superword.cpp revision 235:9c2ecc2ffb12
1/*
2 * Copyright 2007-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 */
23
24#include "incls/_precompiled.incl"
25#include "incls/_superword.cpp.incl"
26
27//
28//                  S U P E R W O R D   T R A N S F O R M
29//=============================================================================
30
31//------------------------------SuperWord---------------------------
32SuperWord::SuperWord(PhaseIdealLoop* phase) :
33  _phase(phase),
34  _igvn(phase->_igvn),
35  _arena(phase->C->comp_arena()),
36  _packset(arena(), 8,  0, NULL),         // packs for the current block
37  _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
38  _block(arena(), 8,  0, NULL),           // nodes in current block
39  _data_entry(arena(), 8,  0, NULL),      // nodes with all inputs from outside
40  _mem_slice_head(arena(), 8,  0, NULL),  // memory slice heads
41  _mem_slice_tail(arena(), 8,  0, NULL),  // memory slice tails
42  _node_info(arena(), 8,  0, SWNodeInfo::initial), // info needed per node
43  _align_to_ref(NULL),                    // memory reference to align vectors to
44  _disjoint_ptrs(arena(), 8,  0, OrderedPair::initial), // runtime disambiguated pointer pairs
45  _dg(_arena),                            // dependence graph
46  _visited(arena()),                      // visited node set
47  _post_visited(arena()),                 // post visited node set
48  _n_idx_list(arena(), 8),                // scratch list of (node,index) pairs
49  _stk(arena(), 8, 0, NULL),              // scratch stack of nodes
50  _nlist(arena(), 8, 0, NULL),            // scratch list of nodes
51  _lpt(NULL),                             // loop tree node
52  _lp(NULL),                              // LoopNode
53  _bb(NULL),                              // basic block
54  _iv(NULL)                               // induction var
55{}
56
57//------------------------------transform_loop---------------------------
58void SuperWord::transform_loop(IdealLoopTree* lpt) {
59  assert(lpt->_head->is_CountedLoop(), "must be");
60  CountedLoopNode *cl = lpt->_head->as_CountedLoop();
61
62  if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
63
64  // Check for no control flow in body (other than exit)
65  Node *cl_exit = cl->loopexit();
66  if (cl_exit->in(0) != lpt->_head) return;
67
68  // Make sure the are no extra control users of the loop backedge
69  if (cl->back_control()->outcnt() != 1) {
70    return;
71  }
72
73  // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
74  CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
75  if (pre_end == NULL) return;
76  Node *pre_opaq1 = pre_end->limit();
77  if (pre_opaq1->Opcode() != Op_Opaque1) return;
78
79  // Do vectors exist on this architecture?
80  if (vector_width_in_bytes() == 0) return;
81
82  init(); // initialize data structures
83
84  set_lpt(lpt);
85  set_lp(cl);
86
87 // For now, define one block which is the entire loop body
88  set_bb(cl);
89
90  assert(_packset.length() == 0, "packset must be empty");
91  SLP_extract();
92}
93
94//------------------------------SLP_extract---------------------------
95// Extract the superword level parallelism
96//
97// 1) A reverse post-order of nodes in the block is constructed.  By scanning
98//    this list from first to last, all definitions are visited before their uses.
99//
100// 2) A point-to-point dependence graph is constructed between memory references.
101//    This simplies the upcoming "independence" checker.
102//
103// 3) The maximum depth in the node graph from the beginning of the block
104//    to each node is computed.  This is used to prune the graph search
105//    in the independence checker.
106//
107// 4) For integer types, the necessary bit width is propagated backwards
108//    from stores to allow packed operations on byte, char, and short
109//    integers.  This reverses the promotion to type "int" that javac
110//    did for operations like: char c1,c2,c3;  c1 = c2 + c3.
111//
112// 5) One of the memory references is picked to be an aligned vector reference.
113//    The pre-loop trip count is adjusted to align this reference in the
114//    unrolled body.
115//
116// 6) The initial set of pack pairs is seeded with memory references.
117//
118// 7) The set of pack pairs is extended by following use->def and def->use links.
119//
120// 8) The pairs are combined into vector sized packs.
121//
122// 9) Reorder the memory slices to co-locate members of the memory packs.
123//
124// 10) Generate ideal vector nodes for the final set of packs and where necessary,
125//    inserting scalar promotion, vector creation from multiple scalars, and
126//    extraction of scalar values from vectors.
127//
128void SuperWord::SLP_extract() {
129
130  // Ready the block
131
132  construct_bb();
133
134  dependence_graph();
135
136  compute_max_depth();
137
138  compute_vector_element_type();
139
140  // Attempt vectorization
141
142  find_adjacent_refs();
143
144  extend_packlist();
145
146  combine_packs();
147
148  construct_my_pack_map();
149
150  filter_packs();
151
152  schedule();
153
154  output();
155}
156
157//------------------------------find_adjacent_refs---------------------------
158// Find the adjacent memory references and create pack pairs for them.
159// This is the initial set of packs that will then be extended by
160// following use->def and def->use links.  The align positions are
161// assigned relative to the reference "align_to_ref"
162void SuperWord::find_adjacent_refs() {
163  // Get list of memory operations
164  Node_List memops;
165  for (int i = 0; i < _block.length(); i++) {
166    Node* n = _block.at(i);
167    if (n->is_Mem() && in_bb(n) &&
168        is_java_primitive(n->as_Mem()->memory_type())) {
169      int align = memory_alignment(n->as_Mem(), 0);
170      if (align != bottom_align) {
171        memops.push(n);
172      }
173    }
174  }
175  if (memops.size() == 0) return;
176
177  // Find a memory reference to align to.  The pre-loop trip count
178  // is modified to align this reference to a vector-aligned address
179  find_align_to_ref(memops);
180  if (align_to_ref() == NULL) return;
181
182  SWPointer align_to_ref_p(align_to_ref(), this);
183  int offset = align_to_ref_p.offset_in_bytes();
184  int scale  = align_to_ref_p.scale_in_bytes();
185  int vw              = vector_width_in_bytes();
186  int stride_sign     = (scale * iv_stride()) > 0 ? 1 : -1;
187  int iv_adjustment   = (stride_sign * vw - (offset % vw)) % vw;
188
189#ifndef PRODUCT
190  if (TraceSuperWord)
191    tty->print_cr("\noffset = %d iv_adjustment = %d  elt_align = %d scale = %d iv_stride = %d",
192                  offset, iv_adjustment, align_to_ref_p.memory_size(), align_to_ref_p.scale_in_bytes(), iv_stride());
193#endif
194
195  // Set alignment relative to "align_to_ref"
196  for (int i = memops.size() - 1; i >= 0; i--) {
197    MemNode* s = memops.at(i)->as_Mem();
198    SWPointer p2(s, this);
199    if (p2.comparable(align_to_ref_p)) {
200      int align = memory_alignment(s, iv_adjustment);
201      set_alignment(s, align);
202    } else {
203      memops.remove(i);
204    }
205  }
206
207  // Create initial pack pairs of memory operations
208  for (uint i = 0; i < memops.size(); i++) {
209    Node* s1 = memops.at(i);
210    for (uint j = 0; j < memops.size(); j++) {
211      Node* s2 = memops.at(j);
212      if (s1 != s2 && are_adjacent_refs(s1, s2)) {
213        int align = alignment(s1);
214        if (stmts_can_pack(s1, s2, align)) {
215          Node_List* pair = new Node_List();
216          pair->push(s1);
217          pair->push(s2);
218          _packset.append(pair);
219        }
220      }
221    }
222  }
223
224#ifndef PRODUCT
225  if (TraceSuperWord) {
226    tty->print_cr("\nAfter find_adjacent_refs");
227    print_packset();
228  }
229#endif
230}
231
232//------------------------------find_align_to_ref---------------------------
233// Find a memory reference to align the loop induction variable to.
234// Looks first at stores then at loads, looking for a memory reference
235// with the largest number of references similar to it.
