jvmtiTagMap.cpp revision 196:d1605aabd0a1
1/*
2 * Copyright 2003-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_jvmtiTagMap.cpp.incl"
27
28// JvmtiTagHashmapEntry
29//
30// Each entry encapsulates a JNI weak reference to the tagged object
31// and the tag value. In addition an entry includes a next pointer which
32// is used to chain entries together.
33
34class JvmtiTagHashmapEntry : public CHeapObj {
35 private:
36  friend class JvmtiTagMap;
37
38  jweak _object;                        // JNI weak ref to tagged object
39  jlong _tag;                           // the tag
40  JvmtiTagHashmapEntry* _next;          // next on the list
41
42  inline void init(jweak object, jlong tag) {
43    _object = object;
44    _tag = tag;
45    _next = NULL;
46  }
47
48  // constructor
49  JvmtiTagHashmapEntry(jweak object, jlong tag)         { init(object, tag); }
50
51 public:
52
53  // accessor methods
54  inline jweak object() const                           { return _object; }
55  inline jlong tag() const                              { return _tag; }
56
57  inline void set_tag(jlong tag) {
58    assert(tag != 0, "can't be zero");
59    _tag = tag;
60  }
61
62  inline JvmtiTagHashmapEntry* next() const             { return _next; }
63  inline void set_next(JvmtiTagHashmapEntry* next)      { _next = next; }
64};
65
66
67// JvmtiTagHashmap
68//
69// A hashmap is essentially a table of pointers to entries. Entries
70// are hashed to a location, or position in the table, and then
71// chained from that location. The "key" for hashing is address of
72// the object, or oop. The "value" is the JNI weak reference to the
73// object and the tag value. Keys are not stored with the entry.
74// Instead the weak reference is resolved to obtain the key.
75//
76// A hashmap maintains a count of the number entries in the hashmap
77// and resizes if the number of entries exceeds a given threshold.
78// The threshold is specified as a percentage of the size - for
79// example a threshold of 0.75 will trigger the hashmap to resize
80// if the number of entries is >75% of table size.
81//
82// A hashmap provides functions for adding, removing, and finding
83// entries. It also provides a function to iterate over all entries
84// in the hashmap.
85
86class JvmtiTagHashmap : public CHeapObj {
87 private:
88  friend class JvmtiTagMap;
89
90  enum {
91    small_trace_threshold  = 10000,                  // threshold for tracing
92    medium_trace_threshold = 100000,
93    large_trace_threshold  = 1000000,
94    initial_trace_threshold = small_trace_threshold
95  };
96
97  static int _sizes[];                  // array of possible hashmap sizes
98  int _size;                            // actual size of the table
99  int _size_index;                      // index into size table
100
101  int _entry_count;                     // number of entries in the hashmap
102
103  float _load_factor;                   // load factor as a % of the size
104  int _resize_threshold;                // computed threshold to trigger resizing.
105  bool _resizing_enabled;               // indicates if hashmap can resize
106
107  int _trace_threshold;                 // threshold for trace messages
108
109  JvmtiTagHashmapEntry** _table;        // the table of entries.
110
111  // private accessors
112  int resize_threshold() const                  { return _resize_threshold; }
113  int trace_threshold() const                   { return _trace_threshold; }
114
115  // initialize the hashmap
116  void init(int size_index=0, float load_factor=4.0f) {
117    int initial_size =  _sizes[size_index];
118    _size_index = size_index;
119    _size = initial_size;
120    _entry_count = 0;
121    if (TraceJVMTIObjectTagging) {
122      _trace_threshold = initial_trace_threshold;
123    } else {
124      _trace_threshold = -1;
125    }
126    _load_factor = load_factor;
127    _resize_threshold = (int)(_load_factor * _size);
128    _resizing_enabled = true;
129    size_t s = initial_size * sizeof(JvmtiTagHashmapEntry*);
130    _table = (JvmtiTagHashmapEntry**)os::malloc(s);
131    if (_table == NULL) {
132      vm_exit_out_of_memory(s, "unable to allocate initial hashtable for jvmti object tags");
133    }
134    for (int i=0; i<initial_size; i++) {
135      _table[i] = NULL;
136    }
137  }
138
139  // hash a given key (oop) with the specified size
140  static unsigned int hash(oop key, int size) {
141    // shift right to get better distribution (as these bits will be zero
142    // with aligned addresses)
143    unsigned int addr = (unsigned int)((intptr_t)key);
144#ifdef _LP64
145    return (addr >> 3) % size;
146#else
147    return (addr >> 2) % size;
148#endif
149  }
150
151  // hash a given key (oop)
152  unsigned int hash(oop key) {
153    return hash(key, _size);
154  }
155
156  // resize the hashmap - allocates a large table and re-hashes
157  // all entries into the new table.
158  void resize() {
159    int new_size_index = _size_index+1;
160    int new_size = _sizes[new_size_index];
161    if (new_size < 0) {
162      // hashmap already at maximum capacity
163      return;
164    }
165
166    // allocate new table
167    size_t s = new_size * sizeof(JvmtiTagHashmapEntry*);
168    JvmtiTagHashmapEntry** new_table = (JvmtiTagHashmapEntry**)os::malloc(s);
169    if (new_table == NULL) {
170      warning("unable to allocate larger hashtable for jvmti object tags");
171      set_resizing_enabled(false);
172      return;
173    }
174
175    // initialize new table
176    int i;
177    for (i=0; i<new_size; i++) {
178      new_table[i] = NULL;
179    }
180
181    // rehash all entries into the new table
182    for (i=0; i<_size; i++) {
183      JvmtiTagHashmapEntry* entry = _table[i];
184      while (entry != NULL) {
185        JvmtiTagHashmapEntry* next = entry->next();
186        oop key = JNIHandles::resolve(entry->object());
187        assert(key != NULL, "jni weak reference cleared!!");
188        unsigned int h = hash(key, new_size);
189        JvmtiTagHashmapEntry* anchor = new_table[h];
190        if (anchor == NULL) {
191          new_table[h] = entry;
192          entry->set_next(NULL);
193        } else {
194          entry->set_next(anchor);
195          new_table[h] = entry;
196        }
197        entry = next;
198      }
199    }
200
201    // free old table and update settings.
202    os::free((void*)_table);
203    _table = new_table;
204    _size_index = new_size_index;
205    _size = new_size;
206
207    // compute new resize threshold
208    _resize_threshold = (int)(_load_factor * _size);
209  }
210
211
212  // internal remove function - remove an entry at a given position in the
213  // table.
214  inline void remove(JvmtiTagHashmapEntry* prev, int pos, JvmtiTagHashmapEntry* entry) {
215    assert(pos >= 0 && pos < _size, "out of range");
216    if (prev == NULL) {
217      _table[pos] = entry->next();
218    } else {
219      prev->set_next(entry->next());
220    }
221    assert(_entry_count > 0, "checking");
222    _entry_count--;
223  }
224
225  // resizing switch
226  bool is_resizing_enabled() const          { return _resizing_enabled; }
227  void set_resizing_enabled(bool enable)    { _resizing_enabled = enable; }
228
229  // debugging
230  void print_memory_usage();
231  void compute_next_trace_threshold();
232
233 public:
234
235  // create a JvmtiTagHashmap of a preferred size and optionally a load factor.
236  // The preferred size is rounded down to an actual size.
237  JvmtiTagHashmap(int size, float load_factor=0.0f) {
238    int i=0;
239    while (_sizes[i] < size) {
240      if (_sizes[i] < 0) {
241        assert(i > 0, "sanity check");
242        i--;
243        break;
244      }
245      i++;
246    }
247
248    // if a load factor is specified then use it, otherwise use default
249    if (load_factor > 0.01f) {
250      init(i, load_factor);
251    } else {
252      init(i);
253    }
254  }
255
256  // create a JvmtiTagHashmap with default settings
257  JvmtiTagHashmap() {
258    init();
259  }
260
261  // release table when JvmtiTagHashmap destroyed
262  ~JvmtiTagHashmap() {
263    if (_table != NULL) {
264      os::free((void*)_table);
265      _table = NULL;
266    }
267  }
268
269  // accessors
270  int size() const                              { return _size; }
271  JvmtiTagHashmapEntry** table() const          { return _table; }
272  int entry_count() const                       { return _entry_count; }
273
274  // find an entry in the hashmap, returns NULL if not found.
275  inline JvmtiTagHashmapEntry* find(oop key) {
276    unsigned int h = hash(key);
277    JvmtiTagHashmapEntry* entry = _table[h];
278    while (entry != NULL) {
279      oop orig_key = JNIHandles::resolve(entry->object());
280      assert(orig_key != NULL, "jni weak reference cleared!!");
281      if (key == orig_key) {
282        break;
283      }
284      entry = entry->next();
285    }
286    return entry;
287  }
288
289
290  // add a new entry to hashmap
291  inline void add(oop key, JvmtiTagHashmapEntry* entry) {
292    assert(key != NULL, "checking");
293    assert(find(key) == NULL, "duplicate detected");
294    unsigned int h = hash(key);
295    JvmtiTagHashmapEntry* anchor = _table[h];
296    if (anchor == NULL) {
297      _table[h] = entry;
298      entry->set_next(NULL);
299    } else {
300      entry->set_next(anchor);
301      _table[h] = entry;
302    }
303
304    _entry_count++;
305    if (trace_threshold() > 0 && entry_count() >= trace_threshold()) {
306      assert(TraceJVMTIObjectTagging, "should only get here when tracing");
307      print_memory_usage();
308      compute_next_trace_threshold();
309    }
310
311    // if the number of entries exceed the threshold then resize
312    if (entry_count() > resize_threshold() && is_resizing_enabled()) {
313      resize();
314    }
315  }
316
317  // remove an entry with the given key.
318  inline JvmtiTagHashmapEntry* remove(oop key) {
319    unsigned int h = hash(key);
320    JvmtiTagHashmapEntry* entry = _table[h];
321    JvmtiTagHashmapEntry* prev = NULL;
322    while (entry != NULL) {
323      oop orig_key = JNIHandles::resolve(entry->object());
324      assert(orig_key != NULL, "jni weak reference cleared!!");
325      if (key == orig_key) {
326        break;
327      }
328      prev = entry;
329      entry = entry->next();
330    }
331    if (entry != NULL) {
332      remove(prev, h, entry);
333    }
334    return entry;
335  }
336
337  // iterate over all entries in the hashmap
338  void entry_iterate(JvmtiTagHashmapEntryClosure* closure);
339};
340
341// possible hashmap sizes - odd primes that roughly double in size.
342// To avoid excessive resizing the odd primes from 4801-76831 and
343// 76831-307261 have been removed. The list must be terminated by -1.
344int JvmtiTagHashmap::_sizes[] =  { 4801, 76831, 307261, 614563, 1228891,
345    2457733, 4915219, 9830479, 19660831, 39321619, 78643219, -1 };
346
347
348// A supporting class for iterating over all entries in Hashmap
349class JvmtiTagHashmapEntryClosure {
350 public:
351  virtual void do_entry(JvmtiTagHashmapEntry* entry) = 0;
352};
353
354
355// iterate over all entries in the hashmap
356void JvmtiTagHashmap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
357  for (int i=0; i<_size; i++) {
358    JvmtiTagHashmapEntry* entry = _table[i];
359    JvmtiTagHashmapEntry* prev = NULL;
360    while (entry != NULL) {
361      // obtain the next entry before invoking do_entry - this is
362      // necessary because do_entry may remove the entry from the
363      // hashmap.
364      JvmtiTagHashmapEntry* next = entry->next();
365      closure->do_entry(entry);
366      entry = next;
367     }
368  }
369}
370
371// debugging
372void JvmtiTagHashmap::print_memory_usage() {
373  intptr_t p = (intptr_t)this;
374  tty->print("[JvmtiTagHashmap @ " INTPTR_FORMAT, p);
375
376  // table + entries in KB
377  int hashmap_usage = (size()*sizeof(JvmtiTagHashmapEntry*) +
378    entry_count()*sizeof(JvmtiTagHashmapEntry))/K;
379
380  int weak_globals_usage = (int)(JNIHandles::weak_global_handle_memory_usage()/K);
381  tty->print_cr(", %d entries (%d KB) <JNI weak globals: %d KB>]",
382    entry_count(), hashmap_usage, weak_globals_usage);
383}
384
385// compute threshold for the next trace message
386void JvmtiTagHashmap::compute_next_trace_threshold() {
387  if (trace_threshold() < medium_trace_threshold) {
388    _trace_threshold += small_trace_threshold;
389  } else {
390    if (trace_threshold() < large_trace_threshold) {
391      _trace_threshold += medium_trace_threshold;
392    } else {
393      _trace_threshold += large_trace_threshold;
394    }
395  }
396}
397
398// memory region for young generation
399MemRegion JvmtiTagMap::_young_gen;
400
401// get the memory region used for the young generation
402void JvmtiTagMap::get_young_generation() {
403  if (Universe::heap()->kind() == CollectedHeap::GenCollectedHeap) {
404    GenCollectedHeap* gch = GenCollectedHeap::heap();
405    _young_gen = gch->get_gen(0)->reserved();
406  } else {
407#ifndef SERIALGC
408    ParallelScavengeHeap* psh = ParallelScavengeHeap::heap();
409    _young_gen= psh->young_gen()->reserved();
410#else  // SERIALGC
411    fatal("SerialGC only supported in this configuration.");
412#endif // SERIALGC
413  }
414}
415
416// returns true if oop is in the young generation
417inline bool JvmtiTagMap::is_in_young(oop o) {
418  assert(_young_gen.start() != NULL, "checking");
419  void* p = (void*)o;
420  bool in_young = _young_gen.contains(p);
421  return in_young;
422}
423
424// returns the appropriate hashmap for a given object
425inline JvmtiTagHashmap* JvmtiTagMap::hashmap_for(oop o) {
426  if (is_in_young(o)) {
427    return _hashmap[0];
428  } else {
429    return _hashmap[1];
430  }
431}
432
433
434// create a JvmtiTagMap
435JvmtiTagMap::JvmtiTagMap(JvmtiEnv* env) :
436  _env(env),
437  _lock(Mutex::nonleaf+2, "JvmtiTagMap._lock", false),
438  _free_entries(NULL),
439  _free_entries_count(0)
440{
441  assert(JvmtiThreadState_lock->is_locked(), "sanity check");
442  assert(((JvmtiEnvBase *)env)->tag_map() == NULL, "tag map already exists for environment");
443
444  // create the hashmaps
445  for (int i=0; i<n_hashmaps; i++) {
446    _hashmap[i] = new JvmtiTagHashmap();
447  }
448
449  // get the memory region used by the young generation
450  get_young_generation();
451
452  // finally add us to the environment
453  ((JvmtiEnvBase *)env)->set_tag_map(this);
454}
455
456
457// destroy a JvmtiTagMap
458JvmtiTagMap::~JvmtiTagMap() {
459
460  // no lock acquired as we assume the enclosing environment is
461  // also being destroryed.
462  ((JvmtiEnvBase *)_env)->set_tag_map(NULL);
463
464  // iterate over the hashmaps and destroy each of the entries
465  for (int i=0; i<n_hashmaps; i++) {
466    JvmtiTagHashmap* hashmap = _hashmap[i];
467    JvmtiTagHashmapEntry** table = hashmap->table();
468    for (int j=0; j<hashmap->size(); j++) {
469      JvmtiTagHashmapEntry *entry = table[j];
470      while (entry != NULL) {
471        JvmtiTagHashmapEntry* next = entry->next();
472        jweak ref = entry->object();
473        JNIHandles::destroy_weak_global(ref);
474        delete entry;
475        entry = next;
476      }
477    }
478
479    // finally destroy the hashmap
480    delete hashmap;
481  }
482
483  // remove any entries on the free list
484  JvmtiTagHashmapEntry* entry = _free_entries;
485  while (entry != NULL) {
486    JvmtiTagHashmapEntry* next = entry->next();
487    delete entry;
488    entry = next;
489  }
490}
491
492// create a hashmap entry
493// - if there's an entry on the (per-environment) free list then this
494// is returned. Otherwise an new entry is allocated.
