jvmtiTagMap.cpp revision 579:0fbdb4381b99
1/*
2 * Copyright 2003-2009 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_jvmtiTagMap.cpp.incl"
27
28// JvmtiTagHashmapEntry
29//
30// Each entry encapsulates a JNI weak reference to the tagged object
31// and the tag value. In addition an entry includes a next pointer which
32// is used to chain entries together.
33
34class JvmtiTagHashmapEntry : public CHeapObj {
35 private:
36  friend class JvmtiTagMap;
37
38  jweak _object;                        // JNI weak ref to tagged object
39  jlong _tag;                           // the tag
40  JvmtiTagHashmapEntry* _next;          // next on the list
41
42  inline void init(jweak object, jlong tag) {
43    _object = object;
44    _tag = tag;
45    _next = NULL;
46  }
47
48  // constructor
49  JvmtiTagHashmapEntry(jweak object, jlong tag)         { init(object, tag); }
50
51 public:
52
53  // accessor methods
54  inline jweak object() const                           { return _object; }
55  inline jlong tag() const                              { return _tag; }
56
57  inline void set_tag(jlong tag) {
58    assert(tag != 0, "can't be zero");
59    _tag = tag;
60  }
61
62  inline JvmtiTagHashmapEntry* next() const             { return _next; }
63  inline void set_next(JvmtiTagHashmapEntry* next)      { _next = next; }
64};
65
66
67// JvmtiTagHashmap
68//
69// A hashmap is essentially a table of pointers to entries. Entries
70// are hashed to a location, or position in the table, and then
71// chained from that location. The "key" for hashing is address of
72// the object, or oop. The "value" is the JNI weak reference to the
73// object and the tag value. Keys are not stored with the entry.
74// Instead the weak reference is resolved to obtain the key.
75//
76// A hashmap maintains a count of the number entries in the hashmap
77// and resizes if the number of entries exceeds a given threshold.
78// The threshold is specified as a percentage of the size - for
79// example a threshold of 0.75 will trigger the hashmap to resize
80// if the number of entries is >75% of table size.
81//
82// A hashmap provides functions for adding, removing, and finding
83// entries. It also provides a function to iterate over all entries
84// in the hashmap.
85
86class JvmtiTagHashmap : public CHeapObj {
87 private:
88  friend class JvmtiTagMap;
89
90  enum {
91    small_trace_threshold  = 10000,                  // threshold for tracing
92    medium_trace_threshold = 100000,
93    large_trace_threshold  = 1000000,
94    initial_trace_threshold = small_trace_threshold
95  };
96
97  static int _sizes[];                  // array of possible hashmap sizes
98  int _size;                            // actual size of the table
99  int _size_index;                      // index into size table
100
101  int _entry_count;                     // number of entries in the hashmap
102
103  float _load_factor;                   // load factor as a % of the size
104  int _resize_threshold;                // computed threshold to trigger resizing.
105  bool _resizing_enabled;               // indicates if hashmap can resize
106
107  int _trace_threshold;                 // threshold for trace messages
108
109  JvmtiTagHashmapEntry** _table;        // the table of entries.
110
111  // private accessors
112  int resize_threshold() const                  { return _resize_threshold; }
113  int trace_threshold() const                   { return _trace_threshold; }
114
115  // initialize the hashmap
116  void init(int size_index=0, float load_factor=4.0f) {
117    int initial_size =  _sizes[size_index];
118    _size_index = size_index;
119    _size = initial_size;
120    _entry_count = 0;
121    if (TraceJVMTIObjectTagging) {
122      _trace_threshold = initial_trace_threshold;
123    } else {
124      _trace_threshold = -1;
125    }
126    _load_factor = load_factor;
127    _resize_threshold = (int)(_load_factor * _size);
128    _resizing_enabled = true;
129    size_t s = initial_size * sizeof(JvmtiTagHashmapEntry*);
130    _table = (JvmtiTagHashmapEntry**)os::malloc(s);
131    if (_table == NULL) {
132      vm_exit_out_of_memory(s, "unable to allocate initial hashtable for jvmti object tags");
133    }
134    for (int i=0; i<initial_size; i++) {
135      _table[i] = NULL;
136    }
137  }
138
139  // hash a given key (oop) with the specified size
140  static unsigned int hash(oop key, int size) {
141    // shift right to get better distribution (as these bits will be zero
142    // with aligned addresses)
143    unsigned int addr = (unsigned int)((intptr_t)key);
144#ifdef _LP64
145    return (addr >> 3) % size;
146#else
147    return (addr >> 2) % size;
148#endif
149  }
150
151  // hash a given key (oop)
152  unsigned int hash(oop key) {
153    return hash(key, _size);
154  }
155
156  // resize the hashmap - allocates a large table and re-hashes
157  // all entries into the new table.
158  void resize() {
159    int new_size_index = _size_index+1;
160    int new_size = _sizes[new_size_index];
161    if (new_size < 0) {
162      // hashmap already at maximum capacity
163      return;
164    }
165
166    // allocate new table
167    size_t s = new_size * sizeof(JvmtiTagHashmapEntry*);
168    JvmtiTagHashmapEntry** new_table = (JvmtiTagHashmapEntry**)os::malloc(s);
169    if (new_table == NULL) {
170      warning("unable to allocate larger hashtable for jvmti object tags");
171      set_resizing_enabled(false);
172      return;
173    }
174
175    // initialize new table
176    int i;
177    for (i=0; i<new_size; i++) {
178      new_table[i] = NULL;
179    }
180
181    // rehash all entries into the new table
182    for (i=0; i<_size; i++) {
183      JvmtiTagHashmapEntry* entry = _table[i];
184      while (entry != NULL) {
185        JvmtiTagHashmapEntry* next = entry->next();
186        oop key = JNIHandles::resolve(entry->object());
187        assert(key != NULL, "jni weak reference cleared!!");
188        unsigned int h = hash(key, new_size);
189        JvmtiTagHashmapEntry* anchor = new_table[h];
190        if (anchor == NULL) {
191          new_table[h] = entry;
192          entry->set_next(NULL);
193        } else {
194          entry->set_next(anchor);
195          new_table[h] = entry;
196        }
197        entry = next;
198      }
199    }
200
201    // free old table and update settings.
202    os::free((void*)_table);
203    _table = new_table;
204    _size_index = new_size_index;
205    _size = new_size;
206
207    // compute new resize threshold
208    _resize_threshold = (int)(_load_factor * _size);
209  }
210
211
212  // internal remove function - remove an entry at a given position in the
213  // table.
214  inline void remove(JvmtiTagHashmapEntry* prev, int pos, JvmtiTagHashmapEntry* entry) {
215    assert(pos >= 0 && pos < _size, "out of range");
216    if (prev == NULL) {
217      _table[pos] = entry->next();
218    } else {
219      prev->set_next(entry->next());
220    }
221    assert(_entry_count > 0, "checking");
222    _entry_count--;
223  }
224
225  // resizing switch
226  bool is_resizing_enabled() const          { return _resizing_enabled; }
227  void set_resizing_enabled(bool enable)    { _resizing_enabled = enable; }
228
229  // debugging
230  void print_memory_usage();
231  void compute_next_trace_threshold();
232
233 public:
234
235  // create a JvmtiTagHashmap of a preferred size and optionally a load factor.
236  // The preferred size is rounded down to an actual size.
237  JvmtiTagHashmap(int size, float load_factor=0.0f) {
238    int i=0;
239    while (_sizes[i] < size) {
240      if (_sizes[i] < 0) {
241        assert(i > 0, "sanity check");
242        i--;
243        break;
244      }
245      i++;
246    }
247
248    // if a load factor is specified then use it, otherwise use default
249    if (load_factor > 0.01f) {
250      init(i, load_factor);
251    } else {
252      init(i);
253    }
254  }
255
256  // create a JvmtiTagHashmap with default settings
257  JvmtiTagHashmap() {
258    init();
259  }
260
261  // release table when JvmtiTagHashmap destroyed
262  ~JvmtiTagHashmap() {
263    if (_table != NULL) {
264      os::free((void*)_table);
265      _table = NULL;
266    }
267  }
268
269  // accessors
270  int size() const                              { return _size; }
271  JvmtiTagHashmapEntry** table() const          { return _table; }
272  int entry_count() const                       { return _entry_count; }
273
274  // find an entry in the hashmap, returns NULL if not found.
275  inline JvmtiTagHashmapEntry* find(oop key) {
276    unsigned int h = hash(key);
277    JvmtiTagHashmapEntry* entry = _table[h];
278    while (entry != NULL) {
279      oop orig_key = JNIHandles::resolve(entry->object());
280      assert(orig_key != NULL, "jni weak reference cleared!!");
281      if (key == orig_key) {
282        break;
283      }
284      entry = entry->next();
285    }
286    return entry;
287  }
288
289
290  // add a new entry to hashmap
291  inline void add(oop key, JvmtiTagHashmapEntry* entry) {
292    assert(key != NULL, "checking");
293    assert(find(key) == NULL, "duplicate detected");
294    unsigned int h = hash(key);
295    JvmtiTagHashmapEntry* anchor = _table[h];
296    if (anchor == NULL) {
297      _table[h] = entry;
298      entry->set_next(NULL);
299    } else {
300      entry->set_next(anchor);
301      _table[h] = entry;
302    }
303
304    _entry_count++;
305    if (trace_threshold() > 0 && entry_count() >= trace_threshold()) {
306      assert(TraceJVMTIObjectTagging, "should only get here when tracing");
307      print_memory_usage();
308      compute_next_trace_threshold();
309    }
310
311    // if the number of entries exceed the threshold then resize
312    if (entry_count() > resize_threshold() && is_resizing_enabled()) {
313      resize();
314    }
315  }
316
317  // remove an entry with the given key.
318  inline JvmtiTagHashmapEntry* remove(oop key) {
319    unsigned int h = hash(key);
320    JvmtiTagHashmapEntry* entry = _table[h];
321    JvmtiTagHashmapEntry* prev = NULL;
322    while (entry != NULL) {
323      oop orig_key = JNIHandles::resolve(entry->object());
324      assert(orig_key != NULL, "jni weak reference cleared!!");
325      if (key == orig_key) {
326        break;
327      }
328      prev = entry;
329      entry = entry->next();
330    }
331    if (entry != NULL) {
332      remove(prev, h, entry);
333    }
334    return entry;
335  }
336
337  // iterate over all entries in the hashmap
338  void entry_iterate(JvmtiTagHashmapEntryClosure* closure);
339};
340
341// possible hashmap sizes - odd primes that roughly double in size.
342// To avoid excessive resizing the odd primes from 4801-76831 and
343// 76831-307261 have been removed. The list must be terminated by -1.
344int JvmtiTagHashmap::_sizes[] =  { 4801, 76831, 307261, 614563, 1228891,
345    2457733, 4915219, 9830479, 19660831, 39321619, 78643219, -1 };
346
347
348// A supporting class for iterating over all entries in Hashmap
349class JvmtiTagHashmapEntryClosure {
350 public:
351  virtual void do_entry(JvmtiTagHashmapEntry* entry) = 0;
352};
353
354
355// iterate over all entries in the hashmap
356void JvmtiTagHashmap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
357  for (int i=0; i<_size; i++) {
358    JvmtiTagHashmapEntry* entry = _table[i];
359    JvmtiTagHashmapEntry* prev = NULL;
360    while (entry != NULL) {
361      // obtain the next entry before invoking do_entry - this is
362      // necessary because do_entry may remove the entry from the
363      // hashmap.
364      JvmtiTagHashmapEntry* next = entry->next();
365      closure->do_entry(entry);
366      entry = next;
367     }
368  }
369}
370
371// debugging
372void JvmtiTagHashmap::print_memory_usage() {
373  intptr_t p = (intptr_t)this;
374  tty->print("[JvmtiTagHashmap @ " INTPTR_FORMAT, p);
375
376  // table + entries in KB
377  int hashmap_usage = (size()*sizeof(JvmtiTagHashmapEntry*) +
378    entry_count()*sizeof(JvmtiTagHashmapEntry))/K;
379
380  int weak_globals_usage = (int)(JNIHandles::weak_global_handle_memory_usage()/K);
381  tty->print_cr(", %d entries (%d KB) <JNI weak globals: %d KB>]",
382    entry_count(), hashmap_usage, weak_globals_usage);
383}
384
385// compute threshold for the next trace message
386void JvmtiTagHashmap::compute_next_trace_threshold() {
387  if (trace_threshold() < medium_trace_threshold) {
388    _trace_threshold += small_trace_threshold;
389  } else {
390    if (trace_threshold() < large_trace_threshold) {
391      _trace_threshold += medium_trace_threshold;
392    } else {
393      _trace_threshold += large_trace_threshold;
394    }
395  }
396}
397
398// memory region for young generation
399MemRegion JvmtiTagMap::_young_gen;
400
401// get the memory region used for the young generation
402void JvmtiTagMap::get_young_generation() {
403  CollectedHeap* ch = Universe::heap();
404  switch (ch->kind()) {
405    case (CollectedHeap::GenCollectedHeap): {
406      _young_gen = ((GenCollectedHeap*)ch)->get_gen(0)->reserved();
407      break;
408    }
409#ifndef SERIALGC
410    case (CollectedHeap::ParallelScavengeHeap): {
411      _young_gen = ((ParallelScavengeHeap*)ch)->young_gen()->reserved();
412      break;
413    }
414    case (CollectedHeap::G1CollectedHeap): {
415      // Until a more satisfactory solution is implemented, all
416      // oops in the tag map will require rehash at each gc.
417      // This is a correct, if extremely inefficient solution.
418      // See RFE 6621729 for related commentary.
419      _young_gen = ch->reserved_region();
420      break;
421    }
422#endif  // !SERIALGC
423    default:
424      ShouldNotReachHere();
425  }
426}
427
428// returns true if oop is in the young generation
429inline bool JvmtiTagMap::is_in_young(oop o) {
430  assert(_young_gen.start() != NULL, "checking");
431  void* p = (void*)o;
432  bool in_young = _young_gen.contains(p);
433  return in_young;
434}
435
436// returns the appropriate hashmap for a given object
437inline JvmtiTagHashmap* JvmtiTagMap::hashmap_for(oop o) {
438  if (is_in_young(o)) {
439    return _hashmap[0];
440  } else {
441    return _hashmap[1];
442  }
443}
444
445
446// create a JvmtiTagMap
447JvmtiTagMap::JvmtiTagMap(JvmtiEnv* env) :
448  _env(env),
449  _lock(Mutex::nonleaf+2, "JvmtiTagMap._lock", false),
450  _free_entries(NULL),
451  _free_entries_count(0)
452{
453  assert(JvmtiThreadState_lock->is_locked(), "sanity check");
454  assert(((JvmtiEnvBase *)env)->tag_map() == NULL, "tag map already exists for environment");
455
456  // create the hashmaps
457  for (int i=0; i<n_hashmaps; i++) {
458    _hashmap[i] = new JvmtiTagHashmap();
459  }
460
461  // get the memory region used by the young generation
462  get_young_generation();
463
464  // finally add us to the environment
465  ((JvmtiEnvBase *)env)->set_tag_map(this);
466}
467
468
469// destroy a JvmtiTagMap
470JvmtiTagMap::~JvmtiTagMap() {
471
472  // no lock acquired as we assume the enclosing environment is
473  // also being destroryed.
474  ((JvmtiEnvBase *)_env)->set_tag_map(NULL);
475
476  // iterate over the hashmaps and destroy each of the entries
477  for (int i=0; i<n_hashmaps; i++) {
478    JvmtiTagHashmap* hashmap = _hashmap[i];
479    JvmtiTagHashmapEntry** table = hashmap->table();
480    for (int j=0; j<hashmap->size(); j++) {
481      JvmtiTagHashmapEntry *entry = table[j];
482      while (entry != NULL) {
483        JvmtiTagHashmapEntry* next = entry->next();
484        jweak ref = entry->object();
485        JNIHandles::destroy_weak_global(ref);
486        delete entry;
487        entry = next;
488      }
489    }
490
491    // finally destroy the hashmap
492    delete hashmap;
493  }
494
495  // remove any entries on the free list
496  JvmtiTagHashmapEntry* entry = _free_entries;
497  while (entry != NULL) {
498    JvmtiTagHashmapEntry* next = entry->next();
499    delete entry;
500    entry = next;
501  }
502}
503
504// create a hashmap entry
505// - if there's an entry on the (per-environment) free list then this
506// is returned. Otherwise an new entry is allocated.
