subnode.cpp revision 3724:8e47bac5643a
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "compiler/compileLog.hpp"
27#include "memory/allocation.inline.hpp"
28#include "opto/addnode.hpp"
29#include "opto/callnode.hpp"
30#include "opto/cfgnode.hpp"
31#include "opto/connode.hpp"
32#include "opto/loopnode.hpp"
33#include "opto/matcher.hpp"
34#include "opto/mulnode.hpp"
35#include "opto/opcodes.hpp"
36#include "opto/phaseX.hpp"
37#include "opto/subnode.hpp"
38#include "runtime/sharedRuntime.hpp"
39
40// Portions of code courtesy of Clifford Click
41
42// Optimization - Graph Style
43
44#include "math.h"
45
46//=============================================================================
47//------------------------------Identity---------------------------------------
48// If right input is a constant 0, return the left input.
49Node *SubNode::Identity( PhaseTransform *phase ) {
50  assert(in(1) != this, "Must already have called Value");
51  assert(in(2) != this, "Must already have called Value");
52
53  // Remove double negation
54  const Type *zero = add_id();
55  if( phase->type( in(1) )->higher_equal( zero ) &&
56      in(2)->Opcode() == Opcode() &&
57      phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
58    return in(2)->in(2);
59  }
60
61  // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
62  if( in(1)->Opcode() == Op_AddI ) {
63    if( phase->eqv(in(1)->in(2),in(2)) )
64      return in(1)->in(1);
65    if (phase->eqv(in(1)->in(1),in(2)))
66      return in(1)->in(2);
67
68    // Also catch: "(X + Opaque2(Y)) - Y".  In this case, 'Y' is a loop-varying
69    // trip counter and X is likely to be loop-invariant (that's how O2 Nodes
70    // are originally used, although the optimizer sometimes jiggers things).
71    // This folding through an O2 removes a loop-exit use of a loop-varying
72    // value and generally lowers register pressure in and around the loop.
73    if( in(1)->in(2)->Opcode() == Op_Opaque2 &&
74        phase->eqv(in(1)->in(2)->in(1),in(2)) )
75      return in(1)->in(1);
76  }
77
78  return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
79}
80
81//------------------------------Value------------------------------------------
82// A subtract node differences it's two inputs.
83const Type *SubNode::Value( PhaseTransform *phase ) const {
84  const Node* in1 = in(1);
85  const Node* in2 = in(2);
86  // Either input is TOP ==> the result is TOP
87  const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
88  if( t1 == Type::TOP ) return Type::TOP;
89  const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
90  if( t2 == Type::TOP ) return Type::TOP;
91
92  // Not correct for SubFnode and AddFNode (must check for infinity)
93  // Equal?  Subtract is zero
94  if (in1->eqv_uncast(in2))  return add_id();
95
96  // Either input is BOTTOM ==> the result is the local BOTTOM
97  if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
98    return bottom_type();
99
100  return sub(t1,t2);            // Local flavor of type subtraction
101
102}
103
104//=============================================================================
105
106//------------------------------Helper function--------------------------------
107static bool ok_to_convert(Node* inc, Node* iv) {
108    // Do not collapse (x+c0)-y if "+" is a loop increment, because the
109    // "-" is loop invariant and collapsing extends the live-range of "x"
110    // to overlap with the "+", forcing another register to be used in
111    // the loop.
112    // This test will be clearer with '&&' (apply DeMorgan's rule)
113    // but I like the early cutouts that happen here.
114    const PhiNode *phi;
115    if( ( !inc->in(1)->is_Phi() ||
116          !(phi=inc->in(1)->as_Phi()) ||
117          phi->is_copy() ||
118          !phi->region()->is_CountedLoop() ||
119          inc != phi->region()->as_CountedLoop()->incr() )
120       &&
121        // Do not collapse (x+c0)-iv if "iv" is a loop induction variable,
122        // because "x" maybe invariant.
123        ( !iv->is_loop_iv() )
124      ) {
125      return true;
126    } else {
127      return false;
128    }
129}
130//------------------------------Ideal------------------------------------------
131Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
132  Node *in1 = in(1);
133  Node *in2 = in(2);
134  uint op1 = in1->Opcode();
135  uint op2 = in2->Opcode();
136
137#ifdef ASSERT
138  // Check for dead loop
139  if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
140      ( op1 == Op_AddI || op1 == Op_SubI ) &&
141      ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
142        phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1 ) ) )
143    assert(false, "dead loop in SubINode::Ideal");
144#endif
145
146  const Type *t2 = phase->type( in2 );
147  if( t2 == Type::TOP ) return NULL;
148  // Convert "x-c0" into "x+ -c0".
149  if( t2->base() == Type::Int ){        // Might be bottom or top...
150    const TypeInt *i = t2->is_int();
151    if( i->is_con() )
152      return new (phase->C) AddINode(in1, phase->intcon(-i->get_con()));
153  }
154
155  // Convert "(x+c0) - y" into (x-y) + c0"
156  // Do not collapse (x+c0)-y if "+" is a loop increment or
157  // if "y" is a loop induction variable.