236void SuperWord::find_align_to_ref(Node_List &memops) {
237  GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
238
239  // Count number of comparable memory ops
240  for (uint i = 0; i < memops.size(); i++) {
241    MemNode* s1 = memops.at(i)->as_Mem();
242    SWPointer p1(s1, this);
243    // Discard if pre loop can't align this reference
244    if (!ref_is_alignable(p1)) {
245      *cmp_ct.adr_at(i) = 0;
246      continue;
247    }
248    for (uint j = i+1; j < memops.size(); j++) {
249      MemNode* s2 = memops.at(j)->as_Mem();
250      if (isomorphic(s1, s2)) {
251        SWPointer p2(s2, this);
252        if (p1.comparable(p2)) {
253          (*cmp_ct.adr_at(i))++;
254          (*cmp_ct.adr_at(j))++;
255        }
256      }
257    }
258  }
259
260  // Find Store (or Load) with the greatest number of "comparable" references
261  int max_ct        = 0;
262  int max_idx       = -1;
263  int min_size      = max_jint;
264  int min_iv_offset = max_jint;
265  for (uint j = 0; j < memops.size(); j++) {
266    MemNode* s = memops.at(j)->as_Mem();
267    if (s->is_Store()) {
268      SWPointer p(s, this);
269      if (cmp_ct.at(j) > max_ct ||
270          cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
271                                     data_size(s) == min_size &&
272                                        p.offset_in_bytes() < min_iv_offset)) {
273        max_ct = cmp_ct.at(j);
274        max_idx = j;
275        min_size = data_size(s);
276        min_iv_offset = p.offset_in_bytes();
277      }
278    }
279  }
280  // If no stores, look at loads
281  if (max_ct == 0) {
282    for (uint j = 0; j < memops.size(); j++) {
283      MemNode* s = memops.at(j)->as_Mem();
284      if (s->is_Load()) {
285        SWPointer p(s, this);
286        if (cmp_ct.at(j) > max_ct ||
287            cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
288                                       data_size(s) == min_size &&
289                                          p.offset_in_bytes() < min_iv_offset)) {
290          max_ct = cmp_ct.at(j);
291          max_idx = j;
292          min_size = data_size(s);
293          min_iv_offset = p.offset_in_bytes();
294        }
295      }
296    }
297  }
298
299  if (max_ct > 0)
300    set_align_to_ref(memops.at(max_idx)->as_Mem());
301
302#ifndef PRODUCT
303  if (TraceSuperWord && Verbose) {
304    tty->print_cr("\nVector memops after find_align_to_refs");
305    for (uint i = 0; i < memops.size(); i++) {
306      MemNode* s = memops.at(i)->as_Mem();
307      s->dump();
308    }
309  }
310#endif
311}
312
313//------------------------------ref_is_alignable---------------------------
314// Can the preloop align the reference to position zero in the vector?
315bool SuperWord::ref_is_alignable(SWPointer& p) {
316  if (!p.has_iv()) {
317    return true;   // no induction variable
318  }
319  CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
320  assert(pre_end->stride_is_con(), "pre loop stride is constant");
321  int preloop_stride = pre_end->stride_con();
322
323  int span = preloop_stride * p.scale_in_bytes();
324
325  // Stride one accesses are alignable.
326  if (ABS(span) == p.memory_size())
327    return true;
328
329  // If initial offset from start of object is computable,
330  // compute alignment within the vector.
331  int vw = vector_width_in_bytes();
332  if (vw % span == 0) {
333    Node* init_nd = pre_end->init_trip();
334    if (init_nd->is_Con() && p.invar() == NULL) {
335      int init = init_nd->bottom_type()->is_int()->get_con();
336
337      int init_offset = init * p.scale_in_bytes() + p.offset_in_bytes();
338      assert(init_offset >= 0, "positive offset from object start");
339
340      if (span > 0) {
341        return (vw - (init_offset % vw)) % span == 0;
342      } else {
343        assert(span < 0, "nonzero stride * scale");
344        return (init_offset % vw) % -span == 0;
345      }
346    }
347  }
348  return false;
349}
350
351//---------------------------dependence_graph---------------------------
352// Construct dependency graph.
353// Add dependence edges to load/store nodes for memory dependence
354//    A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
355void SuperWord::dependence_graph() {
356  // First, assign a dependence node to each memory node
357  for (int i = 0; i < _block.length(); i++ ) {
358    Node *n = _block.at(i);
359    if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
360      _dg.make_node(n);
361    }
362  }
363
364  // For each memory slice, create the dependences
365  for (int i = 0; i < _mem_slice_head.length(); i++) {
366    Node* n      = _mem_slice_head.at(i);
367    Node* n_tail = _mem_slice_tail.at(i);
368
369    // Get slice in predecessor order (last is first)
370    mem_slice_preds(n_tail, n, _nlist);
371
372    // Make the slice dependent on the root
373    DepMem* slice = _dg.dep(n);
374    _dg.make_edge(_dg.root(), slice);
375
376    // Create a sink for the slice
377    DepMem* slice_sink = _dg.make_node(NULL);
378    _dg.make_edge(slice_sink, _dg.tail());
379
380    // Now visit each pair of memory ops, creating the edges
381    for (int j = _nlist.length() - 1; j >= 0 ; j--) {
382      Node* s1 = _nlist.at(j);
383
384      // If no dependency yet, use slice
385      if (_dg.dep(s1)->in_cnt() == 0) {
386        _dg.make_edge(slice, s1);
387      }
388      SWPointer p1(s1->as_Mem(), this);
389      bool sink_dependent = true;
390      for (int k = j - 1; k >= 0; k--) {
391        Node* s2 = _nlist.at(k);
392        if (s1->is_Load() && s2->is_Load())
393          continue;
394        SWPointer p2(s2->as_Mem(), this);
395
396        int cmp = p1.cmp(p2);
397        if (SuperWordRTDepCheck &&
398            p1.base() != p2.base() && p1.valid() && p2.valid()) {
399          // Create a runtime check to disambiguate
400          OrderedPair pp(p1.base(), p2.base());
401          _disjoint_ptrs.append_if_missing(pp);
402        } else if (!SWPointer::not_equal(cmp)) {
403          // Possibly same address
404          _dg.make_edge(s1, s2);
405          sink_dependent = false;
406        }
407      }
408      if (sink_dependent) {
409        _dg.make_edge(s1, slice_sink);
410      }
411    }
412#ifndef PRODUCT
413    if (TraceSuperWord) {
414      tty->print_cr("\nDependence graph for slice: %d", n->_idx);
415      for (int q = 0; q < _nlist.length(); q++) {
416        _dg.print(_nlist.at(q));
417      }
418      tty->cr();
419    }
420#endif
421    _nlist.clear();
422  }
423
424#ifndef PRODUCT
425  if (TraceSuperWord) {
426    tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
427    for (int r = 0; r < _disjoint_ptrs.length(); r++) {
428      _disjoint_ptrs.at(r).print();
429      tty->cr();
430    }
431    tty->cr();
432  }
433#endif
434}
435
436//---------------------------mem_slice_preds---------------------------
437// Return a memory slice (node list) in predecessor order starting at "start"
438void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
439  assert(preds.length() == 0, "start empty");
440  Node* n = start;
441  Node* prev = NULL;
442  while (true) {
443    assert(in_bb(n), "must be in block");
444    for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
445      Node* out = n->fast_out(i);
446      if (out->is_Load()) {
447        if (in_bb(out)) {
448          preds.push(out);
449        }
450      } else {
451        // FIXME
452        if (out->is_MergeMem() && !in_bb(out)) {
453          // Either unrolling is causing a memory edge not to disappear,
454          // or need to run igvn.optimize() again before SLP
455        } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
456          // Ditto.  Not sure what else to check further.
457        } else if (out->Opcode() == Op_StoreCM && out->in(4) == n) {
458          // StoreCM has an input edge used as a precedence edge.
459          // Maybe an issue when oop stores are vectorized.
460        } else {
461          assert(out == prev || prev == NULL, "no branches off of store slice");
462        }
463      }
464    }
465    if (n == stop) break;
466    preds.push(n);
467    prev = n;
468    n = n->in(MemNode::Memory);
469  }
470}
471
472//------------------------------stmts_can_pack---------------------------
473// Can s1 and s2 be in a pack with s1 immediately preceeding s2 and
474// s1 aligned at "align"
475bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
476  if (isomorphic(s1, s2)) {
477    if (independent(s1, s2)) {
478      if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
479        if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
480          int s1_align = alignment(s1);
481          int s2_align = alignment(s2);
482          if (s1_align == top_align || s1_align == align) {
483            if (s2_align == top_align || s2_align == align + data_size(s1)) {
484              return true;
485            }
486          }
487        }
488      }
489    }
490  }
491  return false;
492}
493
494//------------------------------exists_at---------------------------
495// Does s exist in a pack at position pos?
496bool SuperWord::exists_at(Node* s, uint pos) {
497  for (int i = 0; i < _packset.length(); i++) {
498    Node_List* p = _packset.at(i);
499    if (p->at(pos) == s) {
500      return true;
501    }
502  }
503  return false;
504}
505
506//------------------------------are_adjacent_refs---------------------------
507// Is s1 immediately before s2 in memory?
508bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
509  if (!s1->is_Mem() || !s2->is_Mem()) return false;
510  if (!in_bb(s1)    || !in_bb(s2))    return false;
511  // FIXME - co_locate_pack fails on Stores in different mem-slices, so
512  // only pack memops that are in the same alias set until that's fixed.
513  if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
514      _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
515    return false;
516  SWPointer p1(s1->as_Mem(), this);
517  SWPointer p2(s2->as_Mem(), this);
518  if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
519  int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
520  return diff == data_size(s1);
521}
522
523//------------------------------isomorphic---------------------------
524// Are s1 and s2 similar?
525bool SuperWord::isomorphic(Node* s1, Node* s2) {
526  if (s1->Opcode() != s2->Opcode()) return false;
527  if (s1->req() != s2->req()) return false;
528  if (s1->in(0) != s2->in(0)) return false;
529  if (velt_type(s1) != velt_type(s2)) return false;
530  return true;
531}
532
533//------------------------------independent---------------------------
534// Is there no data path from s1 to s2 or s2 to s1?
