type.hpp revision 1879:f95d63e2154a
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OPTO_TYPE_HPP
26#define SHARE_VM_OPTO_TYPE_HPP
27
28#include "libadt/port.hpp"
29#include "opto/adlcVMDeps.hpp"
30#include "runtime/handles.hpp"
31
32// Portions of code courtesy of Clifford Click
33
34// Optimization - Graph Style
35
36
37// This class defines a Type lattice.  The lattice is used in the constant
38// propagation algorithms, and for some type-checking of the iloc code.
39// Basic types include RSD's (lower bound, upper bound, stride for integers),
40// float & double precision constants, sets of data-labels and code-labels.
41// The complete lattice is described below.  Subtypes have no relationship to
42// up or down in the lattice; that is entirely determined by the behavior of
43// the MEET/JOIN functions.
44
45class Dict;
46class Type;
47class   TypeD;
48class   TypeF;
49class   TypeInt;
50class   TypeLong;
51class   TypeNarrowOop;
52class   TypeAry;
53class   TypeTuple;
54class   TypePtr;
55class     TypeRawPtr;
56class     TypeOopPtr;
57class       TypeInstPtr;
58class       TypeAryPtr;
59class       TypeKlassPtr;
60
61//------------------------------Type-------------------------------------------
62// Basic Type object, represents a set of primitive Values.
63// Types are hash-cons'd into a private class dictionary, so only one of each
64// different kind of Type exists.  Types are never modified after creation, so
65// all their interesting fields are constant.
66class Type {
67public:
68  enum TYPES {
69    Bad=0,                      // Type check
70    Control,                    // Control of code (not in lattice)
71    Top,                        // Top of the lattice
72    Int,                        // Integer range (lo-hi)
73    Long,                       // Long integer range (lo-hi)
74    Half,                       // Placeholder half of doubleword
75    NarrowOop,                  // Compressed oop pointer
76
77    Tuple,                      // Method signature or object layout
78    Array,                      // Array types
79
80    AnyPtr,                     // Any old raw, klass, inst, or array pointer
81    RawPtr,                     // Raw (non-oop) pointers
82    OopPtr,                     // Any and all Java heap entities
83    InstPtr,                    // Instance pointers (non-array objects)
84    AryPtr,                     // Array pointers
85    KlassPtr,                   // Klass pointers
86    // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
87
88    Function,                   // Function signature
89    Abio,                       // Abstract I/O
90    Return_Address,             // Subroutine return address
91    Memory,                     // Abstract store
92    FloatTop,                   // No float value
93    FloatCon,                   // Floating point constant
94    FloatBot,                   // Any float value
95    DoubleTop,                  // No double value
96    DoubleCon,                  // Double precision constant
97    DoubleBot,                  // Any double value
98    Bottom,                     // Bottom of lattice
99    lastype                     // Bogus ending type (not in lattice)
100  };
101
102  // Signal values for offsets from a base pointer
103  enum OFFSET_SIGNALS {
104    OffsetTop = -2000000000,    // undefined offset
105    OffsetBot = -2000000001     // any possible offset
106  };
107
108  // Min and max WIDEN values.
109  enum WIDEN {
110    WidenMin = 0,
111    WidenMax = 3
112  };
113
114private:
115  // Dictionary of types shared among compilations.
116  static Dict* _shared_type_dict;
117
118  static int uhash( const Type *const t );
119  // Structural equality check.  Assumes that cmp() has already compared
120  // the _base types and thus knows it can cast 't' appropriately.
121  virtual bool eq( const Type *t ) const;
122
123  // Top-level hash-table of types
124  static Dict *type_dict() {
125    return Compile::current()->type_dict();
126  }
127
128  // DUAL operation: reflect around lattice centerline.  Used instead of
129  // join to ensure my lattice is symmetric up and down.  Dual is computed
130  // lazily, on demand, and cached in _dual.
131  const Type *_dual;            // Cached dual value
132  // Table for efficient dualing of base types
133  static const TYPES dual_type[lastype];
134
135protected:
136  // Each class of type is also identified by its base.
137  const TYPES _base;            // Enum of Types type
138
139  Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
140  // ~Type();                   // Use fast deallocation
141  const Type *hashcons();       // Hash-cons the type
142
143public:
144
145  inline void* operator new( size_t x ) {
146    Compile* compile = Compile::current();
147    compile->set_type_last_size(x);
148    void *temp = compile->type_arena()->Amalloc_D(x);
149    compile->set_type_hwm(temp);
150    return temp;
151  }
152  inline void operator delete( void* ptr ) {
153    Compile* compile = Compile::current();
154    compile->type_arena()->Afree(ptr,compile->type_last_size());
155  }
156
157  // Initialize the type system for a particular compilation.
158  static void Initialize(Compile* compile);
159
160  // Initialize the types shared by all compilations.
161  static void Initialize_shared(Compile* compile);
162
163  TYPES base() const {
164    assert(_base > Bad && _base < lastype, "sanity");
165    return _base;
166  }
167
168  // Create a new hash-consd type
169  static const Type *make(enum TYPES);
170  // Test for equivalence of types
171  static int cmp( const Type *const t1, const Type *const t2 );
172  // Test for higher or equal in lattice
173  int higher_equal( const Type *t ) const { return !cmp(meet(t),t); }
174
175  // MEET operation; lower in lattice.
176  const Type *meet( const Type *t ) const;
177  // WIDEN: 'widens' for Ints and other range types
178  virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
179  // NARROW: complement for widen, used by pessimistic phases
180  virtual const Type *narrow( const Type *old ) const { return this; }
181
182  // DUAL operation: reflect around lattice centerline.  Used instead of
183  // join to ensure my lattice is symmetric up and down.