158  if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
159    const Type *tadd = phase->type( in1->in(2) );
160    if( tadd->singleton() && tadd != Type::TOP ) {
161      Node *sub2 = phase->transform( new (phase->C) SubINode( in1->in(1), in2 ));
162      return new (phase->C) AddINode( sub2, in1->in(2) );
163    }
164  }
165
166
167  // Convert "x - (y+c0)" into "(x-y) - c0"
168  // Need the same check as in above optimization but reversed.
169  if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
170    Node* in21 = in2->in(1);
171    Node* in22 = in2->in(2);
172    const TypeInt* tcon = phase->type(in22)->isa_int();
173    if (tcon != NULL && tcon->is_con()) {
174      Node* sub2 = phase->transform( new (phase->C) SubINode(in1, in21) );
175      Node* neg_c0 = phase->intcon(- tcon->get_con());
176      return new (phase->C) AddINode(sub2, neg_c0);
177    }
178  }
179
180  const Type *t1 = phase->type( in1 );
181  if( t1 == Type::TOP ) return NULL;
182
183#ifdef ASSERT
184  // Check for dead loop
185  if( ( op2 == Op_AddI || op2 == Op_SubI ) &&
186      ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
187        phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
188    assert(false, "dead loop in SubINode::Ideal");
189#endif
190
191  // Convert "x - (x+y)" into "-y"
192  if( op2 == Op_AddI &&
193      phase->eqv( in1, in2->in(1) ) )
194    return new (phase->C) SubINode( phase->intcon(0),in2->in(2));
195  // Convert "(x-y) - x" into "-y"
196  if( op1 == Op_SubI &&
197      phase->eqv( in1->in(1), in2 ) )
198    return new (phase->C) SubINode( phase->intcon(0),in1->in(2));
199  // Convert "x - (y+x)" into "-y"
200  if( op2 == Op_AddI &&
201      phase->eqv( in1, in2->in(2) ) )
202    return new (phase->C) SubINode( phase->intcon(0),in2->in(1));
203
204  // Convert "0 - (x-y)" into "y-x"
205  if( t1 == TypeInt::ZERO && op2 == Op_SubI )
206    return new (phase->C) SubINode( in2->in(2), in2->in(1) );
207
208  // Convert "0 - (x+con)" into "-con-x"
209  jint con;
210  if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
211      (con = in2->in(2)->find_int_con(0)) != 0 )
212    return new (phase->C) SubINode( phase->intcon(-con), in2->in(1) );
213
214  // Convert "(X+A) - (X+B)" into "A - B"
215  if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
216    return new (phase->C) SubINode( in1->in(2), in2->in(2) );
217
218  // Convert "(A+X) - (B+X)" into "A - B"
219  if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
220    return new (phase->C) SubINode( in1->in(1), in2->in(1) );
221
222  // Convert "(A+X) - (X+B)" into "A - B"
223  if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
224    return new (phase->C) SubINode( in1->in(1), in2->in(2) );
225
226  // Convert "(X+A) - (B+X)" into "A - B"
227  if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
228    return new (phase->C) SubINode( in1->in(2), in2->in(1) );
229
230  // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
231  // nicer to optimize than subtract.
232  if( op2 == Op_SubI && in2->outcnt() == 1) {
233    Node *add1 = phase->transform( new (phase->C) AddINode( in1, in2->in(2) ) );
234    return new (phase->C) SubINode( add1, in2->in(1) );
235  }
236
237  return NULL;
238}
239
240//------------------------------sub--------------------------------------------
241// A subtract node differences it's two inputs.
242const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
243  const TypeInt *r0 = t1->is_int(); // Handy access
244  const TypeInt *r1 = t2->is_int();
245  int32 lo = r0->_lo - r1->_hi;
246  int32 hi = r0->_hi - r1->_lo;
247
248  // We next check for 32-bit overflow.
249  // If that happens, we just assume all integers are possible.
250  if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
251       ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
252      (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
253       ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
254    return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
255  else                          // Overflow; assume all integers
256    return TypeInt::INT;
257}
258
259//=============================================================================
260//------------------------------Ideal------------------------------------------
261Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
262  Node *in1 = in(1);
263  Node *in2 = in(2);
264  uint op1 = in1->Opcode();
265  uint op2 = in2->Opcode();
266
267#ifdef ASSERT
268  // Check for dead loop
269  if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
270      ( op1 == Op_AddL || op1 == Op_SubL ) &&
271      ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
272        phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1  ) ) )
273    assert(false, "dead loop in SubLNode::Ideal");
274#endif
275
276  if( phase->type( in2 ) == Type::TOP ) return NULL;
277  const TypeLong *i = phase->type( in2 )->isa_long();
278  // Convert "x-c0" into "x+ -c0".
279  if( i &&                      // Might be bottom or top...
280      i->is_con() )
281    return new (phase->C) AddLNode(in1, phase->longcon(-i->get_con()));
282
283  // Convert "(x+c0) - y" into (x-y) + c0"
284  // Do not collapse (x+c0)-y if "+" is a loop increment or
285  // if "y" is a loop induction variable.