495JvmtiTagHashmapEntry* JvmtiTagMap::create_entry(jweak ref, jlong tag) {
496  assert(Thread::current()->is_VM_thread() || is_locked(), "checking");
497  JvmtiTagHashmapEntry* entry;
498  if (_free_entries == NULL) {
499    entry = new JvmtiTagHashmapEntry(ref, tag);
500  } else {
501    assert(_free_entries_count > 0, "mismatched _free_entries_count");
502    _free_entries_count--;
503    entry = _free_entries;
504    _free_entries = entry->next();
505    entry->init(ref, tag);
506  }
507  return entry;
508}
509
510// destroy an entry by returning it to the free list
511void JvmtiTagMap::destroy_entry(JvmtiTagHashmapEntry* entry) {
512  assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
513  // limit the size of the free list
514  if (_free_entries_count >= max_free_entries) {
515    delete entry;
516  } else {
517    entry->set_next(_free_entries);
518    _free_entries = entry;
519    _free_entries_count++;
520  }
521}
522
523// returns the tag map for the given environments. If the tag map
524// doesn't exist then it is created.
525JvmtiTagMap* JvmtiTagMap::tag_map_for(JvmtiEnv* env) {
526  JvmtiTagMap* tag_map = ((JvmtiEnvBase *)env)->tag_map();
527  if (tag_map == NULL) {
528    MutexLocker mu(JvmtiThreadState_lock);
529    tag_map = ((JvmtiEnvBase *)env)->tag_map();
530    if (tag_map == NULL) {
531      tag_map = new JvmtiTagMap(env);
532    }
533  } else {
534    CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
535  }
536  return tag_map;
537}
538
539// iterate over all entries in the tag map.
540void JvmtiTagMap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
541  for (int i=0; i<n_hashmaps; i++) {
542    JvmtiTagHashmap* hashmap = _hashmap[i];
543    hashmap->entry_iterate(closure);
544  }
545}
546
547// returns true if the hashmaps are empty
548bool JvmtiTagMap::is_empty() {
549  assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
550  assert(n_hashmaps == 2, "not implemented");
551  return ((_hashmap[0]->entry_count() == 0) && (_hashmap[1]->entry_count() == 0));
552}
553
554
555// Return the tag value for an object, or 0 if the object is
556// not tagged
557//
558static inline jlong tag_for(JvmtiTagMap* tag_map, oop o) {
559  JvmtiTagHashmapEntry* entry = tag_map->hashmap_for(o)->find(o);
560  if (entry == NULL) {
561    return 0;
562  } else {
563    return entry->tag();
564  }
565}
566
567// If the object is a java.lang.Class then return the klassOop,
568// otherwise return the original object
569static inline oop klassOop_if_java_lang_Class(oop o) {
570  if (o->klass() == SystemDictionary::class_klass()) {
571    if (!java_lang_Class::is_primitive(o)) {
572      o = (oop)java_lang_Class::as_klassOop(o);
573      assert(o != NULL, "class for non-primitive mirror must exist");
574    }
575  }
576  return o;
577}
578
579// A CallbackWrapper is a support class for querying and tagging an object
580// around a callback to a profiler. The constructor does pre-callback
581// work to get the tag value, klass tag value, ... and the destructor
582// does the post-callback work of tagging or untagging the object.
583//
584// {
585//   CallbackWrapper wrapper(tag_map, o);
586//
587//   (*callback)(wrapper.klass_tag(), wrapper.obj_size(), wrapper.obj_tag_p(), ...)
588//
589// } // wrapper goes out of scope here which results in the destructor
590//      checking to see if the object has been tagged, untagged, or the
591//      tag value has changed.
592//
593class CallbackWrapper : public StackObj {
594 private:
595  JvmtiTagMap* _tag_map;
596  JvmtiTagHashmap* _hashmap;
597  JvmtiTagHashmapEntry* _entry;
598  oop _o;
599  jlong _obj_size;
600  jlong _obj_tag;
601  klassOop _klass;         // the object's class
602  jlong _klass_tag;
603
604 protected:
605  JvmtiTagMap* tag_map() const      { return _tag_map; }
606
607  // invoked post-callback to tag, untag, or update the tag of an object
608  void inline post_callback_tag_update(oop o, JvmtiTagHashmap* hashmap,
609                                       JvmtiTagHashmapEntry* entry, jlong obj_tag);
610 public:
611  CallbackWrapper(JvmtiTagMap* tag_map, oop o) {
612    assert(Thread::current()->is_VM_thread() || tag_map->is_locked(),
613           "MT unsafe or must be VM thread");
614
615    // for Classes the klassOop is tagged
616    _o = klassOop_if_java_lang_Class(o);
617
618    // object size
619    _obj_size = _o->size() * wordSize;
620
621    // record the context
622    _tag_map = tag_map;
623    _hashmap = tag_map->hashmap_for(_o);
624    _entry = _hashmap->find(_o);
625
626    // get object tag
627    _obj_tag = (_entry == NULL) ? 0 : _entry->tag();
628
629    // get the class and the class's tag value
630    if (_o == o) {
631      _klass = _o->klass();
632    } else {
633      // if the object represents a runtime class then use the
634      // tag for java.lang.Class
635      _klass = SystemDictionary::class_klass();
636    }
637    _klass_tag = tag_for(tag_map, _klass);
638  }
639
640  ~CallbackWrapper() {
641    post_callback_tag_update(_o, _hashmap, _entry, _obj_tag);
642  }
643
644  inline jlong* obj_tag_p()                     { return &_obj_tag; }
645  inline jlong obj_size() const                 { return _obj_size; }
646  inline jlong obj_tag() const                  { return _obj_tag; }
647  inline klassOop klass() const                 { return _klass; }
648  inline jlong klass_tag() const                { return _klass_tag; }
649};
650
651
652
653// callback post-callback to tag, untag, or update the tag of an object
654void inline CallbackWrapper::post_callback_tag_update(oop o,
655                                                      JvmtiTagHashmap* hashmap,
656                                                      JvmtiTagHashmapEntry* entry,
657                                                      jlong obj_tag) {
658  if (entry == NULL) {
659    if (obj_tag != 0) {
660      // callback has tagged the object
661      assert(Thread::current()->is_VM_thread(), "must be VMThread");
662      HandleMark hm;
663      Handle h(o);
664      jweak ref = JNIHandles::make_weak_global(h);
665      entry = tag_map()->create_entry(ref, obj_tag);
666      hashmap->add(o, entry);
667    }
668  } else {
669    // object was previously tagged - the callback may have untagged
670    // the object or changed the tag value
671    if (obj_tag == 0) {
672      jweak ref = entry->object();
673
674      JvmtiTagHashmapEntry* entry_removed = hashmap->remove(o);
675      assert(entry_removed == entry, "checking");
676      tag_map()->destroy_entry(entry);
677
678      JNIHandles::destroy_weak_global(ref);
679    } else {
680      if (obj_tag != entry->tag()) {
681         entry->set_tag(obj_tag);
682      }
683    }
684  }
685}
686
687// An extended CallbackWrapper used when reporting an object reference
688// to the agent.
689//
690// {
691//   TwoOopCallbackWrapper wrapper(tag_map, referrer, o);
692//
693//   (*callback)(wrapper.klass_tag(),
694//               wrapper.obj_size(),
695//               wrapper.obj_tag_p()
696//               wrapper.referrer_tag_p(), ...)
697//
698// } // wrapper goes out of scope here which results in the destructor
699//      checking to see if the referrer object has been tagged, untagged,
700//      or the tag value has changed.
701//
702class TwoOopCallbackWrapper : public CallbackWrapper {
703 private:
704  bool _is_reference_to_self;
705  JvmtiTagHashmap* _referrer_hashmap;
706  JvmtiTagHashmapEntry* _referrer_entry;
707  oop _referrer;
708  jlong _referrer_obj_tag;
709  jlong _referrer_klass_tag;
710  jlong* _referrer_tag_p;
711
712  bool is_reference_to_self() const             { return _is_reference_to_self; }
713
714 public:
715  TwoOopCallbackWrapper(JvmtiTagMap* tag_map, oop referrer, oop o) :
716    CallbackWrapper(tag_map, o)
717  {
718    // self reference needs to be handled in a special way
719    _is_reference_to_self = (referrer == o);
720
721    if (_is_reference_to_self) {
722      _referrer_klass_tag = klass_tag();
723      _referrer_tag_p = obj_tag_p();
724    } else {
725      // for Classes the klassOop is tagged
726      _referrer = klassOop_if_java_lang_Class(referrer);
727      // record the context
728      _referrer_hashmap = tag_map->hashmap_for(_referrer);
729      _referrer_entry = _referrer_hashmap->find(_referrer);
730
731      // get object tag
732      _referrer_obj_tag = (_referrer_entry == NULL) ? 0 : _referrer_entry->tag();
733      _referrer_tag_p = &_referrer_obj_tag;
734
735      // get referrer class tag.
736      klassOop k = (_referrer == referrer) ?  // Check if referrer is a class...
737          _referrer->klass()                  // No, just get its class
738         : SystemDictionary::class_klass();   // Yes, its class is Class
739      _referrer_klass_tag = tag_for(tag_map, k);
740    }
741  }
742
743  ~TwoOopCallbackWrapper() {
744    if (!is_reference_to_self()){
745      post_callback_tag_update(_referrer,
746                               _referrer_hashmap,
747                               _referrer_entry,
748                               _referrer_obj_tag);
749    }
750  }
751
752  // address of referrer tag
753  // (for a self reference this will return the same thing as obj_tag_p())
754  inline jlong* referrer_tag_p()        { return _referrer_tag_p; }
755
756  // referrer's class tag
757  inline jlong referrer_klass_tag()     { return _referrer_klass_tag; }
758};
759
760// tag an object
761//
762// This function is performance critical. If many threads attempt to tag objects
763// around the same time then it's possible that the Mutex associated with the
764// tag map will be a hot lock. Eliminating this lock will not eliminate the issue
765// because creating a JNI weak reference requires acquiring a global lock also.
766void JvmtiTagMap::set_tag(jobject object, jlong tag) {
767  MutexLocker ml(lock());
768
769  // resolve the object
770  oop o = JNIHandles::resolve_non_null(object);
771
772  // for Classes we tag the klassOop
773  o = klassOop_if_java_lang_Class(o);
774
775  // see if the object is already tagged
776  JvmtiTagHashmap* hashmap = hashmap_for(o);
777  JvmtiTagHashmapEntry* entry = hashmap->find(o);
778
779  // if the object is not already tagged then we tag it
780  if (entry == NULL) {
781    if (tag != 0) {
782      HandleMark hm;
783      Handle h(o);
784      jweak ref = JNIHandles::make_weak_global(h);
785
786      // the object may have moved because make_weak_global may
787      // have blocked - thus it is necessary resolve the handle
788      // and re-hash the object.
789      o = h();
790      entry = create_entry(ref, tag);
791      hashmap_for(o)->add(o, entry);
792    } else {
793      // no-op
794    }
795  } else {
796    // if the object is already tagged then we either update
797    // the tag (if a new tag value has been provided)
798    // or remove the object if the new tag value is 0.
799    // Removing the object requires that we also delete the JNI
800    // weak ref to the object.
801    if (tag == 0) {
802      jweak ref = entry->object();
803      hashmap->remove(o);
804      destroy_entry(entry);
805      JNIHandles::destroy_weak_global(ref);
806    } else {
807      entry->set_tag(tag);
808    }
809  }
810}
811
812// get the tag for an object
813jlong JvmtiTagMap::get_tag(jobject object) {
814  MutexLocker ml(lock());
815
816  // resolve the object
817  oop o = JNIHandles::resolve_non_null(object);
818
819  // for Classes get the tag from the klassOop
820  return tag_for(this, klassOop_if_java_lang_Class(o));
821}
822
823
824// Helper class used to describe the static or instance fields of a class.
825// For each field it holds the field index (as defined by the JVMTI specification),
826// the field type, and the offset.
827
828class ClassFieldDescriptor: public CHeapObj {
829 private:
830  int _field_index;
831  int _field_offset;
832  char _field_type;
833 public:
834  ClassFieldDescriptor(int index, char type, int offset) :
835    _field_index(index), _field_type(type), _field_offset(offset) {
836  }
837  int field_index()  const  { return _field_index; }
838  char field_type()  const  { return _field_type; }
839  int field_offset() const  { return _field_offset; }
840};
841
842class ClassFieldMap: public CHeapObj {
843 private:
844  enum {
845    initial_field_count = 5
846  };
847
848  // list of field descriptors
849  GrowableArray<ClassFieldDescriptor*>* _fields;
850
851  // constructor
852  ClassFieldMap();
853
854  // add a field
855  void add(int index, char type, int offset);
856
857  // returns the field count for the given class
858  static int compute_field_count(instanceKlassHandle ikh);
859
860 public:
861  ~ClassFieldMap();
862
863  // access
864  int field_count()                     { return _fields->length(); }
865  ClassFieldDescriptor* field_at(int i) { return _fields->at(i); }
866
867  // functions to create maps of static or instance fields
868  static ClassFieldMap* create_map_of_static_fields(klassOop k);
869  static ClassFieldMap* create_map_of_instance_fields(oop obj);
870};
871
872ClassFieldMap::ClassFieldMap() {
873  _fields = new (ResourceObj::C_HEAP) GrowableArray<ClassFieldDescriptor*>(initial_field_count, true);
874}
875
876ClassFieldMap::~ClassFieldMap() {
877  for (int i=0; i<_fields->length(); i++) {
878    delete _fields->at(i);
879  }
880  delete _fields;
881}
882
883void ClassFieldMap::add(int index, char type, int offset) {
884  ClassFieldDescriptor* field = new ClassFieldDescriptor(index, type, offset);
885  _fields->append(field);
886}
887
888// Returns a heap allocated ClassFieldMap to describe the static fields
889// of the given class.
890//
891ClassFieldMap* ClassFieldMap::create_map_of_static_fields(klassOop k) {
892  HandleMark hm;
893  instanceKlassHandle ikh = instanceKlassHandle(Thread::current(), k);
894
895  // create the field map
896  ClassFieldMap* field_map = new ClassFieldMap();
897
898  FilteredFieldStream f(ikh, false, false);
899  int max_field_index = f.field_count()-1;
900
901  int index = 0;
902  for (FilteredFieldStream fld(ikh, true, true); !fld.eos(); fld.next(), index++) {
903    // ignore instance fields
904    if (!fld.access_flags().is_static()) {
905      continue;
906    }
907    field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
908  }
909  return field_map;
910}
911
912// Returns a heap allocated ClassFieldMap to describe the instance fields
913// of the given class. All instance fields are included (this means public
914// and private fields declared in superclasses and superinterfaces too).
915//
916ClassFieldMap* ClassFieldMap::create_map_of_instance_fields(oop obj) {
917  HandleMark hm;
918  instanceKlassHandle ikh = instanceKlassHandle(Thread::current(), obj->klass());
919
920  // create the field map
921  ClassFieldMap* field_map = new ClassFieldMap();
922
923  FilteredFieldStream f(ikh, false, false);
924
925  int max_field_index = f.field_count()-1;
926
927  int index = 0;
928  for (FilteredFieldStream fld(ikh, false, false); !fld.eos(); fld.next(), index++) {
929    // ignore static fields
930    if (fld.access_flags().is_static()) {
931      continue;
932    }
933    field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
934  }
935
936  return field_map;
937}
938
939// Helper class used to cache a ClassFileMap for the instance fields of
940// a cache. A JvmtiCachedClassFieldMap can be cached by an instanceKlass during
941// heap iteration and avoid creating a field map for each object in the heap
942// (only need to create the map when the first instance of a class is encountered).