184  const Type *dual() const { return _dual; }
185
186  // Compute meet dependent on base type
187  virtual const Type *xmeet( const Type *t ) const;
188  virtual const Type *xdual() const;    // Compute dual right now.
189
190  // JOIN operation; higher in lattice.  Done by finding the dual of the
191  // meet of the dual of the 2 inputs.
192  const Type *join( const Type *t ) const {
193    return dual()->meet(t->dual())->dual(); }
194
195  // Modified version of JOIN adapted to the needs Node::Value.
196  // Normalizes all empty values to TOP.  Does not kill _widen bits.
197  // Currently, it also works around limitations involving interface types.
198  virtual const Type *filter( const Type *kills ) const;
199
200#ifdef ASSERT
201  // One type is interface, the other is oop
202  virtual bool interface_vs_oop(const Type *t) const;
203#endif
204
205  // Returns true if this pointer points at memory which contains a
206  // compressed oop references.
207  bool is_ptr_to_narrowoop() const;
208
209  // Convenience access
210  float getf() const;
211  double getd() const;
212
213  const TypeInt    *is_int() const;
214  const TypeInt    *isa_int() const;             // Returns NULL if not an Int
215  const TypeLong   *is_long() const;
216  const TypeLong   *isa_long() const;            // Returns NULL if not a Long
217  const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
218  const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
219  const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
220  const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
221  const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
222  const TypeAry    *is_ary() const;              // Array, NOT array pointer
223  const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
224  const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
225  const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
226  const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
227  const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
228  const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
229  const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
230  const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
231  const TypeKlassPtr *isa_klassptr() const;      // Returns NULL if not KlassPtr
232  const TypeKlassPtr *is_klassptr() const;       // assert if not KlassPtr
233  const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
234  const TypeInstPtr  *is_instptr() const;        // Instance
235  const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
236  const TypeAryPtr   *is_aryptr() const;         // Array oop
237  virtual bool      is_finite() const;           // Has a finite value
238  virtual bool      is_nan()    const;           // Is not a number (NaN)
239
240  // Returns this ptr type or the equivalent ptr type for this compressed pointer.
241  const TypePtr* make_ptr() const;
242
243  // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
244  // Asserts if the underlying type is not an oopptr or narrowoop.
245  const TypeOopPtr* make_oopptr() const;
246
247  // Returns this compressed pointer or the equivalent compressed version
248  // of this pointer type.
249  const TypeNarrowOop* make_narrowoop() const;
250
251  // Special test for register pressure heuristic
252  bool is_floatingpoint() const;        // True if Float or Double base type
253
254  // Do you have memory, directly or through a tuple?
255  bool has_memory( ) const;
256
257  // Are you a pointer type or not?
258  bool isa_oop_ptr() const;
259
260  // TRUE if type is a singleton
261  virtual bool singleton(void) const;
262
263  // TRUE if type is above the lattice centerline, and is therefore vacuous
264  virtual bool empty(void) const;
265
266  // Return a hash for this type.  The hash function is public so ConNode
267  // (constants) can hash on their constant, which is represented by a Type.
268  virtual int hash() const;
269
270  // Map ideal registers (machine types) to ideal types
271  static const Type *mreg2type[];
272
273  // Printing, statistics
274  static const char * const msg[lastype]; // Printable strings
275#ifndef PRODUCT
276  void         dump_on(outputStream *st) const;
277  void         dump() const {
278    dump_on(tty);
279  }
280  virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
281  static  void dump_stats();
282  static  void verify_lastype();          // Check that arrays match type enum
283#endif
284  void typerr(const Type *t) const; // Mixing types error
285
286  // Create basic type
287  static const Type* get_const_basic_type(BasicType type) {
288    assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
289    return _const_basic_type[type];
290  }
291
292  // Mapping to the array element's basic type.
293  BasicType array_element_basic_type() const;
294
295  // Create standard type for a ciType:
296  static const Type* get_const_type(ciType* type);
297
298  // Create standard zero value:
299  static const Type* get_zero_type(BasicType type) {
300    assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
301    return _zero_type[type];
302  }
303
304  // Report if this is a zero value (not top).
305  bool is_zero_type() const {
306    BasicType type = basic_type();
307    if (type == T_VOID || type >= T_CONFLICT)
308      return false;
309    else
310      return (this == _zero_type[type]);
311  }
312
313  // Convenience common pre-built types.
314  static const Type *ABIO;
315  static const Type *BOTTOM;
316  static const Type *CONTROL;
317  static const Type *DOUBLE;
318  static const Type *FLOAT;
319  static const Type *HALF;
320  static const Type *MEMORY;
321  static const Type *MULTI;
322  static const Type *RETURN_ADDRESS;
323  static const Type *TOP;
324
325  // Mapping from compiler type to VM BasicType
326  BasicType basic_type() const { return _basic_type[_base]; }
327
328  // Mapping from CI type system to compiler type:
329  static const Type* get_typeflow_type(ciType* type);
330
331private:
332  // support arrays
333  static const BasicType _basic_type[];
334  static const Type*        _zero_type[T_CONFLICT+1];
335  static const Type* _const_basic_type[T_CONFLICT+1];
336};
337
338//------------------------------TypeF------------------------------------------
339// Class of Float-Constant Types.
340class TypeF : public Type {
341  TypeF( float f ) : Type(FloatCon), _f(f) {};
342public:
343  virtual bool eq( const Type *t ) const;
344  virtual int  hash() const;             // Type specific hashing
345  virtual bool singleton(void) const;    // TRUE if type is a singleton
346  virtual bool empty(void) const;        // TRUE if type is vacuous
347public:
348  const float _f;               // Float constant
349
350  static const TypeF *make(float f);
351
352  virtual bool        is_finite() const;  // Has a finite value
353  virtual bool        is_nan()    const;  // Is not a number (NaN)
354
355  virtual const Type *xmeet( const Type *t ) const;
356  virtual const Type *xdual() const;    // Compute dual right now.