535bool SuperWord::independent(Node* s1, Node* s2) {
536  //  assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
537  int d1 = depth(s1);
538  int d2 = depth(s2);
539  if (d1 == d2) return s1 != s2;
540  Node* deep    = d1 > d2 ? s1 : s2;
541  Node* shallow = d1 > d2 ? s2 : s1;
542
543  visited_clear();
544
545  return independent_path(shallow, deep);
546}
547
548//------------------------------independent_path------------------------------
549// Helper for independent
550bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
551  if (dp >= 1000) return false; // stop deep recursion
552  visited_set(deep);
553  int shal_depth = depth(shallow);
554  assert(shal_depth <= depth(deep), "must be");
555  for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
556    Node* pred = preds.current();
557    if (in_bb(pred) && !visited_test(pred)) {
558      if (shallow == pred) {
559        return false;
560      }
561      if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
562        return false;
563      }
564    }
565  }
566  return true;
567}
568
569//------------------------------set_alignment---------------------------
570void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
571  set_alignment(s1, align);
572  set_alignment(s2, align + data_size(s1));
573}
574
575//------------------------------data_size---------------------------
576int SuperWord::data_size(Node* s) {
577  const Type* t = velt_type(s);
578  BasicType  bt = t->array_element_basic_type();
579  int bsize = type2aelembytes(bt);
580  assert(bsize != 0, "valid size");
581  return bsize;
582}
583
584//------------------------------extend_packlist---------------------------
585// Extend packset by following use->def and def->use links from pack members.
586void SuperWord::extend_packlist() {
587  bool changed;
588  do {
589    changed = false;
590    for (int i = 0; i < _packset.length(); i++) {
591      Node_List* p = _packset.at(i);
592      changed |= follow_use_defs(p);
593      changed |= follow_def_uses(p);
594    }
595  } while (changed);
596
597#ifndef PRODUCT
598  if (TraceSuperWord) {
599    tty->print_cr("\nAfter extend_packlist");
600    print_packset();
601  }
602#endif
603}
604
605//------------------------------follow_use_defs---------------------------
606// Extend the packset by visiting operand definitions of nodes in pack p
607bool SuperWord::follow_use_defs(Node_List* p) {
608  Node* s1 = p->at(0);
609  Node* s2 = p->at(1);
610  assert(p->size() == 2, "just checking");
611  assert(s1->req() == s2->req(), "just checking");
612  assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
613
614  if (s1->is_Load()) return false;
615
616  int align = alignment(s1);
617  bool changed = false;
618  int start = s1->is_Store() ? MemNode::ValueIn   : 1;
619  int end   = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
620  for (int j = start; j < end; j++) {
621    Node* t1 = s1->in(j);
622    Node* t2 = s2->in(j);
623    if (!in_bb(t1) || !in_bb(t2))
624      continue;
625    if (stmts_can_pack(t1, t2, align)) {
626      if (est_savings(t1, t2) >= 0) {
627        Node_List* pair = new Node_List();
628        pair->push(t1);
629        pair->push(t2);
630        _packset.append(pair);
631        set_alignment(t1, t2, align);
632        changed = true;
633      }
634    }
635  }
636  return changed;
637}
638
639//------------------------------follow_def_uses---------------------------
640// Extend the packset by visiting uses of nodes in pack p
641bool SuperWord::follow_def_uses(Node_List* p) {
642  bool changed = false;
643  Node* s1 = p->at(0);
644  Node* s2 = p->at(1);
645  assert(p->size() == 2, "just checking");
646  assert(s1->req() == s2->req(), "just checking");
647  assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
648
649  if (s1->is_Store()) return false;
650
651  int align = alignment(s1);
652  int savings = -1;
653  Node* u1 = NULL;
654  Node* u2 = NULL;
655  for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
656    Node* t1 = s1->fast_out(i);
657    if (!in_bb(t1)) continue;
658    for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
659      Node* t2 = s2->fast_out(j);
660      if (!in_bb(t2)) continue;
661      if (!opnd_positions_match(s1, t1, s2, t2))
662        continue;
663      if (stmts_can_pack(t1, t2, align)) {
664        int my_savings = est_savings(t1, t2);
665        if (my_savings > savings) {
666          savings = my_savings;
667          u1 = t1;
668          u2 = t2;
669        }
670      }
671    }
672  }
673  if (savings >= 0) {
674    Node_List* pair = new Node_List();
675    pair->push(u1);
676    pair->push(u2);
677    _packset.append(pair);
678    set_alignment(u1, u2, align);
679    changed = true;
680  }
681  return changed;
682}
683
684//---------------------------opnd_positions_match-------------------------
685// Is the use of d1 in u1 at the same operand position as d2 in u2?
686bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
687  uint ct = u1->req();
688  if (ct != u2->req()) return false;
689  uint i1 = 0;
690  uint i2 = 0;
691  do {
692    for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
693    for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
694    if (i1 != i2) {
695      return false;
696    }
697  } while (i1 < ct);
698  return true;
699}
700
701//------------------------------est_savings---------------------------
702// Estimate the savings from executing s1 and s2 as a pack
703int SuperWord::est_savings(Node* s1, Node* s2) {
704  int save = 2 - 1; // 2 operations per instruction in packed form
705
706  // inputs
707  for (uint i = 1; i < s1->req(); i++) {
708    Node* x1 = s1->in(i);
709    Node* x2 = s2->in(i);
710    if (x1 != x2) {
711      if (are_adjacent_refs(x1, x2)) {
712        save += adjacent_profit(x1, x2);
713      } else if (!in_packset(x1, x2)) {
714        save -= pack_cost(2);
715      } else {
716        save += unpack_cost(2);
717      }
718    }
719  }
720
721  // uses of result
722  uint ct = 0;
723  for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
724    Node* s1_use = s1->fast_out(i);
725    for (int j = 0; j < _packset.length(); j++) {
726      Node_List* p = _packset.at(j);
727      if (p->at(0) == s1_use) {
728        for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
729          Node* s2_use = s2->fast_out(k);
730          if (p->at(p->size()-1) == s2_use) {
731            ct++;
732            if (are_adjacent_refs(s1_use, s2_use)) {
733              save += adjacent_profit(s1_use, s2_use);
734            }
735          }
736        }
737      }
738    }
739  }
740
741  if (ct < s1->outcnt()) save += unpack_cost(1);
742  if (ct < s2->outcnt()) save += unpack_cost(1);
743
744  return save;
745}
746
747//------------------------------costs---------------------------
748int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
749int SuperWord::pack_cost(int ct)   { return ct; }
750int SuperWord::unpack_cost(int ct) { return ct; }
751
752//------------------------------combine_packs---------------------------
753// Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
754void SuperWord::combine_packs() {
755  bool changed;
756  do {
757    changed = false;
758    for (int i = 0; i < _packset.length(); i++) {
759      Node_List* p1 = _packset.at(i);
760      if (p1 == NULL) continue;
761      for (int j = 0; j < _packset.length(); j++) {
762        Node_List* p2 = _packset.at(j);
763        if (p2 == NULL) continue;
764        if (p1->at(p1->size()-1) == p2->at(0)) {
765          for (uint k = 1; k < p2->size(); k++) {
766            p1->push(p2->at(k));
767          }
768          _packset.at_put(j, NULL);
769          changed = true;
770        }
771      }
772    }
773  } while (changed);
774
775  for (int i = _packset.length() - 1; i >= 0; i--) {
776    Node_List* p1 = _packset.at(i);
777    if (p1 == NULL) {
778      _packset.remove_at(i);
779    }
780  }
781
782#ifndef PRODUCT
783  if (TraceSuperWord) {
784    tty->print_cr("\nAfter combine_packs");
785    print_packset();
786  }
787#endif
788}
789
790//-----------------------------construct_my_pack_map--------------------------
791// Construct the map from nodes to packs.  Only valid after the
792// point where a node is only in one pack (after combine_packs).
793void SuperWord::construct_my_pack_map() {
794  Node_List* rslt = NULL;
795  for (int i = 0; i < _packset.length(); i++) {
796    Node_List* p = _packset.at(i);
797    for (uint j = 0; j < p->size(); j++) {
798      Node* s = p->at(j);
799      assert(my_pack(s) == NULL, "only in one pack");
800      set_my_pack(s, p);
801    }
802  }
803}
804
805//------------------------------filter_packs---------------------------
806// Remove packs that are not implemented or not profitable.