943//
944class JvmtiCachedClassFieldMap : public CHeapObj {
945 private:
946   enum {
947     initial_class_count = 200
948   };
949  ClassFieldMap* _field_map;
950
951  ClassFieldMap* field_map() const          { return _field_map; }
952
953  JvmtiCachedClassFieldMap(ClassFieldMap* field_map);
954  ~JvmtiCachedClassFieldMap();
955
956  static GrowableArray<instanceKlass*>* _class_list;
957  static void add_to_class_list(instanceKlass* ik);
958
959 public:
960  // returns the field map for a given object (returning map cached
961  // by instanceKlass if possible
962  static ClassFieldMap* get_map_of_instance_fields(oop obj);
963
964  // removes the field map from all instanceKlasses - should be
965  // called before VM operation completes
966  static void clear_cache();
967
968  // returns the number of ClassFieldMap cached by instanceKlasses
969  static int cached_field_map_count();
970};
971
972GrowableArray<instanceKlass*>* JvmtiCachedClassFieldMap::_class_list;
973
974JvmtiCachedClassFieldMap::JvmtiCachedClassFieldMap(ClassFieldMap* field_map) {
975  _field_map = field_map;
976}
977
978JvmtiCachedClassFieldMap::~JvmtiCachedClassFieldMap() {
979  if (_field_map != NULL) {
980    delete _field_map;
981  }
982}
983
984// Marker class to ensure that the class file map cache is only used in a defined
985// scope.
986class ClassFieldMapCacheMark : public StackObj {
987 private:
988   static bool _is_active;
989 public:
990   ClassFieldMapCacheMark() {
991     assert(Thread::current()->is_VM_thread(), "must be VMThread");
992     assert(JvmtiCachedClassFieldMap::cached_field_map_count() == 0, "cache not empty");
993     assert(!_is_active, "ClassFieldMapCacheMark cannot be nested");
994     _is_active = true;
995   }
996   ~ClassFieldMapCacheMark() {
997     JvmtiCachedClassFieldMap::clear_cache();
998     _is_active = false;
999   }
1000   static bool is_active() { return _is_active; }
1001};
1002
1003bool ClassFieldMapCacheMark::_is_active;
1004
1005
1006// record that the given instanceKlass is caching a field map
1007void JvmtiCachedClassFieldMap::add_to_class_list(instanceKlass* ik) {
1008  if (_class_list == NULL) {
1009    _class_list = new (ResourceObj::C_HEAP) GrowableArray<instanceKlass*>(initial_class_count, true);
1010  }
1011  _class_list->push(ik);
1012}
1013
1014// returns the instance field map for the given object
1015// (returns field map cached by the instanceKlass if possible)
1016ClassFieldMap* JvmtiCachedClassFieldMap::get_map_of_instance_fields(oop obj) {
1017  assert(Thread::current()->is_VM_thread(), "must be VMThread");
1018  assert(ClassFieldMapCacheMark::is_active(), "ClassFieldMapCacheMark not active");
1019
1020  klassOop k = obj->klass();
1021  instanceKlass* ik = instanceKlass::cast(k);
1022
1023  // return cached map if possible
1024  JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
1025  if (cached_map != NULL) {
1026    assert(cached_map->field_map() != NULL, "missing field list");
1027    return cached_map->field_map();
1028  } else {
1029    ClassFieldMap* field_map = ClassFieldMap::create_map_of_instance_fields(obj);
1030    cached_map = new JvmtiCachedClassFieldMap(field_map);
1031    ik->set_jvmti_cached_class_field_map(cached_map);
1032    add_to_class_list(ik);
1033    return field_map;
1034  }
1035}
1036
1037// remove the fields maps cached from all instanceKlasses
1038void JvmtiCachedClassFieldMap::clear_cache() {
1039  assert(Thread::current()->is_VM_thread(), "must be VMThread");
1040  if (_class_list != NULL) {
1041    for (int i = 0; i < _class_list->length(); i++) {
1042      instanceKlass* ik = _class_list->at(i);
1043      JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
1044      assert(cached_map != NULL, "should not be NULL");
1045      ik->set_jvmti_cached_class_field_map(NULL);
1046      delete cached_map;  // deletes the encapsulated field map
1047    }
1048    delete _class_list;
1049    _class_list = NULL;
1050  }
1051}
1052
1053// returns the number of ClassFieldMap cached by instanceKlasses
1054int JvmtiCachedClassFieldMap::cached_field_map_count() {
1055  return (_class_list == NULL) ? 0 : _class_list->length();
1056}
1057
1058// helper function to indicate if an object is filtered by its tag or class tag
1059static inline bool is_filtered_by_heap_filter(jlong obj_tag,
1060                                              jlong klass_tag,
1061                                              int heap_filter) {
1062  // apply the heap filter
1063  if (obj_tag != 0) {
1064    // filter out tagged objects
1065    if (heap_filter & JVMTI_HEAP_FILTER_TAGGED) return true;
1066  } else {
1067    // filter out untagged objects
1068    if (heap_filter & JVMTI_HEAP_FILTER_UNTAGGED) return true;
1069  }
1070  if (klass_tag != 0) {
1071    // filter out objects with tagged classes
1072    if (heap_filter & JVMTI_HEAP_FILTER_CLASS_TAGGED) return true;
1073  } else {
1074    // filter out objects with untagged classes.
1075    if (heap_filter & JVMTI_HEAP_FILTER_CLASS_UNTAGGED) return true;
1076  }
1077  return false;
1078}
1079
1080// helper function to indicate if an object is filtered by a klass filter
1081static inline bool is_filtered_by_klass_filter(oop obj, KlassHandle klass_filter) {
1082  if (!klass_filter.is_null()) {
1083    if (obj->klass() != klass_filter()) {
1084      return true;
1085    }
1086  }
1087  return false;
1088}
1089
1090// helper function to tell if a field is a primitive field or not
1091static inline bool is_primitive_field_type(char type) {
1092  return (type != 'L' && type != '[');
1093}
1094
1095// helper function to copy the value from location addr to jvalue.
1096static inline void copy_to_jvalue(jvalue *v, address addr, jvmtiPrimitiveType value_type) {
1097  switch (value_type) {
1098    case JVMTI_PRIMITIVE_TYPE_BOOLEAN : { v->z = *(jboolean*)addr; break; }
1099    case JVMTI_PRIMITIVE_TYPE_BYTE    : { v->b = *(jbyte*)addr;    break; }
1100    case JVMTI_PRIMITIVE_TYPE_CHAR    : { v->c = *(jchar*)addr;    break; }
1101    case JVMTI_PRIMITIVE_TYPE_SHORT   : { v->s = *(jshort*)addr;   break; }
1102    case JVMTI_PRIMITIVE_TYPE_INT     : { v->i = *(jint*)addr;     break; }
1103    case JVMTI_PRIMITIVE_TYPE_LONG    : { v->j = *(jlong*)addr;    break; }
1104    case JVMTI_PRIMITIVE_TYPE_FLOAT   : { v->f = *(jfloat*)addr;   break; }
1105    case JVMTI_PRIMITIVE_TYPE_DOUBLE  : { v->d = *(jdouble*)addr;  break; }
1106    default: ShouldNotReachHere();
1107  }
1108}
1109
1110// helper function to invoke string primitive value callback
1111// returns visit control flags
1112static jint invoke_string_value_callback(jvmtiStringPrimitiveValueCallback cb,
1113                                         CallbackWrapper* wrapper,
1114                                         oop str,
1115                                         void* user_data)
1116{
1117  assert(str->klass() == SystemDictionary::string_klass(), "not a string");
1118
1119  // get the string value and length
1120  // (string value may be offset from the base)
1121  int s_len = java_lang_String::length(str);
1122  typeArrayOop s_value = java_lang_String::value(str);
1123  int s_offset = java_lang_String::offset(str);
1124  jchar* value;
1125  if (s_len > 0) {
1126    value = s_value->char_at_addr(s_offset);
1127  } else {
1128    value = (jchar*) s_value->base(T_CHAR);
1129  }
1130
1131  // invoke the callback
1132  return (*cb)(wrapper->klass_tag(),
1133               wrapper->obj_size(),
1134               wrapper->obj_tag_p(),
1135               value,
1136               (jint)s_len,
1137               user_data);
1138}
1139
1140// helper function to invoke string primitive value callback
1141// returns visit control flags
1142static jint invoke_array_primitive_value_callback(jvmtiArrayPrimitiveValueCallback cb,
1143                                                  CallbackWrapper* wrapper,
1144                                                  oop obj,
1145                                                  void* user_data)
1146{
1147  assert(obj->is_typeArray(), "not a primitive array");
1148
1149  // get base address of first element
1150  typeArrayOop array = typeArrayOop(obj);
1151  BasicType type = typeArrayKlass::cast(array->klass())->element_type();
1152  void* elements = array->base(type);
1153
1154  // jvmtiPrimitiveType is defined so this mapping is always correct
1155  jvmtiPrimitiveType elem_type = (jvmtiPrimitiveType)type2char(type);
1156
1157  return (*cb)(wrapper->klass_tag(),
1158               wrapper->obj_size(),
1159               wrapper->obj_tag_p(),
1160               (jint)array->length(),
1161               elem_type,
1162               elements,
1163               user_data);
1164}
1165
1166// helper function to invoke the primitive field callback for all static fields
1167// of a given class
1168static jint invoke_primitive_field_callback_for_static_fields
1169  (CallbackWrapper* wrapper,
1170   oop obj,
1171   jvmtiPrimitiveFieldCallback cb,
1172   void* user_data)
1173{
1174  // for static fields only the index will be set
1175  static jvmtiHeapReferenceInfo reference_info = { 0 };
1176
1177  assert(obj->klass() == SystemDictionary::class_klass(), "not a class");
1178  if (java_lang_Class::is_primitive(obj)) {
1179    return 0;
1180  }
1181  klassOop k = java_lang_Class::as_klassOop(obj);
1182  Klass* klass = k->klass_part();
1183
1184  // ignore classes for object and type arrays
1185  if (!klass->oop_is_instance()) {
1186    return 0;
1187  }
1188
1189  // ignore classes which aren't linked yet
1190  instanceKlass* ik = instanceKlass::cast(k);
1191  if (!ik->is_linked()) {
1192    return 0;
1193  }
1194
1195  // get the field map
1196  ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(k);
1197
1198  // invoke the callback for each static primitive field
1199  for (int i=0; i<field_map->field_count(); i++) {
1200    ClassFieldDescriptor* field = field_map->field_at(i);
1201
1202    // ignore non-primitive fields
1203    char type = field->field_type();
1204    if (!is_primitive_field_type(type)) {
1205      continue;
1206    }
1207    // one-to-one mapping
1208    jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
1209
1210    // get offset and field value
1211    int offset = field->field_offset();
1212    address addr = (address)k + offset;
1213    jvalue value;
1214    copy_to_jvalue(&value, addr, value_type);
1215
1216    // field index
1217    reference_info.field.index = field->field_index();
1218
1219    // invoke the callback
1220    jint res = (*cb)(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
1221                     &reference_info,
1222                     wrapper->klass_tag(),
1223                     wrapper->obj_tag_p(),
1224                     value,
1225                     value_type,
1226                     user_data);
1227    if (res & JVMTI_VISIT_ABORT) {
1228      delete field_map;
1229      return res;
1230    }
1231  }
1232
1233  delete field_map;
1234  return 0;
1235}
1236
1237// helper function to invoke the primitive field callback for all instance fields
1238// of a given object
1239static jint invoke_primitive_field_callback_for_instance_fields(
1240  CallbackWrapper* wrapper,
1241  oop obj,
1242  jvmtiPrimitiveFieldCallback cb,
1243  void* user_data)
1244{
1245  // for instance fields only the index will be set
1246  static jvmtiHeapReferenceInfo reference_info = { 0 };
1247
1248  // get the map of the instance fields
1249  ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj);
1250
1251  // invoke the callback for each instance primitive field
1252  for (int i=0; i<fields->field_count(); i++) {
1253    ClassFieldDescriptor* field = fields->field_at(i);
1254
1255    // ignore non-primitive fields
1256    char type = field->field_type();
1257    if (!is_primitive_field_type(type)) {
1258      continue;
1259    }
1260    // one-to-one mapping
1261    jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
1262
1263    // get offset and field value
1264    int offset = field->field_offset();
1265    address addr = (address)obj + offset;
1266    jvalue value;
1267    copy_to_jvalue(&value, addr, value_type);
1268
1269    // field index
1270    reference_info.field.index = field->field_index();
1271
1272    // invoke the callback
1273    jint res = (*cb)(JVMTI_HEAP_REFERENCE_FIELD,
1274                     &reference_info,
1275                     wrapper->klass_tag(),
1276                     wrapper->obj_tag_p(),
1277                     value,
1278                     value_type,
1279                     user_data);
1280    if (res & JVMTI_VISIT_ABORT) {
1281      return res;
1282    }
1283  }
1284  return 0;
1285}
1286
1287
1288// VM operation to iterate over all objects in the heap (both reachable
1289// and unreachable)
1290class VM_HeapIterateOperation: public VM_Operation {
1291 private:
1292  ObjectClosure* _blk;
1293 public:
1294  VM_HeapIterateOperation(ObjectClosure* blk) { _blk = blk; }
1295
1296  VMOp_Type type() const { return VMOp_HeapIterateOperation; }
1297  void doit() {
1298    // allows class files maps to be cached during iteration
1299    ClassFieldMapCacheMark cm;
1300
1301    // make sure that heap is parsable (fills TLABs with filler objects)
1302    Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
1303
1304    // Verify heap before iteration - if the heap gets corrupted then
1305    // JVMTI's IterateOverHeap will crash.
1306    if (VerifyBeforeIteration) {
1307      Universe::verify();
1308    }
1309
1310    // do the iteration
1311    Universe::heap()->object_iterate(_blk);
1312
1313    // when sharing is enabled we must iterate over the shared spaces
1314    if (UseSharedSpaces) {
1315      GenCollectedHeap* gch = GenCollectedHeap::heap();
1316      CompactingPermGenGen* gen = (CompactingPermGenGen*)gch->perm_gen();
1317      gen->ro_space()->object_iterate(_blk);
1318      gen->rw_space()->object_iterate(_blk);
1319    }
1320  }
1321
1322};
1323
1324
1325// An ObjectClosure used to support the deprecated IterateOverHeap and
1326// IterateOverInstancesOfClass functions
1327class IterateOverHeapObjectClosure: public ObjectClosure {
1328 private:
1329  JvmtiTagMap* _tag_map;
1330  KlassHandle _klass;
1331  jvmtiHeapObjectFilter _object_filter;
1332  jvmtiHeapObjectCallback _heap_object_callback;
1333  const void* _user_data;
1334
1335  // accessors
1336  JvmtiTagMap* tag_map() const                    { return _tag_map; }
1337  jvmtiHeapObjectFilter object_filter() const     { return _object_filter; }
1338  jvmtiHeapObjectCallback object_callback() const { return _heap_object_callback; }
1339  KlassHandle klass() const                       { return _klass; }
1340  const void* user_data() const                   { return _user_data; }
1341
1342  // indicates if iteration has been aborted
1343  bool _iteration_aborted;
1344  bool is_iteration_aborted() const               { return _iteration_aborted; }
1345  void set_iteration_aborted(bool aborted)        { _iteration_aborted = aborted; }
1346
1347 public:
1348  IterateOverHeapObjectClosure(JvmtiTagMap* tag_map,
1349                               KlassHandle klass,
1350                               jvmtiHeapObjectFilter object_filter,
1351                               jvmtiHeapObjectCallback heap_object_callback,
1352                               const void* user_data) :
1353    _tag_map(tag_map),
1354    _klass(klass),
1355    _object_filter(object_filter),
1356    _heap_object_callback(heap_object_callback),
1357    _user_data(user_data),
1358    _iteration_aborted(false)
1359  {
1360  }
1361
1362  void do_object(oop o);
1363};
1364
1365// invoked for each object in the heap
1366void IterateOverHeapObjectClosure::do_object(oop o) {
1367  // check if iteration has been halted
1368  if (is_iteration_aborted()) return;
1369
1370  // ignore any objects that aren't visible to profiler
1371  if (!ServiceUtil::visible_oop(o)) return;
1372
1373  // instanceof check when filtering by klass
1374  if (!klass().is_null() && !o->is_a(klass()())) {
1375    return;
1376  }
1377  // prepare for the calllback
1378  CallbackWrapper wrapper(tag_map(), o);
1379
1380  // if the object is tagged and we're only interested in untagged objects
1381  // then don't invoke the callback. Similiarly, if the object is untagged
1382  // and we're only interested in tagged objects we skip the callback.