286  if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
287    Node *in11 = in1->in(1);
288    const Type *tadd = phase->type( in1->in(2) );
289    if( tadd->singleton() && tadd != Type::TOP ) {
290      Node *sub2 = phase->transform( new (phase->C) SubLNode( in11, in2 ));
291      return new (phase->C) AddLNode( sub2, in1->in(2) );
292    }
293  }
294
295  // Convert "x - (y+c0)" into "(x-y) - c0"
296  // Need the same check as in above optimization but reversed.
297  if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
298    Node* in21 = in2->in(1);
299    Node* in22 = in2->in(2);
300    const TypeLong* tcon = phase->type(in22)->isa_long();
301    if (tcon != NULL && tcon->is_con()) {
302      Node* sub2 = phase->transform( new (phase->C) SubLNode(in1, in21) );
303      Node* neg_c0 = phase->longcon(- tcon->get_con());
304      return new (phase->C) AddLNode(sub2, neg_c0);
305    }
306  }
307
308  const Type *t1 = phase->type( in1 );
309  if( t1 == Type::TOP ) return NULL;
310
311#ifdef ASSERT
312  // Check for dead loop
313  if( ( op2 == Op_AddL || op2 == Op_SubL ) &&
314      ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
315        phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
316    assert(false, "dead loop in SubLNode::Ideal");
317#endif
318
319  // Convert "x - (x+y)" into "-y"
320  if( op2 == Op_AddL &&
321      phase->eqv( in1, in2->in(1) ) )
322    return new (phase->C) SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2));
323  // Convert "x - (y+x)" into "-y"
324  if( op2 == Op_AddL &&
325      phase->eqv( in1, in2->in(2) ) )
326    return new (phase->C) SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1));
327
328  // Convert "0 - (x-y)" into "y-x"
329  if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
330    return new (phase->C) SubLNode( in2->in(2), in2->in(1) );
331
332  // Convert "(X+A) - (X+B)" into "A - B"
333  if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
334    return new (phase->C) SubLNode( in1->in(2), in2->in(2) );
335
336  // Convert "(A+X) - (B+X)" into "A - B"
337  if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
338    return new (phase->C) SubLNode( in1->in(1), in2->in(1) );
339
340  // Convert "A-(B-C)" into (A+C)-B"
341  if( op2 == Op_SubL && in2->outcnt() == 1) {
342    Node *add1 = phase->transform( new (phase->C) AddLNode( in1, in2->in(2) ) );
343    return new (phase->C) SubLNode( add1, in2->in(1) );
344  }
345
346  return NULL;
347}
348
349//------------------------------sub--------------------------------------------
350// A subtract node differences it's two inputs.
351const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
352  const TypeLong *r0 = t1->is_long(); // Handy access
353  const TypeLong *r1 = t2->is_long();
354  jlong lo = r0->_lo - r1->_hi;
355  jlong hi = r0->_hi - r1->_lo;
356
357  // We next check for 32-bit overflow.
358  // If that happens, we just assume all integers are possible.
359  if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
360       ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
361      (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
362       ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
363    return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
364  else                          // Overflow; assume all integers
365    return TypeLong::LONG;
366}
367
368//=============================================================================
369//------------------------------Value------------------------------------------
370// A subtract node differences its two inputs.
371const Type *SubFPNode::Value( PhaseTransform *phase ) const {
372  const Node* in1 = in(1);
373  const Node* in2 = in(2);
374  // Either input is TOP ==> the result is TOP
375  const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
376  if( t1 == Type::TOP ) return Type::TOP;
377  const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
378  if( t2 == Type::TOP ) return Type::TOP;
379
380  // if both operands are infinity of same sign, the result is NaN; do
381  // not replace with zero
382  if( (t1->is_finite() && t2->is_finite()) ) {
383    if( phase->eqv(in1, in2) ) return add_id();
384  }
385
386  // Either input is BOTTOM ==> the result is the local BOTTOM
387  const Type *bot = bottom_type();
388  if( (t1 == bot) || (t2 == bot) ||
389      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
390    return bot;
391
392  return sub(t1,t2);            // Local flavor of type subtraction
393}
394
395
396//=============================================================================
397//------------------------------Ideal------------------------------------------
398Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
399  const Type *t2 = phase->type( in(2) );
400  // Convert "x-c0" into "x+ -c0".
401  if( t2->base() == Type::FloatCon ) {  // Might be bottom or top...
402    // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
403  }
404
405  // Not associative because of boundary conditions (infinity)
406  if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
407    // Convert "x - (x+y)" into "-y"
408    if( in(2)->is_Add() &&
409        phase->eqv(in(1),in(2)->in(1) ) )
410      return new (phase->C) SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2));
411  }
412
413  // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
414  // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
415  //if( phase->type(in(1)) == TypeF::ZERO )
416  //return new (phase->C, 2) NegFNode(in(2));
417
418  return NULL;
419}
420
421//------------------------------sub--------------------------------------------
422// A subtract node differences its two inputs.