807void SuperWord::filter_packs() {
808
809  // Remove packs that are not implemented
810  for (int i = _packset.length() - 1; i >= 0; i--) {
811    Node_List* pk = _packset.at(i);
812    bool impl = implemented(pk);
813    if (!impl) {
814#ifndef PRODUCT
815      if (TraceSuperWord && Verbose) {
816        tty->print_cr("Unimplemented");
817        pk->at(0)->dump();
818      }
819#endif
820      remove_pack_at(i);
821    }
822  }
823
824  // Remove packs that are not profitable
825  bool changed;
826  do {
827    changed = false;
828    for (int i = _packset.length() - 1; i >= 0; i--) {
829      Node_List* pk = _packset.at(i);
830      bool prof = profitable(pk);
831      if (!prof) {
832#ifndef PRODUCT
833        if (TraceSuperWord && Verbose) {
834          tty->print_cr("Unprofitable");
835          pk->at(0)->dump();
836        }
837#endif
838        remove_pack_at(i);
839        changed = true;
840      }
841    }
842  } while (changed);
843
844#ifndef PRODUCT
845  if (TraceSuperWord) {
846    tty->print_cr("\nAfter filter_packs");
847    print_packset();
848    tty->cr();
849  }
850#endif
851}
852
853//------------------------------implemented---------------------------
854// Can code be generated for pack p?
855bool SuperWord::implemented(Node_List* p) {
856  Node* p0 = p->at(0);
857  int vopc = VectorNode::opcode(p0->Opcode(), p->size(), velt_type(p0));
858  return vopc > 0 && Matcher::has_match_rule(vopc);
859}
860
861//------------------------------profitable---------------------------
862// For pack p, are all operands and all uses (with in the block) vector?
863bool SuperWord::profitable(Node_List* p) {
864  Node* p0 = p->at(0);
865  uint start, end;
866  vector_opd_range(p0, &start, &end);
867
868  // Return false if some input is not vector and inside block
869  for (uint i = start; i < end; i++) {
870    if (!is_vector_use(p0, i)) {
871      // For now, return false if not scalar promotion case (inputs are the same.)
872      // Later, implement PackNode and allow differring, non-vector inputs
873      // (maybe just the ones from outside the block.)
874      Node* p0_def = p0->in(i);
875      for (uint j = 1; j < p->size(); j++) {
876        Node* use = p->at(j);
877        Node* def = use->in(i);
878        if (p0_def != def)
879          return false;
880      }
881    }
882  }
883  if (!p0->is_Store()) {
884    // For now, return false if not all uses are vector.
885    // Later, implement ExtractNode and allow non-vector uses (maybe
886    // just the ones outside the block.)
887    for (uint i = 0; i < p->size(); i++) {
888      Node* def = p->at(i);
889      for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
890        Node* use = def->fast_out(j);
891        for (uint k = 0; k < use->req(); k++) {
892          Node* n = use->in(k);
893          if (def == n) {
894            if (!is_vector_use(use, k)) {
895              return false;
896            }
897          }
898        }
899      }
900    }
901  }
902  return true;
903}
904
905//------------------------------schedule---------------------------
906// Adjust the memory graph for the packed operations
907void SuperWord::schedule() {
908
909  // Co-locate in the memory graph the members of each memory pack
910  for (int i = 0; i < _packset.length(); i++) {
911    co_locate_pack(_packset.at(i));
912  }
913}
914
915//------------------------------co_locate_pack---------------------------
916// Within a pack, move stores down to the last executed store,
917// and move loads up to the first executed load.
918void SuperWord::co_locate_pack(Node_List* pk) {
919  if (pk->at(0)->is_Store()) {
920    // Push Stores down towards last executed pack member
921    MemNode* first     = executed_first(pk)->as_Mem();
922    MemNode* last      = executed_last(pk)->as_Mem();
923    MemNode* insert_pt = last;
924    MemNode* current   = last->in(MemNode::Memory)->as_Mem();
925    while (true) {
926      assert(in_bb(current), "stay in block");
927      Node* my_mem = current->in(MemNode::Memory);
928      if (in_pack(current, pk)) {
929        // Forward users of my memory state to my input memory state
930        _igvn.hash_delete(current);
931        _igvn.hash_delete(my_mem);
932        for (DUIterator i = current->outs(); current->has_out(i); i++) {
933          Node* use = current->out(i);
934          if (use->is_Mem()) {
935            assert(use->in(MemNode::Memory) == current, "must be");
936            _igvn.hash_delete(use);
937            use->set_req(MemNode::Memory, my_mem);
938            _igvn._worklist.push(use);
939            --i; // deleted this edge; rescan position
940          }
941        }
942        // put current immediately before insert_pt
943        current->set_req(MemNode::Memory, insert_pt->in(MemNode::Memory));
944        _igvn.hash_delete(insert_pt);
945        insert_pt->set_req(MemNode::Memory, current);
946        _igvn._worklist.push(insert_pt);
947        _igvn._worklist.push(current);
948        insert_pt = current;
949      }
950      if (current == first) break;
951      current = my_mem->as_Mem();
952    }
953  } else if (pk->at(0)->is_Load()) {
954    // Pull Loads up towards first executed pack member
955    LoadNode* first = executed_first(pk)->as_Load();
956    Node* first_mem = first->in(MemNode::Memory);
957    _igvn.hash_delete(first_mem);
958    // Give each load same memory state as first
959    for (uint i = 0; i < pk->size(); i++) {
960      LoadNode* ld = pk->at(i)->as_Load();
961      _igvn.hash_delete(ld);
962      ld->set_req(MemNode::Memory, first_mem);
963      _igvn._worklist.push(ld);
964    }
965  }
966}
967
968//------------------------------output---------------------------
969// Convert packs into vector node operations
970void SuperWord::output() {
971  if (_packset.length() == 0) return;
972
973  // MUST ENSURE main loop's initial value is properly aligned:
974  //  (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
975
976  align_initial_loop_index(align_to_ref());
977
978  // Insert extract (unpack) operations for scalar uses
979  for (int i = 0; i < _packset.length(); i++) {
980    insert_extracts(_packset.at(i));
981  }
982
983  for (int i = 0; i < _block.length(); i++) {
984    Node* n = _block.at(i);
985    Node_List* p = my_pack(n);
986    if (p && n == executed_last(p)) {
987      uint vlen = p->size();
988      Node* vn = NULL;
989      Node* low_adr = p->at(0);
990      Node* first   = executed_first(p);
991      if (n->is_Load()) {
992        int   opc = n->Opcode();
993        Node* ctl = n->in(MemNode::Control);
994        Node* mem = first->in(MemNode::Memory);
995        Node* adr = low_adr->in(MemNode::Address);
996        const TypePtr* atyp = n->adr_type();
997        vn = VectorLoadNode::make(_phase->C, opc, ctl, mem, adr, atyp, vlen);
998
999      } else if (n->is_Store()) {
1000        // Promote value to be stored to vector
1001        VectorNode* val = vector_opd(p, MemNode::ValueIn);
1002
1003        int   opc = n->Opcode();
1004        Node* ctl = n->in(MemNode::Control);
1005        Node* mem = first->in(MemNode::Memory);
1006        Node* adr = low_adr->in(MemNode::Address);
1007        const TypePtr* atyp = n->adr_type();
1008        vn = VectorStoreNode::make(_phase->C, opc, ctl, mem, adr, atyp, val, vlen);
1009
1010      } else if (n->req() == 3) {
1011        // Promote operands to vector
1012        Node* in1 = vector_opd(p, 1);
1013        Node* in2 = vector_opd(p, 2);
1014        vn = VectorNode::make(_phase->C, n->Opcode(), in1, in2, vlen, velt_type(n));
1015
1016      } else {
1017        ShouldNotReachHere();
1018      }
1019
1020      _phase->_igvn.register_new_node_with_optimizer(vn);
1021      _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
1022      for (uint j = 0; j < p->size(); j++) {
1023        Node* pm = p->at(j);
1024        _igvn.hash_delete(pm);
1025        _igvn.subsume_node(pm, vn);
1026      }
1027      _igvn._worklist.push(vn);
1028    }
1029  }
1030}
1031
1032//------------------------------vector_opd---------------------------
1033// Create a vector operand for the nodes in pack p for operand: in(opd_idx)
1034VectorNode* SuperWord::vector_opd(Node_List* p, int opd_idx) {
1035  Node* p0 = p->at(0);
1036  uint vlen = p->size();
1037  Node* opd = p0->in(opd_idx);
1038
1039  bool same_opd = true;
1040  for (uint i = 1; i < vlen; i++) {
1041    Node* pi = p->at(i);
1042    Node* in = pi->in(opd_idx);
1043    if (opd != in) {
1044      same_opd = false;
1045      break;
1046    }
1047  }
1048
1049  if (same_opd) {
1050    if (opd->is_Vector()) {
1051      return (VectorNode*)opd; // input is matching vector
1052    }
1053    // Convert scalar input to vector. Use p0's type because it's container
1054    // maybe smaller than the operand's container.