507JvmtiTagHashmapEntry* JvmtiTagMap::create_entry(jweak ref, jlong tag) {
508  assert(Thread::current()->is_VM_thread() || is_locked(), "checking");
509  JvmtiTagHashmapEntry* entry;
510  if (_free_entries == NULL) {
511    entry = new JvmtiTagHashmapEntry(ref, tag);
512  } else {
513    assert(_free_entries_count > 0, "mismatched _free_entries_count");
514    _free_entries_count--;
515    entry = _free_entries;
516    _free_entries = entry->next();
517    entry->init(ref, tag);
518  }
519  return entry;
520}
521
522// destroy an entry by returning it to the free list
523void JvmtiTagMap::destroy_entry(JvmtiTagHashmapEntry* entry) {
524  assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
525  // limit the size of the free list
526  if (_free_entries_count >= max_free_entries) {
527    delete entry;
528  } else {
529    entry->set_next(_free_entries);
530    _free_entries = entry;
531    _free_entries_count++;
532  }
533}
534
535// returns the tag map for the given environments. If the tag map
536// doesn't exist then it is created.
537JvmtiTagMap* JvmtiTagMap::tag_map_for(JvmtiEnv* env) {
538  JvmtiTagMap* tag_map = ((JvmtiEnvBase *)env)->tag_map();
539  if (tag_map == NULL) {
540    MutexLocker mu(JvmtiThreadState_lock);
541    tag_map = ((JvmtiEnvBase *)env)->tag_map();
542    if (tag_map == NULL) {
543      tag_map = new JvmtiTagMap(env);
544    }
545  } else {
546    CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
547  }
548  return tag_map;
549}
550
551// iterate over all entries in the tag map.
552void JvmtiTagMap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
553  for (int i=0; i<n_hashmaps; i++) {
554    JvmtiTagHashmap* hashmap = _hashmap[i];
555    hashmap->entry_iterate(closure);
556  }
557}
558
559// returns true if the hashmaps are empty
560bool JvmtiTagMap::is_empty() {
561  assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
562  assert(n_hashmaps == 2, "not implemented");
563  return ((_hashmap[0]->entry_count() == 0) && (_hashmap[1]->entry_count() == 0));
564}
565
566
567// Return the tag value for an object, or 0 if the object is
568// not tagged
569//
570static inline jlong tag_for(JvmtiTagMap* tag_map, oop o) {
571  JvmtiTagHashmapEntry* entry = tag_map->hashmap_for(o)->find(o);
572  if (entry == NULL) {
573    return 0;
574  } else {
575    return entry->tag();
576  }
577}
578
579// If the object is a java.lang.Class then return the klassOop,
580// otherwise return the original object
581static inline oop klassOop_if_java_lang_Class(oop o) {
582  if (o->klass() == SystemDictionary::class_klass()) {
583    if (!java_lang_Class::is_primitive(o)) {
584      o = (oop)java_lang_Class::as_klassOop(o);
585      assert(o != NULL, "class for non-primitive mirror must exist");
586    }
587  }
588  return o;
589}
590
591// A CallbackWrapper is a support class for querying and tagging an object
592// around a callback to a profiler. The constructor does pre-callback
593// work to get the tag value, klass tag value, ... and the destructor
594// does the post-callback work of tagging or untagging the object.
595//
596// {
597//   CallbackWrapper wrapper(tag_map, o);
598//
599//   (*callback)(wrapper.klass_tag(), wrapper.obj_size(), wrapper.obj_tag_p(), ...)
600//
601// } // wrapper goes out of scope here which results in the destructor
602//      checking to see if the object has been tagged, untagged, or the
603//      tag value has changed.
604//
605class CallbackWrapper : public StackObj {
606 private:
607  JvmtiTagMap* _tag_map;
608  JvmtiTagHashmap* _hashmap;
609  JvmtiTagHashmapEntry* _entry;
610  oop _o;
611  jlong _obj_size;
612  jlong _obj_tag;
613  klassOop _klass;         // the object's class
614  jlong _klass_tag;
615
616 protected:
617  JvmtiTagMap* tag_map() const      { return _tag_map; }
618
619  // invoked post-callback to tag, untag, or update the tag of an object
620  void inline post_callback_tag_update(oop o, JvmtiTagHashmap* hashmap,
621                                       JvmtiTagHashmapEntry* entry, jlong obj_tag);
622 public:
623  CallbackWrapper(JvmtiTagMap* tag_map, oop o) {
624    assert(Thread::current()->is_VM_thread() || tag_map->is_locked(),
625           "MT unsafe or must be VM thread");
626
627    // for Classes the klassOop is tagged
628    _o = klassOop_if_java_lang_Class(o);
629
630    // object size
631    _obj_size = _o->size() * wordSize;
632
633    // record the context
634    _tag_map = tag_map;
635    _hashmap = tag_map->hashmap_for(_o);
636    _entry = _hashmap->find(_o);
637
638    // get object tag
639    _obj_tag = (_entry == NULL) ? 0 : _entry->tag();
640
641    // get the class and the class's tag value
642    if (_o == o) {
643      _klass = _o->klass();
644    } else {
645      // if the object represents a runtime class then use the
646      // tag for java.lang.Class
647      _klass = SystemDictionary::class_klass();
648    }
649    _klass_tag = tag_for(tag_map, _klass);
650  }
651
652  ~CallbackWrapper() {
653    post_callback_tag_update(_o, _hashmap, _entry, _obj_tag);
654  }
655
656  inline jlong* obj_tag_p()                     { return &_obj_tag; }
657  inline jlong obj_size() const                 { return _obj_size; }
658  inline jlong obj_tag() const                  { return _obj_tag; }
659  inline klassOop klass() const                 { return _klass; }
660  inline jlong klass_tag() const                { return _klass_tag; }
661};
662
663
664
665// callback post-callback to tag, untag, or update the tag of an object
666void inline CallbackWrapper::post_callback_tag_update(oop o,
667                                                      JvmtiTagHashmap* hashmap,
668                                                      JvmtiTagHashmapEntry* entry,
669                                                      jlong obj_tag) {
670  if (entry == NULL) {
671    if (obj_tag != 0) {
672      // callback has tagged the object
673      assert(Thread::current()->is_VM_thread(), "must be VMThread");
674      HandleMark hm;
675      Handle h(o);
676      jweak ref = JNIHandles::make_weak_global(h);
677      entry = tag_map()->create_entry(ref, obj_tag);
678      hashmap->add(o, entry);
679    }
680  } else {
681    // object was previously tagged - the callback may have untagged
682    // the object or changed the tag value
683    if (obj_tag == 0) {
684      jweak ref = entry->object();
685
686      JvmtiTagHashmapEntry* entry_removed = hashmap->remove(o);
687      assert(entry_removed == entry, "checking");
688      tag_map()->destroy_entry(entry);
689
690      JNIHandles::destroy_weak_global(ref);
691    } else {
692      if (obj_tag != entry->tag()) {
693         entry->set_tag(obj_tag);
694      }
695    }
696  }
697}
698
699// An extended CallbackWrapper used when reporting an object reference
700// to the agent.
701//
702// {
703//   TwoOopCallbackWrapper wrapper(tag_map, referrer, o);
704//
705//   (*callback)(wrapper.klass_tag(),
706//               wrapper.obj_size(),
707//               wrapper.obj_tag_p()
708//               wrapper.referrer_tag_p(), ...)
709//
710// } // wrapper goes out of scope here which results in the destructor
711//      checking to see if the referrer object has been tagged, untagged,
712//      or the tag value has changed.
713//
714class TwoOopCallbackWrapper : public CallbackWrapper {
715 private:
716  bool _is_reference_to_self;
717  JvmtiTagHashmap* _referrer_hashmap;
718  JvmtiTagHashmapEntry* _referrer_entry;
719  oop _referrer;
720  jlong _referrer_obj_tag;
721  jlong _referrer_klass_tag;
722  jlong* _referrer_tag_p;
723
724  bool is_reference_to_self() const             { return _is_reference_to_self; }
725
726 public:
727  TwoOopCallbackWrapper(JvmtiTagMap* tag_map, oop referrer, oop o) :
728    CallbackWrapper(tag_map, o)
729  {
730    // self reference needs to be handled in a special way
731    _is_reference_to_self = (referrer == o);
732
733    if (_is_reference_to_self) {
734      _referrer_klass_tag = klass_tag();
735      _referrer_tag_p = obj_tag_p();
736    } else {
737      // for Classes the klassOop is tagged
738      _referrer = klassOop_if_java_lang_Class(referrer);
739      // record the context
740      _referrer_hashmap = tag_map->hashmap_for(_referrer);
741      _referrer_entry = _referrer_hashmap->find(_referrer);
742
743      // get object tag
744      _referrer_obj_tag = (_referrer_entry == NULL) ? 0 : _referrer_entry->tag();
745      _referrer_tag_p = &_referrer_obj_tag;
746
747      // get referrer class tag.
748      klassOop k = (_referrer == referrer) ?  // Check if referrer is a class...
749          _referrer->klass()                  // No, just get its class
750         : SystemDictionary::class_klass();   // Yes, its class is Class
751      _referrer_klass_tag = tag_for(tag_map, k);
752    }
753  }
754
755  ~TwoOopCallbackWrapper() {
756    if (!is_reference_to_self()){
757      post_callback_tag_update(_referrer,
758                               _referrer_hashmap,
759                               _referrer_entry,
760                               _referrer_obj_tag);
761    }
762  }
763
764  // address of referrer tag
765  // (for a self reference this will return the same thing as obj_tag_p())
766  inline jlong* referrer_tag_p()        { return _referrer_tag_p; }
767
768  // referrer's class tag
769  inline jlong referrer_klass_tag()     { return _referrer_klass_tag; }
770};
771
772// tag an object
773//
774// This function is performance critical. If many threads attempt to tag objects
775// around the same time then it's possible that the Mutex associated with the
776// tag map will be a hot lock. Eliminating this lock will not eliminate the issue
777// because creating a JNI weak reference requires acquiring a global lock also.
778void JvmtiTagMap::set_tag(jobject object, jlong tag) {
779  MutexLocker ml(lock());
780
781  // resolve the object
782  oop o = JNIHandles::resolve_non_null(object);
783
784  // for Classes we tag the klassOop
785  o = klassOop_if_java_lang_Class(o);
786
787  // see if the object is already tagged
788  JvmtiTagHashmap* hashmap = hashmap_for(o);
789  JvmtiTagHashmapEntry* entry = hashmap->find(o);
790
791  // if the object is not already tagged then we tag it
792  if (entry == NULL) {
793    if (tag != 0) {
794      HandleMark hm;
795      Handle h(o);
796      jweak ref = JNIHandles::make_weak_global(h);
797
798      // the object may have moved because make_weak_global may
799      // have blocked - thus it is necessary resolve the handle
800      // and re-hash the object.
801      o = h();
802      entry = create_entry(ref, tag);
803      hashmap_for(o)->add(o, entry);
804    } else {
805      // no-op
806    }
807  } else {
808    // if the object is already tagged then we either update
809    // the tag (if a new tag value has been provided)
810    // or remove the object if the new tag value is 0.
811    // Removing the object requires that we also delete the JNI
812    // weak ref to the object.
813    if (tag == 0) {
814      jweak ref = entry->object();
815      hashmap->remove(o);
816      destroy_entry(entry);
817      JNIHandles::destroy_weak_global(ref);
818    } else {
819      entry->set_tag(tag);
820    }
821  }
822}
823
824// get the tag for an object
825jlong JvmtiTagMap::get_tag(jobject object) {
826  MutexLocker ml(lock());
827
828  // resolve the object
829  oop o = JNIHandles::resolve_non_null(object);
830
831  // for Classes get the tag from the klassOop
832  return tag_for(this, klassOop_if_java_lang_Class(o));
833}
834
835
836// Helper class used to describe the static or instance fields of a class.
837// For each field it holds the field index (as defined by the JVMTI specification),
838// the field type, and the offset.
839
840class ClassFieldDescriptor: public CHeapObj {
841 private:
842  int _field_index;
843  int _field_offset;
844  char _field_type;
845 public:
846  ClassFieldDescriptor(int index, char type, int offset) :
847    _field_index(index), _field_type(type), _field_offset(offset) {
848  }
849  int field_index()  const  { return _field_index; }
850  char field_type()  const  { return _field_type; }
851  int field_offset() const  { return _field_offset; }
852};
853
854class ClassFieldMap: public CHeapObj {
855 private:
856  enum {
857    initial_field_count = 5
858  };
859
860  // list of field descriptors
861  GrowableArray<ClassFieldDescriptor*>* _fields;
862
863  // constructor
864  ClassFieldMap();
865
866  // add a field
867  void add(int index, char type, int offset);
868
869  // returns the field count for the given class
870  static int compute_field_count(instanceKlassHandle ikh);
871
872 public:
873  ~ClassFieldMap();
874
875  // access
876  int field_count()                     { return _fields->length(); }
877  ClassFieldDescriptor* field_at(int i) { return _fields->at(i); }
878
879  // functions to create maps of static or instance fields
880  static ClassFieldMap* create_map_of_static_fields(klassOop k);
881  static ClassFieldMap* create_map_of_instance_fields(oop obj);
882};
883
884ClassFieldMap::ClassFieldMap() {
885  _fields = new (ResourceObj::C_HEAP) GrowableArray<ClassFieldDescriptor*>(initial_field_count, true);
886}
887
888ClassFieldMap::~ClassFieldMap() {
889  for (int i=0; i<_fields->length(); i++) {
890    delete _fields->at(i);
891  }
892  delete _fields;
893}
894
895void ClassFieldMap::add(int index, char type, int offset) {
896  ClassFieldDescriptor* field = new ClassFieldDescriptor(index, type, offset);
897  _fields->append(field);
898}
899
900// Returns a heap allocated ClassFieldMap to describe the static fields
901// of the given class.
902//
903ClassFieldMap* ClassFieldMap::create_map_of_static_fields(klassOop k) {
904  HandleMark hm;
905  instanceKlassHandle ikh = instanceKlassHandle(Thread::current(), k);
906
907  // create the field map
908  ClassFieldMap* field_map = new ClassFieldMap();
909
910  FilteredFieldStream f(ikh, false, false);
911  int max_field_index = f.field_count()-1;
912
913  int index = 0;
914  for (FilteredFieldStream fld(ikh, true, true); !fld.eos(); fld.next(), index++) {
915    // ignore instance fields
916    if (!fld.access_flags().is_static()) {
917      continue;
918    }
919    field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
920  }
921  return field_map;
922}
923
924// Returns a heap allocated ClassFieldMap to describe the instance fields
925// of the given class. All instance fields are included (this means public
926// and private fields declared in superclasses and superinterfaces too).
927//
928ClassFieldMap* ClassFieldMap::create_map_of_instance_fields(oop obj) {
929  HandleMark hm;
930  instanceKlassHandle ikh = instanceKlassHandle(Thread::current(), obj->klass());
931
932  // create the field map
933  ClassFieldMap* field_map = new ClassFieldMap();
934
935  FilteredFieldStream f(ikh, false, false);
936
937  int max_field_index = f.field_count()-1;
938
939  int index = 0;
940  for (FilteredFieldStream fld(ikh, false, false); !fld.eos(); fld.next(), index++) {
941    // ignore static fields
942    if (fld.access_flags().is_static()) {
943      continue;
944    }
945    field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
946  }
947
948  return field_map;
949}
950
951// Helper class used to cache a ClassFileMap for the instance fields of
952// a cache. A JvmtiCachedClassFieldMap can be cached by an instanceKlass during
953// heap iteration and avoid creating a field map for each object in the heap
954// (only need to create the map when the first instance of a class is encountered).
