superword.hpp revision 9111:a41fe5ffa839
1/*
2 * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 */
23
24#ifndef SHARE_VM_OPTO_SUPERWORD_HPP
25#define SHARE_VM_OPTO_SUPERWORD_HPP
26
27#include "opto/loopnode.hpp"
28#include "opto/node.hpp"
29#include "opto/phaseX.hpp"
30#include "opto/vectornode.hpp"
31#include "utilities/growableArray.hpp"
32
33//
34//                  S U P E R W O R D   T R A N S F O R M
35//
36// SuperWords are short, fixed length vectors.
37//
38// Algorithm from:
39//
40// Exploiting SuperWord Level Parallelism with
41//   Multimedia Instruction Sets
42// by
43//   Samuel Larsen and Saman Amarasinghe
44//   MIT Laboratory for Computer Science
45// date
46//   May 2000
47// published in
48//   ACM SIGPLAN Notices
49//   Proceedings of ACM PLDI '00,  Volume 35 Issue 5
50//
51// Definition 3.1 A Pack is an n-tuple, <s1, ...,sn>, where
52// s1,...,sn are independent isomorphic statements in a basic
53// block.
54//
55// Definition 3.2 A PackSet is a set of Packs.
56//
57// Definition 3.3 A Pair is a Pack of size two, where the
58// first statement is considered the left element, and the
59// second statement is considered the right element.
60
61class SWPointer;
62class OrderedPair;
63
64// ========================= Dependence Graph =====================
65
66class DepMem;
67
68//------------------------------DepEdge---------------------------
69// An edge in the dependence graph.  The edges incident to a dependence
70// node are threaded through _next_in for incoming edges and _next_out
71// for outgoing edges.
72class DepEdge : public ResourceObj {
73 protected:
74  DepMem* _pred;
75  DepMem* _succ;
76  DepEdge* _next_in;   // list of in edges, null terminated
77  DepEdge* _next_out;  // list of out edges, null terminated
78
79 public:
80  DepEdge(DepMem* pred, DepMem* succ, DepEdge* next_in, DepEdge* next_out) :
81    _pred(pred), _succ(succ), _next_in(next_in), _next_out(next_out) {}
82
83  DepEdge* next_in()  { return _next_in; }
84  DepEdge* next_out() { return _next_out; }
85  DepMem*  pred()     { return _pred; }
86  DepMem*  succ()     { return _succ; }
87
88  void print();
89};
90
91//------------------------------DepMem---------------------------
92// A node in the dependence graph.  _in_head starts the threaded list of
93// incoming edges, and _out_head starts the list of outgoing edges.
94class DepMem : public ResourceObj {
95 protected:
96  Node*    _node;     // Corresponding ideal node
97  DepEdge* _in_head;  // Head of list of in edges, null terminated
98  DepEdge* _out_head; // Head of list of out edges, null terminated
99
100 public:
101  DepMem(Node* node) : _node(node), _in_head(NULL), _out_head(NULL) {}
102
103  Node*    node()                { return _node;     }
104  DepEdge* in_head()             { return _in_head;  }
105  DepEdge* out_head()            { return _out_head; }
106  void set_in_head(DepEdge* hd)  { _in_head = hd;    }
107  void set_out_head(DepEdge* hd) { _out_head = hd;   }
108
109  int in_cnt();  // Incoming edge count
110  int out_cnt(); // Outgoing edge count
111
112  void print();
113};
114
115//------------------------------DepGraph---------------------------
116class DepGraph VALUE_OBJ_CLASS_SPEC {
117 protected:
118  Arena* _arena;
119  GrowableArray<DepMem*> _map;
120  DepMem* _root;
121  DepMem* _tail;
122
123 public:
124  DepGraph(Arena* a) : _arena(a), _map(a, 8,  0, NULL) {
125    _root = new (_arena) DepMem(NULL);
126    _tail = new (_arena) DepMem(NULL);
127  }
128
129  DepMem* root() { return _root; }
130  DepMem* tail() { return _tail; }
131
132  // Return dependence node corresponding to an ideal node
133  DepMem* dep(Node* node) { return _map.at(node->_idx); }
134
135  // Make a new dependence graph node for an ideal node.