1055    const Type* opd_t = velt_type(!in_bb(opd) ? p0 : opd);
1056    const Type* p0_t  = velt_type(p0);
1057    if (p0_t->higher_equal(opd_t)) opd_t = p0_t;
1058    VectorNode* vn    = VectorNode::scalar2vector(_phase->C, opd, vlen, opd_t);
1059
1060    _phase->_igvn.register_new_node_with_optimizer(vn);
1061    _phase->set_ctrl(vn, _phase->get_ctrl(opd));
1062    return vn;
1063  }
1064
1065  // Insert pack operation
1066  const Type* opd_t = velt_type(!in_bb(opd) ? p0 : opd);
1067  PackNode* pk = PackNode::make(_phase->C, opd, opd_t);
1068
1069  for (uint i = 1; i < vlen; i++) {
1070    Node* pi = p->at(i);
1071    Node* in = pi->in(opd_idx);
1072    assert(my_pack(in) == NULL, "Should already have been unpacked");
1073    assert(opd_t == velt_type(!in_bb(in) ? pi : in), "all same type");
1074    pk->add_opd(in);
1075  }
1076  _phase->_igvn.register_new_node_with_optimizer(pk);
1077  _phase->set_ctrl(pk, _phase->get_ctrl(opd));
1078  return pk;
1079}
1080
1081//------------------------------insert_extracts---------------------------
1082// If a use of pack p is not a vector use, then replace the
1083// use with an extract operation.
1084void SuperWord::insert_extracts(Node_List* p) {
1085  if (p->at(0)->is_Store()) return;
1086  assert(_n_idx_list.is_empty(), "empty (node,index) list");
1087
1088  // Inspect each use of each pack member.  For each use that is
1089  // not a vector use, replace the use with an extract operation.
1090
1091  for (uint i = 0; i < p->size(); i++) {
1092    Node* def = p->at(i);
1093    for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1094      Node* use = def->fast_out(j);
1095      for (uint k = 0; k < use->req(); k++) {
1096        Node* n = use->in(k);
1097        if (def == n) {
1098          if (!is_vector_use(use, k)) {
1099            _n_idx_list.push(use, k);
1100          }
1101        }
1102      }
1103    }
1104  }
1105
1106  while (_n_idx_list.is_nonempty()) {
1107    Node* use = _n_idx_list.node();
1108    int   idx = _n_idx_list.index();
1109    _n_idx_list.pop();
1110    Node* def = use->in(idx);
1111
1112    // Insert extract operation
1113    _igvn.hash_delete(def);
1114    _igvn.hash_delete(use);
1115    int def_pos = alignment(def) / data_size(def);
1116    const Type* def_t = velt_type(def);
1117
1118    Node* ex = ExtractNode::make(_phase->C, def, def_pos, def_t);
1119    _phase->_igvn.register_new_node_with_optimizer(ex);
1120    _phase->set_ctrl(ex, _phase->get_ctrl(def));
1121    use->set_req(idx, ex);
1122    _igvn._worklist.push(def);
1123    _igvn._worklist.push(use);
1124
1125    bb_insert_after(ex, bb_idx(def));
1126    set_velt_type(ex, def_t);
1127  }
1128}
1129
1130//------------------------------is_vector_use---------------------------
1131// Is use->in(u_idx) a vector use?
1132bool SuperWord::is_vector_use(Node* use, int u_idx) {
1133  Node_List* u_pk = my_pack(use);
1134  if (u_pk == NULL) return false;
1135  Node* def = use->in(u_idx);
1136  Node_List* d_pk = my_pack(def);
1137  if (d_pk == NULL) {
1138    // check for scalar promotion
1139    Node* n = u_pk->at(0)->in(u_idx);
1140    for (uint i = 1; i < u_pk->size(); i++) {
1141      if (u_pk->at(i)->in(u_idx) != n) return false;
1142    }
1143    return true;
1144  }
1145  if (u_pk->size() != d_pk->size())
1146    return false;
1147  for (uint i = 0; i < u_pk->size(); i++) {
1148    Node* ui = u_pk->at(i);
1149    Node* di = d_pk->at(i);
1150    if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
1151      return false;
1152  }
1153  return true;
1154}
1155
1156//------------------------------construct_bb---------------------------
1157// Construct reverse postorder list of block members
1158void SuperWord::construct_bb() {
1159  Node* entry = bb();
1160
1161  assert(_stk.length() == 0,            "stk is empty");
1162  assert(_block.length() == 0,          "block is empty");
1163  assert(_data_entry.length() == 0,     "data_entry is empty");
1164  assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
1165  assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
1166
1167  // Find non-control nodes with no inputs from within block,
1168  // create a temporary map from node _idx to bb_idx for use
1169  // by the visited and post_visited sets,
1170  // and count number of nodes in block.
1171  int bb_ct = 0;
1172  for (uint i = 0; i < lpt()->_body.size(); i++ ) {
1173    Node *n = lpt()->_body.at(i);
1174    set_bb_idx(n, i); // Create a temporary map
1175    if (in_bb(n)) {
1176      bb_ct++;
1177      if (!n->is_CFG()) {
1178        bool found = false;
1179        for (uint j = 0; j < n->req(); j++) {
1180          Node* def = n->in(j);
1181          if (def && in_bb(def)) {
1182            found = true;
1183            break;
1184          }
1185        }
1186        if (!found) {
1187          assert(n != entry, "can't be entry");
1188          _data_entry.push(n);
1189        }
1190      }
1191    }
1192  }
1193
1194  // Find memory slices (head and tail)
1195  for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
1196    Node *n = lp()->fast_out(i);
1197    if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
1198      Node* n_tail  = n->in(LoopNode::LoopBackControl);
1199      _mem_slice_head.push(n);
1200      _mem_slice_tail.push(n_tail);
1201    }
1202  }
1203
1204  // Create an RPO list of nodes in block
1205
1206  visited_clear();
1207  post_visited_clear();
1208
1209  // Push all non-control nodes with no inputs from within block, then control entry
1210  for (int j = 0; j < _data_entry.length(); j++) {
1211    Node* n = _data_entry.at(j);
1212    visited_set(n);
1213    _stk.push(n);
1214  }
1215  visited_set(entry);
1216  _stk.push(entry);
1217
1218  // Do a depth first walk over out edges
1219  int rpo_idx = bb_ct - 1;
1220  int size;
1221  while ((size = _stk.length()) > 0) {
1222    Node* n = _stk.top(); // Leave node on stack
1223    if (!visited_test_set(n)) {
1224      // forward arc in graph
1225    } else if (!post_visited_test(n)) {
1226      // cross or back arc
1227      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1228        Node *use = n->fast_out(i);
1229        if (in_bb(use) && !visited_test(use) &&
1230            // Don't go around backedge
1231            (!use->is_Phi() || n == entry)) {
1232          _stk.push(use);
1233        }
1234      }
1235      if (_stk.length() == size) {
1236        // There were no additional uses, post visit node now
1237        _stk.pop(); // Remove node from stack
1238        assert(rpo_idx >= 0, "");
1239        _block.at_put_grow(rpo_idx, n);
1240        rpo_idx--;
1241        post_visited_set(n);
1242        assert(rpo_idx >= 0 || _stk.is_empty(), "");
1243      }
1244    } else {
1245      _stk.pop(); // Remove post-visited node from stack
1246    }
1247  }
1248
1249  // Create real map of block indices for nodes
1250  for (int j = 0; j < _block.length(); j++) {
1251    Node* n = _block.at(j);
1252    set_bb_idx(n, j);
1253  }
1254
1255  initialize_bb(); // Ensure extra info is allocated.
1256
1257#ifndef PRODUCT
1258  if (TraceSuperWord) {
1259    print_bb();
1260    tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
1261    for (int m = 0; m < _data_entry.length(); m++) {
1262      tty->print("%3d ", m);
1263      _data_entry.at(m)->dump();
1264    }
1265    tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
1266    for (int m = 0; m < _mem_slice_head.length(); m++) {
1267      tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
1268      tty->print("    ");    _mem_slice_tail.at(m)->dump();
1269    }
1270  }
1271#endif
1272  assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
1273}
1274
1275//------------------------------initialize_bb---------------------------
1276// Initialize per node info
1277void SuperWord::initialize_bb() {
1278  Node* last = _block.at(_block.length() - 1);
1279  grow_node_info(bb_idx(last));
1280}
1281
1282//------------------------------bb_insert_after---------------------------
1283// Insert n into block after pos
1284void SuperWord::bb_insert_after(Node* n, int pos) {
1285  int n_pos = pos + 1;
1286  // Make room
1287  for (int i = _block.length() - 1; i >= n_pos; i--) {
1288    _block.at_put_grow(i+1, _block.at(i));
1289  }
1290  for (int j = _node_info.length() - 1; j >= n_pos; j--) {
1291    _node_info.at_put_grow(j+1, _node_info.at(j));
1292  }
1293  // Set value
1294  _block.at_put_grow(n_pos, n);
1295  _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
1296  // Adjust map from node->_idx to _block index
1297  for (int i = n_pos; i < _block.length(); i++) {
1298    set_bb_idx(_block.at(i), i);
1299  }
1300}
1301
1302//------------------------------compute_max_depth---------------------------
1303// Compute max depth for expressions from beginning of block
1304// Use to prune search paths during test for independence.