955//
956class JvmtiCachedClassFieldMap : public CHeapObj {
957 private:
958   enum {
959     initial_class_count = 200
960   };
961  ClassFieldMap* _field_map;
962
963  ClassFieldMap* field_map() const          { return _field_map; }
964
965  JvmtiCachedClassFieldMap(ClassFieldMap* field_map);
966  ~JvmtiCachedClassFieldMap();
967
968  static GrowableArray<instanceKlass*>* _class_list;
969  static void add_to_class_list(instanceKlass* ik);
970
971 public:
972  // returns the field map for a given object (returning map cached
973  // by instanceKlass if possible
974  static ClassFieldMap* get_map_of_instance_fields(oop obj);
975
976  // removes the field map from all instanceKlasses - should be
977  // called before VM operation completes
978  static void clear_cache();
979
980  // returns the number of ClassFieldMap cached by instanceKlasses
981  static int cached_field_map_count();
982};
983
984GrowableArray<instanceKlass*>* JvmtiCachedClassFieldMap::_class_list;
985
986JvmtiCachedClassFieldMap::JvmtiCachedClassFieldMap(ClassFieldMap* field_map) {
987  _field_map = field_map;
988}
989
990JvmtiCachedClassFieldMap::~JvmtiCachedClassFieldMap() {
991  if (_field_map != NULL) {
992    delete _field_map;
993  }
994}
995
996// Marker class to ensure that the class file map cache is only used in a defined
997// scope.
998class ClassFieldMapCacheMark : public StackObj {
999 private:
1000   static bool _is_active;
1001 public:
1002   ClassFieldMapCacheMark() {
1003     assert(Thread::current()->is_VM_thread(), "must be VMThread");
1004     assert(JvmtiCachedClassFieldMap::cached_field_map_count() == 0, "cache not empty");
1005     assert(!_is_active, "ClassFieldMapCacheMark cannot be nested");
1006     _is_active = true;
1007   }
1008   ~ClassFieldMapCacheMark() {
1009     JvmtiCachedClassFieldMap::clear_cache();
1010     _is_active = false;
1011   }
1012   static bool is_active() { return _is_active; }
1013};
1014
1015bool ClassFieldMapCacheMark::_is_active;
1016
1017
1018// record that the given instanceKlass is caching a field map
1019void JvmtiCachedClassFieldMap::add_to_class_list(instanceKlass* ik) {
1020  if (_class_list == NULL) {
1021    _class_list = new (ResourceObj::C_HEAP) GrowableArray<instanceKlass*>(initial_class_count, true);
1022  }
1023  _class_list->push(ik);
1024}
1025
1026// returns the instance field map for the given object
1027// (returns field map cached by the instanceKlass if possible)
1028ClassFieldMap* JvmtiCachedClassFieldMap::get_map_of_instance_fields(oop obj) {
1029  assert(Thread::current()->is_VM_thread(), "must be VMThread");
1030  assert(ClassFieldMapCacheMark::is_active(), "ClassFieldMapCacheMark not active");
1031
1032  klassOop k = obj->klass();
1033  instanceKlass* ik = instanceKlass::cast(k);
1034
1035  // return cached map if possible
1036  JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
1037  if (cached_map != NULL) {
1038    assert(cached_map->field_map() != NULL, "missing field list");
1039    return cached_map->field_map();
1040  } else {
1041    ClassFieldMap* field_map = ClassFieldMap::create_map_of_instance_fields(obj);
1042    cached_map = new JvmtiCachedClassFieldMap(field_map);
1043    ik->set_jvmti_cached_class_field_map(cached_map);
1044    add_to_class_list(ik);
1045    return field_map;
1046  }
1047}
1048
1049// remove the fields maps cached from all instanceKlasses
1050void JvmtiCachedClassFieldMap::clear_cache() {
1051  assert(Thread::current()->is_VM_thread(), "must be VMThread");
1052  if (_class_list != NULL) {
1053    for (int i = 0; i < _class_list->length(); i++) {
1054      instanceKlass* ik = _class_list->at(i);
1055      JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
1056      assert(cached_map != NULL, "should not be NULL");
1057      ik->set_jvmti_cached_class_field_map(NULL);
1058      delete cached_map;  // deletes the encapsulated field map
1059    }
1060    delete _class_list;
1061    _class_list = NULL;
1062  }
1063}
1064
1065// returns the number of ClassFieldMap cached by instanceKlasses
1066int JvmtiCachedClassFieldMap::cached_field_map_count() {
1067  return (_class_list == NULL) ? 0 : _class_list->length();
1068}
1069
1070// helper function to indicate if an object is filtered by its tag or class tag
1071static inline bool is_filtered_by_heap_filter(jlong obj_tag,
1072                                              jlong klass_tag,
1073                                              int heap_filter) {
1074  // apply the heap filter
1075  if (obj_tag != 0) {
1076    // filter out tagged objects
1077    if (heap_filter & JVMTI_HEAP_FILTER_TAGGED) return true;
1078  } else {
1079    // filter out untagged objects
1080    if (heap_filter & JVMTI_HEAP_FILTER_UNTAGGED) return true;
1081  }
1082  if (klass_tag != 0) {
1083    // filter out objects with tagged classes
1084    if (heap_filter & JVMTI_HEAP_FILTER_CLASS_TAGGED) return true;
1085  } else {
1086    // filter out objects with untagged classes.
1087    if (heap_filter & JVMTI_HEAP_FILTER_CLASS_UNTAGGED) return true;
1088  }
1089  return false;
1090}
1091
1092// helper function to indicate if an object is filtered by a klass filter
1093static inline bool is_filtered_by_klass_filter(oop obj, KlassHandle klass_filter) {
1094  if (!klass_filter.is_null()) {
1095    if (obj->klass() != klass_filter()) {
1096      return true;
1097    }
1098  }
1099  return false;
1100}
1101
1102// helper function to tell if a field is a primitive field or not
1103static inline bool is_primitive_field_type(char type) {
1104  return (type != 'L' && type != '[');
1105}
1106
1107// helper function to copy the value from location addr to jvalue.
1108static inline void copy_to_jvalue(jvalue *v, address addr, jvmtiPrimitiveType value_type) {
1109  switch (value_type) {
1110    case JVMTI_PRIMITIVE_TYPE_BOOLEAN : { v->z = *(jboolean*)addr; break; }
1111    case JVMTI_PRIMITIVE_TYPE_BYTE    : { v->b = *(jbyte*)addr;    break; }
1112    case JVMTI_PRIMITIVE_TYPE_CHAR    : { v->c = *(jchar*)addr;    break; }
1113    case JVMTI_PRIMITIVE_TYPE_SHORT   : { v->s = *(jshort*)addr;   break; }
1114    case JVMTI_PRIMITIVE_TYPE_INT     : { v->i = *(jint*)addr;     break; }
1115    case JVMTI_PRIMITIVE_TYPE_LONG    : { v->j = *(jlong*)addr;    break; }
1116    case JVMTI_PRIMITIVE_TYPE_FLOAT   : { v->f = *(jfloat*)addr;   break; }
1117    case JVMTI_PRIMITIVE_TYPE_DOUBLE  : { v->d = *(jdouble*)addr;  break; }
1118    default: ShouldNotReachHere();
1119  }
1120}
1121
1122// helper function to invoke string primitive value callback
1123// returns visit control flags
1124static jint invoke_string_value_callback(jvmtiStringPrimitiveValueCallback cb,
1125                                         CallbackWrapper* wrapper,
1126                                         oop str,
1127                                         void* user_data)
1128{
1129  assert(str->klass() == SystemDictionary::string_klass(), "not a string");
1130
1131  // get the string value and length
1132  // (string value may be offset from the base)
1133  int s_len = java_lang_String::length(str);
1134  typeArrayOop s_value = java_lang_String::value(str);
1135  int s_offset = java_lang_String::offset(str);
1136  jchar* value;
1137  if (s_len > 0) {
1138    value = s_value->char_at_addr(s_offset);
1139  } else {
1140    value = (jchar*) s_value->base(T_CHAR);
1141  }
1142
1143  // invoke the callback
1144  return (*cb)(wrapper->klass_tag(),
1145               wrapper->obj_size(),
1146               wrapper->obj_tag_p(),
1147               value,
1148               (jint)s_len,
1149               user_data);
1150}
1151
1152// helper function to invoke string primitive value callback
1153// returns visit control flags
1154static jint invoke_array_primitive_value_callback(jvmtiArrayPrimitiveValueCallback cb,
1155                                                  CallbackWrapper* wrapper,
1156                                                  oop obj,
1157                                                  void* user_data)
1158{
1159  assert(obj->is_typeArray(), "not a primitive array");
1160
1161  // get base address of first element
1162  typeArrayOop array = typeArrayOop(obj);
1163  BasicType type = typeArrayKlass::cast(array->klass())->element_type();
1164  void* elements = array->base(type);
1165
1166  // jvmtiPrimitiveType is defined so this mapping is always correct
1167  jvmtiPrimitiveType elem_type = (jvmtiPrimitiveType)type2char(type);
1168
1169  return (*cb)(wrapper->klass_tag(),
1170               wrapper->obj_size(),
1171               wrapper->obj_tag_p(),
1172               (jint)array->length(),
1173               elem_type,
1174               elements,
1175               user_data);
1176}
1177
1178// helper function to invoke the primitive field callback for all static fields
1179// of a given class
1180static jint invoke_primitive_field_callback_for_static_fields
1181  (CallbackWrapper* wrapper,
1182   oop obj,
1183   jvmtiPrimitiveFieldCallback cb,
1184   void* user_data)
1185{
1186  // for static fields only the index will be set
1187  static jvmtiHeapReferenceInfo reference_info = { 0 };
1188
1189  assert(obj->klass() == SystemDictionary::class_klass(), "not a class");
1190  if (java_lang_Class::is_primitive(obj)) {
1191    return 0;
1192  }
1193  klassOop k = java_lang_Class::as_klassOop(obj);
1194  Klass* klass = k->klass_part();
1195
1196  // ignore classes for object and type arrays
1197  if (!klass->oop_is_instance()) {
1198    return 0;
1199  }
1200
1201  // ignore classes which aren't linked yet
1202  instanceKlass* ik = instanceKlass::cast(k);
1203  if (!ik->is_linked()) {
1204    return 0;
1205  }
1206
1207  // get the field map
1208  ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(k);
1209
1210  // invoke the callback for each static primitive field
1211  for (int i=0; i<field_map->field_count(); i++) {
1212    ClassFieldDescriptor* field = field_map->field_at(i);
1213
1214    // ignore non-primitive fields
1215    char type = field->field_type();
1216    if (!is_primitive_field_type(type)) {
1217      continue;
1218    }
1219    // one-to-one mapping
1220    jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
1221
1222    // get offset and field value
1223    int offset = field->field_offset();
1224    address addr = (address)k + offset;
1225    jvalue value;
1226    copy_to_jvalue(&value, addr, value_type);
1227
1228    // field index
1229    reference_info.field.index = field->field_index();
1230
1231    // invoke the callback
1232    jint res = (*cb)(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
1233                     &reference_info,
1234                     wrapper->klass_tag(),
1235                     wrapper->obj_tag_p(),
1236                     value,
1237                     value_type,
1238                     user_data);
1239    if (res & JVMTI_VISIT_ABORT) {
1240      delete field_map;
1241      return res;
1242    }
1243  }
1244
1245  delete field_map;
1246  return 0;
1247}
1248
1249// helper function to invoke the primitive field callback for all instance fields
1250// of a given object
1251static jint invoke_primitive_field_callback_for_instance_fields(
1252  CallbackWrapper* wrapper,
1253  oop obj,
1254  jvmtiPrimitiveFieldCallback cb,
1255  void* user_data)
1256{
1257  // for instance fields only the index will be set
1258  static jvmtiHeapReferenceInfo reference_info = { 0 };
1259
1260  // get the map of the instance fields
1261  ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj);
1262
1263  // invoke the callback for each instance primitive field
1264  for (int i=0; i<fields->field_count(); i++) {
1265    ClassFieldDescriptor* field = fields->field_at(i);
1266
1267    // ignore non-primitive fields
1268    char type = field->field_type();
1269    if (!is_primitive_field_type(type)) {
1270      continue;
1271    }
1272    // one-to-one mapping
1273    jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
1274
1275    // get offset and field value
1276    int offset = field->field_offset();
1277    address addr = (address)obj + offset;
1278    jvalue value;
1279    copy_to_jvalue(&value, addr, value_type);
1280
1281    // field index
1282    reference_info.field.index = field->field_index();
1283
1284    // invoke the callback
1285    jint res = (*cb)(JVMTI_HEAP_REFERENCE_FIELD,
1286                     &reference_info,
1287                     wrapper->klass_tag(),
1288                     wrapper->obj_tag_p(),
1289                     value,
1290                     value_type,
1291                     user_data);
1292    if (res & JVMTI_VISIT_ABORT) {
1293      return res;
1294    }
1295  }
1296  return 0;
1297}
1298
1299
1300// VM operation to iterate over all objects in the heap (both reachable
1301// and unreachable)
1302class VM_HeapIterateOperation: public VM_Operation {
1303 private:
1304  ObjectClosure* _blk;
1305 public:
1306  VM_HeapIterateOperation(ObjectClosure* blk) { _blk = blk; }
1307
1308  VMOp_Type type() const { return VMOp_HeapIterateOperation; }
1309  void doit() {
1310    // allows class files maps to be cached during iteration
1311    ClassFieldMapCacheMark cm;
1312
1313    // make sure that heap is parsable (fills TLABs with filler objects)
1314    Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
1315
1316    // Verify heap before iteration - if the heap gets corrupted then
1317    // JVMTI's IterateOverHeap will crash.
1318    if (VerifyBeforeIteration) {
1319      Universe::verify();
1320    }
1321
1322    // do the iteration
1323    // If this operation encounters a bad object when using CMS,
1324    // consider using safe_object_iterate() which avoids perm gen
1325    // objects that may contain bad references.
1326    Universe::heap()->object_iterate(_blk);
1327
1328    // when sharing is enabled we must iterate over the shared spaces
1329    if (UseSharedSpaces) {
1330      GenCollectedHeap* gch = GenCollectedHeap::heap();
1331      CompactingPermGenGen* gen = (CompactingPermGenGen*)gch->perm_gen();
1332      gen->ro_space()->object_iterate(_blk);
1333      gen->rw_space()->object_iterate(_blk);
1334    }
1335  }
1336
1337};
1338
1339
1340// An ObjectClosure used to support the deprecated IterateOverHeap and
1341// IterateOverInstancesOfClass functions
1342class IterateOverHeapObjectClosure: public ObjectClosure {
1343 private:
1344  JvmtiTagMap* _tag_map;
1345  KlassHandle _klass;
1346  jvmtiHeapObjectFilter _object_filter;
1347  jvmtiHeapObjectCallback _heap_object_callback;
1348  const void* _user_data;
1349
1350  // accessors
1351  JvmtiTagMap* tag_map() const                    { return _tag_map; }
1352  jvmtiHeapObjectFilter object_filter() const     { return _object_filter; }
1353  jvmtiHeapObjectCallback object_callback() const { return _heap_object_callback; }
1354  KlassHandle klass() const                       { return _klass; }
1355  const void* user_data() const                   { return _user_data; }
1356
1357  // indicates if iteration has been aborted
1358  bool _iteration_aborted;
1359  bool is_iteration_aborted() const               { return _iteration_aborted; }
1360  void set_iteration_aborted(bool aborted)        { _iteration_aborted = aborted; }
1361
1362 public:
1363  IterateOverHeapObjectClosure(JvmtiTagMap* tag_map,
1364                               KlassHandle klass,
1365                               jvmtiHeapObjectFilter object_filter,
1366                               jvmtiHeapObjectCallback heap_object_callback,
1367                               const void* user_data) :
1368    _tag_map(tag_map),
1369    _klass(klass),
1370    _object_filter(object_filter),
1371    _heap_object_callback(heap_object_callback),
1372    _user_data(user_data),
1373    _iteration_aborted(false)
1374  {
1375  }
1376
1377  void do_object(oop o);
1378};
1379
1380// invoked for each object in the heap
1381void IterateOverHeapObjectClosure::do_object(oop o) {
1382  // check if iteration has been halted
1383  if (is_iteration_aborted()) return;
1384
1385  // ignore any objects that aren't visible to profiler
1386  if (!ServiceUtil::visible_oop(o)) return;
1387
1388  // instanceof check when filtering by klass
1389  if (!klass().is_null() && !o->is_a(klass()())) {
1390    return;
1391  }
1392  // prepare for the calllback
1393  CallbackWrapper wrapper(tag_map(), o);
1394
1395  // if the object is tagged and we're only interested in untagged objects
1396  // then don't invoke the callback. Similiarly, if the object is untagged
1397  // and we're only interested in tagged objects we skip the callback.