136  DepMem* make_node(Node* node);
137
138  // Make a new dependence graph edge dprec->dsucc
139  DepEdge* make_edge(DepMem* dpred, DepMem* dsucc);
140
141  DepEdge* make_edge(Node* pred,   Node* succ)   { return make_edge(dep(pred), dep(succ)); }
142  DepEdge* make_edge(DepMem* pred, Node* succ)   { return make_edge(pred,      dep(succ)); }
143  DepEdge* make_edge(Node* pred,   DepMem* succ) { return make_edge(dep(pred), succ);      }
144
145  void init() { _map.clear(); } // initialize
146
147  void print(Node* n)   { dep(n)->print(); }
148  void print(DepMem* d) { d->print(); }
149};
150
151//------------------------------DepPreds---------------------------
152// Iterator over predecessors in the dependence graph and
153// non-memory-graph inputs of ideal nodes.
154class DepPreds : public StackObj {
155private:
156  Node*    _n;
157  int      _next_idx, _end_idx;
158  DepEdge* _dep_next;
159  Node*    _current;
160  bool     _done;
161
162public:
163  DepPreds(Node* n, DepGraph& dg);
164  Node* current() { return _current; }
165  bool  done()    { return _done; }
166  void  next();
167};
168
169//------------------------------DepSuccs---------------------------
170// Iterator over successors in the dependence graph and
171// non-memory-graph outputs of ideal nodes.
172class DepSuccs : public StackObj {
173private:
174  Node*    _n;
175  int      _next_idx, _end_idx;
176  DepEdge* _dep_next;
177  Node*    _current;
178  bool     _done;
179
180public:
181  DepSuccs(Node* n, DepGraph& dg);
182  Node* current() { return _current; }
183  bool  done()    { return _done; }
184  void  next();
185};
186
187
188// ========================= SuperWord =====================
189
190// -----------------------------SWNodeInfo---------------------------------
191// Per node info needed by SuperWord
192class SWNodeInfo VALUE_OBJ_CLASS_SPEC {
193 public:
194  int         _alignment; // memory alignment for a node
195  int         _depth;     // Max expression (DAG) depth from block start
196  const Type* _velt_type; // vector element type
197  Node_List*  _my_pack;   // pack containing this node
198
199  SWNodeInfo() : _alignment(-1), _depth(0), _velt_type(NULL), _my_pack(NULL) {}
200  static const SWNodeInfo initial;
201};
202
203// JVMCI: OrderedPair is moved up to deal with compilation issues on Windows
204//------------------------------OrderedPair---------------------------
205// Ordered pair of Node*.
206class OrderedPair VALUE_OBJ_CLASS_SPEC {
207 protected:
208  Node* _p1;
209  Node* _p2;
210 public:
211  OrderedPair() : _p1(NULL), _p2(NULL) {}
212  OrderedPair(Node* p1, Node* p2) {
213    if (p1->_idx < p2->_idx) {
214      _p1 = p1; _p2 = p2;
215    } else {
216      _p1 = p2; _p2 = p1;
217    }
218  }
219
220  bool operator==(const OrderedPair &rhs) {
221    return _p1 == rhs._p1 && _p2 == rhs._p2;
222  }
223  void print() { tty->print("  (%d, %d)", _p1->_idx, _p2->_idx); }
224
225  static const OrderedPair initial;
226};
227
228// -----------------------------SuperWord---------------------------------
229// Transforms scalar operations into packed (superword) operations.