357  // Convenience common pre-built types.
358  static const TypeF *ZERO; // positive zero only
359  static const TypeF *ONE;
360#ifndef PRODUCT
361  virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
362#endif
363};
364
365//------------------------------TypeD------------------------------------------
366// Class of Double-Constant Types.
367class TypeD : public Type {
368  TypeD( double d ) : Type(DoubleCon), _d(d) {};
369public:
370  virtual bool eq( const Type *t ) const;
371  virtual int  hash() const;             // Type specific hashing
372  virtual bool singleton(void) const;    // TRUE if type is a singleton
373  virtual bool empty(void) const;        // TRUE if type is vacuous
374public:
375  const double _d;              // Double constant
376
377  static const TypeD *make(double d);
378
379  virtual bool        is_finite() const;  // Has a finite value
380  virtual bool        is_nan()    const;  // Is not a number (NaN)
381
382  virtual const Type *xmeet( const Type *t ) const;
383  virtual const Type *xdual() const;    // Compute dual right now.
384  // Convenience common pre-built types.
385  static const TypeD *ZERO; // positive zero only
386  static const TypeD *ONE;
387#ifndef PRODUCT
388  virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
389#endif
390};
391
392//------------------------------TypeInt----------------------------------------
393// Class of integer ranges, the set of integers between a lower bound and an
394// upper bound, inclusive.
395class TypeInt : public Type {
396  TypeInt( jint lo, jint hi, int w );
397public:
398  virtual bool eq( const Type *t ) const;
399  virtual int  hash() const;             // Type specific hashing
400  virtual bool singleton(void) const;    // TRUE if type is a singleton
401  virtual bool empty(void) const;        // TRUE if type is vacuous
402public:
403  const jint _lo, _hi;          // Lower bound, upper bound
404  const short _widen;           // Limit on times we widen this sucker
405
406  static const TypeInt *make(jint lo);
407  // must always specify w
408  static const TypeInt *make(jint lo, jint hi, int w);
409
410  // Check for single integer
411  int is_con() const { return _lo==_hi; }
412  bool is_con(int i) const { return is_con() && _lo == i; }
413  jint get_con() const { assert( is_con(), "" );  return _lo; }
414
415  virtual bool        is_finite() const;  // Has a finite value
416
417  virtual const Type *xmeet( const Type *t ) const;
418  virtual const Type *xdual() const;    // Compute dual right now.
419  virtual const Type *widen( const Type *t, const Type* limit_type ) const;
420  virtual const Type *narrow( const Type *t ) const;
421  // Do not kill _widen bits.
422  virtual const Type *filter( const Type *kills ) const;
423  // Convenience common pre-built types.
424  static const TypeInt *MINUS_1;
425  static const TypeInt *ZERO;
426  static const TypeInt *ONE;
427  static const TypeInt *BOOL;
428  static const TypeInt *CC;
429  static const TypeInt *CC_LT;  // [-1]  == MINUS_1
430  static const TypeInt *CC_GT;  // [1]   == ONE
431  static const TypeInt *CC_EQ;  // [0]   == ZERO
432  static const TypeInt *CC_LE;  // [-1,0]
433  static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
434  static const TypeInt *BYTE;
435  static const TypeInt *UBYTE;
436  static const TypeInt *CHAR;
437  static const TypeInt *SHORT;
438  static const TypeInt *POS;
439  static const TypeInt *POS1;
440  static const TypeInt *INT;
441  static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
442#ifndef PRODUCT
443  virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
444#endif
445};
446
447
448//------------------------------TypeLong---------------------------------------
449// Class of long integer ranges, the set of integers between a lower bound and
450// an upper bound, inclusive.
451class TypeLong : public Type {
452  TypeLong( jlong lo, jlong hi, int w );
453public:
454  virtual bool eq( const Type *t ) const;
455  virtual int  hash() const;             // Type specific hashing
456  virtual bool singleton(void) const;    // TRUE if type is a singleton
457  virtual bool empty(void) const;        // TRUE if type is vacuous
458public:
459  const jlong _lo, _hi;         // Lower bound, upper bound
460  const short _widen;           // Limit on times we widen this sucker
461
462  static const TypeLong *make(jlong lo);
463  // must always specify w
464  static const TypeLong *make(jlong lo, jlong hi, int w);
465
466  // Check for single integer
467  int is_con() const { return _lo==_hi; }
468  bool is_con(int i) const { return is_con() && _lo == i; }
469  jlong get_con() const { assert( is_con(), "" ); return _lo; }
470
471  virtual bool        is_finite() const;  // Has a finite value
472
473  virtual const Type *xmeet( const Type *t ) const;
474  virtual const Type *xdual() const;    // Compute dual right now.
475  virtual const Type *widen( const Type *t, const Type* limit_type ) const;
476  virtual const Type *narrow( const Type *t ) const;
477  // Do not kill _widen bits.
478  virtual const Type *filter( const Type *kills ) const;
479  // Convenience common pre-built types.
480  static const TypeLong *MINUS_1;
481  static const TypeLong *ZERO;
482  static const TypeLong *ONE;
483  static const TypeLong *POS;
484  static const TypeLong *LONG;
485  static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
486  static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
487#ifndef PRODUCT
488  virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
489#endif
490};
491
492//------------------------------TypeTuple--------------------------------------
493// Class of Tuple Types, essentially type collections for function signatures
494// and class layouts.  It happens to also be a fast cache for the HotSpot
495// signature types.