1398  if (wrapper.obj_tag() != 0) {
1399    if (object_filter() == JVMTI_HEAP_OBJECT_UNTAGGED) return;
1400  } else {
1401    if (object_filter() == JVMTI_HEAP_OBJECT_TAGGED) return;
1402  }
1403
1404  // invoke the agent's callback
1405  jvmtiIterationControl control = (*object_callback())(wrapper.klass_tag(),
1406                                                       wrapper.obj_size(),
1407                                                       wrapper.obj_tag_p(),
1408                                                       (void*)user_data());
1409  if (control == JVMTI_ITERATION_ABORT) {
1410    set_iteration_aborted(true);
1411  }
1412}
1413
1414// An ObjectClosure used to support the IterateThroughHeap function
1415class IterateThroughHeapObjectClosure: public ObjectClosure {
1416 private:
1417  JvmtiTagMap* _tag_map;
1418  KlassHandle _klass;
1419  int _heap_filter;
1420  const jvmtiHeapCallbacks* _callbacks;
1421  const void* _user_data;
1422
1423  // accessor functions
1424  JvmtiTagMap* tag_map() const                     { return _tag_map; }
1425  int heap_filter() const                          { return _heap_filter; }
1426  const jvmtiHeapCallbacks* callbacks() const      { return _callbacks; }
1427  KlassHandle klass() const                        { return _klass; }
1428  const void* user_data() const                    { return _user_data; }
1429
1430  // indicates if the iteration has been aborted
1431  bool _iteration_aborted;
1432  bool is_iteration_aborted() const                { return _iteration_aborted; }
1433
1434  // used to check the visit control flags. If the abort flag is set
1435  // then we set the iteration aborted flag so that the iteration completes
1436  // without processing any further objects
1437  bool check_flags_for_abort(jint flags) {
1438    bool is_abort = (flags & JVMTI_VISIT_ABORT) != 0;
1439    if (is_abort) {
1440      _iteration_aborted = true;
1441    }
1442    return is_abort;
1443  }
1444
1445 public:
1446  IterateThroughHeapObjectClosure(JvmtiTagMap* tag_map,
1447                                  KlassHandle klass,
1448                                  int heap_filter,
1449                                  const jvmtiHeapCallbacks* heap_callbacks,
1450                                  const void* user_data) :
1451    _tag_map(tag_map),
1452    _klass(klass),
1453    _heap_filter(heap_filter),
1454    _callbacks(heap_callbacks),
1455    _user_data(user_data),
1456    _iteration_aborted(false)
1457  {
1458  }
1459
1460  void do_object(oop o);
1461};
1462
1463// invoked for each object in the heap
1464void IterateThroughHeapObjectClosure::do_object(oop obj) {
1465  // check if iteration has been halted
1466  if (is_iteration_aborted()) return;
1467
1468  // ignore any objects that aren't visible to profiler
1469  if (!ServiceUtil::visible_oop(obj)) return;
1470
1471  // apply class filter
1472  if (is_filtered_by_klass_filter(obj, klass())) return;
1473
1474  // prepare for callback
1475  CallbackWrapper wrapper(tag_map(), obj);
1476
1477  // check if filtered by the heap filter
1478  if (is_filtered_by_heap_filter(wrapper.obj_tag(), wrapper.klass_tag(), heap_filter())) {
1479    return;
1480  }
1481
1482  // for arrays we need the length, otherwise -1
1483  bool is_array = obj->is_array();
1484  int len = is_array ? arrayOop(obj)->length() : -1;
1485
1486  // invoke the object callback (if callback is provided)
1487  if (callbacks()->heap_iteration_callback != NULL) {
1488    jvmtiHeapIterationCallback cb = callbacks()->heap_iteration_callback;
1489    jint res = (*cb)(wrapper.klass_tag(),
1490                     wrapper.obj_size(),
1491                     wrapper.obj_tag_p(),
1492                     (jint)len,
1493                     (void*)user_data());
1494    if (check_flags_for_abort(res)) return;
1495  }
1496
1497  // for objects and classes we report primitive fields if callback provided
1498  if (callbacks()->primitive_field_callback != NULL && obj->is_instance()) {
1499    jint res;
1500    jvmtiPrimitiveFieldCallback cb = callbacks()->primitive_field_callback;
1501    if (obj->klass() == SystemDictionary::class_klass()) {
1502      res = invoke_primitive_field_callback_for_static_fields(&wrapper,
1503                                                                    obj,
1504                                                                    cb,
1505                                                                    (void*)user_data());
1506    } else {
1507      res = invoke_primitive_field_callback_for_instance_fields(&wrapper,
1508                                                                      obj,
1509                                                                      cb,
1510                                                                      (void*)user_data());
1511    }
1512    if (check_flags_for_abort(res)) return;
1513  }
1514
1515  // string callback
1516  if (!is_array &&
1517      callbacks()->string_primitive_value_callback != NULL &&
1518      obj->klass() == SystemDictionary::string_klass()) {
1519    jint res = invoke_string_value_callback(
1520                callbacks()->string_primitive_value_callback,
1521                &wrapper,
1522                obj,
1523                (void*)user_data() );
1524    if (check_flags_for_abort(res)) return;
1525  }
1526
1527  // array callback
1528  if (is_array &&
1529      callbacks()->array_primitive_value_callback != NULL &&
1530      obj->is_typeArray()) {
1531    jint res = invoke_array_primitive_value_callback(
1532               callbacks()->array_primitive_value_callback,
1533               &wrapper,
1534               obj,
1535               (void*)user_data() );
1536    if (check_flags_for_abort(res)) return;
1537  }
1538};
1539
1540
1541// Deprecated function to iterate over all objects in the heap
1542void JvmtiTagMap::iterate_over_heap(jvmtiHeapObjectFilter object_filter,
1543                                    KlassHandle klass,
1544                                    jvmtiHeapObjectCallback heap_object_callback,
1545                                    const void* user_data)
1546{
1547  MutexLocker ml(Heap_lock);
1548  IterateOverHeapObjectClosure blk(this,
1549                                   klass,
1550                                   object_filter,
1551                                   heap_object_callback,
1552                                   user_data);
1553  VM_HeapIterateOperation op(&blk);
1554  VMThread::execute(&op);
1555}
1556
1557
1558// Iterates over all objects in the heap
1559void JvmtiTagMap::iterate_through_heap(jint heap_filter,
1560                                       KlassHandle klass,
1561                                       const jvmtiHeapCallbacks* callbacks,
1562                                       const void* user_data)
1563{
1564  MutexLocker ml(Heap_lock);
1565  IterateThroughHeapObjectClosure blk(this,
1566                                      klass,
1567                                      heap_filter,
1568                                      callbacks,
1569                                      user_data);
1570  VM_HeapIterateOperation op(&blk);
1571  VMThread::execute(&op);
1572}
1573
1574// support class for get_objects_with_tags
1575
1576class TagObjectCollector : public JvmtiTagHashmapEntryClosure {
1577 private:
1578  JvmtiEnv* _env;
1579  jlong* _tags;
1580  jint _tag_count;
1581
1582  GrowableArray<jobject>* _object_results;  // collected objects (JNI weak refs)
1583  GrowableArray<uint64_t>* _tag_results;    // collected tags
1584
1585 public:
1586  TagObjectCollector(JvmtiEnv* env, const jlong* tags, jint tag_count) {
1587    _env = env;
1588    _tags = (jlong*)tags;
1589    _tag_count = tag_count;
1590    _object_results = new (ResourceObj::C_HEAP) GrowableArray<jobject>(1,true);
1591    _tag_results = new (ResourceObj::C_HEAP) GrowableArray<uint64_t>(1,true);
1592  }
1593
1594  ~TagObjectCollector() {
1595    delete _object_results;
1596    delete _tag_results;
1597  }
1598
1599  // for each tagged object check if the tag value matches
1600  // - if it matches then we create a JNI local reference to the object
1601  // and record the reference and tag value.
1602  //
1603  void do_entry(JvmtiTagHashmapEntry* entry) {
1604    for (int i=0; i<_tag_count; i++) {
1605      if (_tags[i] == entry->tag()) {
1606        oop o = JNIHandles::resolve(entry->object());
1607        assert(o != NULL && o != JNIHandles::deleted_handle(), "sanity check");
1608
1609        // the mirror is tagged
1610        if (o->is_klass()) {
1611          klassOop k = (klassOop)o;
1612          o = Klass::cast(k)->java_mirror();
1613        }
1614
1615        jobject ref = JNIHandles::make_local(JavaThread::current(), o);
1616        _object_results->append(ref);
1617        _tag_results->append((uint64_t)entry->tag());
1618      }
1619    }
1620  }
1621
1622  // return the results from the collection
1623  //
1624  jvmtiError result(jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
1625    jvmtiError error;
1626    int count = _object_results->length();
1627    assert(count >= 0, "sanity check");
1628
1629    // if object_result_ptr is not NULL then allocate the result and copy
1630    // in the object references.
1631    if (object_result_ptr != NULL) {
1632      error = _env->Allocate(count * sizeof(jobject), (unsigned char**)object_result_ptr);
1633      if (error != JVMTI_ERROR_NONE) {
1634        return error;
1635      }
1636      for (int i=0; i<count; i++) {
1637        (*object_result_ptr)[i] = _object_results->at(i);
1638      }
1639    }
1640
1641    // if tag_result_ptr is not NULL then allocate the result and copy
1642    // in the tag values.
1643    if (tag_result_ptr != NULL) {
1644      error = _env->Allocate(count * sizeof(jlong), (unsigned char**)tag_result_ptr);
1645      if (error != JVMTI_ERROR_NONE) {
1646        if (object_result_ptr != NULL) {
1647          _env->Deallocate((unsigned char*)object_result_ptr);
1648        }
1649        return error;
1650      }
1651      for (int i=0; i<count; i++) {
1652        (*tag_result_ptr)[i] = (jlong)_tag_results->at(i);
1653      }
1654    }
1655
1656    *count_ptr = count;
1657    return JVMTI_ERROR_NONE;
1658  }
1659};
1660
1661// return the list of objects with the specified tags
1662jvmtiError JvmtiTagMap::get_objects_with_tags(const jlong* tags,
1663  jint count, jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
1664
1665  TagObjectCollector collector(env(), tags, count);
1666  {
1667    // iterate over all tagged objects
1668    MutexLocker ml(lock());
1669    entry_iterate(&collector);
1670  }
1671  return collector.result(count_ptr, object_result_ptr, tag_result_ptr);
1672}
1673
1674
1675// ObjectMarker is used to support the marking objects when walking the
1676// heap.
1677//
1678// This implementation uses the existing mark bits in an object for
1679// marking. Objects that are marked must later have their headers restored.
1680// As most objects are unlocked and don't have their identity hash computed
1681// we don't have to save their headers. Instead we save the headers that
1682// are "interesting". Later when the headers are restored this implementation
1683// restores all headers to their initial value and then restores the few
1684// objects that had interesting headers.
1685//
1686// Future work: This implementation currently uses growable arrays to save
1687// the oop and header of interesting objects. As an optimization we could
1688// use the same technique as the GC and make use of the unused area
1689// between top() and end().
1690//
1691
1692// An ObjectClosure used to restore the mark bits of an object
1693class RestoreMarksClosure : public ObjectClosure {
1694 public:
1695  void do_object(oop o) {
1696    if (o != NULL) {
1697      markOop mark = o->mark();
1698      if (mark->is_marked()) {
1699        o->init_mark();
1700      }
1701    }
1702  }
1703};
1704
1705// ObjectMarker provides the mark and visited functions
1706class ObjectMarker : AllStatic {
1707 private:
1708  // saved headers
1709  static GrowableArray<oop>* _saved_oop_stack;
1710  static GrowableArray<markOop>* _saved_mark_stack;
1711
1712 public:
1713  static void init();                       // initialize
1714  static void done();                       // clean-up
1715
1716  static inline void mark(oop o);           // mark an object
1717  static inline bool visited(oop o);        // check if object has been visited
1718};
1719
1720GrowableArray<oop>* ObjectMarker::_saved_oop_stack = NULL;
1721GrowableArray<markOop>* ObjectMarker::_saved_mark_stack = NULL;
1722
1723// initialize ObjectMarker - prepares for object marking
1724void ObjectMarker::init() {
1725  assert(Thread::current()->is_VM_thread(), "must be VMThread");
1726
1727  // prepare heap for iteration
1728  Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
1729
1730  // create stacks for interesting headers
1731  _saved_mark_stack = new (ResourceObj::C_HEAP) GrowableArray<markOop>(4000, true);
1732  _saved_oop_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(4000, true);
1733
1734  if (UseBiasedLocking) {
1735    BiasedLocking::preserve_marks();
1736  }
1737}
1738
1739// Object marking is done so restore object headers
1740void ObjectMarker::done() {
1741  // iterate over all objects and restore the mark bits to
1742  // their initial value
1743  RestoreMarksClosure blk;
1744  Universe::heap()->object_iterate(&blk);
1745
1746  // When sharing is enabled we need to restore the headers of the objects
1747  // in the readwrite space too.
1748  if (UseSharedSpaces) {
1749    GenCollectedHeap* gch = GenCollectedHeap::heap();
1750    CompactingPermGenGen* gen = (CompactingPermGenGen*)gch->perm_gen();
1751    gen->rw_space()->object_iterate(&blk);
1752  }
1753
1754  // now restore the interesting headers
1755  for (int i = 0; i < _saved_oop_stack->length(); i++) {
1756    oop o = _saved_oop_stack->at(i);
1757    markOop mark = _saved_mark_stack->at(i);
1758    o->set_mark(mark);
1759  }
1760
1761  if (UseBiasedLocking) {
1762    BiasedLocking::restore_marks();
1763  }
1764
1765  // free the stacks
1766  delete _saved_oop_stack;
1767  delete _saved_mark_stack;
1768}
1769
1770// mark an object
1771inline void ObjectMarker::mark(oop o) {
1772  assert(Universe::heap()->is_in(o), "sanity check");
1773  assert(!o->mark()->is_marked(), "should only mark an object once");
1774
1775  // object's mark word
1776  markOop mark = o->mark();
1777
1778  if (mark->must_be_preserved(o)) {
1779    _saved_mark_stack->push(mark);
1780    _saved_oop_stack->push(o);
1781  }
1782
1783  // mark the object
1784  o->set_mark(markOopDesc::prototype()->set_marked());
1785}
1786
1787// return true if object is marked
1788inline bool ObjectMarker::visited(oop o) {
1789  return o->mark()->is_marked();
1790}
1791
1792// Stack allocated class to help ensure that ObjectMarker is used
1793// correctly. Constructor initializes ObjectMarker, destructor calls
1794// ObjectMarker's done() function to restore object headers.