423const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
424  // no folding if one of operands is infinity or NaN, do not do constant folding
425  if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
426    return TypeF::make( t1->getf() - t2->getf() );
427  }
428  else if( g_isnan(t1->getf()) ) {
429    return t1;
430  }
431  else if( g_isnan(t2->getf()) ) {
432    return t2;
433  }
434  else {
435    return Type::FLOAT;
436  }
437}
438
439//=============================================================================
440//------------------------------Ideal------------------------------------------
441Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
442  const Type *t2 = phase->type( in(2) );
443  // Convert "x-c0" into "x+ -c0".
444  if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
445    // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
446  }
447
448  // Not associative because of boundary conditions (infinity)
449  if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
450    // Convert "x - (x+y)" into "-y"
451    if( in(2)->is_Add() &&
452        phase->eqv(in(1),in(2)->in(1) ) )
453      return new (phase->C) SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2));
454  }
455
456  // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
457  // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
458  //if( phase->type(in(1)) == TypeD::ZERO )
459  //return new (phase->C, 2) NegDNode(in(2));
460
461  return NULL;
462}
463
464//------------------------------sub--------------------------------------------
465// A subtract node differences its two inputs.
466const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
467  // no folding if one of operands is infinity or NaN, do not do constant folding
468  if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
469    return TypeD::make( t1->getd() - t2->getd() );
470  }
471  else if( g_isnan(t1->getd()) ) {
472    return t1;
473  }
474  else if( g_isnan(t2->getd()) ) {
475    return t2;
476  }
477  else {
478    return Type::DOUBLE;
479  }
480}
481
482//=============================================================================
483//------------------------------Idealize---------------------------------------
484// Unlike SubNodes, compare must still flatten return value to the
485// range -1, 0, 1.
486// And optimizations like those for (X + Y) - X fail if overflow happens.
487Node *CmpNode::Identity( PhaseTransform *phase ) {
488  return this;
489}
490
491//=============================================================================
492//------------------------------cmp--------------------------------------------
493// Simplify a CmpI (compare 2 integers) node, based on local information.
494// If both inputs are constants, compare them.
495const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
496  const TypeInt *r0 = t1->is_int(); // Handy access
497  const TypeInt *r1 = t2->is_int();
498
499  if( r0->_hi < r1->_lo )       // Range is always low?
500    return TypeInt::CC_LT;
501  else if( r0->_lo > r1->_hi )  // Range is always high?
502    return TypeInt::CC_GT;
503
504  else if( r0->is_con() && r1->is_con() ) { // comparing constants?
505    assert(r0->get_con() == r1->get_con(), "must be equal");
506    return TypeInt::CC_EQ;      // Equal results.
507  } else if( r0->_hi == r1->_lo ) // Range is never high?
508    return TypeInt::CC_LE;
509  else if( r0->_lo == r1->_hi ) // Range is never low?
510    return TypeInt::CC_GE;
511  return TypeInt::CC;           // else use worst case results
512}
513
514// Simplify a CmpU (compare 2 integers) node, based on local information.
515// If both inputs are constants, compare them.
516const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
517  assert(!t1->isa_ptr(), "obsolete usage of CmpU");
518
519  // comparing two unsigned ints
520  const TypeInt *r0 = t1->is_int();   // Handy access
521  const TypeInt *r1 = t2->is_int();
522
523  // Current installed version
524  // Compare ranges for non-overlap
525  juint lo0 = r0->_lo;
526  juint hi0 = r0->_hi;
527  juint lo1 = r1->_lo;
528  juint hi1 = r1->_hi;
529
530  // If either one has both negative and positive values,
531  // it therefore contains both 0 and -1, and since [0..-1] is the
532  // full unsigned range, the type must act as an unsigned bottom.
533  bool bot0 = ((jint)(lo0 ^ hi0) < 0);
534  bool bot1 = ((jint)(lo1 ^ hi1) < 0);
535
536  if (bot0 || bot1) {
537    // All unsigned values are LE -1 and GE 0.
538    if (lo0 == 0 && hi0 == 0) {
539      return TypeInt::CC_LE;            //   0 <= bot
540    } else if (lo1 == 0 && hi1 == 0) {
541      return TypeInt::CC_GE;            // bot >= 0
542    }
543  } else {
544    // We can use ranges of the form [lo..hi] if signs are the same.
545    assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
546    // results are reversed, '-' > '+' for unsigned compare
547    if (hi0 < lo1) {
548      return TypeInt::CC_LT;            // smaller
549    } else if (lo0 > hi1) {
550      return TypeInt::CC_GT;            // greater
551    } else if (hi0 == lo1 && lo0 == hi1) {
552      return TypeInt::CC_EQ;            // Equal results
553    } else if (lo0 >= hi1) {
554      return TypeInt::CC_GE;
555    } else if (hi0 <= lo1) {
556      // Check for special case in Hashtable::get.  (See below.)
557      if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
558        return TypeInt::CC_LT;
559      return TypeInt::CC_LE;
560    }
561  }
562  // Check for special case in Hashtable::get - the hash index is
563  // mod'ed to the table size so the following range check is useless.
564  // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
565  // to be positive.
566  // (This is a gross hack, since the sub method never
567  // looks at the structure of the node in any other case.)