230class SuperWord : public ResourceObj {
231 friend class SWPointer;
232 private:
233  PhaseIdealLoop* _phase;
234  Arena*          _arena;
235  PhaseIterGVN   &_igvn;
236
237  enum consts { top_align = -1, bottom_align = -666 };
238
239  GrowableArray<Node_List*> _packset;    // Packs for the current block
240
241  GrowableArray<int> _bb_idx;            // Map from Node _idx to index within block
242
243  GrowableArray<Node*> _block;           // Nodes in current block
244  GrowableArray<Node*> _data_entry;      // Nodes with all inputs from outside
245  GrowableArray<Node*> _mem_slice_head;  // Memory slice head nodes
246  GrowableArray<Node*> _mem_slice_tail;  // Memory slice tail nodes
247  GrowableArray<Node*> _iteration_first; // nodes in the generation that has deps from phi
248  GrowableArray<Node*> _iteration_last;  // nodes in the generation that has deps to   phi
249  GrowableArray<SWNodeInfo> _node_info;  // Info needed per node
250  CloneMap&                 _clone_map;  // map of nodes created in cloning
251
252  MemNode* _align_to_ref;                // Memory reference that pre-loop will align to
253
254  GrowableArray<OrderedPair> _disjoint_ptrs; // runtime disambiguated pointer pairs
255
256  DepGraph _dg; // Dependence graph
257
258  // Scratch pads
259  VectorSet    _visited;       // Visited set
260  VectorSet    _post_visited;  // Post-visited set
261  Node_Stack   _n_idx_list;    // List of (node,index) pairs
262  GrowableArray<Node*> _nlist; // List of nodes
263  GrowableArray<Node*> _stk;   // Stack of nodes
264
265 public:
266  SuperWord(PhaseIdealLoop* phase);
267
268  void transform_loop(IdealLoopTree* lpt, bool do_optimization);
269
270  void unrolling_analysis(int &local_loop_unroll_factor);
271
272  // Accessors for SWPointer
273  PhaseIdealLoop* phase()          { return _phase; }
274  IdealLoopTree* lpt()             { return _lpt; }
275  PhiNode* iv()                    { return _iv; }
276
277  bool early_return()              { return _early_return; }
278
279#ifndef PRODUCT
280  bool     is_debug()              { return _vector_loop_debug > 0; }
281  bool     is_trace_alignment()    { return (_vector_loop_debug & 2) > 0; }
282  bool     is_trace_mem_slice()    { return (_vector_loop_debug & 4) > 0; }
283  bool     is_trace_loop()         { return (_vector_loop_debug & 8) > 0; }
284  bool     is_trace_adjacent()     { return (_vector_loop_debug & 16) > 0; }
285#endif
286  bool     do_vector_loop()        { return _do_vector_loop; }
287 private:
288  IdealLoopTree* _lpt;             // Current loop tree node
289  LoopNode*      _lp;              // Current LoopNode
290  Node*          _bb;              // Current basic block
291  PhiNode*       _iv;              // Induction var
292  bool           _race_possible;   // In cases where SDMU is true
293  bool           _early_return;    // True if we do not initialize
294  bool           _do_vector_loop;  // whether to do vectorization/simd style
295  int            _num_work_vecs;   // Number of non memory vector operations
296  int            _num_reductions;  // Number of reduction expressions applied
297  int            _ii_first;        // generation with direct deps from mem phi
298  int            _ii_last;         // generation with direct deps to   mem phi
299  GrowableArray<int> _ii_order;
300#ifndef PRODUCT
301  uintx          _vector_loop_debug; // provide more printing in debug mode
302#endif
303
304  // Accessors
305  Arena* arena()                   { return _arena; }
306
307  Node* bb()                       { return _bb; }
308  void  set_bb(Node* bb)           { _bb = bb; }
309
310  void set_lpt(IdealLoopTree* lpt) { _lpt = lpt; }
311
312  LoopNode* lp()                   { return _lp; }
313  void      set_lp(LoopNode* lp)   { _lp = lp;
314                                     _iv = lp->as_CountedLoop()->phi()->as_Phi(); }
315  int      iv_stride()             { return lp()->as_CountedLoop()->stride_con(); }
316
317  int vector_width(Node* n) {
318    BasicType bt = velt_basic_type(n);
319    return MIN2(ABS(iv_stride()), Matcher::max_vector_size(bt));
320  }
321  int vector_width_in_bytes(Node* n) {
322    BasicType bt = velt_basic_type(n);
323    return vector_width(n)*type2aelembytes(bt);