1383  if (wrapper.obj_tag() != 0) {
1384    if (object_filter() == JVMTI_HEAP_OBJECT_UNTAGGED) return;
1385  } else {
1386    if (object_filter() == JVMTI_HEAP_OBJECT_TAGGED) return;
1387  }
1388
1389  // invoke the agent's callback
1390  jvmtiIterationControl control = (*object_callback())(wrapper.klass_tag(),
1391                                                       wrapper.obj_size(),
1392                                                       wrapper.obj_tag_p(),
1393                                                       (void*)user_data());
1394  if (control == JVMTI_ITERATION_ABORT) {
1395    set_iteration_aborted(true);
1396  }
1397}
1398
1399// An ObjectClosure used to support the IterateThroughHeap function
1400class IterateThroughHeapObjectClosure: public ObjectClosure {
1401 private:
1402  JvmtiTagMap* _tag_map;
1403  KlassHandle _klass;
1404  int _heap_filter;
1405  const jvmtiHeapCallbacks* _callbacks;
1406  const void* _user_data;
1407
1408  // accessor functions
1409  JvmtiTagMap* tag_map() const                     { return _tag_map; }
1410  int heap_filter() const                          { return _heap_filter; }
1411  const jvmtiHeapCallbacks* callbacks() const      { return _callbacks; }
1412  KlassHandle klass() const                        { return _klass; }
1413  const void* user_data() const                    { return _user_data; }
1414
1415  // indicates if the iteration has been aborted
1416  bool _iteration_aborted;
1417  bool is_iteration_aborted() const                { return _iteration_aborted; }
1418
1419  // used to check the visit control flags. If the abort flag is set
1420  // then we set the iteration aborted flag so that the iteration completes
1421  // without processing any further objects
1422  bool check_flags_for_abort(jint flags) {
1423    bool is_abort = (flags & JVMTI_VISIT_ABORT) != 0;
1424    if (is_abort) {
1425      _iteration_aborted = true;
1426    }
1427    return is_abort;
1428  }
1429
1430 public:
1431  IterateThroughHeapObjectClosure(JvmtiTagMap* tag_map,
1432                                  KlassHandle klass,
1433                                  int heap_filter,
1434                                  const jvmtiHeapCallbacks* heap_callbacks,
1435                                  const void* user_data) :
1436    _tag_map(tag_map),
1437    _klass(klass),
1438    _heap_filter(heap_filter),
1439    _callbacks(heap_callbacks),
1440    _user_data(user_data),
1441    _iteration_aborted(false)
1442  {
1443  }
1444
1445  void do_object(oop o);
1446};
1447
1448// invoked for each object in the heap
1449void IterateThroughHeapObjectClosure::do_object(oop obj) {
1450  // check if iteration has been halted
1451  if (is_iteration_aborted()) return;
1452
1453  // ignore any objects that aren't visible to profiler
1454  if (!ServiceUtil::visible_oop(obj)) return;
1455
1456  // apply class filter
1457  if (is_filtered_by_klass_filter(obj, klass())) return;
1458
1459  // prepare for callback
1460  CallbackWrapper wrapper(tag_map(), obj);
1461
1462  // check if filtered by the heap filter
1463  if (is_filtered_by_heap_filter(wrapper.obj_tag(), wrapper.klass_tag(), heap_filter())) {
1464    return;
1465  }
1466
1467  // for arrays we need the length, otherwise -1
1468  bool is_array = obj->is_array();
1469  int len = is_array ? arrayOop(obj)->length() : -1;
1470
1471  // invoke the object callback (if callback is provided)
1472  if (callbacks()->heap_iteration_callback != NULL) {
1473    jvmtiHeapIterationCallback cb = callbacks()->heap_iteration_callback;
1474    jint res = (*cb)(wrapper.klass_tag(),
1475                     wrapper.obj_size(),
1476                     wrapper.obj_tag_p(),
1477                     (jint)len,
1478                     (void*)user_data());
1479    if (check_flags_for_abort(res)) return;
1480  }
1481
1482  // for objects and classes we report primitive fields if callback provided
1483  if (callbacks()->primitive_field_callback != NULL && obj->is_instance()) {
1484    jint res;
1485    jvmtiPrimitiveFieldCallback cb = callbacks()->primitive_field_callback;
1486    if (obj->klass() == SystemDictionary::class_klass()) {
1487      res = invoke_primitive_field_callback_for_static_fields(&wrapper,
1488                                                                    obj,
1489                                                                    cb,
1490                                                                    (void*)user_data());
1491    } else {
1492      res = invoke_primitive_field_callback_for_instance_fields(&wrapper,
1493                                                                      obj,
1494                                                                      cb,
1495                                                                      (void*)user_data());
1496    }
1497    if (check_flags_for_abort(res)) return;
1498  }
1499
1500  // string callback
1501  if (!is_array &&
1502      callbacks()->string_primitive_value_callback != NULL &&
1503      obj->klass() == SystemDictionary::string_klass()) {
1504    jint res = invoke_string_value_callback(
1505                callbacks()->string_primitive_value_callback,
1506                &wrapper,
1507                obj,
1508                (void*)user_data() );
1509    if (check_flags_for_abort(res)) return;
1510  }
1511
1512  // array callback
1513  if (is_array &&
1514      callbacks()->array_primitive_value_callback != NULL &&
1515      obj->is_typeArray()) {
1516    jint res = invoke_array_primitive_value_callback(
1517               callbacks()->array_primitive_value_callback,
1518               &wrapper,
1519               obj,
1520               (void*)user_data() );
1521    if (check_flags_for_abort(res)) return;
1522  }
1523};
1524
1525
1526// Deprecated function to iterate over all objects in the heap
1527void JvmtiTagMap::iterate_over_heap(jvmtiHeapObjectFilter object_filter,
1528                                    KlassHandle klass,
1529                                    jvmtiHeapObjectCallback heap_object_callback,
1530                                    const void* user_data)
1531{
1532  MutexLocker ml(Heap_lock);
1533  IterateOverHeapObjectClosure blk(this,
1534                                   klass,
1535                                   object_filter,
1536                                   heap_object_callback,
1537                                   user_data);
1538  VM_HeapIterateOperation op(&blk);
1539  VMThread::execute(&op);
1540}
1541
1542
1543// Iterates over all objects in the heap
1544void JvmtiTagMap::iterate_through_heap(jint heap_filter,
1545                                       KlassHandle klass,
1546                                       const jvmtiHeapCallbacks* callbacks,
1547                                       const void* user_data)
1548{
1549  MutexLocker ml(Heap_lock);
1550  IterateThroughHeapObjectClosure blk(this,
1551                                      klass,
1552                                      heap_filter,
1553                                      callbacks,
1554                                      user_data);
1555  VM_HeapIterateOperation op(&blk);
1556  VMThread::execute(&op);
1557}
1558
1559// support class for get_objects_with_tags
1560
1561class TagObjectCollector : public JvmtiTagHashmapEntryClosure {
1562 private:
1563  JvmtiEnv* _env;
1564  jlong* _tags;
1565  jint _tag_count;
1566
1567  GrowableArray<jobject>* _object_results;  // collected objects (JNI weak refs)
1568  GrowableArray<uint64_t>* _tag_results;    // collected tags
1569
1570 public:
1571  TagObjectCollector(JvmtiEnv* env, const jlong* tags, jint tag_count) {
1572    _env = env;
1573    _tags = (jlong*)tags;
1574    _tag_count = tag_count;
1575    _object_results = new (ResourceObj::C_HEAP) GrowableArray<jobject>(1,true);
1576    _tag_results = new (ResourceObj::C_HEAP) GrowableArray<uint64_t>(1,true);
1577  }
1578
1579  ~TagObjectCollector() {
1580    delete _object_results;
1581    delete _tag_results;
1582  }
1583
1584  // for each tagged object check if the tag value matches
1585  // - if it matches then we create a JNI local reference to the object
1586  // and record the reference and tag value.
1587  //
1588  void do_entry(JvmtiTagHashmapEntry* entry) {
1589    for (int i=0; i<_tag_count; i++) {
1590      if (_tags[i] == entry->tag()) {
1591        oop o = JNIHandles::resolve(entry->object());
1592        assert(o != NULL && o != JNIHandles::deleted_handle(), "sanity check");
1593
1594        // the mirror is tagged
1595        if (o->is_klass()) {
1596          klassOop k = (klassOop)o;
1597          o = Klass::cast(k)->java_mirror();
1598        }
1599
1600        jobject ref = JNIHandles::make_local(JavaThread::current(), o);
1601        _object_results->append(ref);
1602        _tag_results->append((uint64_t)entry->tag());
1603      }
1604    }
1605  }
1606
1607  // return the results from the collection
1608  //
1609  jvmtiError result(jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
1610    jvmtiError error;
1611    int count = _object_results->length();
1612    assert(count >= 0, "sanity check");
1613
1614    // if object_result_ptr is not NULL then allocate the result and copy
1615    // in the object references.
1616    if (object_result_ptr != NULL) {
1617      error = _env->Allocate(count * sizeof(jobject), (unsigned char**)object_result_ptr);
1618      if (error != JVMTI_ERROR_NONE) {
1619        return error;
1620      }
1621      for (int i=0; i<count; i++) {
1622        (*object_result_ptr)[i] = _object_results->at(i);
1623      }
1624    }
1625
1626    // if tag_result_ptr is not NULL then allocate the result and copy
1627    // in the tag values.
1628    if (tag_result_ptr != NULL) {
1629      error = _env->Allocate(count * sizeof(jlong), (unsigned char**)tag_result_ptr);
1630      if (error != JVMTI_ERROR_NONE) {
1631        if (object_result_ptr != NULL) {
1632          _env->Deallocate((unsigned char*)object_result_ptr);
1633        }
1634        return error;
1635      }
1636      for (int i=0; i<count; i++) {
1637        (*tag_result_ptr)[i] = (jlong)_tag_results->at(i);
1638      }
1639    }
1640
1641    *count_ptr = count;
1642    return JVMTI_ERROR_NONE;
1643  }
1644};
1645
1646// return the list of objects with the specified tags
1647jvmtiError JvmtiTagMap::get_objects_with_tags(const jlong* tags,
1648  jint count, jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
1649
1650  TagObjectCollector collector(env(), tags, count);
1651  {
1652    // iterate over all tagged objects
1653    MutexLocker ml(lock());
1654    entry_iterate(&collector);
1655  }
1656  return collector.result(count_ptr, object_result_ptr, tag_result_ptr);
1657}
1658
1659
1660// ObjectMarker is used to support the marking objects when walking the
1661// heap.
1662//
1663// This implementation uses the existing mark bits in an object for
1664// marking. Objects that are marked must later have their headers restored.
1665// As most objects are unlocked and don't have their identity hash computed
1666// we don't have to save their headers. Instead we save the headers that
1667// are "interesting". Later when the headers are restored this implementation
1668// restores all headers to their initial value and then restores the few
1669// objects that had interesting headers.
1670//
1671// Future work: This implementation currently uses growable arrays to save
1672// the oop and header of interesting objects. As an optimization we could
1673// use the same technique as the GC and make use of the unused area
1674// between top() and end().
1675//
1676
1677// An ObjectClosure used to restore the mark bits of an object
1678class RestoreMarksClosure : public ObjectClosure {
1679 public:
1680  void do_object(oop o) {
1681    if (o != NULL) {
1682      markOop mark = o->mark();
1683      if (mark->is_marked()) {
1684        o->init_mark();
1685      }
1686    }
1687  }
1688};
1689
1690// ObjectMarker provides the mark and visited functions
1691class ObjectMarker : AllStatic {
1692 private:
1693  // saved headers
1694  static GrowableArray<oop>* _saved_oop_stack;
1695  static GrowableArray<markOop>* _saved_mark_stack;
1696
1697 public:
1698  static void init();                       // initialize
1699  static void done();                       // clean-up
1700
1701  static inline void mark(oop o);           // mark an object
1702  static inline bool visited(oop o);        // check if object has been visited
1703};
1704
1705GrowableArray<oop>* ObjectMarker::_saved_oop_stack = NULL;
1706GrowableArray<markOop>* ObjectMarker::_saved_mark_stack = NULL;
1707
1708// initialize ObjectMarker - prepares for object marking
1709void ObjectMarker::init() {
1710  assert(Thread::current()->is_VM_thread(), "must be VMThread");
1711
1712  // prepare heap for iteration
1713  Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
1714
1715  // create stacks for interesting headers
1716  _saved_mark_stack = new (ResourceObj::C_HEAP) GrowableArray<markOop>(4000, true);
1717  _saved_oop_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(4000, true);
1718
1719  if (UseBiasedLocking) {
1720    BiasedLocking::preserve_marks();
1721  }
1722}
1723
1724// Object marking is done so restore object headers
1725void ObjectMarker::done() {
1726  // iterate over all objects and restore the mark bits to
1727  // their initial value
1728  RestoreMarksClosure blk;
1729  Universe::heap()->object_iterate(&blk);
1730
1731  // When sharing is enabled we need to restore the headers of the objects
1732  // in the readwrite space too.
1733  if (UseSharedSpaces) {
1734    GenCollectedHeap* gch = GenCollectedHeap::heap();
1735    CompactingPermGenGen* gen = (CompactingPermGenGen*)gch->perm_gen();
1736    gen->rw_space()->object_iterate(&blk);
1737  }
1738
1739  // now restore the interesting headers
1740  for (int i = 0; i < _saved_oop_stack->length(); i++) {
1741    oop o = _saved_oop_stack->at(i);
1742    markOop mark = _saved_mark_stack->at(i);
1743    o->set_mark(mark);
1744  }
1745
1746  if (UseBiasedLocking) {
1747    BiasedLocking::restore_marks();
1748  }
1749
1750  // free the stacks
1751  delete _saved_oop_stack;
1752  delete _saved_mark_stack;
1753}
1754
1755// mark an object
1756inline void ObjectMarker::mark(oop o) {
1757  assert(Universe::heap()->is_in(o), "sanity check");
1758  assert(!o->mark()->is_marked(), "should only mark an object once");
1759
1760  // object's mark word
1761  markOop mark = o->mark();
1762
1763  if (mark->must_be_preserved(o)) {
1764    _saved_mark_stack->push(mark);
1765    _saved_oop_stack->push(o);
1766  }
1767
1768  // mark the object
1769  o->set_mark(markOopDesc::prototype()->set_marked());
1770}
1771
1772// return true if object is marked
1773inline bool ObjectMarker::visited(oop o) {
1774  return o->mark()->is_marked();
1775}
1776
1777// Stack allocated class to help ensure that ObjectMarker is used
1778// correctly. Constructor initializes ObjectMarker, destructor calls
1779// ObjectMarker's done() function to restore object headers.
1780class ObjectMarkerController : public StackObj {
1781 public:
1782  ObjectMarkerController() {
1783    ObjectMarker::init();
1784  }
1785  ~ObjectMarkerController() {
1786    ObjectMarker::done();
1787  }
1788};
1789
1790
1791// helper to map a jvmtiHeapReferenceKind to an old style jvmtiHeapRootKind
1792// (not performance critical as only used for roots)
1793static jvmtiHeapRootKind toJvmtiHeapRootKind(jvmtiHeapReferenceKind kind) {
1794  switch (kind) {
1795    case JVMTI_HEAP_REFERENCE_JNI_GLOBAL:   return JVMTI_HEAP_ROOT_JNI_GLOBAL;
1796    case JVMTI_HEAP_REFERENCE_SYSTEM_CLASS: return JVMTI_HEAP_ROOT_SYSTEM_CLASS;
1797    case JVMTI_HEAP_REFERENCE_MONITOR:      return JVMTI_HEAP_ROOT_MONITOR;
1798    case JVMTI_HEAP_REFERENCE_STACK_LOCAL:  return JVMTI_HEAP_ROOT_STACK_LOCAL;
1799    case JVMTI_HEAP_REFERENCE_JNI_LOCAL:    return JVMTI_HEAP_ROOT_JNI_LOCAL;
1800    case JVMTI_HEAP_REFERENCE_THREAD:       return JVMTI_HEAP_ROOT_THREAD;
1801    case JVMTI_HEAP_REFERENCE_OTHER:        return JVMTI_HEAP_ROOT_OTHER;
1802    default: ShouldNotReachHere();          return JVMTI_HEAP_ROOT_OTHER;
1803  }
1804}
1805
1806// Base class for all heap walk contexts. The base class maintains a flag
1807// to indicate if the context is valid or not.