1795class ObjectMarkerController : public StackObj {
1796 public:
1797  ObjectMarkerController() {
1798    ObjectMarker::init();
1799  }
1800  ~ObjectMarkerController() {
1801    ObjectMarker::done();
1802  }
1803};
1804
1805
1806// helper to map a jvmtiHeapReferenceKind to an old style jvmtiHeapRootKind
1807// (not performance critical as only used for roots)
1808static jvmtiHeapRootKind toJvmtiHeapRootKind(jvmtiHeapReferenceKind kind) {
1809  switch (kind) {
1810    case JVMTI_HEAP_REFERENCE_JNI_GLOBAL:   return JVMTI_HEAP_ROOT_JNI_GLOBAL;
1811    case JVMTI_HEAP_REFERENCE_SYSTEM_CLASS: return JVMTI_HEAP_ROOT_SYSTEM_CLASS;
1812    case JVMTI_HEAP_REFERENCE_MONITOR:      return JVMTI_HEAP_ROOT_MONITOR;
1813    case JVMTI_HEAP_REFERENCE_STACK_LOCAL:  return JVMTI_HEAP_ROOT_STACK_LOCAL;
1814    case JVMTI_HEAP_REFERENCE_JNI_LOCAL:    return JVMTI_HEAP_ROOT_JNI_LOCAL;
1815    case JVMTI_HEAP_REFERENCE_THREAD:       return JVMTI_HEAP_ROOT_THREAD;
1816    case JVMTI_HEAP_REFERENCE_OTHER:        return JVMTI_HEAP_ROOT_OTHER;
1817    default: ShouldNotReachHere();          return JVMTI_HEAP_ROOT_OTHER;
1818  }
1819}
1820
1821// Base class for all heap walk contexts. The base class maintains a flag
1822// to indicate if the context is valid or not.
1823class HeapWalkContext VALUE_OBJ_CLASS_SPEC {
1824 private:
1825  bool _valid;
1826 public:
1827  HeapWalkContext(bool valid)                   { _valid = valid; }
1828  void invalidate()                             { _valid = false; }
1829  bool is_valid() const                         { return _valid; }
1830};
1831
1832// A basic heap walk context for the deprecated heap walking functions.
1833// The context for a basic heap walk are the callbacks and fields used by
1834// the referrer caching scheme.
1835class BasicHeapWalkContext: public HeapWalkContext {
1836 private:
1837  jvmtiHeapRootCallback _heap_root_callback;
1838  jvmtiStackReferenceCallback _stack_ref_callback;
1839  jvmtiObjectReferenceCallback _object_ref_callback;
1840
1841  // used for caching
1842  oop _last_referrer;
1843  jlong _last_referrer_tag;
1844
1845 public:
1846  BasicHeapWalkContext() : HeapWalkContext(false) { }
1847
1848  BasicHeapWalkContext(jvmtiHeapRootCallback heap_root_callback,
1849                       jvmtiStackReferenceCallback stack_ref_callback,
1850                       jvmtiObjectReferenceCallback object_ref_callback) :
1851    HeapWalkContext(true),
1852    _heap_root_callback(heap_root_callback),
1853    _stack_ref_callback(stack_ref_callback),
1854    _object_ref_callback(object_ref_callback),
1855    _last_referrer(NULL),
1856    _last_referrer_tag(0) {
1857  }
1858
1859  // accessors
1860  jvmtiHeapRootCallback heap_root_callback() const         { return _heap_root_callback; }
1861  jvmtiStackReferenceCallback stack_ref_callback() const   { return _stack_ref_callback; }
1862  jvmtiObjectReferenceCallback object_ref_callback() const { return _object_ref_callback;  }
1863
1864  oop last_referrer() const               { return _last_referrer; }
1865  void set_last_referrer(oop referrer)    { _last_referrer = referrer; }
1866  jlong last_referrer_tag() const         { return _last_referrer_tag; }
1867  void set_last_referrer_tag(jlong value) { _last_referrer_tag = value; }
1868};
1869
1870// The advanced heap walk context for the FollowReferences functions.
1871// The context is the callbacks, and the fields used for filtering.
1872class AdvancedHeapWalkContext: public HeapWalkContext {
1873 private:
1874  jint _heap_filter;
1875  KlassHandle _klass_filter;
1876  const jvmtiHeapCallbacks* _heap_callbacks;
1877
1878 public:
1879  AdvancedHeapWalkContext() : HeapWalkContext(false) { }
1880
1881  AdvancedHeapWalkContext(jint heap_filter,
1882                           KlassHandle klass_filter,
1883                           const jvmtiHeapCallbacks* heap_callbacks) :
1884    HeapWalkContext(true),
1885    _heap_filter(heap_filter),
1886    _klass_filter(klass_filter),
1887    _heap_callbacks(heap_callbacks) {
1888  }
1889
1890  // accessors
1891  jint heap_filter() const         { return _heap_filter; }
1892  KlassHandle klass_filter() const { return _klass_filter; }
1893
1894  const jvmtiHeapReferenceCallback heap_reference_callback() const {
1895    return _heap_callbacks->heap_reference_callback;
1896  };
1897  const jvmtiPrimitiveFieldCallback primitive_field_callback() const {
1898    return _heap_callbacks->primitive_field_callback;
1899  }
1900  const jvmtiArrayPrimitiveValueCallback array_primitive_value_callback() const {
1901    return _heap_callbacks->array_primitive_value_callback;
1902  }
1903  const jvmtiStringPrimitiveValueCallback string_primitive_value_callback() const {
1904    return _heap_callbacks->string_primitive_value_callback;
1905  }
1906};
1907
1908// The CallbackInvoker is a class with static functions that the heap walk can call
1909// into to invoke callbacks. It works in one of two modes. The "basic" mode is
1910// used for the deprecated IterateOverReachableObjects functions. The "advanced"
1911// mode is for the newer FollowReferences function which supports a lot of
1912// additional callbacks.
1913class CallbackInvoker : AllStatic {
1914 private:
1915  // heap walk styles
1916  enum { basic, advanced };
1917  static int _heap_walk_type;
1918  static bool is_basic_heap_walk()           { return _heap_walk_type == basic; }
1919  static bool is_advanced_heap_walk()        { return _heap_walk_type == advanced; }
1920
1921  // context for basic style heap walk
1922  static BasicHeapWalkContext _basic_context;
1923  static BasicHeapWalkContext* basic_context() {
1924    assert(_basic_context.is_valid(), "invalid");
1925    return &_basic_context;
1926  }
1927
1928  // context for advanced style heap walk
1929  static AdvancedHeapWalkContext _advanced_context;
1930  static AdvancedHeapWalkContext* advanced_context() {
1931    assert(_advanced_context.is_valid(), "invalid");
1932    return &_advanced_context;
1933  }
1934
1935  // context needed for all heap walks
1936  static JvmtiTagMap* _tag_map;
1937  static const void* _user_data;
1938  static GrowableArray<oop>* _visit_stack;
1939
1940  // accessors
1941  static JvmtiTagMap* tag_map()                        { return _tag_map; }
1942  static const void* user_data()                       { return _user_data; }
1943  static GrowableArray<oop>* visit_stack()             { return _visit_stack; }
1944
1945  // if the object hasn't been visited then push it onto the visit stack
1946  // so that it will be visited later
1947  static inline bool check_for_visit(oop obj) {
1948    if (!ObjectMarker::visited(obj)) visit_stack()->push(obj);
1949    return true;
1950  }
1951
1952  // invoke basic style callbacks
1953  static inline bool invoke_basic_heap_root_callback
1954    (jvmtiHeapRootKind root_kind, oop obj);
1955  static inline bool invoke_basic_stack_ref_callback
1956    (jvmtiHeapRootKind root_kind, jlong thread_tag, jint depth, jmethodID method,
1957     int slot, oop obj);
1958  static inline bool invoke_basic_object_reference_callback
1959    (jvmtiObjectReferenceKind ref_kind, oop referrer, oop referree, jint index);
1960
1961  // invoke advanced style callbacks
1962  static inline bool invoke_advanced_heap_root_callback
1963    (jvmtiHeapReferenceKind ref_kind, oop obj);
1964  static inline bool invoke_advanced_stack_ref_callback
1965    (jvmtiHeapReferenceKind ref_kind, jlong thread_tag, jlong tid, int depth,
1966     jmethodID method, jlocation bci, jint slot, oop obj);
1967  static inline bool invoke_advanced_object_reference_callback
1968    (jvmtiHeapReferenceKind ref_kind, oop referrer, oop referree, jint index);
1969
1970  // used to report the value of primitive fields
1971  static inline bool report_primitive_field
1972    (jvmtiHeapReferenceKind ref_kind, oop obj, jint index, address addr, char type);
1973
1974 public:
1975  // initialize for basic mode
1976  static void initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
1977                                             GrowableArray<oop>* visit_stack,
1978                                             const void* user_data,
1979                                             BasicHeapWalkContext context);
1980
1981  // initialize for advanced mode
1982  static void initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
1983                                                GrowableArray<oop>* visit_stack,
1984                                                const void* user_data,
1985                                                AdvancedHeapWalkContext context);
1986
1987   // functions to report roots
1988  static inline bool report_simple_root(jvmtiHeapReferenceKind kind, oop o);
1989  static inline bool report_jni_local_root(jlong thread_tag, jlong tid, jint depth,
1990    jmethodID m, oop o);
1991  static inline bool report_stack_ref_root(jlong thread_tag, jlong tid, jint depth,
1992    jmethodID method, jlocation bci, jint slot, oop o);
1993
1994  // functions to report references
1995  static inline bool report_array_element_reference(oop referrer, oop referree, jint index);
1996  static inline bool report_class_reference(oop referrer, oop referree);
1997  static inline bool report_class_loader_reference(oop referrer, oop referree);
1998  static inline bool report_signers_reference(oop referrer, oop referree);
1999  static inline bool report_protection_domain_reference(oop referrer, oop referree);
2000  static inline bool report_superclass_reference(oop referrer, oop referree);
2001  static inline bool report_interface_reference(oop referrer, oop referree);
2002  static inline bool report_static_field_reference(oop referrer, oop referree, jint slot);
2003  static inline bool report_field_reference(oop referrer, oop referree, jint slot);
2004  static inline bool report_constant_pool_reference(oop referrer, oop referree, jint index);
2005  static inline bool report_primitive_array_values(oop array);
2006  static inline bool report_string_value(oop str);
2007  static inline bool report_primitive_instance_field(oop o, jint index, address value, char type);
2008  static inline bool report_primitive_static_field(oop o, jint index, address value, char type);
2009};
2010
2011// statics
2012int CallbackInvoker::_heap_walk_type;
2013BasicHeapWalkContext CallbackInvoker::_basic_context;
2014AdvancedHeapWalkContext CallbackInvoker::_advanced_context;
2015JvmtiTagMap* CallbackInvoker::_tag_map;
2016const void* CallbackInvoker::_user_data;
2017GrowableArray<oop>* CallbackInvoker::_visit_stack;
2018
2019// initialize for basic heap walk (IterateOverReachableObjects et al)
2020void CallbackInvoker::initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
2021                                                     GrowableArray<oop>* visit_stack,
2022                                                     const void* user_data,
2023                                                     BasicHeapWalkContext context) {
2024  _tag_map = tag_map;
2025  _visit_stack = visit_stack;
2026  _user_data = user_data;
2027  _basic_context = context;
2028  _advanced_context.invalidate();       // will trigger assertion if used
2029  _heap_walk_type = basic;
2030}
2031
2032// initialize for advanced heap walk (FollowReferences)
2033void CallbackInvoker::initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
2034                                                        GrowableArray<oop>* visit_stack,
2035                                                        const void* user_data,
2036                                                        AdvancedHeapWalkContext context) {
2037  _tag_map = tag_map;
2038  _visit_stack = visit_stack;
2039  _user_data = user_data;
2040  _advanced_context = context;
2041  _basic_context.invalidate();      // will trigger assertion if used
2042  _heap_walk_type = advanced;
2043}
2044
2045
2046// invoke basic style heap root callback
2047inline bool CallbackInvoker::invoke_basic_heap_root_callback(jvmtiHeapRootKind root_kind, oop obj) {
2048  assert(ServiceUtil::visible_oop(obj), "checking");
2049
2050  // if we heap roots should be reported
2051  jvmtiHeapRootCallback cb = basic_context()->heap_root_callback();
2052  if (cb == NULL) {
2053    return check_for_visit(obj);
2054  }
2055
2056  CallbackWrapper wrapper(tag_map(), obj);
2057  jvmtiIterationControl control = (*cb)(root_kind,
2058                                        wrapper.klass_tag(),
2059                                        wrapper.obj_size(),
2060                                        wrapper.obj_tag_p(),
2061                                        (void*)user_data());
2062  // push root to visit stack when following references
2063  if (control == JVMTI_ITERATION_CONTINUE &&
2064      basic_context()->object_ref_callback() != NULL) {
2065    visit_stack()->push(obj);
2066  }
2067  return control != JVMTI_ITERATION_ABORT;
2068}
2069
2070// invoke basic style stack ref callback
2071inline bool CallbackInvoker::invoke_basic_stack_ref_callback(jvmtiHeapRootKind root_kind,
2072                                                             jlong thread_tag,
2073                                                             jint depth,
2074                                                             jmethodID method,
2075                                                             jint slot,
2076                                                             oop obj) {
2077  assert(ServiceUtil::visible_oop(obj), "checking");
2078
2079  // if we stack refs should be reported
2080  jvmtiStackReferenceCallback cb = basic_context()->stack_ref_callback();
2081  if (cb == NULL) {
2082    return check_for_visit(obj);
2083  }
2084
2085  CallbackWrapper wrapper(tag_map(), obj);
2086  jvmtiIterationControl control = (*cb)(root_kind,
2087                                        wrapper.klass_tag(),
2088                                        wrapper.obj_size(),
2089                                        wrapper.obj_tag_p(),
2090                                        thread_tag,
2091                                        depth,
2092                                        method,
2093                                        slot,
2094                                        (void*)user_data());
2095  // push root to visit stack when following references
2096  if (control == JVMTI_ITERATION_CONTINUE &&
2097      basic_context()->object_ref_callback() != NULL) {
2098    visit_stack()->push(obj);
2099  }
2100  return control != JVMTI_ITERATION_ABORT;
2101}
2102
2103// invoke basic style object reference callback
2104inline bool CallbackInvoker::invoke_basic_object_reference_callback(jvmtiObjectReferenceKind ref_kind,
2105                                                                    oop referrer,
2106                                                                    oop referree,
2107                                                                    jint index) {
2108
2109  assert(ServiceUtil::visible_oop(referrer), "checking");
2110  assert(ServiceUtil::visible_oop(referree), "checking");
2111
2112  BasicHeapWalkContext* context = basic_context();
2113
2114  // callback requires the referrer's tag. If it's the same referrer
2115  // as the last call then we use the cached value.
2116  jlong referrer_tag;
2117  if (referrer == context->last_referrer()) {
2118    referrer_tag = context->last_referrer_tag();
2119  } else {
2120    referrer_tag = tag_for(tag_map(), klassOop_if_java_lang_Class(referrer));
2121  }
2122
2123  // do the callback
2124  CallbackWrapper wrapper(tag_map(), referree);
2125  jvmtiObjectReferenceCallback cb = context->object_ref_callback();
2126  jvmtiIterationControl control = (*cb)(ref_kind,
2127                                        wrapper.klass_tag(),
2128                                        wrapper.obj_size(),
2129                                        wrapper.obj_tag_p(),
2130                                        referrer_tag,
2131                                        index,
2132                                        (void*)user_data());
2133
2134  // record referrer and referrer tag. For self-references record the
2135  // tag value from the callback as this might differ from referrer_tag.
