {
2135  assert(buflen > 0, "sanity");
2136  DeoptReason reason      = trap_state_reason(trap_state);
2137  bool        recomp_flag = trap_state_is_recompiled(trap_state);
2138  // Re-encode the state from its decoded components.
2139  int decoded_state = 0;
2140  if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2141    decoded_state = trap_state_add_reason(decoded_state, reason);
2142  if (recomp_flag)
2143    decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2144  // If the state re-encodes properly, format it symbolically.
2145  // Because this routine is used for debugging and diagnostics,
2146  // be robust even if the state is a strange value.
2147  size_t len;
2148  if (decoded_state != trap_state) {
2149    // Random buggy state that doesn't decode??
2150    len = jio_snprintf(buf, buflen, "#%d", trap_state);
2151  } else {
2152    len = jio_snprintf(buf, buflen, "%s%s",
2153                       trap_reason_name(reason),
2154                       recomp_flag ? " recompiled" : "");
2155  }
2156  return buf;
2157}
2158
2159
2160//--------------------------------statics--------------------------------------
2161const char* Deoptimization::_trap_reason_name[] = {
2162  // Note:  Keep this in sync. with enum DeoptReason.
2163  "none",
2164  "null_check",
2165  "null_assert" JVMCI_ONLY("_or_unreached0"),
2166  "range_check",
2167  "class_check",
2168  "array_check",
2169  "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2170  "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2171  "unloaded",
2172  "uninitialized",
2173  "unreached",
2174  "unhandled",
2175  "constraint",
2176  "div0_check",
2177  "age",
2178  "predicate",
2179  "loop_limit_check",
2180  "speculate_class_check",
2181  "speculate_null_check",
2182  "rtm_state_change",
2183  "unstable_if",
2184  "unstable_fused_if",
2185#if INCLUDE_JVMCI
2186  "aliasing",
2187  "transfer_to_interpreter",
2188  "not_compiled_exception_handler",
2189  "unresolved",
2190  "jsr_mismatch",
2191#endif
2192  "tenured"
2193};
2194const char* Deoptimization::_trap_action_name[] = {
2195  // Note:  Keep this in sync. with enum DeoptAction.
2196  "none",
2197  "maybe_recompile",
2198  "reinterpret",
2199  "make_not_entrant",
2200  "make_not_compilable"
2201};
2202
2203const char* Deoptimization::trap_reason_name(int reason) {
2204  // Check that every reason has a name
2205  STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2206
2207  if (reason == Reason_many)  return "many";
2208  if ((uint)reason < Reason_LIMIT)
2209    return _trap_reason_name[reason];
2210  static char buf[20];
2211  sprintf(buf, "reason%d", reason);
2212  return buf;
2213}
2214const char* Deoptimization::trap_action_name(int action) {
2215  // Check that every action has a name
2216  STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2217
2218  if ((uint)action < Action_LIMIT)
2219    return _trap_action_name[action];
2220  static char buf[20];
2221  sprintf(buf, "action%d", action);
2222  return buf;
2223}
2224
2225// This is used for debugging and diagnostics, including LogFile output.
2226const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2227                                                int trap_request) {
2228  jint unloaded_class_index = trap_request_index(trap_request);
2229  const char* reason = trap_reason_name(trap_request_reason(trap_request));
2230  const char* action = trap_action_name(trap_request_action(trap_request));
2231#if INCLUDE_JVMCI
2232  int debug_id = trap_request_debug_id(trap_request);
2233#endif
2234  size_t len;
2235  if (unloaded_class_index < 0) {
2236    len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2237                       reason, action
2238#if INCLUDE_JVMCI
2239                       ,debug_id
2240#endif
2241                       );
2242  } else {
2243    len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2244                       reason, action, unloaded_class_index
2245#if INCLUDE_JVMCI
2246                       ,debug_id
2247#endif
2248                       );
2249  }
2250  return buf;
2251}
2252
2253juint Deoptimization::_deoptimization_hist
2254        [Deoptimization::Reason_LIMIT]
2255    [1 + Deoptimization::Action_LIMIT]
2256        [Deoptimization::BC_CASE_LIMIT]
2257  = {0};
2258
2259enum {
2260  LSB_BITS = 8,
2261  LSB_MASK = right_n_bits(LSB_BITS)
2262};
2263
2264void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2265                                       Bytecodes::Code bc) {
2266  assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2267  assert(action >= 0 && action < Action_LIMIT, "oob");
2268  _deoptimization_hist[Reason_none][0][0] += 1;  // total
2269  _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2270  juint* cases = _deoptimization_hist[reason][1+action];
2271  juint* bc_counter_addr = NULL;
2272  juint  bc_counter      = 0;
2273  // Look for an unused counter, or an exact match to this BC.