1808class HeapWalkContext VALUE_OBJ_CLASS_SPEC {
1809 private:
1810  bool _valid;
1811 public:
1812  HeapWalkContext(bool valid)                   { _valid = valid; }
1813  void invalidate()                             { _valid = false; }
1814  bool is_valid() const                         { return _valid; }
1815};
1816
1817// A basic heap walk context for the deprecated heap walking functions.
1818// The context for a basic heap walk are the callbacks and fields used by
1819// the referrer caching scheme.
1820class BasicHeapWalkContext: public HeapWalkContext {
1821 private:
1822  jvmtiHeapRootCallback _heap_root_callback;
1823  jvmtiStackReferenceCallback _stack_ref_callback;
1824  jvmtiObjectReferenceCallback _object_ref_callback;
1825
1826  // used for caching
1827  oop _last_referrer;
1828  jlong _last_referrer_tag;
1829
1830 public:
1831  BasicHeapWalkContext() : HeapWalkContext(false) { }
1832
1833  BasicHeapWalkContext(jvmtiHeapRootCallback heap_root_callback,
1834                       jvmtiStackReferenceCallback stack_ref_callback,
1835                       jvmtiObjectReferenceCallback object_ref_callback) :
1836    HeapWalkContext(true),
1837    _heap_root_callback(heap_root_callback),
1838    _stack_ref_callback(stack_ref_callback),
1839    _object_ref_callback(object_ref_callback),
1840    _last_referrer(NULL),
1841    _last_referrer_tag(0) {
1842  }
1843
1844  // accessors
1845  jvmtiHeapRootCallback heap_root_callback() const         { return _heap_root_callback; }
1846  jvmtiStackReferenceCallback stack_ref_callback() const   { return _stack_ref_callback; }
1847  jvmtiObjectReferenceCallback object_ref_callback() const { return _object_ref_callback;  }
1848
1849  oop last_referrer() const               { return _last_referrer; }
1850  void set_last_referrer(oop referrer)    { _last_referrer = referrer; }
1851  jlong last_referrer_tag() const         { return _last_referrer_tag; }
1852  void set_last_referrer_tag(jlong value) { _last_referrer_tag = value; }
1853};
1854
1855// The advanced heap walk context for the FollowReferences functions.
1856// The context is the callbacks, and the fields used for filtering.
1857class AdvancedHeapWalkContext: public HeapWalkContext {
1858 private:
1859  jint _heap_filter;
1860  KlassHandle _klass_filter;
1861  const jvmtiHeapCallbacks* _heap_callbacks;
1862
1863 public:
1864  AdvancedHeapWalkContext() : HeapWalkContext(false) { }
1865
1866  AdvancedHeapWalkContext(jint heap_filter,
1867                           KlassHandle klass_filter,
1868                           const jvmtiHeapCallbacks* heap_callbacks) :
1869    HeapWalkContext(true),
1870    _heap_filter(heap_filter),
1871    _klass_filter(klass_filter),
1872    _heap_callbacks(heap_callbacks) {
1873  }
1874
1875  // accessors
1876  jint heap_filter() const         { return _heap_filter; }
1877  KlassHandle klass_filter() const { return _klass_filter; }
1878
1879  const jvmtiHeapReferenceCallback heap_reference_callback() const {
1880    return _heap_callbacks->heap_reference_callback;
1881  };
1882  const jvmtiPrimitiveFieldCallback primitive_field_callback() const {
1883    return _heap_callbacks->primitive_field_callback;
1884  }
1885  const jvmtiArrayPrimitiveValueCallback array_primitive_value_callback() const {
1886    return _heap_callbacks->array_primitive_value_callback;
1887  }
1888  const jvmtiStringPrimitiveValueCallback string_primitive_value_callback() const {
1889    return _heap_callbacks->string_primitive_value_callback;
1890  }
1891};
1892
1893// The CallbackInvoker is a class with static functions that the heap walk can call
1894// into to invoke callbacks. It works in one of two modes. The "basic" mode is
1895// used for the deprecated IterateOverReachableObjects functions. The "advanced"
1896// mode is for the newer FollowReferences function which supports a lot of
1897// additional callbacks.
1898class CallbackInvoker : AllStatic {
1899 private:
1900  // heap walk styles
1901  enum { basic, advanced };
1902  static int _heap_walk_type;
1903  static bool is_basic_heap_walk()           { return _heap_walk_type == basic; }
1904  static bool is_advanced_heap_walk()        { return _heap_walk_type == advanced; }
1905
1906  // context for basic style heap walk
1907  static BasicHeapWalkContext _basic_context;
1908  static BasicHeapWalkContext* basic_context() {
1909    assert(_basic_context.is_valid(), "invalid");
1910    return &_basic_context;
1911  }
1912
1913  // context for advanced style heap walk
1914  static AdvancedHeapWalkContext _advanced_context;
1915  static AdvancedHeapWalkContext* advanced_context() {
1916    assert(_advanced_context.is_valid(), "invalid");
1917    return &_advanced_context;
1918  }
1919
1920  // context needed for all heap walks
1921  static JvmtiTagMap* _tag_map;
1922  static const void* _user_data;
1923  static GrowableArray<oop>* _visit_stack;
1924
1925  // accessors
1926  static JvmtiTagMap* tag_map()                        { return _tag_map; }
1927  static const void* user_data()                       { return _user_data; }
1928  static GrowableArray<oop>* visit_stack()             { return _visit_stack; }
1929
1930  // if the object hasn't been visited then push it onto the visit stack
1931  // so that it will be visited later
1932  static inline bool check_for_visit(oop obj) {
1933    if (!ObjectMarker::visited(obj)) visit_stack()->push(obj);
1934    return true;
1935  }
1936
1937  // invoke basic style callbacks
1938  static inline bool invoke_basic_heap_root_callback
1939    (jvmtiHeapRootKind root_kind, oop obj);
1940  static inline bool invoke_basic_stack_ref_callback
1941    (jvmtiHeapRootKind root_kind, jlong thread_tag, jint depth, jmethodID method,
1942     int slot, oop obj);
1943  static inline bool invoke_basic_object_reference_callback
1944    (jvmtiObjectReferenceKind ref_kind, oop referrer, oop referree, jint index);
1945
1946  // invoke advanced style callbacks
1947  static inline bool invoke_advanced_heap_root_callback
1948    (jvmtiHeapReferenceKind ref_kind, oop obj);
1949  static inline bool invoke_advanced_stack_ref_callback
1950    (jvmtiHeapReferenceKind ref_kind, jlong thread_tag, jlong tid, int depth,
1951     jmethodID method, jlocation bci, jint slot, oop obj);
1952  static inline bool invoke_advanced_object_reference_callback
1953    (jvmtiHeapReferenceKind ref_kind, oop referrer, oop referree, jint index);
1954
1955  // used to report the value of primitive fields
1956  static inline bool report_primitive_field
1957    (jvmtiHeapReferenceKind ref_kind, oop obj, jint index, address addr, char type);
1958
1959 public:
1960  // initialize for basic mode
1961  static void initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
1962                                             GrowableArray<oop>* visit_stack,
1963                                             const void* user_data,
1964                                             BasicHeapWalkContext context);
1965
1966  // initialize for advanced mode
1967  static void initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
1968                                                GrowableArray<oop>* visit_stack,
1969                                                const void* user_data,
1970                                                AdvancedHeapWalkContext context);
1971
1972   // functions to report roots
1973  static inline bool report_simple_root(jvmtiHeapReferenceKind kind, oop o);
1974  static inline bool report_jni_local_root(jlong thread_tag, jlong tid, jint depth,
1975    jmethodID m, oop o);
1976  static inline bool report_stack_ref_root(jlong thread_tag, jlong tid, jint depth,
1977    jmethodID method, jlocation bci, jint slot, oop o);
1978
1979  // functions to report references
1980  static inline bool report_array_element_reference(oop referrer, oop referree, jint index);
1981  static inline bool report_class_reference(oop referrer, oop referree);
1982  static inline bool report_class_loader_reference(oop referrer, oop referree);
1983  static inline bool report_signers_reference(oop referrer, oop referree);
1984  static inline bool report_protection_domain_reference(oop referrer, oop referree);
1985  static inline bool report_superclass_reference(oop referrer, oop referree);
1986  static inline bool report_interface_reference(oop referrer, oop referree);
1987  static inline bool report_static_field_reference(oop referrer, oop referree, jint slot);
1988  static inline bool report_field_reference(oop referrer, oop referree, jint slot);
1989  static inline bool report_constant_pool_reference(oop referrer, oop referree, jint index);
1990  static inline bool report_primitive_array_values(oop array);
1991  static inline bool report_string_value(oop str);
1992  static inline bool report_primitive_instance_field(oop o, jint index, address value, char type);
1993  static inline bool report_primitive_static_field(oop o, jint index, address value, char type);
1994};
1995
1996// statics
1997int CallbackInvoker::_heap_walk_type;
1998BasicHeapWalkContext CallbackInvoker::_basic_context;
1999AdvancedHeapWalkContext CallbackInvoker::_advanced_context;
2000JvmtiTagMap* CallbackInvoker::_tag_map;
2001const void* CallbackInvoker::_user_data;
2002GrowableArray<oop>* CallbackInvoker::_visit_stack;
2003
2004// initialize for basic heap walk (IterateOverReachableObjects et al)
2005void CallbackInvoker::initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
2006                                                     GrowableArray<oop>* visit_stack,
2007                                                     const void* user_data,
2008                                                     BasicHeapWalkContext context) {
2009  _tag_map = tag_map;
2010  _visit_stack = visit_stack;
2011  _user_data = user_data;
2012  _basic_context = context;
2013  _advanced_context.invalidate();       // will trigger assertion if used
2014  _heap_walk_type = basic;
2015}
2016
2017// initialize for advanced heap walk (FollowReferences)
2018void CallbackInvoker::initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
2019                                                        GrowableArray<oop>* visit_stack,
2020                                                        const void* user_data,
2021                                                        AdvancedHeapWalkContext context) {
2022  _tag_map = tag_map;
2023  _visit_stack = visit_stack;
2024  _user_data = user_data;
2025  _advanced_context = context;
2026  _basic_context.invalidate();      // will trigger assertion if used
2027  _heap_walk_type = advanced;
2028}
2029
2030
2031// invoke basic style heap root callback
2032inline bool CallbackInvoker::invoke_basic_heap_root_callback(jvmtiHeapRootKind root_kind, oop obj) {
2033  assert(ServiceUtil::visible_oop(obj), "checking");
2034
2035  // if we heap roots should be reported
2036  jvmtiHeapRootCallback cb = basic_context()->heap_root_callback();
2037  if (cb == NULL) {
2038    return check_for_visit(obj);
2039  }
2040
2041  CallbackWrapper wrapper(tag_map(), obj);
2042  jvmtiIterationControl control = (*cb)(root_kind,
2043                                        wrapper.klass_tag(),
2044                                        wrapper.obj_size(),
2045                                        wrapper.obj_tag_p(),
2046                                        (void*)user_data());
2047  // push root to visit stack when following references
2048  if (control == JVMTI_ITERATION_CONTINUE &&
2049      basic_context()->object_ref_callback() != NULL) {
2050    visit_stack()->push(obj);
2051  }
2052  return control != JVMTI_ITERATION_ABORT;
2053}
2054
2055// invoke basic style stack ref callback
2056inline bool CallbackInvoker::invoke_basic_stack_ref_callback(jvmtiHeapRootKind root_kind,
2057                                                             jlong thread_tag,
2058                                                             jint depth,
2059                                                             jmethodID method,
2060                                                             jint slot,
2061                                                             oop obj) {
2062  assert(ServiceUtil::visible_oop(obj), "checking");
2063
2064  // if we stack refs should be reported
2065  jvmtiStackReferenceCallback cb = basic_context()->stack_ref_callback();
2066  if (cb == NULL) {
2067    return check_for_visit(obj);
2068  }
2069
2070  CallbackWrapper wrapper(tag_map(), obj);
2071  jvmtiIterationControl control = (*cb)(root_kind,
2072                                        wrapper.klass_tag(),
2073                                        wrapper.obj_size(),
2074                                        wrapper.obj_tag_p(),
2075                                        thread_tag,
2076                                        depth,
2077                                        method,
2078                                        slot,
2079                                        (void*)user_data());
2080  // push root to visit stack when following references
2081  if (control == JVMTI_ITERATION_CONTINUE &&
2082      basic_context()->object_ref_callback() != NULL) {
2083    visit_stack()->push(obj);
2084  }
2085  return control != JVMTI_ITERATION_ABORT;
2086}
2087
2088// invoke basic style object reference callback
2089inline bool CallbackInvoker::invoke_basic_object_reference_callback(jvmtiObjectReferenceKind ref_kind,
2090                                                                    oop referrer,
2091                                                                    oop referree,
2092                                                                    jint index) {
2093
2094  assert(ServiceUtil::visible_oop(referrer), "checking");
2095  assert(ServiceUtil::visible_oop(referree), "checking");
2096
2097  BasicHeapWalkContext* context = basic_context();
2098
2099  // callback requires the referrer's tag. If it's the same referrer
2100  // as the last call then we use the cached value.
2101  jlong referrer_tag;
2102  if (referrer == context->last_referrer()) {
2103    referrer_tag = context->last_referrer_tag();
2104  } else {
2105    referrer_tag = tag_for(tag_map(), klassOop_if_java_lang_Class(referrer));
2106  }
2107
2108  // do the callback
2109  CallbackWrapper wrapper(tag_map(), referree);
2110  jvmtiObjectReferenceCallback cb = context->object_ref_callback();
2111  jvmtiIterationControl control = (*cb)(ref_kind,
2112                                        wrapper.klass_tag(),
2113                                        wrapper.obj_size(),
2114                                        wrapper.obj_tag_p(),
2115                                        referrer_tag,
2116                                        index,
2117                                        (void*)user_data());
2118
2119  // record referrer and referrer tag. For self-references record the
2120  // tag value from the callback as this might differ from referrer_tag.