496class TypeTuple : public Type {
497  TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
498public:
499  virtual bool eq( const Type *t ) const;
500  virtual int  hash() const;             // Type specific hashing
501  virtual bool singleton(void) const;    // TRUE if type is a singleton
502  virtual bool empty(void) const;        // TRUE if type is vacuous
503
504public:
505  const uint          _cnt;              // Count of fields
506  const Type ** const _fields;           // Array of field types
507
508  // Accessors:
509  uint cnt() const { return _cnt; }
510  const Type* field_at(uint i) const {
511    assert(i < _cnt, "oob");
512    return _fields[i];
513  }
514  void set_field_at(uint i, const Type* t) {
515    assert(i < _cnt, "oob");
516    _fields[i] = t;
517  }
518
519  static const TypeTuple *make( uint cnt, const Type **fields );
520  static const TypeTuple *make_range(ciSignature *sig);
521  static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
522
523  // Subroutine call type with space allocated for argument types
524  static const Type **fields( uint arg_cnt );
525
526  virtual const Type *xmeet( const Type *t ) const;
527  virtual const Type *xdual() const;    // Compute dual right now.
528  // Convenience common pre-built types.
529  static const TypeTuple *IFBOTH;
530  static const TypeTuple *IFFALSE;
531  static const TypeTuple *IFTRUE;
532  static const TypeTuple *IFNEITHER;
533  static const TypeTuple *LOOPBODY;
534  static const TypeTuple *MEMBAR;
535  static const TypeTuple *STORECONDITIONAL;
536  static const TypeTuple *START_I2C;
537  static const TypeTuple *INT_PAIR;
538  static const TypeTuple *LONG_PAIR;
539#ifndef PRODUCT
540  virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
541#endif
542};
543
544//------------------------------TypeAry----------------------------------------
545// Class of Array Types
546class TypeAry : public Type {
547  TypeAry( const Type *elem, const TypeInt *size) : Type(Array),
548    _elem(elem), _size(size) {}
549public:
550  virtual bool eq( const Type *t ) const;
551  virtual int  hash() const;             // Type specific hashing
552  virtual bool singleton(void) const;    // TRUE if type is a singleton
553  virtual bool empty(void) const;        // TRUE if type is vacuous
554
555private:
556  const Type *_elem;            // Element type of array
557  const TypeInt *_size;         // Elements in array
558  friend class TypeAryPtr;
559
560public:
561  static const TypeAry *make(  const Type *elem, const TypeInt *size);
562
563  virtual const Type *xmeet( const Type *t ) const;
564  virtual const Type *xdual() const;    // Compute dual right now.
565  bool ary_must_be_exact() const;  // true if arrays of such are never generic
566#ifdef ASSERT
567  // One type is interface, the other is oop
568  virtual bool interface_vs_oop(const Type *t) const;
569#endif
570#ifndef PRODUCT
571  virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
572#endif
573};
574
575//------------------------------TypePtr----------------------------------------
576// Class of machine Pointer Types: raw data, instances or arrays.
577// If the _base enum is AnyPtr, then this refers to all of the above.
578// Otherwise the _base will indicate which subset of pointers is affected,
579// and the class will be inherited from.
580class TypePtr : public Type {
581  friend class TypeNarrowOop;
582public:
583  enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
584protected:
585  TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
586  virtual bool eq( const Type *t ) const;
587  virtual int  hash() const;             // Type specific hashing
588  static const PTR ptr_meet[lastPTR][lastPTR];
589  static const PTR ptr_dual[lastPTR];
590  static const char * const ptr_msg[lastPTR];
591
592public:
593  const int _offset;            // Offset into oop, with TOP & BOT
594  const PTR _ptr;               // Pointer equivalence class
595
596  const int offset() const { return _offset; }
597  const PTR ptr()    const { return _ptr; }
598
599  static const TypePtr *make( TYPES t, PTR ptr, int offset );
600
601  // Return a 'ptr' version of this type
602  virtual const Type *cast_to_ptr_type(PTR ptr) const;
603
604  virtual intptr_t get_con() const;
605
606  int xadd_offset( intptr_t offset ) const;
607  virtual const TypePtr *add_offset( intptr_t offset ) const;
608
609  virtual bool singleton(void) const;    // TRUE if type is a singleton
610  virtual bool empty(void) const;        // TRUE if type is vacuous
611  virtual const Type *xmeet( const Type *t ) const;
612  int meet_offset( int offset ) const;
613  int dual_offset( ) const;
614  virtual const Type *xdual() const;    // Compute dual right now.
615
616  // meet, dual and join over pointer equivalence sets
617  PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
618  PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
619
620  // This is textually confusing unless one recalls that
621  // join(t) == dual()->meet(t->dual())->dual().
622  PTR join_ptr( const PTR in_ptr ) const {
623    return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
624  }
625
626  // Tests for relation to centerline of type lattice:
627  static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
628  static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
629  // Convenience common pre-built types.
630  static const TypePtr *NULL_PTR;
631  static const TypePtr *NOTNULL;
632  static const TypePtr *BOTTOM;
633#ifndef PRODUCT
634  virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
635#endif
636};
637
638//------------------------------TypeRawPtr-------------------------------------
639// Class of raw pointers, pointers to things other than Oops.  Examples
640// include the stack pointer, top of heap, card-marking area, handles, etc.
641class TypeRawPtr : public TypePtr {
642protected:
643  TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
644public:
645  virtual bool eq( const Type *t ) const;
646  virtual int  hash() const;     // Type specific hashing
647
648  const address _bits;          // Constant value, if applicable
649
650  static const TypeRawPtr *make( PTR ptr );
651  static const TypeRawPtr *make( address bits );
652
653  // Return a 'ptr' version of this type
654  virtual const Type *cast_to_ptr_type(PTR ptr) const;
655
656  virtual intptr_t get_con() const;
657
658  virtual const TypePtr *add_offset( intptr_t offset ) const;
659
660  virtual const Type *xmeet( const Type *t ) const;
661  virtual const Type *xdual() const;    // Compute dual right now.