2274  if (bc != Bytecodes::_illegal) {
2275    for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2276      juint* counter_addr = &cases[bc_case];
2277      juint  counter = *counter_addr;
2278      if ((counter == 0 && bc_counter_addr == NULL)
2279          || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2280        // this counter is either free or is already devoted to this BC
2281        bc_counter_addr = counter_addr;
2282        bc_counter = counter | bc;
2283      }
2284    }
2285  }
2286  if (bc_counter_addr == NULL) {
2287    // Overflow, or no given bytecode.
2288    bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2289    bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2290  }
2291  *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2292}
2293
2294jint Deoptimization::total_deoptimization_count() {
2295  return _deoptimization_hist[Reason_none][0][0];
2296}
2297
2298jint Deoptimization::deoptimization_count(DeoptReason reason) {
2299  assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2300  return _deoptimization_hist[reason][0][0];
2301}
2302
2303void Deoptimization::print_statistics() {
2304  juint total = total_deoptimization_count();
2305  juint account = total;
2306  if (total != 0) {
2307    ttyLocker ttyl;
2308    if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2309    tty->print_cr("Deoptimization traps recorded:");
2310    #define PRINT_STAT_LINE(name, r) \
2311      tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2312    PRINT_STAT_LINE("total", total);
2313    // For each non-zero entry in the histogram, print the reason,
2314    // the action, and (if specifically known) the type of bytecode.
2315    for (int reason = 0; reason < Reason_LIMIT; reason++) {
2316      for (int action = 0; action < Action_LIMIT; action++) {
2317        juint* cases = _deoptimization_hist[reason][1+action];
2318        for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2319          juint counter = cases[bc_case];
2320          if (counter != 0) {
2321            char name[1*K];
2322            Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2323            if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2324              bc = Bytecodes::_illegal;
2325            sprintf(name, "%s/%s/%s",
2326                    trap_reason_name(reason),
2327                    trap_action_name(action),
2328                    Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2329            juint r = counter >> LSB_BITS;
2330            tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2331            account -= r;
2332          }
2333        }
2334      }
2335    }
2336    if (account != 0) {
2337      PRINT_STAT_LINE("unaccounted", account);
2338    }
2339    #undef PRINT_STAT_LINE
2340    if (xtty != NULL)  xtty->tail("statistics");
2341  }
2342}
2343#else // COMPILER2 || SHARK || INCLUDE_JVMCI
2344
2345
2346// Stubs for C1 only system.
2347bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2348  return false;
2349}
2350
2351const char* Deoptimization::trap_reason_name(int reason) {
2352  return "unknown";
2353}
2354
2355void Deoptimization::print_statistics() {
2356  // no output
2357}
2358
2359void
2360Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2361  // no udpate
2362}
2363
2364int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2365  return 0;
2366}
2367
2368void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2369                                       Bytecodes::Code bc) {
2370  // no update
2371}
2372
2373const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2374                                              int trap_state) {
2375  jio_snprintf(buf, buflen, "#%d", trap_state);
2376  return buf;
2377}
2378
2379#endif // COMPILER2 || SHARK || INCLUDE_JVMCI
2380