2136  context->set_last_referrer(referrer);
2137  if (referrer == referree) {
2138    context->set_last_referrer_tag(*wrapper.obj_tag_p());
2139  } else {
2140    context->set_last_referrer_tag(referrer_tag);
2141  }
2142
2143  if (control == JVMTI_ITERATION_CONTINUE) {
2144    return check_for_visit(referree);
2145  } else {
2146    return control != JVMTI_ITERATION_ABORT;
2147  }
2148}
2149
2150// invoke advanced style heap root callback
2151inline bool CallbackInvoker::invoke_advanced_heap_root_callback(jvmtiHeapReferenceKind ref_kind,
2152                                                                oop obj) {
2153  assert(ServiceUtil::visible_oop(obj), "checking");
2154
2155  AdvancedHeapWalkContext* context = advanced_context();
2156
2157  // check that callback is provided
2158  jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2159  if (cb == NULL) {
2160    return check_for_visit(obj);
2161  }
2162
2163  // apply class filter
2164  if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2165    return check_for_visit(obj);
2166  }
2167
2168  // setup the callback wrapper
2169  CallbackWrapper wrapper(tag_map(), obj);
2170
2171  // apply tag filter
2172  if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2173                                 wrapper.klass_tag(),
2174                                 context->heap_filter())) {
2175    return check_for_visit(obj);
2176  }
2177
2178  // for arrays we need the length, otherwise -1
2179  jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2180
2181  // invoke the callback
2182  jint res  = (*cb)(ref_kind,
2183                    NULL, // referrer info
2184                    wrapper.klass_tag(),
2185                    0,    // referrer_class_tag is 0 for heap root
2186                    wrapper.obj_size(),
2187                    wrapper.obj_tag_p(),
2188                    NULL, // referrer_tag_p
2189                    len,
2190                    (void*)user_data());
2191  if (res & JVMTI_VISIT_ABORT) {
2192    return false;// referrer class tag
2193  }
2194  if (res & JVMTI_VISIT_OBJECTS) {
2195    check_for_visit(obj);
2196  }
2197  return true;
2198}
2199
2200// report a reference from a thread stack to an object
2201inline bool CallbackInvoker::invoke_advanced_stack_ref_callback(jvmtiHeapReferenceKind ref_kind,
2202                                                                jlong thread_tag,
2203                                                                jlong tid,
2204                                                                int depth,
2205                                                                jmethodID method,
2206                                                                jlocation bci,
2207                                                                jint slot,
2208                                                                oop obj) {
2209  assert(ServiceUtil::visible_oop(obj), "checking");
2210
2211  AdvancedHeapWalkContext* context = advanced_context();
2212
2213  // check that callback is provider
2214  jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2215  if (cb == NULL) {
2216    return check_for_visit(obj);
2217  }
2218
2219  // apply class filter
2220  if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2221    return check_for_visit(obj);
2222  }
2223
2224  // setup the callback wrapper
2225  CallbackWrapper wrapper(tag_map(), obj);
2226
2227  // apply tag filter
2228  if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2229                                 wrapper.klass_tag(),
2230                                 context->heap_filter())) {
2231    return check_for_visit(obj);
2232  }
2233
2234  // setup the referrer info
2235  jvmtiHeapReferenceInfo reference_info;
2236  reference_info.stack_local.thread_tag = thread_tag;
2237  reference_info.stack_local.thread_id = tid;
2238  reference_info.stack_local.depth = depth;
2239  reference_info.stack_local.method = method;
2240  reference_info.stack_local.location = bci;
2241  reference_info.stack_local.slot = slot;
2242
2243  // for arrays we need the length, otherwise -1
2244  jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2245
2246  // call into the agent
2247  int res = (*cb)(ref_kind,
2248                  &reference_info,
2249                  wrapper.klass_tag(),
2250                  0,    // referrer_class_tag is 0 for heap root (stack)
2251                  wrapper.obj_size(),
2252                  wrapper.obj_tag_p(),
2253                  NULL, // referrer_tag is 0 for root
2254                  len,
2255                  (void*)user_data());
2256
2257  if (res & JVMTI_VISIT_ABORT) {
2258    return false;
2259  }
2260  if (res & JVMTI_VISIT_OBJECTS) {
2261    check_for_visit(obj);
2262  }
2263  return true;
2264}
2265
2266// This mask is used to pass reference_info to a jvmtiHeapReferenceCallback
2267// only for ref_kinds defined by the JVM TI spec. Otherwise, NULL is passed.
2268#define REF_INFO_MASK  ((1 << JVMTI_HEAP_REFERENCE_FIELD)         \
2269                      | (1 << JVMTI_HEAP_REFERENCE_STATIC_FIELD)  \
2270                      | (1 << JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT) \
2271                      | (1 << JVMTI_HEAP_REFERENCE_CONSTANT_POOL) \
2272                      | (1 << JVMTI_HEAP_REFERENCE_STACK_LOCAL)   \
2273                      | (1 << JVMTI_HEAP_REFERENCE_JNI_LOCAL))
2274
2275// invoke the object reference callback to report a reference
2276inline bool CallbackInvoker::invoke_advanced_object_reference_callback(jvmtiHeapReferenceKind ref_kind,
2277                                                                       oop referrer,
2278                                                                       oop obj,
2279                                                                       jint index)
2280{
2281  // field index is only valid field in reference_info
2282  static jvmtiHeapReferenceInfo reference_info = { 0 };
2283
2284  assert(ServiceUtil::visible_oop(referrer), "checking");
2285  assert(ServiceUtil::visible_oop(obj), "checking");
2286
2287  AdvancedHeapWalkContext* context = advanced_context();
2288
2289  // check that callback is provider
2290  jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2291  if (cb == NULL) {
2292    return check_for_visit(obj);
2293  }
2294
2295  // apply class filter
2296  if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2297    return check_for_visit(obj);
2298  }
2299
2300  // setup the callback wrapper
2301  TwoOopCallbackWrapper wrapper(tag_map(), referrer, obj);
2302
2303  // apply tag filter
2304  if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2305                                 wrapper.klass_tag(),
2306                                 context->heap_filter())) {
2307    return check_for_visit(obj);
2308  }
2309
2310  // field index is only valid field in reference_info
2311  reference_info.field.index = index;
2312
2313  // for arrays we need the length, otherwise -1
2314  jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2315
2316  // invoke the callback
2317  int res = (*cb)(ref_kind,
2318                  (REF_INFO_MASK & (1 << ref_kind)) ? &reference_info : NULL,
2319                  wrapper.klass_tag(),
2320                  wrapper.referrer_klass_tag(),
2321                  wrapper.obj_size(),
2322                  wrapper.obj_tag_p(),
2323                  wrapper.referrer_tag_p(),
2324                  len,
2325                  (void*)user_data());
2326
2327  if (res & JVMTI_VISIT_ABORT) {
2328    return false;
2329  }
2330  if (res & JVMTI_VISIT_OBJECTS) {
2331    check_for_visit(obj);
2332  }
2333  return true;
2334}
2335
2336// report a "simple root"
2337inline bool CallbackInvoker::report_simple_root(jvmtiHeapReferenceKind kind, oop obj) {
2338  assert(kind != JVMTI_HEAP_REFERENCE_STACK_LOCAL &&
2339         kind != JVMTI_HEAP_REFERENCE_JNI_LOCAL, "not a simple root");
2340  assert(ServiceUtil::visible_oop(obj), "checking");
2341
2342  if (is_basic_heap_walk()) {
2343    // map to old style root kind
2344    jvmtiHeapRootKind root_kind = toJvmtiHeapRootKind(kind);
2345    return invoke_basic_heap_root_callback(root_kind, obj);
2346  } else {
2347    assert(is_advanced_heap_walk(), "wrong heap walk type");
2348    return invoke_advanced_heap_root_callback(kind, obj);
2349  }
2350}
2351
2352
2353// invoke the primitive array values
2354inline bool CallbackInvoker::report_primitive_array_values(oop obj) {
2355  assert(obj->is_typeArray(), "not a primitive array");
2356
2357  AdvancedHeapWalkContext* context = advanced_context();
2358  assert(context->array_primitive_value_callback() != NULL, "no callback");
2359
2360  // apply class filter
2361  if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2362    return true;
2363  }
2364
2365  CallbackWrapper wrapper(tag_map(), obj);
2366
2367  // apply tag filter
2368  if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2369                                 wrapper.klass_tag(),
2370                                 context->heap_filter())) {
2371    return true;
2372  }
2373
2374  // invoke the callback
2375  int res = invoke_array_primitive_value_callback(context->array_primitive_value_callback(),
2376                                                  &wrapper,
2377                                                  obj,
2378                                                  (void*)user_data());
2379  return (!(res & JVMTI_VISIT_ABORT));
2380}
2381
2382// invoke the string value callback
2383inline bool CallbackInvoker::report_string_value(oop str) {
2384  assert(str->klass() == SystemDictionary::string_klass(), "not a string");
2385
2386  AdvancedHeapWalkContext* context = advanced_context();
2387  assert(context->string_primitive_value_callback() != NULL, "no callback");
2388
2389  // apply class filter
2390  if (is_filtered_by_klass_filter(str, context->klass_filter())) {
2391    return true;
2392  }
2393
2394  CallbackWrapper wrapper(tag_map(), str);
2395
2396  // apply tag filter
2397  if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2398                                 wrapper.klass_tag(),
2399                                 context->heap_filter())) {
2400    return true;
2401  }
2402
2403  // invoke the callback
2404  int res = invoke_string_value_callback(context->string_primitive_value_callback(),
2405                                         &wrapper,
2406                                         str,
2407                                         (void*)user_data());
2408  return (!(res & JVMTI_VISIT_ABORT));
2409}
2410
2411// invoke the primitive field callback
2412inline bool CallbackInvoker::report_primitive_field(jvmtiHeapReferenceKind ref_kind,
2413                                                    oop obj,
2414                                                    jint index,
2415                                                    address addr,
2416                                                    char type)
2417{
2418  // for primitive fields only the index will be set
2419  static jvmtiHeapReferenceInfo reference_info = { 0 };
2420
2421  AdvancedHeapWalkContext* context = advanced_context();
2422  assert(context->primitive_field_callback() != NULL, "no callback");
2423
2424  // apply class filter
2425  if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2426    return true;
2427  }
2428
2429  CallbackWrapper wrapper(tag_map(), obj);
2430
2431  // apply tag filter
2432  if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2433                                 wrapper.klass_tag(),
2434                                 context->heap_filter())) {
2435    return true;
2436  }
2437
2438  // the field index in the referrer
2439  reference_info.field.index = index;
2440
2441  // map the type
2442  jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
2443
2444  // setup the jvalue
2445  jvalue value;
2446  copy_to_jvalue(&value, addr, value_type);
2447
2448  jvmtiPrimitiveFieldCallback cb = context->primitive_field_callback();
2449  int res = (*cb)(ref_kind,
2450                  &reference_info,
2451                  wrapper.klass_tag(),
2452                  wrapper.obj_tag_p(),
2453                  value,
2454                  value_type,
2455                  (void*)user_data());
2456  return (!(res & JVMTI_VISIT_ABORT));
2457}
2458
2459
2460// instance field
2461inline bool CallbackInvoker::report_primitive_instance_field(oop obj,
2462                                                             jint index,
2463                                                             address value,
2464                                                             char type) {
2465  return report_primitive_field(JVMTI_HEAP_REFERENCE_FIELD,
2466                                obj,
2467                                index,
2468                                value,
2469                                type);
2470}
2471
2472// static field
2473inline bool CallbackInvoker::report_primitive_static_field(oop obj,
2474                                                           jint index,
2475                                                           address value,
2476                                                           char type) {
2477  return report_primitive_field(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
2478                                obj,
2479                                index,
2480                                value,
2481                                type);
2482}
2483
2484// report a JNI local (root object) to the profiler
2485inline bool CallbackInvoker::report_jni_local_root(jlong thread_tag, jlong tid, jint depth, jmethodID m, oop obj) {
2486  if (is_basic_heap_walk()) {
2487    return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_JNI_LOCAL,
2488                                           thread_tag,
2489                                           depth,
2490                                           m,
2491                                           -1,
2492                                           obj);
2493  } else {
2494    return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_JNI_LOCAL,
2495                                              thread_tag, tid,
2496                                              depth,
2497                                              m,
2498                                              (jlocation)-1,
2499                                              -1,
2500                                              obj);
2501  }
2502}
2503
2504
2505// report a local (stack reference, root object)
2506inline bool CallbackInvoker::report_stack_ref_root(jlong thread_tag,
2507                                                   jlong tid,
2508                                                   jint depth,
2509                                                   jmethodID method,
2510                                                   jlocation bci,
2511                                                   jint slot,
2512                                                   oop obj) {
2513  if (is_basic_heap_walk()) {
2514    return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_STACK_LOCAL,
2515                                           thread_tag,
2516                                           depth,
2517                                           method,
2518                                           slot,
2519                                           obj);
2520  } else {
2521    return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_STACK_LOCAL,
2522                                              thread_tag,
2523                                              tid,
2524                                              depth,
2525                                              method,
2526                                              bci,
2527                                              slot,
2528                                              obj);
2529  }
2530}
2531
2532// report an object referencing a class.
2533inline bool CallbackInvoker::report_class_reference(oop referrer, oop referree) {
2534  if (is_basic_heap_walk()) {
2535    return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
2536  } else {
2537    return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS, referrer, referree, -1);
2538  }
2539}
2540
2541// report a class referencing its class loader.
2542inline bool CallbackInvoker::report_class_loader_reference(oop referrer, oop referree) {
2543  if (is_basic_heap_walk()) {
2544    return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS_LOADER, referrer, referree, -1);
2545  } else {
2546    return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS_LOADER, referrer, referree, -1);
2547  }
2548}
2549
2550// report a class referencing its signers.
2551inline bool CallbackInvoker::report_signers_reference(oop referrer, oop referree) {
2552  if (is_basic_heap_walk()) {
2553    return invoke_basic_object_reference_callback(JVMTI_REFERENCE_SIGNERS, referrer, referree, -1);
2554  } else {
2555    return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SIGNERS, referrer, referree, -1);
2556  }
2557}
2558
2559// report a class referencing its protection domain..
2560inline bool CallbackInvoker::report_protection_domain_reference(oop referrer, oop referree) {
2561  if (is_basic_heap_walk()) {
2562    return invoke_basic_object_reference_callback(JVMTI_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
2563  } else {
2564    return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
2565  }
2566}
2567
2568// report a class referencing its superclass.
2569inline bool CallbackInvoker::report_superclass_reference(oop referrer, oop referree) {
2570  if (is_basic_heap_walk()) {
2571    // Send this to be consistent with past implementation
2572    return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
2573  } else {
2574    return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SUPERCLASS, referrer, referree, -1);
2575  }
2576}
2577
2578// report a class referencing one of its interfaces.
2579inline bool CallbackInvoker::report_interface_reference(oop referrer, oop referree) {
2580  if (is_basic_heap_walk()) {
2581    return invoke_basic_object_reference_callback(JVMTI_REFERENCE_INTERFACE, referrer, referree, -1);
2582  } else {
2583    return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_INTERFACE, referrer, referree, -1);
2584  }
2585}
2586
2587// report a class referencing one of its static fields.
2588inline bool CallbackInvoker::report_static_field_reference(oop referrer, oop referree, jint slot) {
2589  if (is_basic_heap_walk()) {
2590    return invoke_basic_object_reference_callback(JVMTI_REFERENCE_STATIC_FIELD, referrer, referree, slot);
2591  } else {
2592    return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_STATIC_FIELD, referrer, referree, slot);
2593  }
2594}
2595
2596// report an array referencing an element object
2597inline bool CallbackInvoker::report_array_element_reference(oop referrer, oop referree, jint index) {
2598  if (is_basic_heap_walk()) {
2599    return invoke_basic_object_reference_callback(JVMTI_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
2600  } else {
2601    return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
2602  }
2603}
2604
2605// report an object referencing an instance field object
2606inline bool CallbackInvoker::report_field_reference(oop referrer, oop referree, jint slot) {
2607  if (is_basic_heap_walk()) {
2608    return invoke_basic_object_reference_callback(JVMTI_REFERENCE_FIELD, referrer, referree, slot);
2609  } else {
2610    return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_FIELD, referrer, referree, slot);
2611  }
2612}
2613
2614// report an array referencing an element object
2615inline bool CallbackInvoker::report_constant_pool_reference(oop referrer, oop referree, jint index) {
2616  if (is_basic_heap_walk()) {
2617    return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CONSTANT_POOL, referrer, referree, index);
2618  } else {
2619    return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CONSTANT_POOL, referrer, referree, index);
2620  }
2621}
2622
2623// A supporting closure used to process simple roots
2624class SimpleRootsClosure : public OopClosure {
2625 private:
2626  jvmtiHeapReferenceKind _kind;
2627  bool _continue;
2628
2629  jvmtiHeapReferenceKind root_kind()    { return _kind; }
2630
2631 public:
2632  void set_kind(jvmtiHeapReferenceKind kind) {
2633    _kind = kind;
2634    _continue = true;
2635  }
2636
2637  inline bool stopped() {
2638    return !_continue;
2639  }
2640
2641  void do_oop(oop* obj_p) {
2642    // iteration has terminated
2643    if (stopped()) {
2644      return;
2645    }
2646
2647    // ignore null or deleted handles
2648    oop o = *obj_p;
2649    if (o == NULL || o == JNIHandles::deleted_handle()) {
2650      return;
2651    }
2652
2653    jvmtiHeapReferenceKind kind = root_kind();
2654
2655    // many roots are Klasses so we use the java mirror
2656    if (o->is_klass()) {
2657      klassOop k = (klassOop)o;
2658      o = Klass::cast(k)->java_mirror();
2659    } else {
2660
2661      // SystemDictionary::always_strong_oops_do reports the application
2662      // class loader as a root. We want this root to be reported as
2663      // a root kind of "OTHER" rather than "SYSTEM_CLASS".