662  // Convenience common pre-built types.
663  static const TypeRawPtr *BOTTOM;
664  static const TypeRawPtr *NOTNULL;
665#ifndef PRODUCT
666  virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
667#endif
668};
669
670//------------------------------TypeOopPtr-------------------------------------
671// Some kind of oop (Java pointer), either klass or instance or array.
672class TypeOopPtr : public TypePtr {
673protected:
674  TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
675public:
676  virtual bool eq( const Type *t ) const;
677  virtual int  hash() const;             // Type specific hashing
678  virtual bool singleton(void) const;    // TRUE if type is a singleton
679  enum {
680   InstanceTop = -1,   // undefined instance
681   InstanceBot = 0     // any possible instance
682  };
683protected:
684
685  // Oop is NULL, unless this is a constant oop.
686  ciObject*     _const_oop;   // Constant oop
687  // If _klass is NULL, then so is _sig.  This is an unloaded klass.
688  ciKlass*      _klass;       // Klass object
689  // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
690  bool          _klass_is_exact;
691  bool          _is_ptr_to_narrowoop;
692
693  // If not InstanceTop or InstanceBot, indicates that this is
694  // a particular instance of this type which is distinct.
695  // This is the the node index of the allocation node creating this instance.
696  int           _instance_id;
697
698  static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
699
700  int dual_instance_id() const;
701  int meet_instance_id(int uid) const;
702
703public:
704  // Creates a type given a klass. Correctly handles multi-dimensional arrays
705  // Respects UseUniqueSubclasses.
706  // If the klass is final, the resulting type will be exact.
707  static const TypeOopPtr* make_from_klass(ciKlass* klass) {
708    return make_from_klass_common(klass, true, false);
709  }
710  // Same as before, but will produce an exact type, even if
711  // the klass is not final, as long as it has exactly one implementation.
712  static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
713    return make_from_klass_common(klass, true, true);
714  }
715  // Same as before, but does not respects UseUniqueSubclasses.
716  // Use this only for creating array element types.
717  static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
718    return make_from_klass_common(klass, false, false);
719  }
720  // Creates a singleton type given an object.
721  // If the object cannot be rendered as a constant,
722  // may return a non-singleton type.
723  // If require_constant, produce a NULL if a singleton is not possible.
724  static const TypeOopPtr* make_from_constant(ciObject* o, bool require_constant = false);
725
726  // Make a generic (unclassed) pointer to an oop.
727  static const TypeOopPtr* make(PTR ptr, int offset, int instance_id);
728
729  ciObject* const_oop()    const { return _const_oop; }
730  virtual ciKlass* klass() const { return _klass;     }
731  bool klass_is_exact()    const { return _klass_is_exact; }
732
733  // Returns true if this pointer points at memory which contains a
734  // compressed oop references.
735  bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
736
737  bool is_known_instance()       const { return _instance_id > 0; }
738  int  instance_id()             const { return _instance_id; }
739  bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
740
741  virtual intptr_t get_con() const;
742
743  virtual const Type *cast_to_ptr_type(PTR ptr) const;
744
745  virtual const Type *cast_to_exactness(bool klass_is_exact) const;
746
747  virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
748
749  // corresponding pointer to klass, for a given instance
750  const TypeKlassPtr* as_klass_type() const;
751
752  virtual const TypePtr *add_offset( intptr_t offset ) const;
753
754  virtual const Type *xmeet( const Type *t ) const;
755  virtual const Type *xdual() const;    // Compute dual right now.
756
757  // Do not allow interface-vs.-noninterface joins to collapse to top.
758  virtual const Type *filter( const Type *kills ) const;
759
760  // Convenience common pre-built type.
761  static const TypeOopPtr *BOTTOM;
762#ifndef PRODUCT
763  virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
764#endif
765};
766
767//------------------------------TypeInstPtr------------------------------------
768// Class of Java object pointers, pointing either to non-array Java instances
769// or to a klassOop (including array klasses).
770class TypeInstPtr : public TypeOopPtr {
771  TypeInstPtr( PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
772  virtual bool eq( const Type *t ) const;
773  virtual int  hash() const;             // Type specific hashing
774
775  ciSymbol*  _name;        // class name
776
777 public:
778  ciSymbol* name()         const { return _name; }
779
780  bool  is_loaded() const { return _klass->is_loaded(); }
781
782  // Make a pointer to a constant oop.
783  static const TypeInstPtr *make(ciObject* o) {
784    return make(TypePtr::Constant, o->klass(), true, o, 0);
785  }
786
787  // Make a pointer to a constant oop with offset.
788  static const TypeInstPtr *make(ciObject* o, int offset) {
789    return make(TypePtr::Constant, o->klass(), true, o, offset);
790  }
791
792  // Make a pointer to some value of type klass.
793  static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
794    return make(ptr, klass, false, NULL, 0);
795  }
796
797  // Make a pointer to some non-polymorphic value of exactly type klass.
798  static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
799    return make(ptr, klass, true, NULL, 0);
800  }
801
802  // Make a pointer to some value of type klass with offset.
803  static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
804    return make(ptr, klass, false, NULL, offset);
805  }
806
807  // Make a pointer to an oop.
808  static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot );
809
810  // If this is a java.lang.Class constant, return the type for it or NULL.
811  // Pass to Type::get_const_type to turn it to a type, which will usually
812  // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
813  ciType* java_mirror_type() const;
814
815  virtual const Type *cast_to_ptr_type(PTR ptr) const;
816
817  virtual const Type *cast_to_exactness(bool klass_is_exact) const;
818
819  virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
820
821  virtual const TypePtr *add_offset( intptr_t offset ) const;
822
823  virtual const Type *xmeet( const Type *t ) const;
824  virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
825  virtual const Type *xdual() const;    // Compute dual right now.