568  if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
569    return TypeInt::CC_LT;
570  return TypeInt::CC;                   // else use worst case results
571}
572
573bool CmpUNode::is_index_range_check() const {
574  // Check for the "(X ModI Y) CmpU Y" shape
575  return (in(1)->Opcode() == Op_ModI &&
576          in(1)->in(2)->eqv_uncast(in(2)));
577}
578
579//------------------------------Idealize---------------------------------------
580Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
581  if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
582    switch (in(1)->Opcode()) {
583    case Op_CmpL3:              // Collapse a CmpL3/CmpI into a CmpL
584      return new (phase->C) CmpLNode(in(1)->in(1),in(1)->in(2));
585    case Op_CmpF3:              // Collapse a CmpF3/CmpI into a CmpF
586      return new (phase->C) CmpFNode(in(1)->in(1),in(1)->in(2));
587    case Op_CmpD3:              // Collapse a CmpD3/CmpI into a CmpD
588      return new (phase->C) CmpDNode(in(1)->in(1),in(1)->in(2));
589    //case Op_SubI:
590      // If (x - y) cannot overflow, then ((x - y) <?> 0)
591      // can be turned into (x <?> y).
592      // This is handled (with more general cases) by Ideal_sub_algebra.
593    }
594  }
595  return NULL;                  // No change
596}
597
598
599//=============================================================================
600// Simplify a CmpL (compare 2 longs ) node, based on local information.
601// If both inputs are constants, compare them.
602const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
603  const TypeLong *r0 = t1->is_long(); // Handy access
604  const TypeLong *r1 = t2->is_long();
605
606  if( r0->_hi < r1->_lo )       // Range is always low?
607    return TypeInt::CC_LT;
608  else if( r0->_lo > r1->_hi )  // Range is always high?
609    return TypeInt::CC_GT;
610
611  else if( r0->is_con() && r1->is_con() ) { // comparing constants?
612    assert(r0->get_con() == r1->get_con(), "must be equal");
613    return TypeInt::CC_EQ;      // Equal results.
614  } else if( r0->_hi == r1->_lo ) // Range is never high?
615    return TypeInt::CC_LE;
616  else if( r0->_lo == r1->_hi ) // Range is never low?
617    return TypeInt::CC_GE;
618  return TypeInt::CC;           // else use worst case results
619}
620
621//=============================================================================
622//------------------------------sub--------------------------------------------
623// Simplify an CmpP (compare 2 pointers) node, based on local information.
624// If both inputs are constants, compare them.
625const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
626  const TypePtr *r0 = t1->is_ptr(); // Handy access
627  const TypePtr *r1 = t2->is_ptr();
628
629  // Undefined inputs makes for an undefined result
630  if( TypePtr::above_centerline(r0->_ptr) ||
631      TypePtr::above_centerline(r1->_ptr) )
632    return Type::TOP;
633
634  if (r0 == r1 && r0->singleton()) {
635    // Equal pointer constants (klasses, nulls, etc.)
636    return TypeInt::CC_EQ;
637  }
638
639  // See if it is 2 unrelated classes.
640  const TypeOopPtr* p0 = r0->isa_oopptr();
641  const TypeOopPtr* p1 = r1->isa_oopptr();
642  if (p0 && p1) {
643    Node* in1 = in(1)->uncast();
644    Node* in2 = in(2)->uncast();
645    AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL);
646    AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL);
647    if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) {
648      return TypeInt::CC_GT;  // different pointers
649    }
650    ciKlass* klass0 = p0->klass();
651    bool    xklass0 = p0->klass_is_exact();
652    ciKlass* klass1 = p1->klass();
653    bool    xklass1 = p1->klass_is_exact();
654    int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
655    if (klass0 && klass1 &&
656        kps != 1 &&             // both or neither are klass pointers
657        klass0->is_loaded() && !klass0->is_interface() && // do not trust interfaces
658        klass1->is_loaded() && !klass1->is_interface() &&
659        (!klass0->is_obj_array_klass() ||
660         !klass0->as_obj_array_klass()->base_element_klass()->is_interface()) &&
661        (!klass1->is_obj_array_klass() ||
662         !klass1->as_obj_array_klass()->base_element_klass()->is_interface())) {
663      bool unrelated_classes = false;
664      // See if neither subclasses the other, or if the class on top
665      // is precise.  In either of these cases, the compare is known
666      // to fail if at least one of the pointers is provably not null.
667      if (klass0->equals(klass1)) {  // if types are unequal but klasses are equal
668        // Do nothing; we know nothing for imprecise types
669      } else if (klass0->is_subtype_of(klass1)) {
670        // If klass1's type is PRECISE, then classes are unrelated.
671        unrelated_classes = xklass1;
672      } else if (klass1->is_subtype_of(klass0)) {
673        // If klass0's type is PRECISE, then classes are unrelated.
674        unrelated_classes = xklass0;
675      } else {                  // Neither subtypes the other
676        unrelated_classes = true;
677      }
678      if (unrelated_classes) {
679        // The oops classes are known to be unrelated. If the joined PTRs of
680        // two oops is not Null and not Bottom, then we are sure that one
681        // of the two oops is non-null, and the comparison will always fail.