324  }
325  MemNode* align_to_ref()            { return _align_to_ref; }
326  void  set_align_to_ref(MemNode* m) { _align_to_ref = m; }
327
328  Node* ctrl(Node* n) const { return _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n; }
329
330  // block accessors
331  bool in_bb(Node* n)      { return n != NULL && n->outcnt() > 0 && ctrl(n) == _bb; }
332  int  bb_idx(Node* n)     { assert(in_bb(n), "must be"); return _bb_idx.at(n->_idx); }
333  void set_bb_idx(Node* n, int i) { _bb_idx.at_put_grow(n->_idx, i); }
334
335  // visited set accessors
336  void visited_clear()           { _visited.Clear(); }
337  void visited_set(Node* n)      { return _visited.set(bb_idx(n)); }
338  int visited_test(Node* n)      { return _visited.test(bb_idx(n)); }
339  int visited_test_set(Node* n)  { return _visited.test_set(bb_idx(n)); }
340  void post_visited_clear()      { _post_visited.Clear(); }
341  void post_visited_set(Node* n) { return _post_visited.set(bb_idx(n)); }
342  int post_visited_test(Node* n) { return _post_visited.test(bb_idx(n)); }
343
344  // Ensure node_info contains element "i"
345  void grow_node_info(int i) { if (i >= _node_info.length()) _node_info.at_put_grow(i, SWNodeInfo::initial); }
346
347  // memory alignment for a node
348  int alignment(Node* n)                     { return _node_info.adr_at(bb_idx(n))->_alignment; }
349  void set_alignment(Node* n, int a)         { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_alignment = a; }
350
351  // Max expression (DAG) depth from beginning of the block for each node
352  int depth(Node* n)                         { return _node_info.adr_at(bb_idx(n))->_depth; }
353  void set_depth(Node* n, int d)             { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_depth = d; }
354
355  // vector element type
356  const Type* velt_type(Node* n)             { return _node_info.adr_at(bb_idx(n))->_velt_type; }
357  BasicType velt_basic_type(Node* n)         { return velt_type(n)->array_element_basic_type(); }
358  void set_velt_type(Node* n, const Type* t) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_velt_type = t; }
359  bool same_velt_type(Node* n1, Node* n2);
360
361  // my_pack
362  Node_List* my_pack(Node* n)                { return !in_bb(n) ? NULL : _node_info.adr_at(bb_idx(n))->_my_pack; }
363  void set_my_pack(Node* n, Node_List* p)    { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_my_pack = p; }
364
365  // CloneMap utilities
366  bool same_origin_idx(Node* a, Node* b) const;
367  bool same_generation(Node* a, Node* b) const;
368
369  // methods
370
371  // Extract the superword level parallelism
372  void SLP_extract();
373  // Find the adjacent memory references and create pack pairs for them.
374  void find_adjacent_refs();
375  // Tracing support
376  #ifndef PRODUCT
377  void find_adjacent_refs_trace_1(Node* best_align_to_mem_ref, int best_iv_adjustment);
378  #endif
379  // Find a memory reference to align the loop induction variable to.
380  MemNode* find_align_to_ref(Node_List &memops);
381  // Calculate loop's iv adjustment for this memory ops.
382  int get_iv_adjustment(MemNode* mem);
383  // Can the preloop align the reference to position zero in the vector?
384  bool ref_is_alignable(SWPointer& p);
385  // rebuild the graph so all loads in different iterations of cloned loop become dependant on phi node (in _do_vector_loop only)
386  bool hoist_loads_in_graph();
387  // Test whether MemNode::Memory dependency to the same load but in the first iteration of this loop is coming from memory phi
388  // Return false if failed
389  Node* find_phi_for_mem_dep(LoadNode* ld);
390  // Return same node but from the first generation. Return 0, if not found
391  Node* first_node(Node* nd);
392  // Return same node as this but from the last generation. Return 0, if not found
393  Node* last_node(Node* n);
394  // Mark nodes belonging to first and last generation
395  // returns first generation index or -1 if vectorization/simd is impossible
396  int mark_generations();
397  // swapping inputs of commutative instruction (Add or Mul)
398  bool fix_commutative_inputs(Node* gold, Node* fix);
399  // make packs forcefully (in _do_vector_loop only)
400  bool pack_parallel();
401  // Construct dependency graph.