2121  context->set_last_referrer(referrer);
2122  if (referrer == referree) {
2123    context->set_last_referrer_tag(*wrapper.obj_tag_p());
2124  } else {
2125    context->set_last_referrer_tag(referrer_tag);
2126  }
2127
2128  if (control == JVMTI_ITERATION_CONTINUE) {
2129    return check_for_visit(referree);
2130  } else {
2131    return control != JVMTI_ITERATION_ABORT;
2132  }
2133}
2134
2135// invoke advanced style heap root callback
2136inline bool CallbackInvoker::invoke_advanced_heap_root_callback(jvmtiHeapReferenceKind ref_kind,
2137                                                                oop obj) {
2138  assert(ServiceUtil::visible_oop(obj), "checking");
2139
2140  AdvancedHeapWalkContext* context = advanced_context();
2141
2142  // check that callback is provided
2143  jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2144  if (cb == NULL) {
2145    return check_for_visit(obj);
2146  }
2147
2148  // apply class filter
2149  if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2150    return check_for_visit(obj);
2151  }
2152
2153  // setup the callback wrapper
2154  CallbackWrapper wrapper(tag_map(), obj);
2155
2156  // apply tag filter
2157  if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2158                                 wrapper.klass_tag(),
2159                                 context->heap_filter())) {
2160    return check_for_visit(obj);
2161  }
2162
2163  // for arrays we need the length, otherwise -1
2164  jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2165
2166  // invoke the callback
2167  jint res  = (*cb)(ref_kind,
2168                    NULL, // referrer info
2169                    wrapper.klass_tag(),
2170                    0,    // referrer_class_tag is 0 for heap root
2171                    wrapper.obj_size(),
2172                    wrapper.obj_tag_p(),
2173                    NULL, // referrer_tag_p
2174                    len,
2175                    (void*)user_data());
2176  if (res & JVMTI_VISIT_ABORT) {
2177    return false;// referrer class tag
2178  }
2179  if (res & JVMTI_VISIT_OBJECTS) {
2180    check_for_visit(obj);
2181  }
2182  return true;
2183}
2184
2185// report a reference from a thread stack to an object
2186inline bool CallbackInvoker::invoke_advanced_stack_ref_callback(jvmtiHeapReferenceKind ref_kind,
2187                                                                jlong thread_tag,
2188                                                                jlong tid,
2189                                                                int depth,
2190                                                                jmethodID method,
2191                                                                jlocation bci,
2192                                                                jint slot,
2193                                                                oop obj) {
2194  assert(ServiceUtil::visible_oop(obj), "checking");
2195
2196  AdvancedHeapWalkContext* context = advanced_context();
2197
2198  // check that callback is provider
2199  jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2200  if (cb == NULL) {
2201    return check_for_visit(obj);
2202  }
2203
2204  // apply class filter
2205  if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2206    return check_for_visit(obj);
2207  }
2208
2209  // setup the callback wrapper
2210  CallbackWrapper wrapper(tag_map(), obj);
2211
2212  // apply tag filter
2213  if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2214                                 wrapper.klass_tag(),
2215                                 context->heap_filter())) {
2216    return check_for_visit(obj);
2217  }
2218
2219  // setup the referrer info
2220  jvmtiHeapReferenceInfo reference_info;
2221  reference_info.stack_local.thread_tag = thread_tag;
2222  reference_info.stack_local.thread_id = tid;
2223  reference_info.stack_local.depth = depth;
2224  reference_info.stack_local.method = method;
2225  reference_info.stack_local.location = bci;
2226  reference_info.stack_local.slot = slot;
2227
2228  // for arrays we need the length, otherwise -1
2229  jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2230
2231  // call into the agent
2232  int res = (*cb)(ref_kind,
2233                  &reference_info,
2234                  wrapper.klass_tag(),
2235                  0,    // referrer_class_tag is 0 for heap root (stack)
2236                  wrapper.obj_size(),
2237                  wrapper.obj_tag_p(),
2238                  NULL, // referrer_tag is 0 for root
2239                  len,
2240                  (void*)user_data());
2241
2242  if (res & JVMTI_VISIT_ABORT) {
2243    return false;
2244  }
2245  if (res & JVMTI_VISIT_OBJECTS) {
2246    check_for_visit(obj);
2247  }
2248  return true;
2249}
2250
2251// This mask is used to pass reference_info to a jvmtiHeapReferenceCallback
2252// only for ref_kinds defined by the JVM TI spec. Otherwise, NULL is passed.
2253#define REF_INFO_MASK  ((1 << JVMTI_HEAP_REFERENCE_FIELD)         \
2254                      | (1 << JVMTI_HEAP_REFERENCE_STATIC_FIELD)  \
2255                      | (1 << JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT) \
2256                      | (1 << JVMTI_HEAP_REFERENCE_CONSTANT_POOL) \
2257                      | (1 << JVMTI_HEAP_REFERENCE_STACK_LOCAL)   \
2258                      | (1 << JVMTI_HEAP_REFERENCE_JNI_LOCAL))
2259
2260// invoke the object reference callback to report a reference
2261inline bool CallbackInvoker::invoke_advanced_object_reference_callback(jvmtiHeapReferenceKind ref_kind,
2262                                                                       oop referrer,
2263                                                                       oop obj,
2264                                                                       jint index)
2265{
2266  // field index is only valid field in reference_info
2267  static jvmtiHeapReferenceInfo reference_info = { 0 };
2268
2269  assert(ServiceUtil::visible_oop(referrer), "checking");
2270  assert(ServiceUtil::visible_oop(obj), "checking");
2271
2272  AdvancedHeapWalkContext* context = advanced_context();
2273
2274  // check that callback is provider
2275  jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2276  if (cb == NULL) {
2277    return check_for_visit(obj);
2278  }
2279
2280  // apply class filter
2281  if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2282    return check_for_visit(obj);
2283  }
2284
2285  // setup the callback wrapper
2286  TwoOopCallbackWrapper wrapper(tag_map(), referrer, obj);
2287
2288  // apply tag filter
2289  if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2290                                 wrapper.klass_tag(),
2291                                 context->heap_filter())) {
2292    return check_for_visit(obj);
2293  }
2294
2295  // field index is only valid field in reference_info
2296  reference_info.field.index = index;
2297
2298  // for arrays we need the length, otherwise -1
2299  jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2300
2301  // invoke the callback
2302  int res = (*cb)(ref_kind,
2303                  (REF_INFO_MASK & (1 << ref_kind)) ? &reference_info : NULL,
2304                  wrapper.klass_tag(),
2305                  wrapper.referrer_klass_tag(),
2306                  wrapper.obj_size(),
2307                  wrapper.obj_tag_p(),
2308                  wrapper.referrer_tag_p(),
2309                  len,
2310                  (void*)user_data());
2311
2312  if (res & JVMTI_VISIT_ABORT) {
2313    return false;
2314  }
2315  if (res & JVMTI_VISIT_OBJECTS) {
2316    check_for_visit(obj);
2317  }
2318  return true;
2319}
2320
2321// report a "simple root"
2322inline bool CallbackInvoker::report_simple_root(jvmtiHeapReferenceKind kind, oop obj) {
2323  assert(kind != JVMTI_HEAP_REFERENCE_STACK_LOCAL &&
2324         kind != JVMTI_HEAP_REFERENCE_JNI_LOCAL, "not a simple root");
2325  assert(ServiceUtil::visible_oop(obj), "checking");
2326
2327  if (is_basic_heap_walk()) {
2328    // map to old style root kind
2329    jvmtiHeapRootKind root_kind = toJvmtiHeapRootKind(kind);
2330    return invoke_basic_heap_root_callback(root_kind, obj);
2331  } else {
2332    assert(is_advanced_heap_walk(), "wrong heap walk type");
2333    return invoke_advanced_heap_root_callback(kind, obj);
2334  }
2335}
2336
2337
2338// invoke the primitive array values
2339inline bool CallbackInvoker::report_primitive_array_values(oop obj) {
2340  assert(obj->is_typeArray(), "not a primitive array");
2341
2342  AdvancedHeapWalkContext* context = advanced_context();
2343  assert(context->array_primitive_value_callback() != NULL, "no callback");
2344
2345  // apply class filter
2346  if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2347    return true;
2348  }
2349
2350  CallbackWrapper wrapper(tag_map(), obj);
2351
2352  // apply tag filter
2353  if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2354                                 wrapper.klass_tag(),
2355                                 context->heap_filter())) {
2356    return true;
2357  }
2358
2359  // invoke the callback
2360  int res = invoke_array_primitive_value_callback(context->array_primitive_value_callback(),
2361                                                  &wrapper,
2362                                                  obj,
2363                                                  (void*)user_data());
2364  return (!(res & JVMTI_VISIT_ABORT));
2365}
2366
2367// invoke the string value callback
2368inline bool CallbackInvoker::report_string_value(oop str) {
2369  assert(str->klass() == SystemDictionary::string_klass(), "not a string");
2370
2371  AdvancedHeapWalkContext* context = advanced_context();
2372  assert(context->string_primitive_value_callback() != NULL, "no callback");
2373
2374  // apply class filter
2375  if (is_filtered_by_klass_filter(str, context->klass_filter())) {
2376    return true;
2377  }
2378
2379  CallbackWrapper wrapper(tag_map(), str);
2380
2381  // apply tag filter
2382  if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2383                                 wrapper.klass_tag(),
2384                                 context->heap_filter())) {
2385    return true;
2386  }
2387
2388  // invoke the callback
2389  int res = invoke_string_value_callback(context->string_primitive_value_callback(),
2390                                         &wrapper,
2391                                         str,
2392                                         (void*)user_data());
2393  return (!(res & JVMTI_VISIT_ABORT));
2394}
2395
2396// invoke the primitive field callback
2397inline bool CallbackInvoker::report_primitive_field(jvmtiHeapReferenceKind ref_kind,
2398                                                    oop obj,
2399                                                    jint index,
2400                                                    address addr,
2401                                                    char type)
2402{
2403  // for primitive fields only the index will be set
2404  static jvmtiHeapReferenceInfo reference_info = { 0 };
2405
2406  AdvancedHeapWalkContext* context = advanced_context();
2407  assert(context->primitive_field_callback() != NULL, "no callback");
2408
2409  // apply class filter
2410  if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2411    return true;
2412  }
2413
2414  CallbackWrapper wrapper(tag_map(), obj);
2415
2416  // apply tag filter
2417  if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2418                                 wrapper.klass_tag(),
2419                                 context->heap_filter())) {
2420    return true;
2421  }
2422
2423  // the field index in the referrer
2424  reference_info.field.index = index;
2425
2426  // map the type
2427  jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
2428
2429  // setup the jvalue
2430  jvalue value;
2431  copy_to_jvalue(&value, addr, value_type);
2432
2433  jvmtiPrimitiveFieldCallback cb = context->primitive_field_callback();
2434  int res = (*cb)(ref_kind,
2435                  &reference_info,
2436                  wrapper.klass_tag(),
2437                  wrapper.obj_tag_p(),
2438                  value,
2439                  value_type,
2440                  (void*)user_data());
2441  return (!(res & JVMTI_VISIT_ABORT));
2442}
2443
2444
2445// instance field
2446inline bool CallbackInvoker::report_primitive_instance_field(oop obj,
2447                                                             jint index,
2448                                                             address value,
2449                                                             char type) {
2450  return report_primitive_field(JVMTI_HEAP_REFERENCE_FIELD,
2451                                obj,
2452                                index,
2453                                value,
2454                                type);
2455}
2456
2457// static field
2458inline bool CallbackInvoker::report_primitive_static_field(oop obj,
2459                                                           jint index,
2460                                                           address value,
2461                                                           char type) {
2462  return report_primitive_field(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
2463                                obj,
2464                                index,
2465                                value,
2466                                type);
2467}
2468
2469// report a JNI local (root object) to the profiler
2470inline bool CallbackInvoker::report_jni_local_root(jlong thread_tag, jlong tid, jint depth, jmethodID m, oop obj) {
2471  if (is_basic_heap_walk()) {
2472    return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_JNI_LOCAL,
2473                                           thread_tag,
2474                                           depth,
2475                                           m,
2476                                           -1,
2477                                           obj);
2478  } else {
2479    return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_JNI_LOCAL,
2480                                              thread_tag, tid,
2481                                              depth,
2482                                              m,
2483                                              (jlocation)-1,
2484                                              -1,
2485                                              obj);
2486  }
2487}
2488
2489
2490// report a local (stack reference, root object)
2491inline bool CallbackInvoker::report_stack_ref_root(jlong thread_tag,
2492                                                   jlong tid,
2493                                                   jint depth,
2494                                                   jmethodID method,
2495                                                   jlocation bci,
2496                                                   jint slot,
2497                                                   oop obj) {
2498  if (is_basic_heap_walk()) {
2499    return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_STACK_LOCAL,
2500                                           thread_tag,
2501                                           depth,
2502                                           method,
2503                                           slot,
2504                                           obj);
2505  } else {
2506    return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_STACK_LOCAL,
2507                                              thread_tag,
2508                                              tid,
2509                                              depth,
2510                                              method,
2511                                              bci,
2512                                              slot,
2513                                              obj);
2514  }
2515}
2516
2517// report an object referencing a class.
2518inline bool CallbackInvoker::report_class_reference(oop referrer, oop referree) {
2519  if (is_basic_heap_walk()) {
2520    return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
2521  } else {
2522    return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS, referrer, referree, -1);
2523  }
2524}
2525
2526// report a class referencing its class loader.
2527inline bool CallbackInvoker::report_class_loader_reference(oop referrer, oop referree) {
2528  if (is_basic_heap_walk()) {
2529    return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS_LOADER, referrer, referree, -1);
2530  } else {
2531    return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS_LOADER, referrer, referree, -1);
2532  }
2533}
2534
2535// report a class referencing its signers.
2536inline bool CallbackInvoker::report_signers_reference(oop referrer, oop referree) {
2537  if (is_basic_heap_walk()) {
2538    return invoke_basic_object_reference_callback(JVMTI_REFERENCE_SIGNERS, referrer, referree, -1);
2539  } else {
2540    return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SIGNERS, referrer, referree, -1);
2541  }
2542}
2543
2544// report a class referencing its protection domain..
2545inline bool CallbackInvoker::report_protection_domain_reference(oop referrer, oop referree) {
2546  if (is_basic_heap_walk()) {
2547    return invoke_basic_object_reference_callback(JVMTI_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
2548  } else {
2549    return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
2550  }
2551}
2552
2553// report a class referencing its superclass.
2554inline bool CallbackInvoker::report_superclass_reference(oop referrer, oop referree) {
2555  if (is_basic_heap_walk()) {
2556    // Send this to be consistent with past implementation
2557    return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
2558  } else {
2559    return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SUPERCLASS, referrer, referree, -1);
2560  }
2561}
2562
2563// report a class referencing one of its interfaces.
2564inline bool CallbackInvoker::report_interface_reference(oop referrer, oop referree) {
2565  if (is_basic_heap_walk()) {
2566    return invoke_basic_object_reference_callback(JVMTI_REFERENCE_INTERFACE, referrer, referree, -1);
2567  } else {
2568    return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_INTERFACE, referrer, referree, -1);
2569  }
2570}
2571
2572// report a class referencing one of its static fields.
2573inline bool CallbackInvoker::report_static_field_reference(oop referrer, oop referree, jint slot) {
2574  if (is_basic_heap_walk()) {
2575    return invoke_basic_object_reference_callback(JVMTI_REFERENCE_STATIC_FIELD, referrer, referree, slot);
2576  } else {
2577    return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_STATIC_FIELD, referrer, referree, slot);
2578  }
2579}
2580
2581// report an array referencing an element object
2582inline bool CallbackInvoker::report_array_element_reference(oop referrer, oop referree, jint index) {
2583  if (is_basic_heap_walk()) {
2584    return invoke_basic_object_reference_callback(JVMTI_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
2585  } else {
2586    return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
2587  }
2588}
2589
2590// report an object referencing an instance field object
2591inline bool CallbackInvoker::report_field_reference(oop referrer, oop referree, jint slot) {
2592  if (is_basic_heap_walk()) {
2593    return invoke_basic_object_reference_callback(JVMTI_REFERENCE_FIELD, referrer, referree, slot);
2594  } else {
2595    return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_FIELD, referrer, referree, slot);
2596  }
2597}
2598
2599// report an array referencing an element object
2600inline bool CallbackInvoker::report_constant_pool_reference(oop referrer, oop referree, jint index) {
2601  if (is_basic_heap_walk()) {
2602    return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CONSTANT_POOL, referrer, referree, index);
2603  } else {
2604    return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CONSTANT_POOL, referrer, referree, index);
2605  }
2606}
2607
2608// A supporting closure used to process simple roots
2609class SimpleRootsClosure : public OopClosure {
2610 private:
2611  jvmtiHeapReferenceKind _kind;
2612  bool _continue;
2613
2614  jvmtiHeapReferenceKind root_kind()    { return _kind; }
2615
2616 public:
2617  void set_kind(jvmtiHeapReferenceKind kind) {
2618    _kind = kind;
2619    _continue = true;
2620  }
2621
2622  inline bool stopped() {
2623    return !_continue;
2624  }
2625
2626  void do_oop(oop* obj_p) {
2627    // iteration has terminated
2628    if (stopped()) {
2629      return;
2630    }
2631
2632    // ignore null or deleted handles
2633    oop o = *obj_p;
2634    if (o == NULL || o == JNIHandles::deleted_handle()) {
2635      return;
2636    }
2637
2638    jvmtiHeapReferenceKind kind = root_kind();
2639
2640    // many roots are Klasses so we use the java mirror
2641    if (o->is_klass()) {
2642      klassOop k = (klassOop)o;
2643      o = Klass::cast(k)->java_mirror();
2644    } else {
2645
2646      // SystemDictionary::always_strong_oops_do reports the application
2647      // class loader as a root. We want this root to be reported as
2648      // a root kind of "OTHER" rather than "SYSTEM_CLASS".