682        TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
683        if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
684          return TypeInt::CC_GT;
685        }
686      }
687    }
688  }
689
690  // Known constants can be compared exactly
691  // Null can be distinguished from any NotNull pointers
692  // Unknown inputs makes an unknown result
693  if( r0->singleton() ) {
694    intptr_t bits0 = r0->get_con();
695    if( r1->singleton() )
696      return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
697    return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
698  } else if( r1->singleton() ) {
699    intptr_t bits1 = r1->get_con();
700    return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
701  } else
702    return TypeInt::CC;
703}
704
705static inline Node* isa_java_mirror_load(PhaseGVN* phase, Node* n) {
706  // Return the klass node for
707  //   LoadP(AddP(foo:Klass, #java_mirror))
708  //   or NULL if not matching.
709  if (n->Opcode() != Op_LoadP) return NULL;
710
711  const TypeInstPtr* tp = phase->type(n)->isa_instptr();
712  if (!tp || tp->klass() != phase->C->env()->Class_klass()) return NULL;
713
714  Node* adr = n->in(MemNode::Address);
715  intptr_t off = 0;
716  Node* k = AddPNode::Ideal_base_and_offset(adr, phase, off);
717  if (k == NULL)  return NULL;
718  const TypeKlassPtr* tkp = phase->type(k)->isa_klassptr();
719  if (!tkp || off != in_bytes(Klass::java_mirror_offset())) return NULL;
720
721  // We've found the klass node of a Java mirror load.
722  return k;
723}
724
725static inline Node* isa_const_java_mirror(PhaseGVN* phase, Node* n) {
726  // for ConP(Foo.class) return ConP(Foo.klass)
727  // otherwise return NULL
728  if (!n->is_Con()) return NULL;
729
730  const TypeInstPtr* tp = phase->type(n)->isa_instptr();
731  if (!tp) return NULL;
732
733  ciType* mirror_type = tp->java_mirror_type();
734  // TypeInstPtr::java_mirror_type() returns non-NULL for compile-
735  // time Class constants only.
736  if (!mirror_type) return NULL;
737
738  // x.getClass() == int.class can never be true (for all primitive types)
739  // Return a ConP(NULL) node for this case.
740  if (mirror_type->is_classless()) {
741    return phase->makecon(TypePtr::NULL_PTR);
742  }
743
744  // return the ConP(Foo.klass)
745  assert(mirror_type->is_klass(), "mirror_type should represent a Klass*");
746  return phase->makecon(TypeKlassPtr::make(mirror_type->as_klass()));
747}
748
749//------------------------------Ideal------------------------------------------
750// Normalize comparisons between Java mirror loads to compare the klass instead.
751//
752// Also check for the case of comparing an unknown klass loaded from the primary
753// super-type array vs a known klass with no subtypes.  This amounts to
754// checking to see an unknown klass subtypes a known klass with no subtypes;
755// this only happens on an exact match.  We can shorten this test by 1 load.
756Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
757  // Normalize comparisons between Java mirrors into comparisons of the low-
758  // level klass, where a dependent load could be shortened.
759  //
760  // The new pattern has a nice effect of matching the same pattern used in the
761  // fast path of instanceof/checkcast/Class.isInstance(), which allows
762  // redundant exact type check be optimized away by GVN.
763  // For example, in
764  //   if (x.getClass() == Foo.class) {
765  //     Foo foo = (Foo) x;
766  //     // ... use a ...
767  //   }
768  // a CmpPNode could be shared between if_acmpne and checkcast
769  {
770    Node* k1 = isa_java_mirror_load(phase, in(1));
771    Node* k2 = isa_java_mirror_load(phase, in(2));
772    Node* conk2 = isa_const_java_mirror(phase, in(2));
773
774    if (k1 && (k2 || conk2)) {
775      Node* lhs = k1;
776      Node* rhs = (k2 != NULL) ? k2 : conk2;
777      this->set_req(1, lhs);
778      this->set_req(2, rhs);
779      return this;
780    }
781  }
782
783  // Constant pointer on right?
784  const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
785  if (t2 == NULL || !t2->klass_is_exact())
786    return NULL;
787  // Get the constant klass we are comparing to.
788  ciKlass* superklass = t2->klass();
789
790  // Now check for LoadKlass on left.
791  Node* ldk1 = in(1);
792  if (ldk1->is_DecodeNKlass()) {
793    ldk1 = ldk1->in(1);
794    if (ldk1->Opcode() != Op_LoadNKlass )
795      return NULL;
796  } else if (ldk1->Opcode() != Op_LoadKlass )
797    return NULL;
798  // Take apart the address of the LoadKlass:
799  Node* adr1 = ldk1->in(MemNode::Address);
800  intptr_t con2 = 0;
801  Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
802  if (ldk2 == NULL)
803    return NULL;
804  if (con2 == oopDesc::klass_offset_in_bytes()) {
805    // We are inspecting an object's concrete class.
806    // Short-circuit the check if the query is abstract.