402  void dependence_graph();
403  // Return a memory slice (node list) in predecessor order starting at "start"
404  void mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds);
405  // Can s1 and s2 be in a pack with s1 immediately preceding s2 and  s1 aligned at "align"
406  bool stmts_can_pack(Node* s1, Node* s2, int align);
407  // Does s exist in a pack at position pos?
408  bool exists_at(Node* s, uint pos);
409  // Is s1 immediately before s2 in memory?
410  bool are_adjacent_refs(Node* s1, Node* s2);
411  // Are s1 and s2 similar?
412  bool isomorphic(Node* s1, Node* s2);
413  // Is there no data path from s1 to s2 or s2 to s1?
414  bool independent(Node* s1, Node* s2);
415  // Is there a data path between s1 and s2 and both are reductions?
416  bool reduction(Node* s1, Node* s2);
417  // Helper for independent
418  bool independent_path(Node* shallow, Node* deep, uint dp=0);
419  void set_alignment(Node* s1, Node* s2, int align);
420  int data_size(Node* s);
421  // Extend packset by following use->def and def->use links from pack members.
422  void extend_packlist();
423  // Extend the packset by visiting operand definitions of nodes in pack p
424  bool follow_use_defs(Node_List* p);
425  // Extend the packset by visiting uses of nodes in pack p
426  bool follow_def_uses(Node_List* p);
427  // For extended packsets, ordinally arrange uses packset by major component
428  void order_def_uses(Node_List* p);
429  // Estimate the savings from executing s1 and s2 as a pack
430  int est_savings(Node* s1, Node* s2);
431  int adjacent_profit(Node* s1, Node* s2);
432  int pack_cost(int ct);
433  int unpack_cost(int ct);
434  // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
435  void combine_packs();
436  // Construct the map from nodes to packs.
437  void construct_my_pack_map();
438  // Remove packs that are not implemented or not profitable.
439  void filter_packs();
440  // Adjust the memory graph for the packed operations
441  void schedule();
442  // Remove "current" from its current position in the memory graph and insert
443  // it after the appropriate insert points (lip or uip);
444  void remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip, Node *uip, Unique_Node_List &schd_before);
445  // Within a store pack, schedule stores together by moving out the sandwiched memory ops according
446  // to dependence info; and within a load pack, move loads down to the last executed load.
447  void co_locate_pack(Node_List* p);
448  // Convert packs into vector node operations
449  void output();
450  // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
451  Node* vector_opd(Node_List* p, int opd_idx);
452  // Can code be generated for pack p?
453  bool implemented(Node_List* p);
454  // For pack p, are all operands and all uses (with in the block) vector?
455  bool profitable(Node_List* p);
456  // If a use of pack p is not a vector use, then replace the use with an extract operation.
457  void insert_extracts(Node_List* p);
458  // Is use->in(u_idx) a vector use?
459  bool is_vector_use(Node* use, int u_idx);
460  // Construct reverse postorder list of block members
461  bool construct_bb();
462  // Initialize per node info
463  void initialize_bb();
464  // Insert n into block after pos
465  void bb_insert_after(Node* n, int pos);
466  // Compute max depth for expressions from beginning of block
467  void compute_max_depth();
468  // Compute necessary vector element type for expressions
469  void compute_vector_element_type();
470  // Are s1 and s2 in a pack pair and ordered as s1,s2?
471  bool in_packset(Node* s1, Node* s2);
472  // Is s in pack p?
473  Node_List* in_pack(Node* s, Node_List* p);
474  // Remove the pack at position pos in the packset
475  void remove_pack_at(int pos);
476  // Return the node executed first in pack p.
477  Node* executed_first(Node_List* p);
478  // Return the node executed last in pack p.