2649      if (o->is_instance() && root_kind() == JVMTI_HEAP_REFERENCE_SYSTEM_CLASS) {
2650        kind = JVMTI_HEAP_REFERENCE_OTHER;
2651      }
2652    }
2653
2654    // some objects are ignored - in the case of simple
2655    // roots it's mostly symbolOops that we are skipping
2656    // here.
2657    if (!ServiceUtil::visible_oop(o)) {
2658      return;
2659    }
2660
2661    // invoke the callback
2662    _continue = CallbackInvoker::report_simple_root(kind, o);
2663
2664  }
2665  virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
2666};
2667
2668// A supporting closure used to process JNI locals
2669class JNILocalRootsClosure : public OopClosure {
2670 private:
2671  jlong _thread_tag;
2672  jlong _tid;
2673  jint _depth;
2674  jmethodID _method;
2675  bool _continue;
2676 public:
2677  void set_context(jlong thread_tag, jlong tid, jint depth, jmethodID method) {
2678    _thread_tag = thread_tag;
2679    _tid = tid;
2680    _depth = depth;
2681    _method = method;
2682    _continue = true;
2683  }
2684
2685  inline bool stopped() {
2686    return !_continue;
2687  }
2688
2689  void do_oop(oop* obj_p) {
2690    // iteration has terminated
2691    if (stopped()) {
2692      return;
2693    }
2694
2695    // ignore null or deleted handles
2696    oop o = *obj_p;
2697    if (o == NULL || o == JNIHandles::deleted_handle()) {
2698      return;
2699    }
2700
2701    if (!ServiceUtil::visible_oop(o)) {
2702      return;
2703    }
2704
2705    // invoke the callback
2706    _continue = CallbackInvoker::report_jni_local_root(_thread_tag, _tid, _depth, _method, o);
2707  }
2708  virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
2709};
2710
2711
2712// A VM operation to iterate over objects that are reachable from
2713// a set of roots or an initial object.
2714//
2715// For VM_HeapWalkOperation the set of roots used is :-
2716//
2717// - All JNI global references
2718// - All inflated monitors
2719// - All classes loaded by the boot class loader (or all classes
2720//     in the event that class unloading is disabled)
2721// - All java threads
2722// - For each java thread then all locals and JNI local references
2723//      on the thread's execution stack
2724// - All visible/explainable objects from Universes::oops_do
2725//
2726class VM_HeapWalkOperation: public VM_Operation {
2727 private:
2728  enum {
2729    initial_visit_stack_size = 4000
2730  };
2731
2732  bool _is_advanced_heap_walk;                      // indicates FollowReferences
2733  JvmtiTagMap* _tag_map;
2734  Handle _initial_object;
2735  GrowableArray<oop>* _visit_stack;                 // the visit stack
2736
2737  bool _collecting_heap_roots;                      // are we collecting roots
2738  bool _following_object_refs;                      // are we following object references
2739
2740  bool _reporting_primitive_fields;                 // optional reporting
2741  bool _reporting_primitive_array_values;
2742  bool _reporting_string_values;
2743
2744  GrowableArray<oop>* create_visit_stack() {
2745    return new (ResourceObj::C_HEAP) GrowableArray<oop>(initial_visit_stack_size, true);
2746  }
2747
2748  // accessors
2749  bool is_advanced_heap_walk() const               { return _is_advanced_heap_walk; }
2750  JvmtiTagMap* tag_map() const                     { return _tag_map; }
2751  Handle initial_object() const                    { return _initial_object; }
2752
2753  bool is_following_references() const             { return _following_object_refs; }
2754
2755  bool is_reporting_primitive_fields()  const      { return _reporting_primitive_fields; }
2756  bool is_reporting_primitive_array_values() const { return _reporting_primitive_array_values; }
2757  bool is_reporting_string_values() const          { return _reporting_string_values; }
2758
2759  GrowableArray<oop>* visit_stack() const          { return _visit_stack; }
2760
2761  // iterate over the various object types
2762  inline bool iterate_over_array(oop o);
2763  inline bool iterate_over_type_array(oop o);
2764  inline bool iterate_over_class(klassOop o);
2765  inline bool iterate_over_object(oop o);
2766
2767  // root collection
2768  inline bool collect_simple_roots();
2769  inline bool collect_stack_roots();
2770  inline bool collect_stack_roots(JavaThread* java_thread, JNILocalRootsClosure* blk);
2771
2772  // visit an object
2773  inline bool visit(oop o);
2774
2775 public:
2776  VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2777                       Handle initial_object,
2778                       BasicHeapWalkContext callbacks,
2779                       const void* user_data);
2780
2781  VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2782                       Handle initial_object,
2783                       AdvancedHeapWalkContext callbacks,
2784                       const void* user_data);
2785
2786  ~VM_HeapWalkOperation();
2787
2788  VMOp_Type type() const { return VMOp_HeapWalkOperation; }
2789  void doit();
2790};
2791
2792
2793VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2794                                           Handle initial_object,
2795                                           BasicHeapWalkContext callbacks,
2796                                           const void* user_data) {
2797  _is_advanced_heap_walk = false;
2798  _tag_map = tag_map;
2799  _initial_object = initial_object;
2800  _following_object_refs = (callbacks.object_ref_callback() != NULL);
2801  _reporting_primitive_fields = false;
2802  _reporting_primitive_array_values = false;
2803  _reporting_string_values = false;
2804  _visit_stack = create_visit_stack();
2805
2806
2807  CallbackInvoker::initialize_for_basic_heap_walk(tag_map, _visit_stack, user_data, callbacks);
2808}
2809
2810VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2811                                           Handle initial_object,
2812                                           AdvancedHeapWalkContext callbacks,
2813                                           const void* user_data) {
2814  _is_advanced_heap_walk = true;
2815  _tag_map = tag_map;
2816  _initial_object = initial_object;
2817  _following_object_refs = true;
2818  _reporting_primitive_fields = (callbacks.primitive_field_callback() != NULL);;
2819  _reporting_primitive_array_values = (callbacks.array_primitive_value_callback() != NULL);;
2820  _reporting_string_values = (callbacks.string_primitive_value_callback() != NULL);;
2821  _visit_stack = create_visit_stack();
2822
2823  CallbackInvoker::initialize_for_advanced_heap_walk(tag_map, _visit_stack, user_data, callbacks);
2824}
2825
2826VM_HeapWalkOperation::~VM_HeapWalkOperation() {
2827  if (_following_object_refs) {
2828    assert(_visit_stack != NULL, "checking");
2829    delete _visit_stack;
2830    _visit_stack = NULL;
2831  }
2832}
2833
2834// an array references its class and has a reference to
2835// each element in the array
2836inline bool VM_HeapWalkOperation::iterate_over_array(oop o) {
2837  objArrayOop array = objArrayOop(o);
2838  if (array->klass() == Universe::systemObjArrayKlassObj()) {
2839    // filtered out
2840    return true;
2841  }
2842
2843  // array reference to its class
2844  oop mirror = objArrayKlass::cast(array->klass())->java_mirror();
2845  if (!CallbackInvoker::report_class_reference(o, mirror)) {
2846    return false;
2847  }
2848
2849  // iterate over the array and report each reference to a
2850  // non-null element
2851  for (int index=0; index<array->length(); index++) {
2852    oop elem = array->obj_at(index);
2853    if (elem == NULL) {
2854      continue;
2855    }
2856
2857    // report the array reference o[index] = elem
2858    if (!CallbackInvoker::report_array_element_reference(o, elem, index)) {
2859      return false;
2860    }
2861  }
2862  return true;
2863}
2864
2865// a type array references its class
2866inline bool VM_HeapWalkOperation::iterate_over_type_array(oop o) {
2867  klassOop k = o->klass();
2868  oop mirror = Klass::cast(k)->java_mirror();
2869  if (!CallbackInvoker::report_class_reference(o, mirror)) {
2870    return false;
2871  }
2872
2873  // report the array contents if required
2874  if (is_reporting_primitive_array_values()) {
2875    if (!CallbackInvoker::report_primitive_array_values(o)) {
2876      return false;
2877    }
2878  }
2879  return true;
2880}
2881
2882// verify that a static oop field is in range
2883static inline bool verify_static_oop(instanceKlass* ik,
2884                                     klassOop k, int offset) {
2885  address obj_p = (address)k + offset;
2886  address start = (address)ik->start_of_static_fields();
2887  address end = start + (ik->static_oop_field_size() * heapOopSize);
2888  assert(end >= start, "sanity check");
2889
2890  if (obj_p >= start && obj_p < end) {
2891    return true;
2892  } else {
2893    return false;
2894  }
2895}
2896
2897// a class references its super class, interfaces, class loader, ...
2898// and finally its static fields
2899inline bool VM_HeapWalkOperation::iterate_over_class(klassOop k) {
2900  int i;
2901  Klass* klass = klassOop(k)->klass_part();
2902
2903  if (klass->oop_is_instance()) {
2904    instanceKlass* ik = instanceKlass::cast(k);
2905
2906    // ignore the class if it's has been initialized yet
2907    if (!ik->is_linked()) {
2908      return true;
2909    }
2910
2911    // get the java mirror
2912    oop mirror = klass->java_mirror();
2913
2914    // super (only if something more interesting than java.lang.Object)
2915    klassOop java_super = ik->java_super();
2916    if (java_super != NULL && java_super != SystemDictionary::object_klass()) {
2917      oop super = Klass::cast(java_super)->java_mirror();
2918      if (!CallbackInvoker::report_superclass_reference(mirror, super)) {
2919        return false;
2920      }
2921    }
2922
2923    // class loader
2924    oop cl = ik->class_loader();
2925    if (cl != NULL) {
2926      if (!CallbackInvoker::report_class_loader_reference(mirror, cl)) {
2927        return false;
2928      }
2929    }
2930
2931    // protection domain
2932    oop pd = ik->protection_domain();
2933    if (pd != NULL) {
2934      if (!CallbackInvoker::report_protection_domain_reference(mirror, pd)) {
2935        return false;
2936      }
2937    }
2938
2939    // signers
2940    oop signers = ik->signers();
2941    if (signers != NULL) {
2942      if (!CallbackInvoker::report_signers_reference(mirror, signers)) {
2943        return false;
2944      }
2945    }
2946
2947    // references from the constant pool
2948    {
2949      const constantPoolOop pool = ik->constants();
2950      for (int i = 1; i < pool->length(); i++) {
2951        constantTag tag = pool->tag_at(i).value();
2952        if (tag.is_string() || tag.is_klass()) {
2953          oop entry;
2954          if (tag.is_string()) {
2955            entry = pool->resolved_string_at(i);
2956            assert(java_lang_String::is_instance(entry), "must be string");
2957          } else {
2958            entry = Klass::cast(pool->resolved_klass_at(i))->java_mirror();
2959          }
2960          if (!CallbackInvoker::report_constant_pool_reference(mirror, entry, (jint)i)) {
2961            return false;
2962          }
2963        }
2964      }
2965    }
2966
2967    // interfaces
2968    // (These will already have been reported as references from the constant pool
2969    //  but are specified by IterateOverReachableObjects and must be reported).
2970    objArrayOop interfaces = ik->local_interfaces();
2971    for (i = 0; i < interfaces->length(); i++) {
2972      oop interf = Klass::cast((klassOop)interfaces->obj_at(i))->java_mirror();
2973      if (interf == NULL) {
2974        continue;
2975      }
2976      if (!CallbackInvoker::report_interface_reference(mirror, interf)) {
2977        return false;
2978      }
2979    }
2980
2981    // iterate over the static fields
2982
2983    ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(k);
2984    for (i=0; i<field_map->field_count(); i++) {
2985      ClassFieldDescriptor* field = field_map->field_at(i);
2986      char type = field->field_type();
2987      if (!is_primitive_field_type(type)) {
2988        oop fld_o = k->obj_field(field->field_offset());
2989        assert(verify_static_oop(ik, k, field->field_offset()), "sanity check");
2990        if (fld_o != NULL) {
2991          int slot = field->field_index();
2992          if (!CallbackInvoker::report_static_field_reference(mirror, fld_o, slot)) {
2993            delete field_map;
2994            return false;
2995          }
2996        }
2997      } else {
2998         if (is_reporting_primitive_fields()) {
2999           address addr = (address)k + field->field_offset();
3000           int slot = field->field_index();
3001           if (!CallbackInvoker::report_primitive_static_field(mirror, slot, addr, type)) {
3002             delete field_map;
3003             return false;
3004          }
3005        }
3006      }
3007    }
3008    delete field_map;
3009
3010    return true;
3011  }
3012
3013  return true;
3014}
3015
3016// an object references a class and its instance fields
3017// (static fields are ignored here as we report these as
3018// references from the class).
3019inline bool VM_HeapWalkOperation::iterate_over_object(oop o) {
3020  // reference to the class
3021  if (!CallbackInvoker::report_class_reference(o, Klass::cast(o->klass())->java_mirror())) {
3022    return false;
3023  }
3024
3025  // iterate over instance fields
3026  ClassFieldMap* field_map = JvmtiCachedClassFieldMap::get_map_of_instance_fields(o);
3027  for (int i=0; i<field_map->field_count(); i++) {
3028    ClassFieldDescriptor* field = field_map->field_at(i);
3029    char type = field->field_type();
3030    if (!is_primitive_field_type(type)) {
3031      oop fld_o = o->obj_field(field->field_offset());
3032      if (fld_o != NULL) {
3033        // reflection code may have a reference to a klassOop.
3034        // - see sun.reflect.UnsafeStaticFieldAccessorImpl and sun.misc.Unsafe
3035        if (fld_o->is_klass()) {
3036          klassOop k = (klassOop)fld_o;
3037          fld_o = Klass::cast(k)->java_mirror();
3038        }
3039        int slot = field->field_index();
3040        if (!CallbackInvoker::report_field_reference(o, fld_o, slot)) {
3041          return false;
3042        }
3043      }
3044    } else {
3045      if (is_reporting_primitive_fields()) {
3046        // primitive instance field
3047        address addr = (address)o + field->field_offset();
3048        int slot = field->field_index();
3049        if (!CallbackInvoker::report_primitive_instance_field(o, slot, addr, type)) {
3050          return false;
3051        }
3052      }
3053    }
3054  }
3055
3056  // if the object is a java.lang.String
3057  if (is_reporting_string_values() &&
3058      o->klass() == SystemDictionary::string_klass()) {
3059    if (!CallbackInvoker::report_string_value(o)) {
3060      return false;
3061    }
3062  }
3063  return true;
3064}
3065
3066
3067// collects all simple (non-stack) roots.
3068// if there's a heap root callback provided then the callback is
3069// invoked for each simple root.