807    if (superklass->is_interface() ||
808        superklass->is_abstract()) {
809      // Make it come out always false:
810      this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
811      return this;
812    }
813  }
814
815  // Check for a LoadKlass from primary supertype array.
816  // Any nested loadklass from loadklass+con must be from the p.s. array.
817  if (ldk2->is_DecodeNKlass()) {
818    // Keep ldk2 as DecodeN since it could be used in CmpP below.
819    if (ldk2->in(1)->Opcode() != Op_LoadNKlass )
820      return NULL;
821  } else if (ldk2->Opcode() != Op_LoadKlass)
822    return NULL;
823
824  // Verify that we understand the situation
825  if (con2 != (intptr_t) superklass->super_check_offset())
826    return NULL;                // Might be element-klass loading from array klass
827
828  // If 'superklass' has no subklasses and is not an interface, then we are
829  // assured that the only input which will pass the type check is
830  // 'superklass' itself.
831  //
832  // We could be more liberal here, and allow the optimization on interfaces
833  // which have a single implementor.  This would require us to increase the
834  // expressiveness of the add_dependency() mechanism.
835  // %%% Do this after we fix TypeOopPtr:  Deps are expressive enough now.
836
837  // Object arrays must have their base element have no subtypes
838  while (superklass->is_obj_array_klass()) {
839    ciType* elem = superklass->as_obj_array_klass()->element_type();
840    superklass = elem->as_klass();
841  }
842  if (superklass->is_instance_klass()) {
843    ciInstanceKlass* ik = superklass->as_instance_klass();
844    if (ik->has_subklass() || ik->is_interface())  return NULL;
845    // Add a dependency if there is a chance that a subclass will be added later.
846    if (!ik->is_final()) {
847      phase->C->dependencies()->assert_leaf_type(ik);
848    }
849  }
850
851  // Bypass the dependent load, and compare directly
852  this->set_req(1,ldk2);
853
854  return this;
855}
856
857//=============================================================================
858//------------------------------sub--------------------------------------------
859// Simplify an CmpN (compare 2 pointers) node, based on local information.
860// If both inputs are constants, compare them.
861const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
862  const TypePtr *r0 = t1->make_ptr(); // Handy access
863  const TypePtr *r1 = t2->make_ptr();
864
865  // Undefined inputs makes for an undefined result
866  if( TypePtr::above_centerline(r0->_ptr) ||
867      TypePtr::above_centerline(r1->_ptr) )
868    return Type::TOP;
869
870  if (r0 == r1 && r0->singleton()) {
871    // Equal pointer constants (klasses, nulls, etc.)
872    return TypeInt::CC_EQ;
873  }
874
875  // See if it is 2 unrelated classes.
876  const TypeOopPtr* p0 = r0->isa_oopptr();
877  const TypeOopPtr* p1 = r1->isa_oopptr();
878  if (p0 && p1) {
879    ciKlass* klass0 = p0->klass();
880    bool    xklass0 = p0->klass_is_exact();
881    ciKlass* klass1 = p1->klass();
882    bool    xklass1 = p1->klass_is_exact();
883    int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
884    if (klass0 && klass1 &&
885        kps != 1 &&             // both or neither are klass pointers
886        !klass0->is_interface() && // do not trust interfaces
887        !klass1->is_interface()) {
888      bool unrelated_classes = false;
889      // See if neither subclasses the other, or if the class on top
890      // is precise.  In either of these cases, the compare is known
891      // to fail if at least one of the pointers is provably not null.
892      if (klass0->equals(klass1)) { // if types are unequal but klasses are equal
893        // Do nothing; we know nothing for imprecise types
894      } else if (klass0->is_subtype_of(klass1)) {
895        // If klass1's type is PRECISE, then classes are unrelated.
896        unrelated_classes = xklass1;
897      } else if (klass1->is_subtype_of(klass0)) {
898        // If klass0's type is PRECISE, then classes are unrelated.
899        unrelated_classes = xklass0;
900      } else {                  // Neither subtypes the other
901        unrelated_classes = true;
902      }
903      if (unrelated_classes) {
904        // The oops classes are known to be unrelated. If the joined PTRs of
905        // two oops is not Null and not Bottom, then we are sure that one
906        // of the two oops is non-null, and the comparison will always fail.
907        TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
908        if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
909          return TypeInt::CC_GT;
910        }
911      }
912    }
913  }
914
915  // Known constants can be compared exactly
916  // Null can be distinguished from any NotNull pointers
917  // Unknown inputs makes an unknown result
918  if( r0->singleton() ) {
919    intptr_t bits0 = r0->get_con();
920    if( r1->singleton() )
921      return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
922    return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
923  } else if( r1->singleton() ) {
924    intptr_t bits1 = r1->get_con();
925    return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
926  } else
927    return TypeInt::CC;
928}
929
930//------------------------------Ideal------------------------------------------
931Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
932  return NULL;
933}
934
935//=============================================================================
936//------------------------------Value------------------------------------------
937// Simplify an CmpF (compare 2 floats ) node, based on local information.
938// If both inputs are constants, compare them.