1305void SuperWord::compute_max_depth() {
1306  int ct = 0;
1307  bool again;
1308  do {
1309    again = false;
1310    for (int i = 0; i < _block.length(); i++) {
1311      Node* n = _block.at(i);
1312      if (!n->is_Phi()) {
1313        int d_orig = depth(n);
1314        int d_in   = 0;
1315        for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
1316          Node* pred = preds.current();
1317          if (in_bb(pred)) {
1318            d_in = MAX2(d_in, depth(pred));
1319          }
1320        }
1321        if (d_in + 1 != d_orig) {
1322          set_depth(n, d_in + 1);
1323          again = true;
1324        }
1325      }
1326    }
1327    ct++;
1328  } while (again);
1329#ifndef PRODUCT
1330  if (TraceSuperWord && Verbose)
1331    tty->print_cr("compute_max_depth iterated: %d times", ct);
1332#endif
1333}
1334
1335//-------------------------compute_vector_element_type-----------------------
1336// Compute necessary vector element type for expressions
1337// This propagates backwards a narrower integer type when the
1338// upper bits of the value are not needed.
1339// Example:  char a,b,c;  a = b + c;
1340// Normally the type of the add is integer, but for packed character
1341// operations the type of the add needs to be char.
1342void SuperWord::compute_vector_element_type() {
1343#ifndef PRODUCT
1344  if (TraceSuperWord && Verbose)
1345    tty->print_cr("\ncompute_velt_type:");
1346#endif
1347
1348  // Initial type
1349  for (int i = 0; i < _block.length(); i++) {
1350    Node* n = _block.at(i);
1351    const Type* t  = n->is_Mem() ? Type::get_const_basic_type(n->as_Mem()->memory_type())
1352                                 : _igvn.type(n);
1353    const Type* vt = container_type(t);
1354    set_velt_type(n, vt);
1355  }
1356
1357  // Propagate narrowed type backwards through operations
1358  // that don't depend on higher order bits
1359  for (int i = _block.length() - 1; i >= 0; i--) {
1360    Node* n = _block.at(i);
1361    // Only integer types need be examined
1362    if (n->bottom_type()->isa_int()) {
1363      uint start, end;
1364      vector_opd_range(n, &start, &end);
1365      const Type* vt = velt_type(n);
1366
1367      for (uint j = start; j < end; j++) {
1368        Node* in  = n->in(j);
1369        // Don't propagate through a type conversion
1370        if (n->bottom_type() != in->bottom_type())
1371          continue;
1372        switch(in->Opcode()) {
1373        case Op_AddI:    case Op_AddL:
1374        case Op_SubI:    case Op_SubL:
1375        case Op_MulI:    case Op_MulL:
1376        case Op_AndI:    case Op_AndL:
1377        case Op_OrI:     case Op_OrL:
1378        case Op_XorI:    case Op_XorL:
1379        case Op_LShiftI: case Op_LShiftL:
1380        case Op_CMoveI:  case Op_CMoveL:
1381          if (in_bb(in)) {
1382            bool same_type = true;
1383            for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
1384              Node *use = in->fast_out(k);
1385              if (!in_bb(use) || velt_type(use) != vt) {
1386                same_type = false;
1387                break;
1388              }
1389            }
1390            if (same_type) {
1391              set_velt_type(in, vt);
1392            }
1393          }
1394        }
1395      }
1396    }
1397  }
1398#ifndef PRODUCT
1399  if (TraceSuperWord && Verbose) {
1400    for (int i = 0; i < _block.length(); i++) {
1401      Node* n = _block.at(i);
1402      velt_type(n)->dump();
1403      tty->print("\t");
1404      n->dump();
1405    }
1406  }
1407#endif
1408}
1409
1410//------------------------------memory_alignment---------------------------
1411// Alignment within a vector memory reference
1412int SuperWord::memory_alignment(MemNode* s, int iv_adjust_in_bytes) {
1413  SWPointer p(s, this);
1414  if (!p.valid()) {
1415    return bottom_align;
1416  }
1417  int offset  = p.offset_in_bytes();
1418  offset     += iv_adjust_in_bytes;
1419  int off_rem = offset % vector_width_in_bytes();
1420  int off_mod = off_rem >= 0 ? off_rem : off_rem + vector_width_in_bytes();
1421  return off_mod;
1422}
1423
1424//---------------------------container_type---------------------------
1425// Smallest type containing range of values
1426const Type* SuperWord::container_type(const Type* t) {
1427  const Type* tp = t->make_ptr();
1428  if (tp && tp->isa_aryptr()) {
1429    t = tp->is_aryptr()->elem();
1430  }
1431  if (t->basic_type() == T_INT) {
1432    if (t->higher_equal(TypeInt::BOOL))  return TypeInt::BOOL;
1433    if (t->higher_equal(TypeInt::BYTE))  return TypeInt::BYTE;
1434    if (t->higher_equal(TypeInt::CHAR))  return TypeInt::CHAR;
1435    if (t->higher_equal(TypeInt::SHORT)) return TypeInt::SHORT;
1436    return TypeInt::INT;
1437  }
1438  return t;
1439}
1440
1441//-------------------------vector_opd_range-----------------------
1442// (Start, end] half-open range defining which operands are vector
1443void SuperWord::vector_opd_range(Node* n, uint* start, uint* end) {
1444  switch (n->Opcode()) {
1445  case Op_LoadB:   case Op_LoadC:
1446  case Op_LoadI:   case Op_LoadL:
1447  case Op_LoadF:   case Op_LoadD:
1448  case Op_LoadP:
1449    *start = 0;
1450    *end   = 0;
1451    return;
1452  case Op_StoreB:  case Op_StoreC:
1453  case Op_StoreI:  case Op_StoreL:
1454  case Op_StoreF:  case Op_StoreD:
1455  case Op_StoreP:
1456    *start = MemNode::ValueIn;
1457    *end   = *start + 1;
1458    return;
1459  case Op_LShiftI: case Op_LShiftL:
1460    *start = 1;
1461    *end   = 2;
1462    return;
1463  case Op_CMoveI:  case Op_CMoveL:  case Op_CMoveF:  case Op_CMoveD:
1464    *start = 2;
1465    *end   = n->req();
1466    return;
1467  }
1468  *start = 1;
1469  *end   = n->req(); // default is all operands
1470}
1471
1472//------------------------------in_packset---------------------------
1473// Are s1 and s2 in a pack pair and ordered as s1,s2?
1474bool SuperWord::in_packset(Node* s1, Node* s2) {
1475  for (int i = 0; i < _packset.length(); i++) {
1476    Node_List* p = _packset.at(i);
1477    assert(p->size() == 2, "must be");
1478    if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
1479      return true;
1480    }
1481  }
1482  return false;
1483}
1484
1485//------------------------------in_pack---------------------------
1486// Is s in pack p?
1487Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
1488  for (uint i = 0; i < p->size(); i++) {
1489    if (p->at(i) == s) {
1490      return p;
1491    }
1492  }
1493  return NULL;
1494}
1495
1496//------------------------------remove_pack_at---------------------------
1497// Remove the pack at position pos in the packset
1498void SuperWord::remove_pack_at(int pos) {
1499  Node_List* p = _packset.at(pos);
1500  for (uint i = 0; i < p->size(); i++) {
1501    Node* s = p->at(i);
1502    set_my_pack(s, NULL);
1503  }
1504  _packset.remove_at(pos);
1505}
1506
1507//------------------------------executed_first---------------------------
1508// Return the node executed first in pack p.  Uses the RPO block list
1509// to determine order.
1510Node* SuperWord::executed_first(Node_List* p) {
1511  Node* n = p->at(0);
1512  int n_rpo = bb_idx(n);
1513  for (uint i = 1; i < p->size(); i++) {
1514    Node* s = p->at(i);
1515    int s_rpo = bb_idx(s);
1516    if (s_rpo < n_rpo) {
1517      n = s;
1518      n_rpo = s_rpo;
1519    }
1520  }
1521  return n;
1522}
1523
1524//------------------------------executed_last---------------------------
1525// Return the node executed last in pack p.
1526Node* SuperWord::executed_last(Node_List* p) {
1527  Node* n = p->at(0);
1528  int n_rpo = bb_idx(n);
1529  for (uint i = 1; i < p->size(); i++) {
1530    Node* s = p->at(i);
1531    int s_rpo = bb_idx(s);
1532    if (s_rpo > n_rpo) {
1533      n = s;
1534      n_rpo = s_rpo;
1535    }
1536  }
1537  return n;
1538}
1539
1540//----------------------------align_initial_loop_index---------------------------
1541// Adjust pre-loop limit so that in main loop, a load/store reference
1542// to align_to_ref will be a position zero in the vector.
1543//   (iv + k) mod vector_align == 0
1544void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
1545  CountedLoopNode *main_head = lp()->as_CountedLoop();
1546  assert(main_head->is_main_loop(), "");
1547  CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
1548  assert(pre_end != NULL, "");
1549  Node *pre_opaq1 = pre_end->limit();
1550  assert(pre_opaq1->Opcode() == Op_Opaque1, "");
1551  Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
1552  Node *lim0 = pre_opaq->in(1);
1553
1554  // Where we put new limit calculations
1555  Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
1556
1557  // Ensure the original loop limit is available from the
1558  // pre-loop Opaque1 node.