3070// if an object reference callback is provided then all simple
3071// roots are pushed onto the marking stack so that they can be
3072// processed later
3073//
3074inline bool VM_HeapWalkOperation::collect_simple_roots() {
3075  SimpleRootsClosure blk;
3076
3077  // JNI globals
3078  blk.set_kind(JVMTI_HEAP_REFERENCE_JNI_GLOBAL);
3079  JNIHandles::oops_do(&blk);
3080  if (blk.stopped()) {
3081    return false;
3082  }
3083
3084  // Preloaded classes and loader from the system dictionary
3085  blk.set_kind(JVMTI_HEAP_REFERENCE_SYSTEM_CLASS);
3086  SystemDictionary::always_strong_oops_do(&blk);
3087  if (blk.stopped()) {
3088    return false;
3089  }
3090
3091  // Inflated monitors
3092  blk.set_kind(JVMTI_HEAP_REFERENCE_MONITOR);
3093  ObjectSynchronizer::oops_do(&blk);
3094  if (blk.stopped()) {
3095    return false;
3096  }
3097
3098  // Threads
3099  for (JavaThread* thread = Threads::first(); thread != NULL ; thread = thread->next()) {
3100    oop threadObj = thread->threadObj();
3101    if (threadObj != NULL && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
3102      bool cont = CallbackInvoker::report_simple_root(JVMTI_HEAP_REFERENCE_THREAD, threadObj);
3103      if (!cont) {
3104        return false;
3105      }
3106    }
3107  }
3108
3109  // Other kinds of roots maintained by HotSpot
3110  // Many of these won't be visible but others (such as instances of important
3111  // exceptions) will be visible.
3112  blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
3113  Universe::oops_do(&blk);
3114  return true;
3115}
3116
3117// Walk the stack of a given thread and find all references (locals
3118// and JNI calls) and report these as stack references
3119inline bool VM_HeapWalkOperation::collect_stack_roots(JavaThread* java_thread,
3120                                                      JNILocalRootsClosure* blk)
3121{
3122  oop threadObj = java_thread->threadObj();
3123  assert(threadObj != NULL, "sanity check");
3124
3125  // only need to get the thread's tag once per thread
3126  jlong thread_tag = tag_for(_tag_map, threadObj);
3127
3128  // also need the thread id
3129  jlong tid = java_lang_Thread::thread_id(threadObj);
3130
3131
3132  if (java_thread->has_last_Java_frame()) {
3133
3134    // vframes are resource allocated
3135    Thread* current_thread = Thread::current();
3136    ResourceMark rm(current_thread);
3137    HandleMark hm(current_thread);
3138
3139    RegisterMap reg_map(java_thread);
3140    frame f = java_thread->last_frame();
3141    vframe* vf = vframe::new_vframe(&f, &reg_map, java_thread);
3142
3143    bool is_top_frame = true;
3144    int depth = 0;
3145    frame* last_entry_frame = NULL;
3146
3147    while (vf != NULL) {
3148      if (vf->is_java_frame()) {
3149
3150        // java frame (interpreted, compiled, ...)
3151        javaVFrame *jvf = javaVFrame::cast(vf);
3152
3153        // the jmethodID
3154        jmethodID method = jvf->method()->jmethod_id();
3155
3156        if (!(jvf->method()->is_native())) {
3157          jlocation bci = (jlocation)jvf->bci();
3158          StackValueCollection* locals = jvf->locals();
3159          for (int slot=0; slot<locals->size(); slot++) {
3160            if (locals->at(slot)->type() == T_OBJECT) {
3161              oop o = locals->obj_at(slot)();
3162              if (o == NULL) {
3163                continue;
3164              }
3165
3166              // stack reference
3167              if (!CallbackInvoker::report_stack_ref_root(thread_tag, tid, depth, method,
3168                                                   bci, slot, o)) {
3169                return false;
3170              }
3171            }
3172          }
3173        } else {
3174          blk->set_context(thread_tag, tid, depth, method);
3175          if (is_top_frame) {
3176            // JNI locals for the top frame.
3177            java_thread->active_handles()->oops_do(blk);
3178          } else {
3179            if (last_entry_frame != NULL) {
3180              // JNI locals for the entry frame
3181              assert(last_entry_frame->is_entry_frame(), "checking");
3182              last_entry_frame->entry_frame_call_wrapper()->handles()->oops_do(blk);
3183            }
3184          }
3185        }
3186        last_entry_frame = NULL;
3187        depth++;
3188      } else {
3189        // externalVFrame - for an entry frame then we report the JNI locals
3190        // when we find the corresponding javaVFrame
3191        frame* fr = vf->frame_pointer();
3192        assert(fr != NULL, "sanity check");
3193        if (fr->is_entry_frame()) {
3194          last_entry_frame = fr;
3195        }
3196      }
3197
3198      vf = vf->sender();
3199      is_top_frame = false;
3200    }
3201  } else {
3202    // no last java frame but there may be JNI locals
3203    blk->set_context(thread_tag, tid, 0, (jmethodID)NULL);
3204    java_thread->active_handles()->oops_do(blk);
3205  }
3206  return true;
3207}
3208
3209
3210// collects all stack roots - for each thread it walks the execution
3211// stack to find all references and local JNI refs.
3212inline bool VM_HeapWalkOperation::collect_stack_roots() {
3213  JNILocalRootsClosure blk;
3214  for (JavaThread* thread = Threads::first(); thread != NULL ; thread = thread->next()) {
3215    oop threadObj = thread->threadObj();
3216    if (threadObj != NULL && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
3217      if (!collect_stack_roots(thread, &blk)) {
3218        return false;
3219      }
3220    }
3221  }
3222  return true;
3223}
3224
3225// visit an object
3226// first mark the object as visited
3227// second get all the outbound references from this object (in other words, all
3228// the objects referenced by this object).
3229//
3230bool VM_HeapWalkOperation::visit(oop o) {
3231  // mark object as visited
3232  assert(!ObjectMarker::visited(o), "can't visit same object more than once");
3233  ObjectMarker::mark(o);
3234
3235  // instance
3236  if (o->is_instance()) {
3237    if (o->klass() == SystemDictionary::class_klass()) {
3238      o = klassOop_if_java_lang_Class(o);
3239      if (o->is_klass()) {
3240        // a java.lang.Class
3241        return iterate_over_class(klassOop(o));
3242      }
3243    } else {
3244      return iterate_over_object(o);
3245    }
3246  }
3247
3248  // object array
3249  if (o->is_objArray()) {
3250    return iterate_over_array(o);
3251  }
3252
3253  // type array
3254  if (o->is_typeArray()) {
3255    return iterate_over_type_array(o);
3256  }
3257
3258  return true;
3259}
3260
3261void VM_HeapWalkOperation::doit() {
3262  ResourceMark rm;
3263  ObjectMarkerController marker;
3264  ClassFieldMapCacheMark cm;
3265
3266  assert(visit_stack()->is_empty(), "visit stack must be empty");
3267
3268  // the heap walk starts with an initial object or the heap roots
3269  if (initial_object().is_null()) {
3270    if (!collect_simple_roots()) return;
3271    if (!collect_stack_roots()) return;
3272  } else {
3273    visit_stack()->push(initial_object()());
3274  }
3275
3276  // object references required
3277  if (is_following_references()) {
3278
3279    // visit each object until all reachable objects have been
3280    // visited or the callback asked to terminate the iteration.
3281    while (!visit_stack()->is_empty()) {
3282      oop o = visit_stack()->pop();
3283      if (!ObjectMarker::visited(o)) {
3284        if (!visit(o)) {
3285          break;
3286        }
3287      }
3288    }
3289  }
3290}
3291
3292// iterate over all objects that are reachable from a set of roots
3293void JvmtiTagMap::iterate_over_reachable_objects(jvmtiHeapRootCallback heap_root_callback,
3294                                                 jvmtiStackReferenceCallback stack_ref_callback,
3295                                                 jvmtiObjectReferenceCallback object_ref_callback,
3296                                                 const void* user_data) {
3297  MutexLocker ml(Heap_lock);
3298  BasicHeapWalkContext context(heap_root_callback, stack_ref_callback, object_ref_callback);
3299  VM_HeapWalkOperation op(this, Handle(), context, user_data);
3300  VMThread::execute(&op);
3301}
3302
3303// iterate over all objects that are reachable from a given object
3304void JvmtiTagMap::iterate_over_objects_reachable_from_object(jobject object,
3305                                                             jvmtiObjectReferenceCallback object_ref_callback,
3306                                                             const void* user_data) {
3307  oop obj = JNIHandles::resolve(object);
3308  Handle initial_object(Thread::current(), obj);
3309
3310  MutexLocker ml(Heap_lock);
3311  BasicHeapWalkContext context(NULL, NULL, object_ref_callback);
3312  VM_HeapWalkOperation op(this, initial_object, context, user_data);
3313  VMThread::execute(&op);
3314}
3315
3316// follow references from an initial object or the GC roots
3317void JvmtiTagMap::follow_references(jint heap_filter,
3318                                    KlassHandle klass,
3319                                    jobject object,
3320                                    const jvmtiHeapCallbacks* callbacks,
3321                                    const void* user_data)
3322{
3323  oop obj = JNIHandles::resolve(object);
3324  Handle initial_object(Thread::current(), obj);
3325
3326  MutexLocker ml(Heap_lock);
3327  AdvancedHeapWalkContext context(heap_filter, klass, callbacks);
3328  VM_HeapWalkOperation op(this, initial_object, context, user_data);
3329  VMThread::execute(&op);
3330}
3331
3332
3333// called post-GC
3334// - for each JVMTI environment with an object tag map, call its rehash
3335// function to re-sync with the new object locations.
3336void JvmtiTagMap::gc_epilogue(bool full) {
3337  assert(SafepointSynchronize::is_at_safepoint(), "must be executed at a safepoint");
3338  if (JvmtiEnv::environments_might_exist()) {
3339    // re-obtain the memory region for the young generation (might
3340    // changed due to adaptive resizing policy)
3341    get_young_generation();
3342
3343    JvmtiEnvIterator it;
3344    for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) {
3345      JvmtiTagMap* tag_map = env->tag_map();
3346      if (tag_map != NULL && !tag_map->is_empty()) {
3347        TraceTime t(full ? "JVMTI Full Rehash " : "JVMTI Rehash ", TraceJVMTIObjectTagging);
3348        if (full) {
3349          tag_map->rehash(0, n_hashmaps);
3350        } else {
3351          tag_map->rehash(0, 0);        // tag map for young gen only
3352        }
3353      }
3354    }
3355  }
3356}
3357
3358// CMS has completed referencing processing so we may have JNI weak refs
3359// to objects in the CMS generation that have been GC'ed.
3360void JvmtiTagMap::cms_ref_processing_epilogue() {
3361  assert(SafepointSynchronize::is_at_safepoint(), "must be executed at a safepoint");
3362  assert(UseConcMarkSweepGC, "should only be used with CMS");
3363  if (JvmtiEnv::environments_might_exist()) {
3364    JvmtiEnvIterator it;
3365    for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) {
3366      JvmtiTagMap* tag_map = ((JvmtiEnvBase *)env)->tag_map();
3367      if (tag_map != NULL && !tag_map->is_empty()) {
3368        TraceTime t("JVMTI Rehash (CMS) ", TraceJVMTIObjectTagging);
3369        tag_map->rehash(1, n_hashmaps);    // assume CMS not used in young gen
3370      }
3371    }
3372  }
3373}
3374
3375
3376// For each entry in the hashmaps 'start' to 'end' :
3377//
3378// 1. resolve the JNI weak reference
3379//
3380// 2. If it resolves to NULL it means the object has been freed so the entry
3381//    is removed, the weak reference destroyed, and the object free event is
3382//    posted (if enabled).
3383//
3384// 3. If the weak reference resolves to an object then we re-hash the object
3385//    to see if it has moved or has been promoted (from the young to the old
3386//    generation for example).
3387//
3388void JvmtiTagMap::rehash(int start, int end) {
3389
3390  // does this environment have the OBJECT_FREE event enabled
3391  bool post_object_free = env()->is_enabled(JVMTI_EVENT_OBJECT_FREE);
3392
3393  // counters used for trace message
3394  int freed = 0;
3395  int moved = 0;
3396  int promoted = 0;
3397
3398  // we assume there are two hashmaps - one for the young generation
3399  // and the other for all other spaces.
3400  assert(n_hashmaps == 2, "not implemented");
3401  JvmtiTagHashmap* young_hashmap = _hashmap[0];
3402  JvmtiTagHashmap* other_hashmap = _hashmap[1];
3403
3404  // reenable sizing (if disabled)
3405  young_hashmap->set_resizing_enabled(true);
3406  other_hashmap->set_resizing_enabled(true);
3407
3408  // when re-hashing the hashmap corresponding to the young generation we
3409  // collect the entries corresponding to objects that have been promoted.
3410  JvmtiTagHashmapEntry* promoted_entries = NULL;
3411
3412  if (end >= n_hashmaps) {
3413    end = n_hashmaps - 1;
3414  }
3415
3416  for (int i=start; i <= end; i++) {
3417    JvmtiTagHashmap* hashmap = _hashmap[i];
3418
3419    // if the hashmap is empty then we can skip it
3420    if (hashmap->_entry_count == 0) {
3421      continue;
3422    }
3423
3424    // now iterate through each entry in the table
3425
3426    JvmtiTagHashmapEntry** table = hashmap->table();
3427    int size = hashmap->size();
3428
3429    for (int pos=0; pos<size; pos++) {
3430      JvmtiTagHashmapEntry* entry = table[pos];
3431      JvmtiTagHashmapEntry* prev = NULL;
3432
3433      while (entry != NULL) {
3434        JvmtiTagHashmapEntry* next = entry->next();
3435
3436        jweak ref = entry->object();
3437        oop oop = JNIHandles::resolve(ref);
3438
3439        // has object been GC'ed
3440        if (oop == NULL) {
3441          // grab the tag
3442          jlong tag = entry->tag();
3443          guarantee(tag != 0, "checking");
3444
3445          // remove GC'ed entry from hashmap and return the
3446          // entry to the free list
3447          hashmap->remove(prev, pos, entry);
3448          destroy_entry(entry);
3449
3450          // destroy the weak ref
3451          JNIHandles::destroy_weak_global(ref);
3452
3453          // post the event to the profiler
3454          if (post_object_free) {
3455            JvmtiExport::post_object_free(env(), tag);
3456          }
3457
3458          freed++;
3459          entry = next;
3460          continue;
3461        }
3462
3463        // if this is the young hashmap then the object is either promoted
3464        // or moved.
3465        // if this is the other hashmap then the object is moved.
3466
3467        bool same_gen;
3468        if (i == 0) {
3469          assert(hashmap == young_hashmap, "checking");
3470          same_gen = is_in_young(oop);
3471        } else {
3472          same_gen = true;
3473        }
3474
3475
3476        if (same_gen) {
3477          // if the object has moved then re-hash it and move its
3478          // entry to its new location.
3479          unsigned int new_pos = JvmtiTagHashmap::hash(oop, size);
3480          if (new_pos != (unsigned int)pos) {
3481            if (prev == NULL) {
3482              table[pos] = next;
3483            } else {
3484              prev->set_next(next);
3485            }
3486            entry->set_next(table[new_pos]);
3487            table[new_pos] = entry;
3488            moved++;
3489          } else {
3490            // object didn't move
3491            prev = entry;
3492          }
3493        } else {
3494          // object has been promoted so remove the entry from the
3495          // young hashmap
3496          assert(hashmap == young_hashmap, "checking");
3497          hashmap->remove(prev, pos, entry);
3498
3499          // move the entry to the promoted list
3500          entry->set_next(promoted_entries);
3501          promoted_entries = entry;
3502        }
3503
3504        entry = next;
3505      }
3506    }
3507  }
3508
3509
3510  // add the entries, corresponding to the promoted objects, to the
3511  // other hashmap.
3512  JvmtiTagHashmapEntry* entry = promoted_entries;
3513  while (entry != NULL) {
3514    oop o = JNIHandles::resolve(entry->object());
3515    assert(hashmap_for(o) == other_hashmap, "checking");
3516    JvmtiTagHashmapEntry* next = entry->next();
3517    other_hashmap->add(o, entry);
3518    entry = next;
3519    promoted++;
3520  }
3521
3522  // stats
3523  if (TraceJVMTIObjectTagging) {
3524    int total_moves = promoted + moved;
3525
3526    int post_total = 0;
3527    for (int i=0; i<n_hashmaps; i++) {
3528      post_total += _hashmap[i]->_entry_count;
3529    }
3530    int pre_total = post_total + freed;
3531
3532    tty->print("(%d->%d, %d freed, %d promoted, %d total moves)",
3533        pre_total, post_total, freed, promoted, total_moves);
3534  }
3535}
3536