479  Node* executed_last(Node_List* p);
480  static LoadNode::ControlDependency control_dependency(Node_List* p);
481  // Alignment within a vector memory reference
482  int memory_alignment(MemNode* s, int iv_adjust);
483  // (Start, end] half-open range defining which operands are vector
484  void vector_opd_range(Node* n, uint* start, uint* end);
485  // Smallest type containing range of values
486  const Type* container_type(Node* n);
487  // Adjust pre-loop limit so that in main loop, a load/store reference
488  // to align_to_ref will be a position zero in the vector.
489  void align_initial_loop_index(MemNode* align_to_ref);
490  // Find pre loop end from main loop.  Returns null if none.
491  CountedLoopEndNode* get_pre_loop_end(CountedLoopNode *cl);
492  // Is the use of d1 in u1 at the same operand position as d2 in u2?
493  bool opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2);
494  void init();
495  // clean up some basic structures - used if the ideal graph was rebuilt
496  void restart();
497
498  // print methods
499  void print_packset();
500  void print_pack(Node_List* p);
501  void print_bb();
502  void print_stmt(Node* s);
503  char* blank(uint depth);
504
505  void packset_sort(int n);
506};
507
508
509
510//------------------------------SWPointer---------------------------
511// Information about an address for dependence checking and vector alignment
512class SWPointer VALUE_OBJ_CLASS_SPEC {
513 protected:
514  MemNode*   _mem;           // My memory reference node
515  SuperWord* _slp;           // SuperWord class
516
517  Node* _base;               // NULL if unsafe nonheap reference
518  Node* _adr;                // address pointer
519  jint  _scale;              // multiplier for iv (in bytes), 0 if no loop iv
520  jint  _offset;             // constant offset (in bytes)
521  Node* _invar;              // invariant offset (in bytes), NULL if none
522  bool  _negate_invar;       // if true then use: (0 - _invar)
523  Node_Stack* _nstack;       // stack used to record a swpointer trace of variants
524  bool        _analyze_only; // Used in loop unrolling only for swpointer trace
525  uint        _stack_idx;    // Used in loop unrolling only for swpointer trace
526
527  PhaseIdealLoop* phase() { return _slp->phase(); }
528  IdealLoopTree*  lpt()   { return _slp->lpt(); }
529  PhiNode*        iv()    { return _slp->iv();  } // Induction var
530
531  bool invariant(Node* n);
532
533  // Match: k*iv + offset
534  bool scaled_iv_plus_offset(Node* n);
535  // Match: k*iv where k is a constant that's not zero
536  bool scaled_iv(Node* n);
537  // Match: offset is (k [+/- invariant])
538  bool offset_plus_k(Node* n, bool negate = false);
539
540 public:
541  enum CMP {
542    Less          = 1,
543    Greater       = 2,
544    Equal         = 4,
545    NotEqual      = (Less | Greater),
546    NotComparable = (Less | Greater | Equal)
547  };
548
549  SWPointer(MemNode* mem, SuperWord* slp, Node_Stack *nstack, bool analyze_only);
550  // Following is used to create a temporary object during
551  // the pattern match of an address expression.
552  SWPointer(SWPointer* p);
553
554  bool valid()  { return _adr != NULL; }
555  bool has_iv() { return _scale != 0; }
556
557  Node* base()             { return _base; }
558  Node* adr()              { return _adr; }
559  MemNode* mem()           { return _mem; }
560  int   scale_in_bytes()   { return _scale; }
561  Node* invar()            { return _invar; }
562  bool  negate_invar()     { return _negate_invar; }
563  int   offset_in_bytes()  { return _offset; }
564  int   memory_size()      { return _mem->memory_size(); }
565  Node_Stack* node_stack() { return _nstack; }
566
567  // Comparable?