1559  Node *orig_limit = pre_opaq->original_loop_limit();
1560  assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
1561
1562  SWPointer align_to_ref_p(align_to_ref, this);
1563
1564  // Given:
1565  //     lim0 == original pre loop limit
1566  //     V == v_align (power of 2)
1567  //     invar == extra invariant piece of the address expression
1568  //     e == k [ +/- invar ]
1569  //
1570  // When reassociating expressions involving '%' the basic rules are:
1571  //     (a - b) % k == 0   =>  a % k == b % k
1572  // and:
1573  //     (a + b) % k == 0   =>  a % k == (k - b) % k
1574  //
1575  // For stride > 0 && scale > 0,
1576  //   Derive the new pre-loop limit "lim" such that the two constraints:
1577  //     (1) lim = lim0 + N           (where N is some positive integer < V)
1578  //     (2) (e + lim) % V == 0
1579  //   are true.
1580  //
1581  //   Substituting (1) into (2),
1582  //     (e + lim0 + N) % V == 0
1583  //   solve for N:
1584  //     N = (V - (e + lim0)) % V
1585  //   substitute back into (1), so that new limit
1586  //     lim = lim0 + (V - (e + lim0)) % V
1587  //
1588  // For stride > 0 && scale < 0
1589  //   Constraints:
1590  //     lim = lim0 + N
1591  //     (e - lim) % V == 0
1592  //   Solving for lim:
1593  //     (e - lim0 - N) % V == 0
1594  //     N = (e - lim0) % V
1595  //     lim = lim0 + (e - lim0) % V
1596  //
1597  // For stride < 0 && scale > 0
1598  //   Constraints:
1599  //     lim = lim0 - N
1600  //     (e + lim) % V == 0
1601  //   Solving for lim:
1602  //     (e + lim0 - N) % V == 0
1603  //     N = (e + lim0) % V
1604  //     lim = lim0 - (e + lim0) % V
1605  //
1606  // For stride < 0 && scale < 0
1607  //   Constraints:
1608  //     lim = lim0 - N
1609  //     (e - lim) % V == 0
1610  //   Solving for lim:
1611  //     (e - lim0 + N) % V == 0
1612  //     N = (V - (e - lim0)) % V
1613  //     lim = lim0 - (V - (e - lim0)) % V
1614
1615  int stride   = iv_stride();
1616  int scale    = align_to_ref_p.scale_in_bytes();
1617  int elt_size = align_to_ref_p.memory_size();
1618  int v_align  = vector_width_in_bytes() / elt_size;
1619  int k        = align_to_ref_p.offset_in_bytes() / elt_size;
1620
1621  Node *kn   = _igvn.intcon(k);
1622
1623  Node *e = kn;
1624  if (align_to_ref_p.invar() != NULL) {
1625    // incorporate any extra invariant piece producing k +/- invar >>> log2(elt)
1626    Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
1627    Node* aref     = new (_phase->C, 3) URShiftINode(align_to_ref_p.invar(), log2_elt);
1628    _phase->_igvn.register_new_node_with_optimizer(aref);
1629    _phase->set_ctrl(aref, pre_ctrl);
1630    if (align_to_ref_p.negate_invar()) {
1631      e = new (_phase->C, 3) SubINode(e, aref);
1632    } else {
1633      e = new (_phase->C, 3) AddINode(e, aref);
1634    }
1635    _phase->_igvn.register_new_node_with_optimizer(e);
1636    _phase->set_ctrl(e, pre_ctrl);
1637  }
1638
1639  // compute e +/- lim0
1640  if (scale < 0) {
1641    e = new (_phase->C, 3) SubINode(e, lim0);
1642  } else {
1643    e = new (_phase->C, 3) AddINode(e, lim0);
1644  }
1645  _phase->_igvn.register_new_node_with_optimizer(e);
1646  _phase->set_ctrl(e, pre_ctrl);
1647
1648  if (stride * scale > 0) {
1649    // compute V - (e +/- lim0)
1650    Node* va  = _igvn.intcon(v_align);
1651    e = new (_phase->C, 3) SubINode(va, e);
1652    _phase->_igvn.register_new_node_with_optimizer(e);
1653    _phase->set_ctrl(e, pre_ctrl);
1654  }
1655  // compute N = (exp) % V
1656  Node* va_msk = _igvn.intcon(v_align - 1);
1657  Node* N = new (_phase->C, 3) AndINode(e, va_msk);
1658  _phase->_igvn.register_new_node_with_optimizer(N);
1659  _phase->set_ctrl(N, pre_ctrl);
1660
1661  //   substitute back into (1), so that new limit
1662  //     lim = lim0 + N
1663  Node* lim;
1664  if (stride < 0) {
1665    lim = new (_phase->C, 3) SubINode(lim0, N);
1666  } else {
1667    lim = new (_phase->C, 3) AddINode(lim0, N);
1668  }
1669  _phase->_igvn.register_new_node_with_optimizer(lim);
1670  _phase->set_ctrl(lim, pre_ctrl);
1671  Node* constrained =
1672    (stride > 0) ? (Node*) new (_phase->C,3) MinINode(lim, orig_limit)
1673                 : (Node*) new (_phase->C,3) MaxINode(lim, orig_limit);
1674  _phase->_igvn.register_new_node_with_optimizer(constrained);
1675  _phase->set_ctrl(constrained, pre_ctrl);
1676  _igvn.hash_delete(pre_opaq);
1677  pre_opaq->set_req(1, constrained);
1678}
1679
1680//----------------------------get_pre_loop_end---------------------------
1681// Find pre loop end from main loop.  Returns null if none.
1682CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode *cl) {
1683  Node *ctrl = cl->in(LoopNode::EntryControl);
1684  if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
1685  Node *iffm = ctrl->in(0);
1686  if (!iffm->is_If()) return NULL;
1687  Node *p_f = iffm->in(0);
1688  if (!p_f->is_IfFalse()) return NULL;
1689  if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
1690  CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
1691  if (!pre_end->loopnode()->is_pre_loop()) return NULL;
1692  return pre_end;
1693}
1694
1695
1696//------------------------------init---------------------------
1697void SuperWord::init() {
1698  _dg.init();
1699  _packset.clear();
1700  _disjoint_ptrs.clear();
1701  _block.clear();
1702  _data_entry.clear();
1703  _mem_slice_head.clear();
1704  _mem_slice_tail.clear();
1705  _node_info.clear();
1706  _align_to_ref = NULL;
1707  _lpt = NULL;
1708  _lp = NULL;
1709  _bb = NULL;
1710  _iv = NULL;
1711}
1712
1713//------------------------------print_packset---------------------------
1714void SuperWord::print_packset() {
1715#ifndef PRODUCT
1716  tty->print_cr("packset");
1717  for (int i = 0; i < _packset.length(); i++) {
1718    tty->print_cr("Pack: %d", i);
1719    Node_List* p = _packset.at(i);
1720    print_pack(p);
1721  }
1722#endif
1723}
1724
1725//------------------------------print_pack---------------------------
1726void SuperWord::print_pack(Node_List* p) {
1727  for (uint i = 0; i < p->size(); i++) {
1728    print_stmt(p->at(i));
1729  }
1730}
1731
1732//------------------------------print_bb---------------------------
1733void SuperWord::print_bb() {
1734#ifndef PRODUCT
1735  tty->print_cr("\nBlock");
1736  for (int i = 0; i < _block.length(); i++) {
1737    Node* n = _block.at(i);
1738    tty->print("%d ", i);
1739    if (n) {
1740      n->dump();
1741    }
1742  }
1743#endif
1744}
1745
1746//------------------------------print_stmt---------------------------
1747void SuperWord::print_stmt(Node* s) {
1748#ifndef PRODUCT
1749  tty->print(" align: %d \t", alignment(s));
1750  s->dump();
1751#endif
1752}
1753
1754//------------------------------blank---------------------------
1755char* SuperWord::blank(uint depth) {
1756  static char blanks[101];
1757  assert(depth < 101, "too deep");
1758  for (uint i = 0; i < depth; i++) blanks[i] = ' ';
1759  blanks[depth] = '\0';
1760  return blanks;
1761}
1762
1763
1764//==============================SWPointer===========================
1765
1766//----------------------------SWPointer------------------------
1767SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
1768  _mem(mem), _slp(slp),  _base(NULL),  _adr(NULL),
1769  _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
1770
1771  Node* adr = mem->in(MemNode::Address);
1772  if (!adr->is_AddP()) {
1773    assert(!valid(), "too complex");
1774    return;
1775  }
1776  // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
1777  Node* base = adr->in(AddPNode::Base);
1778  for (int i = 0; i < 3; i++) {
1779    if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
1780      assert(!valid(), "too complex");
1781      return;
1782    }
1783    adr = adr->in(AddPNode::Address);
1784    if (base == adr || !adr->is_AddP()) {
1785      break; // stop looking at addp's
1786    }
1787  }
1788  _base = base;
1789  _adr  = adr;
1790  assert(valid(), "Usable");
1791}
1792
1793// Following is used to create a temporary object during
1794// the pattern match of an address expression.