826
827  // Convenience common pre-built types.
828  static const TypeInstPtr *NOTNULL;
829  static const TypeInstPtr *BOTTOM;
830  static const TypeInstPtr *MIRROR;
831  static const TypeInstPtr *MARK;
832  static const TypeInstPtr *KLASS;
833#ifndef PRODUCT
834  virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
835#endif
836};
837
838//------------------------------TypeAryPtr-------------------------------------
839// Class of Java array pointers
840class TypeAryPtr : public TypeOopPtr {
841  TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id), _ary(ary) {
842#ifdef ASSERT
843    if (k != NULL) {
844      // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
845      ciKlass* ck = compute_klass(true);
846      if (k != ck) {
847        this->dump(); tty->cr();
848        tty->print(" k: ");
849        k->print(); tty->cr();
850        tty->print("ck: ");
851        if (ck != NULL) ck->print();
852        else tty->print("<NULL>");
853        tty->cr();
854        assert(false, "unexpected TypeAryPtr::_klass");
855      }
856    }
857#endif
858  }
859  virtual bool eq( const Type *t ) const;
860  virtual int hash() const;     // Type specific hashing
861  const TypeAry *_ary;          // Array we point into
862
863  ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
864
865public:
866  // Accessors
867  ciKlass* klass() const;
868  const TypeAry* ary() const  { return _ary; }
869  const Type*    elem() const { return _ary->_elem; }
870  const TypeInt* size() const { return _ary->_size; }
871
872  static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
873  // Constant pointer to array
874  static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
875
876  // Return a 'ptr' version of this type
877  virtual const Type *cast_to_ptr_type(PTR ptr) const;
878
879  virtual const Type *cast_to_exactness(bool klass_is_exact) const;
880
881  virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
882
883  virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
884  virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
885
886  virtual bool empty(void) const;        // TRUE if type is vacuous
887  virtual const TypePtr *add_offset( intptr_t offset ) const;
888
889  virtual const Type *xmeet( const Type *t ) const;
890  virtual const Type *xdual() const;    // Compute dual right now.
891
892  // Convenience common pre-built types.
893  static const TypeAryPtr *RANGE;
894  static const TypeAryPtr *OOPS;
895  static const TypeAryPtr *NARROWOOPS;
896  static const TypeAryPtr *BYTES;
897  static const TypeAryPtr *SHORTS;
898  static const TypeAryPtr *CHARS;
899  static const TypeAryPtr *INTS;
900  static const TypeAryPtr *LONGS;
901  static const TypeAryPtr *FLOATS;
902  static const TypeAryPtr *DOUBLES;
903  // selects one of the above:
904  static const TypeAryPtr *get_array_body_type(BasicType elem) {
905    assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
906    return _array_body_type[elem];
907  }
908  static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
909  // sharpen the type of an int which is used as an array size
910#ifdef ASSERT
911  // One type is interface, the other is oop
912  virtual bool interface_vs_oop(const Type *t) const;
913#endif
914#ifndef PRODUCT
915  virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
916#endif
917};
918
919//------------------------------TypeKlassPtr-----------------------------------
920// Class of Java Klass pointers
921class TypeKlassPtr : public TypeOopPtr {
922  TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
923
924  virtual bool eq( const Type *t ) const;
925  virtual int hash() const;             // Type specific hashing
926
927public:
928  ciSymbol* name()  const { return _klass->name(); }
929
930  bool  is_loaded() const { return _klass->is_loaded(); }
931
932  // ptr to klass 'k'
933  static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
934  // ptr to klass 'k' with offset
935  static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
936  // ptr to klass 'k' or sub-klass
937  static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
938
939  virtual const Type *cast_to_ptr_type(PTR ptr) const;
940
941  virtual const Type *cast_to_exactness(bool klass_is_exact) const;
942
943  // corresponding pointer to instance, for a given class
944  const TypeOopPtr* as_instance_type() const;
945
946  virtual const TypePtr *add_offset( intptr_t offset ) const;
947  virtual const Type    *xmeet( const Type *t ) const;
948  virtual const Type    *xdual() const;      // Compute dual right now.
949
950  // Convenience common pre-built types.
951  static const TypeKlassPtr* OBJECT; // Not-null object klass or below
952  static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
953#ifndef PRODUCT
954  virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
955#endif
956};
957
958//------------------------------TypeNarrowOop----------------------------------
959// A compressed reference to some kind of Oop.  This type wraps around
960// a preexisting TypeOopPtr and forwards most of it's operations to
961// the underlying type.  It's only real purpose is to track the
962// oopness of the compressed oop value when we expose the conversion
963// between the normal and the compressed form.
964class TypeNarrowOop : public Type {
965protected:
966  const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
967
968  TypeNarrowOop( const TypePtr* ptrtype): Type(NarrowOop),
969    _ptrtype(ptrtype) {
970    assert(ptrtype->offset() == 0 ||
971           ptrtype->offset() == OffsetBot ||
972           ptrtype->offset() == OffsetTop, "no real offsets");
973  }
974public:
975  virtual bool eq( const Type *t ) const;
976  virtual int  hash() const;             // Type specific hashing
977  virtual bool singleton(void) const;    // TRUE if type is a singleton
978
979  virtual const Type *xmeet( const Type *t ) const;
980  virtual const Type *xdual() const;    // Compute dual right now.
981
982  virtual intptr_t get_con() const;
983
984  // Do not allow interface-vs.-noninterface joins to collapse to top.