568  int cmp(SWPointer& q) {
569    if (valid() && q.valid() &&
570        (_adr == q._adr || _base == _adr && q._base == q._adr) &&
571        _scale == q._scale   &&
572        _invar == q._invar   &&
573        _negate_invar == q._negate_invar) {
574      bool overlap = q._offset <   _offset +   memory_size() &&
575                       _offset < q._offset + q.memory_size();
576      return overlap ? Equal : (_offset < q._offset ? Less : Greater);
577    } else {
578      return NotComparable;
579    }
580  }
581
582  bool not_equal(SWPointer& q)    { return not_equal(cmp(q)); }
583  bool equal(SWPointer& q)        { return equal(cmp(q)); }
584  bool comparable(SWPointer& q)   { return comparable(cmp(q)); }
585  static bool not_equal(int cmp)  { return cmp <= NotEqual; }
586  static bool equal(int cmp)      { return cmp == Equal; }
587  static bool comparable(int cmp) { return cmp < NotComparable; }
588
589  void print();
590
591#ifndef PRODUCT
592  class Tracer {
593    friend class SuperWord;
594    friend class SWPointer;
595    SuperWord*   _slp;
596    static int   _depth;
597    int _depth_save;
598    void print_depth();
599    int  depth() const    { return _depth; }
600    void set_depth(int d) { _depth = d; }
601    void inc_depth()      { _depth++;}
602    void dec_depth()      { if (_depth > 0) _depth--;}
603    void store_depth()    {_depth_save = _depth;}
604    void restore_depth()  {_depth = _depth_save;}
605
606    class Depth {
607      friend class Tracer;
608      friend class SWPointer;
609      friend class SuperWord;
610      Depth()  { ++_depth; }
611      Depth(int x)  { _depth = 0; }
612      ~Depth() { if (_depth > 0) --_depth;}
613    };
614    Tracer (SuperWord* slp) : _slp(slp) {}
615
616    // tracing functions
617    void ctor_1(Node* mem);
618    void ctor_2(Node* adr);
619    void ctor_3(Node* adr, int i);
620    void ctor_4(Node* adr, int i);
621    void ctor_5(Node* adr, Node* base,  int i);
622    void ctor_6(Node* mem);
623
624    void invariant_1(Node *n, Node *n_c);
625
626    void scaled_iv_plus_offset_1(Node* n);
627    void scaled_iv_plus_offset_2(Node* n);
628    void scaled_iv_plus_offset_3(Node* n);
629    void scaled_iv_plus_offset_4(Node* n);
630    void scaled_iv_plus_offset_5(Node* n);
631    void scaled_iv_plus_offset_6(Node* n);
632    void scaled_iv_plus_offset_7(Node* n);
633    void scaled_iv_plus_offset_8(Node* n);
634
635    void scaled_iv_1(Node* n);
636    void scaled_iv_2(Node* n, int scale);
637    void scaled_iv_3(Node* n, int scale);
638    void scaled_iv_4(Node* n, int scale);
639    void scaled_iv_5(Node* n, int scale);
640    void scaled_iv_6(Node* n, int scale);
641    void scaled_iv_7(Node* n);
642    void scaled_iv_8(Node* n, SWPointer* tmp);
643    void scaled_iv_9(Node* n, int _scale, int _offset, int mult);
644    void scaled_iv_10(Node* n);
645
646    void offset_plus_k_1(Node* n);
647    void offset_plus_k_2(Node* n, int _offset);
648    void offset_plus_k_3(Node* n, int _offset);
649    void offset_plus_k_4(Node* n);
650    void offset_plus_k_5(Node* n, Node* _invar);
651    void offset_plus_k_6(Node* n, Node* _invar, bool _negate_invar, int _offset);
652    void offset_plus_k_7(Node* n, Node* _invar, bool _negate_invar, int _offset);
653    void offset_plus_k_8(Node* n, Node* _invar, bool _negate_invar, int _offset);
654    void offset_plus_k_9(Node* n, Node* _invar, bool _negate_invar, int _offset);
655    void offset_plus_k_10(Node* n, Node* _invar, bool _negate_invar, int _offset);
656    void offset_plus_k_11(Node* n);
657
658  } _tracer;//TRacer;
659#endif
660};
661
662#endif // SHARE_VM_OPTO_SUPERWORD_HPP
663