1795SWPointer::SWPointer(SWPointer* p) :
1796  _mem(p->_mem), _slp(p->_slp),  _base(NULL),  _adr(NULL),
1797  _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
1798
1799//------------------------scaled_iv_plus_offset--------------------
1800// Match: k*iv + offset
1801// where: k is a constant that maybe zero, and
1802//        offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
1803bool SWPointer::scaled_iv_plus_offset(Node* n) {
1804  if (scaled_iv(n)) {
1805    return true;
1806  }
1807  if (offset_plus_k(n)) {
1808    return true;
1809  }
1810  int opc = n->Opcode();
1811  if (opc == Op_AddI) {
1812    if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
1813      return true;
1814    }
1815    if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
1816      return true;
1817    }
1818  } else if (opc == Op_SubI) {
1819    if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
1820      return true;
1821    }
1822    if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
1823      _scale *= -1;
1824      return true;
1825    }
1826  }
1827  return false;
1828}
1829
1830//----------------------------scaled_iv------------------------
1831// Match: k*iv where k is a constant that's not zero
1832bool SWPointer::scaled_iv(Node* n) {
1833  if (_scale != 0) {
1834    return false;  // already found a scale
1835  }
1836  if (n == iv()) {
1837    _scale = 1;
1838    return true;
1839  }
1840  int opc = n->Opcode();
1841  if (opc == Op_MulI) {
1842    if (n->in(1) == iv() && n->in(2)->is_Con()) {
1843      _scale = n->in(2)->get_int();
1844      return true;
1845    } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
1846      _scale = n->in(1)->get_int();
1847      return true;
1848    }
1849  } else if (opc == Op_LShiftI) {
1850    if (n->in(1) == iv() && n->in(2)->is_Con()) {
1851      _scale = 1 << n->in(2)->get_int();
1852      return true;
1853    }
1854  } else if (opc == Op_ConvI2L) {
1855    if (scaled_iv_plus_offset(n->in(1))) {
1856      return true;
1857    }
1858  } else if (opc == Op_LShiftL) {
1859    if (!has_iv() && _invar == NULL) {
1860      // Need to preserve the current _offset value, so
1861      // create a temporary object for this expression subtree.
1862      // Hacky, so should re-engineer the address pattern match.
1863      SWPointer tmp(this);
1864      if (tmp.scaled_iv_plus_offset(n->in(1))) {
1865        if (tmp._invar == NULL) {
1866          int mult = 1 << n->in(2)->get_int();
1867          _scale   = tmp._scale  * mult;
1868          _offset += tmp._offset * mult;
1869          return true;
1870        }
1871      }
1872    }
1873  }
1874  return false;
1875}
1876
1877//----------------------------offset_plus_k------------------------
1878// Match: offset is (k [+/- invariant])
1879// where k maybe zero and invariant is optional, but not both.
1880bool SWPointer::offset_plus_k(Node* n, bool negate) {
1881  int opc = n->Opcode();
1882  if (opc == Op_ConI) {
1883    _offset += negate ? -(n->get_int()) : n->get_int();
1884    return true;
1885  } else if (opc == Op_ConL) {
1886    // Okay if value fits into an int
1887    const TypeLong* t = n->find_long_type();
1888    if (t->higher_equal(TypeLong::INT)) {
1889      jlong loff = n->get_long();
1890      jint  off  = (jint)loff;
1891      _offset += negate ? -off : loff;
1892      return true;
1893    }
1894    return false;
1895  }
1896  if (_invar != NULL) return false; // already have an invariant
1897  if (opc == Op_AddI) {
1898    if (n->in(2)->is_Con() && invariant(n->in(1))) {
1899      _negate_invar = negate;
1900      _invar = n->in(1);
1901      _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
1902      return true;
1903    } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
1904      _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
1905      _negate_invar = negate;
1906      _invar = n->in(2);
1907      return true;
1908    }
1909  }
1910  if (opc == Op_SubI) {
1911    if (n->in(2)->is_Con() && invariant(n->in(1))) {
1912      _negate_invar = negate;
1913      _invar = n->in(1);
1914      _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
1915      return true;
1916    } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
1917      _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
1918      _negate_invar = !negate;
1919      _invar = n->in(2);
1920      return true;
1921    }
1922  }
1923  if (invariant(n)) {
1924    _negate_invar = negate;
1925    _invar = n;
1926    return true;
1927  }
1928  return false;
1929}
1930
1931//----------------------------print------------------------
1932void SWPointer::print() {
1933#ifndef PRODUCT
1934  tty->print("base: %d  adr: %d  scale: %d  offset: %d  invar: %c%d\n",
1935             _base != NULL ? _base->_idx : 0,
1936             _adr  != NULL ? _adr->_idx  : 0,
1937             _scale, _offset,
1938             _negate_invar?'-':'+',
1939             _invar != NULL ? _invar->_idx : 0);
1940#endif
1941}
1942
1943// ========================= OrderedPair =====================
1944
1945const OrderedPair OrderedPair::initial;
1946
1947// ========================= SWNodeInfo =====================
1948
1949const SWNodeInfo SWNodeInfo::initial;
1950
1951
1952// ============================ DepGraph ===========================
1953
1954//------------------------------make_node---------------------------
1955// Make a new dependence graph node for an ideal node.
1956DepMem* DepGraph::make_node(Node* node) {
1957  DepMem* m = new (_arena) DepMem(node);
1958  if (node != NULL) {
1959    assert(_map.at_grow(node->_idx) == NULL, "one init only");
1960    _map.at_put_grow(node->_idx, m);
1961  }
1962  return m;
1963}
1964
1965//------------------------------make_edge---------------------------
1966// Make a new dependence graph edge from dpred -> dsucc
1967DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
1968  DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
1969  dpred->set_out_head(e);
1970  dsucc->set_in_head(e);
1971  return e;
1972}
1973
1974// ========================== DepMem ========================
1975
1976//------------------------------in_cnt---------------------------
1977int DepMem::in_cnt() {
1978  int ct = 0;
1979  for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
1980  return ct;
1981}
1982
1983//------------------------------out_cnt---------------------------
1984int DepMem::out_cnt() {
1985  int ct = 0;
1986  for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
1987  return ct;
1988}
1989
1990//------------------------------print-----------------------------
1991void DepMem::print() {
1992#ifndef PRODUCT
1993  tty->print("  DepNode %d (", _node->_idx);
1994  for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
1995    Node* pred = p->pred()->node();
1996    tty->print(" %d", pred != NULL ? pred->_idx : 0);
1997  }
1998  tty->print(") [");
1999  for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
2000    Node* succ = s->succ()->node();
2001    tty->print(" %d", succ != NULL ? succ->_idx : 0);
2002  }
2003  tty->print_cr(" ]");
2004#endif
2005}
2006
2007// =========================== DepEdge =========================
2008
2009//------------------------------DepPreds---------------------------
2010void DepEdge::print() {
2011#ifndef PRODUCT
2012  tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
2013#endif
2014}
2015
2016// =========================== DepPreds =========================
2017// Iterator over predecessor edges in the dependence graph.
2018
2019//------------------------------DepPreds---------------------------
2020DepPreds::DepPreds(Node* n, DepGraph& dg) {
2021  _n = n;
2022  _done = false;
2023  if (_n->is_Store() || _n->is_Load()) {
2024    _next_idx = MemNode::Address;
2025    _end_idx  = n->req();
2026    _dep_next = dg.dep(_n)->in_head();
2027  } else if (_n->is_Mem()) {
2028    _next_idx = 0;
2029    _end_idx  = 0;
2030    _dep_next = dg.dep(_n)->in_head();
2031  } else {
2032    _next_idx = 1;
2033    _end_idx  = _n->req();
2034    _dep_next = NULL;
2035  }
2036  next();
2037}
2038
2039//------------------------------next---------------------------
2040void DepPreds::next() {
2041  if (_dep_next != NULL) {
2042    _current  = _dep_next->pred()->node();
2043    _dep_next = _dep_next->next_in();
2044  } else if (_next_idx < _end_idx) {
2045    _current  = _n->in(_next_idx++);
2046  } else {
2047    _done = true;
2048  }
2049}
2050
2051// =========================== DepSuccs =========================
2052// Iterator over successor edges in the dependence graph.
2053
2054//------------------------------DepSuccs---------------------------
2055DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
2056  _n = n;
2057  _done = false;
2058  if (_n->is_Load()) {
2059    _next_idx = 0;
2060    _end_idx  = _n->outcnt();
2061    _dep_next = dg.dep(_n)->out_head();
2062  } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
2063    _next_idx = 0;
2064    _end_idx  = 0;
2065    _dep_next = dg.dep(_n)->out_head();
2066  } else {
2067    _next_idx = 0;
2068    _end_idx  = _n->outcnt();
2069    _dep_next = NULL;
2070  }
2071  next();
2072}
2073
2074//-------------------------------next---------------------------
2075void DepSuccs::next() {
2076  if (_dep_next != NULL) {
2077    _current  = _dep_next->succ()->node();
2078    _dep_next = _dep_next->next_out();
2079  } else if (_next_idx < _end_idx) {
2080    _current  = _n->raw_out(_next_idx++);
2081  } else {
2082    _done = true;
2083  }
2084}
2085