985  virtual const Type *filter( const Type *kills ) const;
986
987  virtual bool empty(void) const;        // TRUE if type is vacuous
988
989  static const TypeNarrowOop *make( const TypePtr* type);
990
991  static const TypeNarrowOop* make_from_constant(ciObject* con) {
992    return make(TypeOopPtr::make_from_constant(con));
993  }
994
995  // returns the equivalent ptr type for this compressed pointer
996  const TypePtr *get_ptrtype() const {
997    return _ptrtype;
998  }
999
1000  static const TypeNarrowOop *BOTTOM;
1001  static const TypeNarrowOop *NULL_PTR;
1002
1003#ifndef PRODUCT
1004  virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1005#endif
1006};
1007
1008//------------------------------TypeFunc---------------------------------------
1009// Class of Array Types
1010class TypeFunc : public Type {
1011  TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
1012  virtual bool eq( const Type *t ) const;
1013  virtual int  hash() const;             // Type specific hashing
1014  virtual bool singleton(void) const;    // TRUE if type is a singleton
1015  virtual bool empty(void) const;        // TRUE if type is vacuous
1016public:
1017  // Constants are shared among ADLC and VM
1018  enum { Control    = AdlcVMDeps::Control,
1019         I_O        = AdlcVMDeps::I_O,
1020         Memory     = AdlcVMDeps::Memory,
1021         FramePtr   = AdlcVMDeps::FramePtr,
1022         ReturnAdr  = AdlcVMDeps::ReturnAdr,
1023         Parms      = AdlcVMDeps::Parms
1024  };
1025
1026  const TypeTuple* const _domain;     // Domain of inputs
1027  const TypeTuple* const _range;      // Range of results
1028
1029  // Accessors:
1030  const TypeTuple* domain() const { return _domain; }
1031  const TypeTuple* range()  const { return _range; }
1032
1033  static const TypeFunc *make(ciMethod* method);
1034  static const TypeFunc *make(ciSignature signature, const Type* extra);
1035  static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1036
1037  virtual const Type *xmeet( const Type *t ) const;
1038  virtual const Type *xdual() const;    // Compute dual right now.
1039
1040  BasicType return_type() const;
1041
1042#ifndef PRODUCT
1043  virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1044  void print_flattened() const; // Print a 'flattened' signature
1045#endif
1046  // Convenience common pre-built types.
1047};
1048
1049//------------------------------accessors--------------------------------------
1050inline bool Type::is_ptr_to_narrowoop() const {
1051#ifdef _LP64
1052  return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
1053#else
1054  return false;
1055#endif
1056}
1057
1058inline float Type::getf() const {
1059  assert( _base == FloatCon, "Not a FloatCon" );
1060  return ((TypeF*)this)->_f;
1061}
1062
1063inline double Type::getd() const {
1064  assert( _base == DoubleCon, "Not a DoubleCon" );
1065  return ((TypeD*)this)->_d;
1066}
1067
1068inline const TypeF *Type::is_float_constant() const {
1069  assert( _base == FloatCon, "Not a Float" );
1070  return (TypeF*)this;
1071}
1072
1073inline const TypeF *Type::isa_float_constant() const {
1074  return ( _base == FloatCon ? (TypeF*)this : NULL);
1075}
1076
1077inline const TypeD *Type::is_double_constant() const {
1078  assert( _base == DoubleCon, "Not a Double" );
1079  return (TypeD*)this;
1080}
1081
1082inline const TypeD *Type::isa_double_constant() const {
1083  return ( _base == DoubleCon ? (TypeD*)this : NULL);
1084}
1085
1086inline const TypeInt *Type::is_int() const {
1087  assert( _base == Int, "Not an Int" );
1088  return (TypeInt*)this;
1089}
1090
1091inline const TypeInt *Type::isa_int() const {
1092  return ( _base == Int ? (TypeInt*)this : NULL);
1093}
1094
1095inline const TypeLong *Type::is_long() const {
1096  assert( _base == Long, "Not a Long" );
1097  return (TypeLong*)this;
1098}
1099
1100inline const TypeLong *Type::isa_long() const {
1101  return ( _base == Long ? (TypeLong*)this : NULL);
1102}
1103
1104inline const TypeTuple *Type::is_tuple() const {
1105  assert( _base == Tuple, "Not a Tuple" );
1106  return (TypeTuple*)this;
1107}
1108
1109inline const TypeAry *Type::is_ary() const {
1110  assert( _base == Array , "Not an Array" );
1111  return (TypeAry*)this;
1112}
1113
1114inline const TypePtr *Type::is_ptr() const {
1115  // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1116  assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
1117  return (TypePtr*)this;
1118}
1119
1120inline const TypePtr *Type::isa_ptr() const {
1121  // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1122  return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
1123}
1124
1125inline const TypeOopPtr *Type::is_oopptr() const {
1126  // OopPtr is the first and KlassPtr the last, with no non-oops between.
1127  assert(_base >= OopPtr && _base <= KlassPtr, "Not a Java pointer" ) ;
1128  return (TypeOopPtr*)this;
1129}
1130
1131inline const TypeOopPtr *Type::isa_oopptr() const {
1132  // OopPtr is the first and KlassPtr the last, with no non-oops between.
1133  return (_base >= OopPtr && _base <= KlassPtr) ? (TypeOopPtr*)this : NULL;
1134}
1135
1136inline const TypeRawPtr *Type::isa_rawptr() const {
1137  return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
1138}
1139
1140inline const TypeRawPtr *Type::is_rawptr() const {
1141  assert( _base == RawPtr, "Not a raw pointer" );
1142  return (TypeRawPtr*)this;
1143}
1144
1145inline const TypeInstPtr *Type::isa_instptr() const {
1146  return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
1147}
1148
1149inline const TypeInstPtr *Type::is_instptr() const {
1150  assert( _base == InstPtr, "Not an object pointer" );
1151  return (TypeInstPtr*)this;
1152}
1153
1154inline const TypeAryPtr *Type::isa_aryptr() const {
1155  return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
1156}
1157
1158inline const TypeAryPtr *Type::is_aryptr() const {
1159  assert( _base == AryPtr, "Not an array pointer" );
1160  return (TypeAryPtr*)this;
1161}
1162
1163inline const TypeNarrowOop *Type::is_narrowoop() const {
1164  // OopPtr is the first and KlassPtr the last, with no non-oops between.