2664      if (o->is_instance() && root_kind() == JVMTI_HEAP_REFERENCE_SYSTEM_CLASS) {
2665        kind = JVMTI_HEAP_REFERENCE_OTHER;
2666      }
2667    }
2668
2669    // some objects are ignored - in the case of simple
2670    // roots it's mostly symbolOops that we are skipping
2671    // here.
2672    if (!ServiceUtil::visible_oop(o)) {
2673      return;
2674    }
2675
2676    // invoke the callback
2677    _continue = CallbackInvoker::report_simple_root(kind, o);
2678
2679  }
2680  virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
2681};
2682
2683// A supporting closure used to process JNI locals
2684class JNILocalRootsClosure : public OopClosure {
2685 private:
2686  jlong _thread_tag;
2687  jlong _tid;
2688  jint _depth;
2689  jmethodID _method;
2690  bool _continue;
2691 public:
2692  void set_context(jlong thread_tag, jlong tid, jint depth, jmethodID method) {
2693    _thread_tag = thread_tag;
2694    _tid = tid;
2695    _depth = depth;
2696    _method = method;
2697    _continue = true;
2698  }
2699
2700  inline bool stopped() {
2701    return !_continue;
2702  }
2703
2704  void do_oop(oop* obj_p) {
2705    // iteration has terminated
2706    if (stopped()) {
2707      return;
2708    }
2709
2710    // ignore null or deleted handles
2711    oop o = *obj_p;
2712    if (o == NULL || o == JNIHandles::deleted_handle()) {
2713      return;
2714    }
2715
2716    if (!ServiceUtil::visible_oop(o)) {
2717      return;
2718    }
2719
2720    // invoke the callback
2721    _continue = CallbackInvoker::report_jni_local_root(_thread_tag, _tid, _depth, _method, o);
2722  }
2723  virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
2724};
2725
2726
2727// A VM operation to iterate over objects that are reachable from
2728// a set of roots or an initial object.
2729//
2730// For VM_HeapWalkOperation the set of roots used is :-
2731//
2732// - All JNI global references
2733// - All inflated monitors
2734// - All classes loaded by the boot class loader (or all classes
2735//     in the event that class unloading is disabled)
2736// - All java threads
2737// - For each java thread then all locals and JNI local references
2738//      on the thread's execution stack
2739// - All visible/explainable objects from Universes::oops_do
2740//
2741class VM_HeapWalkOperation: public VM_Operation {
2742 private:
2743  enum {
2744    initial_visit_stack_size = 4000
2745  };
2746
2747  bool _is_advanced_heap_walk;                      // indicates FollowReferences
2748  JvmtiTagMap* _tag_map;
2749  Handle _initial_object;
2750  GrowableArray<oop>* _visit_stack;                 // the visit stack
2751
2752  bool _collecting_heap_roots;                      // are we collecting roots
2753  bool _following_object_refs;                      // are we following object references
2754
2755  bool _reporting_primitive_fields;                 // optional reporting
2756  bool _reporting_primitive_array_values;
2757  bool _reporting_string_values;
2758
2759  GrowableArray<oop>* create_visit_stack() {
2760    return new (ResourceObj::C_HEAP) GrowableArray<oop>(initial_visit_stack_size, true);
2761  }
2762
2763  // accessors
2764  bool is_advanced_heap_walk() const               { return _is_advanced_heap_walk; }
2765  JvmtiTagMap* tag_map() const                     { return _tag_map; }
2766  Handle initial_object() const                    { return _initial_object; }
2767
2768  bool is_following_references() const             { return _following_object_refs; }
2769
2770  bool is_reporting_primitive_fields()  const      { return _reporting_primitive_fields; }
2771  bool is_reporting_primitive_array_values() const { return _reporting_primitive_array_values; }
2772  bool is_reporting_string_values() const          { return _reporting_string_values; }
2773
2774  GrowableArray<oop>* visit_stack() const          { return _visit_stack; }
2775
2776  // iterate over the various object types
2777  inline bool iterate_over_array(oop o);
2778  inline bool iterate_over_type_array(oop o);
2779  inline bool iterate_over_class(klassOop o);
2780  inline bool iterate_over_object(oop o);
2781
2782  // root collection
2783  inline bool collect_simple_roots();
2784  inline bool collect_stack_roots();
2785  inline bool collect_stack_roots(JavaThread* java_thread, JNILocalRootsClosure* blk);
2786
2787  // visit an object
2788  inline bool visit(oop o);
2789
2790 public:
2791  VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2792                       Handle initial_object,
2793                       BasicHeapWalkContext callbacks,
2794                       const void* user_data);
2795
2796  VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2797                       Handle initial_object,
2798                       AdvancedHeapWalkContext callbacks,
2799                       const void* user_data);
2800
2801  ~VM_HeapWalkOperation();
2802
2803  VMOp_Type type() const { return VMOp_HeapWalkOperation; }
2804  void doit();
2805};
2806
2807
2808VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2809                                           Handle initial_object,
2810                                           BasicHeapWalkContext callbacks,
2811                                           const void* user_data) {
2812  _is_advanced_heap_walk = false;
2813  _tag_map = tag_map;
2814  _initial_object = initial_object;
2815  _following_object_refs = (callbacks.object_ref_callback() != NULL);
2816  _reporting_primitive_fields = false;
2817  _reporting_primitive_array_values = false;
2818  _reporting_string_values = false;
2819  _visit_stack = create_visit_stack();
2820
2821
2822  CallbackInvoker::initialize_for_basic_heap_walk(tag_map, _visit_stack, user_data, callbacks);
2823}
2824
2825VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2826                                           Handle initial_object,
2827                                           AdvancedHeapWalkContext callbacks,
2828                                           const void* user_data) {
2829  _is_advanced_heap_walk = true;
2830  _tag_map = tag_map;
2831  _initial_object = initial_object;
2832  _following_object_refs = true;
2833  _reporting_primitive_fields = (callbacks.primitive_field_callback() != NULL);;
2834  _reporting_primitive_array_values = (callbacks.array_primitive_value_callback() != NULL);;
2835  _reporting_string_values = (callbacks.string_primitive_value_callback() != NULL);;
2836  _visit_stack = create_visit_stack();
2837
2838  CallbackInvoker::initialize_for_advanced_heap_walk(tag_map, _visit_stack, user_data, callbacks);
2839}
2840
2841VM_HeapWalkOperation::~VM_HeapWalkOperation() {
2842  if (_following_object_refs) {
2843    assert(_visit_stack != NULL, "checking");
2844    delete _visit_stack;
2845    _visit_stack = NULL;
2846  }
2847}
2848
2849// an array references its class and has a reference to
2850// each element in the array
2851inline bool VM_HeapWalkOperation::iterate_over_array(oop o) {
2852  objArrayOop array = objArrayOop(o);
2853  if (array->klass() == Universe::systemObjArrayKlassObj()) {
2854    // filtered out
2855    return true;
2856  }
2857
2858  // array reference to its class
2859  oop mirror = objArrayKlass::cast(array->klass())->java_mirror();
2860  if (!CallbackInvoker::report_class_reference(o, mirror)) {
2861    return false;
2862  }
2863
2864  // iterate over the array and report each reference to a
2865  // non-null element
2866  for (int index=0; index<array->length(); index++) {
2867    oop elem = array->obj_at(index);
2868    if (elem == NULL) {
2869      continue;
2870    }
2871
2872    // report the array reference o[index] = elem
2873    if (!CallbackInvoker::report_array_element_reference(o, elem, index)) {
2874      return false;
2875    }
2876  }
2877  return true;
2878}
2879
2880// a type array references its class
2881inline bool VM_HeapWalkOperation::iterate_over_type_array(oop o) {
2882  klassOop k = o->klass();
2883  oop mirror = Klass::cast(k)->java_mirror();
2884  if (!CallbackInvoker::report_class_reference(o, mirror)) {
2885    return false;
2886  }
2887
2888  // report the array contents if required
2889  if (is_reporting_primitive_array_values()) {
2890    if (!CallbackInvoker::report_primitive_array_values(o)) {
2891      return false;
2892    }
2893  }
2894  return true;
2895}
2896
2897// verify that a static oop field is in range
2898static inline bool verify_static_oop(instanceKlass* ik,
2899                                     klassOop k, int offset) {
2900  address obj_p = (address)k + offset;
2901  address start = (address)ik->start_of_static_fields();
2902  address end = start + (ik->static_oop_field_size() * heapOopSize);
2903  assert(end >= start, "sanity check");
2904
2905  if (obj_p >= start && obj_p < end) {
2906    return true;
2907  } else {
2908    return false;
2909  }
2910}
2911
2912// a class references its super class, interfaces, class loader, ...
2913// and finally its static fields
2914inline bool VM_HeapWalkOperation::iterate_over_class(klassOop k) {
2915  int i;
2916  Klass* klass = klassOop(k)->klass_part();
2917
2918  if (klass->oop_is_instance()) {
2919    instanceKlass* ik = instanceKlass::cast(k);
2920
2921    // ignore the class if it's has been initialized yet
2922    if (!ik->is_linked()) {
2923      return true;
2924    }
2925
2926    // get the java mirror
2927    oop mirror = klass->java_mirror();
2928
2929    // super (only if something more interesting than java.lang.Object)
2930    klassOop java_super = ik->java_super();
2931    if (java_super != NULL && java_super != SystemDictionary::object_klass()) {
2932      oop super = Klass::cast(java_super)->java_mirror();
2933      if (!CallbackInvoker::report_superclass_reference(mirror, super)) {
2934        return false;
2935      }
2936    }
2937
2938    // class loader
2939    oop cl = ik->class_loader();
2940    if (cl != NULL) {
2941      if (!CallbackInvoker::report_class_loader_reference(mirror, cl)) {
2942        return false;
2943      }
2944    }
2945
2946    // protection domain
2947    oop pd = ik->protection_domain();
2948    if (pd != NULL) {
2949      if (!CallbackInvoker::report_protection_domain_reference(mirror, pd)) {
2950        return false;
2951      }
2952    }
2953
2954    // signers
2955    oop signers = ik->signers();
2956    if (signers != NULL) {
2957      if (!CallbackInvoker::report_signers_reference(mirror, signers)) {
2958        return false;
2959      }
2960    }
2961
2962    // references from the constant pool
2963    {
2964      const constantPoolOop pool = ik->constants();
2965      for (int i = 1; i < pool->length(); i++) {
2966        constantTag tag = pool->tag_at(i).value();
2967        if (tag.is_string() || tag.is_klass()) {
2968          oop entry;
2969          if (tag.is_string()) {
2970            entry = pool->resolved_string_at(i);
2971            assert(java_lang_String::is_instance(entry), "must be string");
2972          } else {
2973            entry = Klass::cast(pool->resolved_klass_at(i))->java_mirror();
2974          }
2975          if (!CallbackInvoker::report_constant_pool_reference(mirror, entry, (jint)i)) {
2976            return false;
2977          }
2978        }
2979      }
2980    }
2981
2982    // interfaces
2983    // (These will already have been reported as references from the constant pool
2984    //  but are specified by IterateOverReachableObjects and must be reported).
2985    objArrayOop interfaces = ik->local_interfaces();
2986    for (i = 0; i < interfaces->length(); i++) {
2987      oop interf = Klass::cast((klassOop)interfaces->obj_at(i))->java_mirror();
2988      if (interf == NULL) {
2989        continue;
2990      }
2991      if (!CallbackInvoker::report_interface_reference(mirror, interf)) {
2992        return false;
2993      }
2994    }
2995
2996    // iterate over the static fields
2997
2998    ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(k);
2999    for (i=0; i<field_map->field_count(); i++) {
3000      ClassFieldDescriptor* field = field_map->field_at(i);
3001      char type = field->field_type();
3002      if (!is_primitive_field_type(type)) {
3003        oop fld_o = k->obj_field(field->field_offset());
3004        assert(verify_static_oop(ik, k, field->field_offset()), "sanity check");
3005        if (fld_o != NULL) {
3006          int slot = field->field_index();
3007          if (!CallbackInvoker::report_static_field_reference(mirror, fld_o, slot)) {
3008            delete field_map;
3009            return false;
3010          }
3011        }
3012      } else {
3013         if (is_reporting_primitive_fields()) {
3014           address addr = (address)k + field->field_offset();
3015           int slot = field->field_index();
3016           if (!CallbackInvoker::report_primitive_static_field(mirror, slot, addr, type)) {
3017             delete field_map;
3018             return false;
3019          }
3020        }
3021      }
3022    }
3023    delete field_map;
3024
3025    return true;
3026  }
3027
3028  return true;
3029}
3030
3031// an object references a class and its instance fields
3032// (static fields are ignored here as we report these as
3033// references from the class).
3034inline bool VM_HeapWalkOperation::iterate_over_object(oop o) {
3035  // reference to the class
3036  if (!CallbackInvoker::report_class_reference(o, Klass::cast(o->klass())->java_mirror())) {
3037    return false;
3038  }
3039
3040  // iterate over instance fields
3041  ClassFieldMap* field_map = JvmtiCachedClassFieldMap::get_map_of_instance_fields(o);
3042  for (int i=0; i<field_map->field_count(); i++) {
3043    ClassFieldDescriptor* field = field_map->field_at(i);
3044    char type = field->field_type();
3045    if (!is_primitive_field_type(type)) {
3046      oop fld_o = o->obj_field(field->field_offset());
3047      if (fld_o != NULL) {
3048        // reflection code may have a reference to a klassOop.
3049        // - see sun.reflect.UnsafeStaticFieldAccessorImpl and sun.misc.Unsafe
3050        if (fld_o->is_klass()) {
3051          klassOop k = (klassOop)fld_o;
3052          fld_o = Klass::cast(k)->java_mirror();
3053        }
3054        int slot = field->field_index();
3055        if (!CallbackInvoker::report_field_reference(o, fld_o, slot)) {
3056          return false;
3057        }
3058      }
3059    } else {
3060      if (is_reporting_primitive_fields()) {
3061        // primitive instance field
3062        address addr = (address)o + field->field_offset();
3063        int slot = field->field_index();
3064        if (!CallbackInvoker::report_primitive_instance_field(o, slot, addr, type)) {
3065          return false;
3066        }
3067      }
3068    }
3069  }
3070
3071  // if the object is a java.lang.String
3072  if (is_reporting_string_values() &&
3073      o->klass() == SystemDictionary::string_klass()) {
3074    if (!CallbackInvoker::report_string_value(o)) {
3075      return false;
3076    }
3077  }
3078  return true;
3079}
3080
3081
3082// collects all simple (non-stack) roots.
3083// if there's a heap root callback provided then the callback is
3084// invoked for each simple root.