1165  assert(_base == NarrowOop, "Not a narrow oop" ) ;
1166  return (TypeNarrowOop*)this;
1167}
1168
1169inline const TypeNarrowOop *Type::isa_narrowoop() const {
1170  // OopPtr is the first and KlassPtr the last, with no non-oops between.
1171  return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
1172}
1173
1174inline const TypeKlassPtr *Type::isa_klassptr() const {
1175  return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
1176}
1177
1178inline const TypeKlassPtr *Type::is_klassptr() const {
1179  assert( _base == KlassPtr, "Not a klass pointer" );
1180  return (TypeKlassPtr*)this;
1181}
1182
1183inline const TypePtr* Type::make_ptr() const {
1184  return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
1185                                (isa_ptr() ? is_ptr() : NULL);
1186}
1187
1188inline const TypeOopPtr* Type::make_oopptr() const {
1189  return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
1190}
1191
1192inline const TypeNarrowOop* Type::make_narrowoop() const {
1193  return (_base == NarrowOop) ? is_narrowoop() :
1194                                (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
1195}
1196
1197inline bool Type::is_floatingpoint() const {
1198  if( (_base == FloatCon)  || (_base == FloatBot) ||
1199      (_base == DoubleCon) || (_base == DoubleBot) )
1200    return true;
1201  return false;
1202}
1203
1204
1205// ===============================================================
1206// Things that need to be 64-bits in the 64-bit build but
1207// 32-bits in the 32-bit build.  Done this way to get full
1208// optimization AND strong typing.
1209#ifdef _LP64
1210
1211// For type queries and asserts
1212#define is_intptr_t  is_long
1213#define isa_intptr_t isa_long
1214#define find_intptr_t_type find_long_type
1215#define find_intptr_t_con  find_long_con
1216#define TypeX        TypeLong
1217#define Type_X       Type::Long
1218#define TypeX_X      TypeLong::LONG
1219#define TypeX_ZERO   TypeLong::ZERO
1220// For 'ideal_reg' machine registers
1221#define Op_RegX      Op_RegL
1222// For phase->intcon variants
1223#define MakeConX     longcon
1224#define ConXNode     ConLNode
1225// For array index arithmetic
1226#define MulXNode     MulLNode
1227#define AndXNode     AndLNode
1228#define OrXNode      OrLNode
1229#define CmpXNode     CmpLNode
1230#define SubXNode     SubLNode
1231#define LShiftXNode  LShiftLNode
1232// For object size computation:
1233#define AddXNode     AddLNode
1234#define RShiftXNode  RShiftLNode
1235// For card marks and hashcodes
1236#define URShiftXNode URShiftLNode
1237// UseOptoBiasInlining
1238#define XorXNode     XorLNode
1239#define StoreXConditionalNode StoreLConditionalNode
1240// Opcodes
1241#define Op_LShiftX   Op_LShiftL
1242#define Op_AndX      Op_AndL
1243#define Op_AddX      Op_AddL
1244#define Op_SubX      Op_SubL
1245#define Op_XorX      Op_XorL
1246#define Op_URShiftX  Op_URShiftL
1247// conversions
1248#define ConvI2X(x)   ConvI2L(x)
1249#define ConvL2X(x)   (x)
1250#define ConvX2I(x)   ConvL2I(x)
1251#define ConvX2L(x)   (x)
1252
1253#else
1254
1255// For type queries and asserts
1256#define is_intptr_t  is_int
1257#define isa_intptr_t isa_int
1258#define find_intptr_t_type find_int_type
1259#define find_intptr_t_con  find_int_con
1260#define TypeX        TypeInt
1261#define Type_X       Type::Int
1262#define TypeX_X      TypeInt::INT
1263#define TypeX_ZERO   TypeInt::ZERO
1264// For 'ideal_reg' machine registers
1265#define Op_RegX      Op_RegI
1266// For phase->intcon variants
1267#define MakeConX     intcon
1268#define ConXNode     ConINode
1269// For array index arithmetic
1270#define MulXNode     MulINode
1271#define AndXNode     AndINode
1272#define OrXNode      OrINode
1273#define CmpXNode     CmpINode
1274#define SubXNode     SubINode
1275#define LShiftXNode  LShiftINode
1276// For object size computation:
1277#define AddXNode     AddINode
1278#define RShiftXNode  RShiftINode
1279// For card marks and hashcodes
1280#define URShiftXNode URShiftINode
1281// UseOptoBiasInlining
1282#define XorXNode     XorINode
1283#define StoreXConditionalNode StoreIConditionalNode
1284// Opcodes
1285#define Op_LShiftX   Op_LShiftI
1286#define Op_AndX      Op_AndI
1287#define Op_AddX      Op_AddI
1288#define Op_SubX      Op_SubI
1289#define Op_XorX      Op_XorI
1290#define Op_URShiftX  Op_URShiftI
1291// conversions
1292#define ConvI2X(x)   (x)
1293#define ConvL2X(x)   ConvL2I(x)
1294#define ConvX2I(x)   (x)
1295#define ConvX2L(x)   ConvI2L(x)
1296
1297#endif
1298
1299#endif // SHARE_VM_OPTO_TYPE_HPP
1300