3085// if an object reference callback is provided then all simple
3086// roots are pushed onto the marking stack so that they can be
3087// processed later
3088//
3089inline bool VM_HeapWalkOperation::collect_simple_roots() {
3090  SimpleRootsClosure blk;
3091
3092  // JNI globals
3093  blk.set_kind(JVMTI_HEAP_REFERENCE_JNI_GLOBAL);
3094  JNIHandles::oops_do(&blk);
3095  if (blk.stopped()) {
3096    return false;
3097  }
3098
3099  // Preloaded classes and loader from the system dictionary
3100  blk.set_kind(JVMTI_HEAP_REFERENCE_SYSTEM_CLASS);
3101  SystemDictionary::always_strong_oops_do(&blk);
3102  if (blk.stopped()) {
3103    return false;
3104  }
3105
3106  // Inflated monitors
3107  blk.set_kind(JVMTI_HEAP_REFERENCE_MONITOR);
3108  ObjectSynchronizer::oops_do(&blk);
3109  if (blk.stopped()) {
3110    return false;
3111  }
3112
3113  // Threads
3114  for (JavaThread* thread = Threads::first(); thread != NULL ; thread = thread->next()) {
3115    oop threadObj = thread->threadObj();
3116    if (threadObj != NULL && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
3117      bool cont = CallbackInvoker::report_simple_root(JVMTI_HEAP_REFERENCE_THREAD, threadObj);
3118      if (!cont) {
3119        return false;
3120      }
3121    }
3122  }
3123
3124  // Other kinds of roots maintained by HotSpot
3125  // Many of these won't be visible but others (such as instances of important
3126  // exceptions) will be visible.
3127  blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
3128  Universe::oops_do(&blk);
3129  return true;
3130}
3131
3132// Walk the stack of a given thread and find all references (locals
3133// and JNI calls) and report these as stack references
3134inline bool VM_HeapWalkOperation::collect_stack_roots(JavaThread* java_thread,
3135                                                      JNILocalRootsClosure* blk)
3136{
3137  oop threadObj = java_thread->threadObj();
3138  assert(threadObj != NULL, "sanity check");
3139
3140  // only need to get the thread's tag once per thread
3141  jlong thread_tag = tag_for(_tag_map, threadObj);
3142
3143  // also need the thread id
3144  jlong tid = java_lang_Thread::thread_id(threadObj);
3145
3146
3147  if (java_thread->has_last_Java_frame()) {
3148
3149    // vframes are resource allocated
3150    Thread* current_thread = Thread::current();
3151    ResourceMark rm(current_thread);
3152    HandleMark hm(current_thread);
3153
3154    RegisterMap reg_map(java_thread);
3155    frame f = java_thread->last_frame();
3156    vframe* vf = vframe::new_vframe(&f, &reg_map, java_thread);
3157
3158    bool is_top_frame = true;
3159    int depth = 0;
3160    frame* last_entry_frame = NULL;
3161
3162    while (vf != NULL) {
3163      if (vf->is_java_frame()) {
3164
3165        // java frame (interpreted, compiled, ...)
3166        javaVFrame *jvf = javaVFrame::cast(vf);
3167
3168        // the jmethodID
3169        jmethodID method = jvf->method()->jmethod_id();
3170
3171        if (!(jvf->method()->is_native())) {
3172          jlocation bci = (jlocation)jvf->bci();
3173          StackValueCollection* locals = jvf->locals();
3174          for (int slot=0; slot<locals->size(); slot++) {
3175            if (locals->at(slot)->type() == T_OBJECT) {
3176              oop o = locals->obj_at(slot)();
3177              if (o == NULL) {
3178                continue;
3179              }
3180
3181              // stack reference
3182              if (!CallbackInvoker::report_stack_ref_root(thread_tag, tid, depth, method,
3183                                                   bci, slot, o)) {
3184                return false;
3185              }
3186            }
3187          }
3188        } else {
3189          blk->set_context(thread_tag, tid, depth, method);
3190          if (is_top_frame) {
3191            // JNI locals for the top frame.
3192            java_thread->active_handles()->oops_do(blk);
3193          } else {
3194            if (last_entry_frame != NULL) {
3195              // JNI locals for the entry frame
3196              assert(last_entry_frame->is_entry_frame(), "checking");
3197              last_entry_frame->entry_frame_call_wrapper()->handles()->oops_do(blk);
3198            }
3199          }
3200        }
3201        last_entry_frame = NULL;
3202        depth++;
3203      } else {
3204        // externalVFrame - for an entry frame then we report the JNI locals
3205        // when we find the corresponding javaVFrame
3206        frame* fr = vf->frame_pointer();
3207        assert(fr != NULL, "sanity check");
3208        if (fr->is_entry_frame()) {
3209          last_entry_frame = fr;
3210        }
3211      }
3212
3213      vf = vf->sender();
3214      is_top_frame = false;
3215    }
3216  } else {
3217    // no last java frame but there may be JNI locals
3218    blk->set_context(thread_tag, tid, 0, (jmethodID)NULL);
3219    java_thread->active_handles()->oops_do(blk);
3220  }
3221  return true;
3222}
3223
3224
3225// collects all stack roots - for each thread it walks the execution
3226// stack to find all references and local JNI refs.
3227inline bool VM_HeapWalkOperation::collect_stack_roots() {
3228  JNILocalRootsClosure blk;
3229  for (JavaThread* thread = Threads::first(); thread != NULL ; thread = thread->next()) {
3230    oop threadObj = thread->threadObj();
3231    if (threadObj != NULL && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
3232      if (!collect_stack_roots(thread, &blk)) {
3233        return false;
3234      }
3235    }
3236  }
3237  return true;
3238}
3239
3240// visit an object
3241// first mark the object as visited
3242// second get all the outbound references from this object (in other words, all
3243// the objects referenced by this object).
3244//
3245bool VM_HeapWalkOperation::visit(oop o) {
3246  // mark object as visited
3247  assert(!ObjectMarker::visited(o), "can't visit same object more than once");
3248  ObjectMarker::mark(o);
3249
3250  // instance
3251  if (o->is_instance()) {
3252    if (o->klass() == SystemDictionary::class_klass()) {
3253      o = klassOop_if_java_lang_Class(o);
3254      if (o->is_klass()) {
3255        // a java.lang.Class
3256        return iterate_over_class(klassOop(o));
3257      }
3258    } else {
3259      return iterate_over_object(o);
3260    }
3261  }
3262
3263  // object array
3264  if (o->is_objArray()) {
3265    return iterate_over_array(o);
3266  }
3267
3268  // type array
3269  if (o->is_typeArray()) {
3270    return iterate_over_type_array(o);
3271  }
3272
3273  return true;
3274}
3275
3276void VM_HeapWalkOperation::doit() {
3277  ResourceMark rm;
3278  ObjectMarkerController marker;
3279  ClassFieldMapCacheMark cm;
3280
3281  assert(visit_stack()->is_empty(), "visit stack must be empty");
3282
3283  // the heap walk starts with an initial object or the heap roots
3284  if (initial_object().is_null()) {
3285    if (!collect_simple_roots()) return;
3286    if (!collect_stack_roots()) return;
3287  } else {
3288    visit_stack()->push(initial_object()());
3289  }
3290
3291  // object references required
3292  if (is_following_references()) {
3293
3294    // visit each object until all reachable objects have been
3295    // visited or the callback asked to terminate the iteration.
3296    while (!visit_stack()->is_empty()) {
3297      oop o = visit_stack()->pop();
3298      if (!ObjectMarker::visited(o)) {
3299        if (!visit(o)) {
3300          break;
3301        }
3302      }
3303    }
3304  }
3305}
3306
3307// iterate over all objects that are reachable from a set of roots
3308void JvmtiTagMap::iterate_over_reachable_objects(jvmtiHeapRootCallback heap_root_callback,
3309                                                 jvmtiStackReferenceCallback stack_ref_callback,
3310                                                 jvmtiObjectReferenceCallback object_ref_callback,
3311                                                 const void* user_data) {
3312  MutexLocker ml(Heap_lock);
3313  BasicHeapWalkContext context(heap_root_callback, stack_ref_callback, object_ref_callback);
3314  VM_HeapWalkOperation op(this, Handle(), context, user_data);
3315  VMThread::execute(&op);
3316}
3317
3318// iterate over all objects that are reachable from a given object
3319void JvmtiTagMap::iterate_over_objects_reachable_from_object(jobject object,
3320                                                             jvmtiObjectReferenceCallback object_ref_callback,
3321                                                             const void* user_data) {
3322  oop obj = JNIHandles::resolve(object);
3323  Handle initial_object(Thread::current(), obj);
3324
3325  MutexLocker ml(Heap_lock);
3326  BasicHeapWalkContext context(NULL, NULL, object_ref_callback);
3327  VM_HeapWalkOperation op(this, initial_object, context, user_data);
3328  VMThread::execute(&op);
3329}
3330
3331// follow references from an initial object or the GC roots
3332void JvmtiTagMap::follow_references(jint heap_filter,
3333                                    KlassHandle klass,
3334                                    jobject object,
3335                                    const jvmtiHeapCallbacks* callbacks,
3336                                    const void* user_data)
3337{
3338  oop obj = JNIHandles::resolve(object);
3339  Handle initial_object(Thread::current(), obj);
3340
3341  MutexLocker ml(Heap_lock);
3342  AdvancedHeapWalkContext context(heap_filter, klass, callbacks);
3343  VM_HeapWalkOperation op(this, initial_object, context, user_data);
3344  VMThread::execute(&op);
3345}
3346
3347
3348// called post-GC
3349// - for each JVMTI environment with an object tag map, call its rehash
3350// function to re-sync with the new object locations.
3351void JvmtiTagMap::gc_epilogue(bool full) {
3352  assert(SafepointSynchronize::is_at_safepoint(), "must be executed at a safepoint");
3353  if (JvmtiEnv::environments_might_exist()) {
3354    // re-obtain the memory region for the young generation (might
3355    // changed due to adaptive resizing policy)
3356    get_young_generation();
3357
3358    JvmtiEnvIterator it;
3359    for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) {
3360      JvmtiTagMap* tag_map = env->tag_map();
3361      if (tag_map != NULL && !tag_map->is_empty()) {
3362        TraceTime t(full ? "JVMTI Full Rehash " : "JVMTI Rehash ", TraceJVMTIObjectTagging);
3363        if (full) {
3364          tag_map->rehash(0, n_hashmaps);
3365        } else {
3366          tag_map->rehash(0, 0);        // tag map for young gen only
3367        }
3368      }
3369    }
3370  }
3371}
3372
3373// CMS has completed referencing processing so we may have JNI weak refs
3374// to objects in the CMS generation that have been GC'ed.
3375void JvmtiTagMap::cms_ref_processing_epilogue() {
3376  assert(SafepointSynchronize::is_at_safepoint(), "must be executed at a safepoint");
3377  assert(UseConcMarkSweepGC, "should only be used with CMS");
3378  if (JvmtiEnv::environments_might_exist()) {
3379    JvmtiEnvIterator it;
3380    for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) {
3381      JvmtiTagMap* tag_map = ((JvmtiEnvBase *)env)->tag_map();
3382      if (tag_map != NULL && !tag_map->is_empty()) {
3383        TraceTime t("JVMTI Rehash (CMS) ", TraceJVMTIObjectTagging);
3384        tag_map->rehash(1, n_hashmaps);    // assume CMS not used in young gen
3385      }
3386    }
3387  }
3388}
3389
3390
3391// For each entry in the hashmaps 'start' to 'end' :
3392//
3393// 1. resolve the JNI weak reference
3394//
3395// 2. If it resolves to NULL it means the object has been freed so the entry
3396//    is removed, the weak reference destroyed, and the object free event is
3397//    posted (if enabled).
3398//
3399// 3. If the weak reference resolves to an object then we re-hash the object
3400//    to see if it has moved or has been promoted (from the young to the old
3401//    generation for example).
3402//
3403void JvmtiTagMap::rehash(int start, int end) {
3404
3405  // does this environment have the OBJECT_FREE event enabled
3406  bool post_object_free = env()->is_enabled(JVMTI_EVENT_OBJECT_FREE);
3407
3408  // counters used for trace message
3409  int freed = 0;
3410  int moved = 0;
3411  int promoted = 0;
3412
3413  // we assume there are two hashmaps - one for the young generation
3414  // and the other for all other spaces.
3415  assert(n_hashmaps == 2, "not implemented");
3416  JvmtiTagHashmap* young_hashmap = _hashmap[0];
3417  JvmtiTagHashmap* other_hashmap = _hashmap[1];
3418
3419  // reenable sizing (if disabled)
3420  young_hashmap->set_resizing_enabled(true);
3421  other_hashmap->set_resizing_enabled(true);
3422
3423  // when re-hashing the hashmap corresponding to the young generation we
3424  // collect the entries corresponding to objects that have been promoted.
3425  JvmtiTagHashmapEntry* promoted_entries = NULL;
3426
3427  if (end >= n_hashmaps) {
3428    end = n_hashmaps - 1;
3429  }
3430
3431  for (int i=start; i <= end; i++) {
3432    JvmtiTagHashmap* hashmap = _hashmap[i];
3433
3434    // if the hashmap is empty then we can skip it
3435    if (hashmap->_entry_count == 0) {
3436      continue;
3437    }
3438
3439    // now iterate through each entry in the table
3440
3441    JvmtiTagHashmapEntry** table = hashmap->table();
3442    int size = hashmap->size();
3443
3444    for (int pos=0; pos<size; pos++) {
3445      JvmtiTagHashmapEntry* entry = table[pos];
3446      JvmtiTagHashmapEntry* prev = NULL;
3447
3448      while (entry != NULL) {
3449        JvmtiTagHashmapEntry* next = entry->next();
3450
3451        jweak ref = entry->object();
3452        oop oop = JNIHandles::resolve(ref);
3453
3454        // has object been GC'ed
3455        if (oop == NULL) {
3456          // grab the tag
3457          jlong tag = entry->tag();
3458          guarantee(tag != 0, "checking");
3459
3460          // remove GC'ed entry from hashmap and return the
3461          // entry to the free list
3462          hashmap->remove(prev, pos, entry);
3463          destroy_entry(entry);
3464
3465          // destroy the weak ref
3466          JNIHandles::destroy_weak_global(ref);
3467
3468          // post the event to the profiler
3469          if (post_object_free) {
3470            JvmtiExport::post_object_free(env(), tag);
3471          }
3472
3473          freed++;
3474          entry = next;
3475          continue;
3476        }
3477
3478        // if this is the young hashmap then the object is either promoted
3479        // or moved.
3480        // if this is the other hashmap then the object is moved.
3481
3482        bool same_gen;
3483        if (i == 0) {
3484          assert(hashmap == young_hashmap, "checking");
3485          same_gen = is_in_young(oop);
3486        } else {
3487          same_gen = true;
3488        }
3489
3490
3491        if (same_gen) {
3492          // if the object has moved then re-hash it and move its
3493          // entry to its new location.
3494          unsigned int new_pos = JvmtiTagHashmap::hash(oop, size);
3495          if (new_pos != (unsigned int)pos) {
3496            if (prev == NULL) {
3497              table[pos] = next;
3498            } else {
3499              prev->set_next(next);
3500            }
3501            entry->set_next(table[new_pos]);
3502            table[new_pos] = entry;
3503            moved++;
3504          } else {
3505            // object didn't move
3506            prev = entry;
3507          }
3508        } else {
3509          // object has been promoted so remove the entry from the
3510          // young hashmap
3511          assert(hashmap == young_hashmap, "checking");
3512          hashmap->remove(prev, pos, entry);
3513
3514          // move the entry to the promoted list
3515          entry->set_next(promoted_entries);
3516          promoted_entries = entry;
3517        }
3518
3519        entry = next;
3520      }
3521    }
3522  }
3523
3524
3525  // add the entries, corresponding to the promoted objects, to the
3526  // other hashmap.
3527  JvmtiTagHashmapEntry* entry = promoted_entries;
3528  while (entry != NULL) {
3529    oop o = JNIHandles::resolve(entry->object());
3530    assert(hashmap_for(o) == other_hashmap, "checking");
3531    JvmtiTagHashmapEntry* next = entry->next();
3532    other_hashmap->add(o, entry);
3533    entry = next;
3534    promoted++;
3535  }
3536
3537  // stats
3538  if (TraceJVMTIObjectTagging) {
3539    int total_moves = promoted + moved;
3540
3541    int post_total = 0;
3542    for (int i=0; i<n_hashmaps; i++) {
3543      post_total += _hashmap[i]->_entry_count;
3544    }
3545    int pre_total = post_total + freed;
3546
3547    tty->print("(%d->%d, %d freed, %d promoted, %d total moves)",
3548        pre_total, post_total, freed, promoted, total_moves);
3549  }
3550}
3551