939const Type *CmpFNode::Value( PhaseTransform *phase ) const {
940  const Node* in1 = in(1);
941  const Node* in2 = in(2);
942  // Either input is TOP ==> the result is TOP
943  const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
944  if( t1 == Type::TOP ) return Type::TOP;
945  const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
946  if( t2 == Type::TOP ) return Type::TOP;
947
948  // Not constants?  Don't know squat - even if they are the same
949  // value!  If they are NaN's they compare to LT instead of EQ.
950  const TypeF *tf1 = t1->isa_float_constant();
951  const TypeF *tf2 = t2->isa_float_constant();
952  if( !tf1 || !tf2 ) return TypeInt::CC;
953
954  // This implements the Java bytecode fcmpl, so unordered returns -1.
955  if( tf1->is_nan() || tf2->is_nan() )
956    return TypeInt::CC_LT;
957
958  if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
959  if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
960  assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
961  return TypeInt::CC_EQ;
962}
963
964
965//=============================================================================
966//------------------------------Value------------------------------------------
967// Simplify an CmpD (compare 2 doubles ) node, based on local information.
968// If both inputs are constants, compare them.
969const Type *CmpDNode::Value( PhaseTransform *phase ) const {
970  const Node* in1 = in(1);
971  const Node* in2 = in(2);
972  // Either input is TOP ==> the result is TOP
973  const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
974  if( t1 == Type::TOP ) return Type::TOP;
975  const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
976  if( t2 == Type::TOP ) return Type::TOP;
977
978  // Not constants?  Don't know squat - even if they are the same
979  // value!  If they are NaN's they compare to LT instead of EQ.
980  const TypeD *td1 = t1->isa_double_constant();
981  const TypeD *td2 = t2->isa_double_constant();
982  if( !td1 || !td2 ) return TypeInt::CC;
983
984  // This implements the Java bytecode dcmpl, so unordered returns -1.
985  if( td1->is_nan() || td2->is_nan() )
986    return TypeInt::CC_LT;
987
988  if( td1->_d < td2->_d ) return TypeInt::CC_LT;
989  if( td1->_d > td2->_d ) return TypeInt::CC_GT;
990  assert( td1->_d == td2->_d, "do not understand FP behavior" );
991  return TypeInt::CC_EQ;
992}
993
994//------------------------------Ideal------------------------------------------
995Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
996  // Check if we can change this to a CmpF and remove a ConvD2F operation.
997  // Change  (CMPD (F2D (float)) (ConD value))
998  // To      (CMPF      (float)  (ConF value))
999  // Valid when 'value' does not lose precision as a float.
1000  // Benefits: eliminates conversion, does not require 24-bit mode
1001
1002  // NaNs prevent commuting operands.  This transform works regardless of the
1003  // order of ConD and ConvF2D inputs by preserving the original order.
1004  int idx_f2d = 1;              // ConvF2D on left side?
1005  if( in(idx_f2d)->Opcode() != Op_ConvF2D )
1006    idx_f2d = 2;                // No, swap to check for reversed args
1007  int idx_con = 3-idx_f2d;      // Check for the constant on other input
1008
1009  if( ConvertCmpD2CmpF &&
1010      in(idx_f2d)->Opcode() == Op_ConvF2D &&
1011      in(idx_con)->Opcode() == Op_ConD ) {
1012    const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
1013    double t2_value_as_double = t2->_d;
1014    float  t2_value_as_float  = (float)t2_value_as_double;
1015    if( t2_value_as_double == (double)t2_value_as_float ) {
1016      // Test value can be represented as a float
1017      // Eliminate the conversion to double and create new comparison
1018      Node *new_in1 = in(idx_f2d)->in(1);
1019      Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
1020      if( idx_f2d != 1 ) {      // Must flip args to match original order
1021        Node *tmp = new_in1;
1022        new_in1 = new_in2;
1023        new_in2 = tmp;
1024      }
1025      CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
1026        ? new (phase->C) CmpF3Node( new_in1, new_in2 )
1027        : new (phase->C) CmpFNode ( new_in1, new_in2 ) ;
1028      return new_cmp;           // Changed to CmpFNode
1029    }
1030    // Testing value required the precision of a double
1031  }
1032  return NULL;                  // No change
1033}
1034
1035
1036//=============================================================================
1037//------------------------------cc2logical-------------------------------------
1038// Convert a condition code type to a logical type
1039const Type *BoolTest::cc2logical( const Type *CC ) const {
1040  if( CC == Type::TOP ) return Type::TOP;
1041  if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
1042  const TypeInt *ti = CC->is_int();
1043  if( ti->is_con() ) {          // Only 1 kind of condition codes set?
1044    // Match low order 2 bits
1045    int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
1046    if( _test & 4 ) tmp = 1-tmp;     // Optionally complement result
1047    return TypeInt::make(tmp);       // Boolean result
1048  }
1049
1050  if( CC == TypeInt::CC_GE ) {
1051    if( _test == ge ) return TypeInt::ONE;
1052    if( _test == lt ) return TypeInt::ZERO;
1053  }
1054  if( CC == TypeInt::CC_LE ) {
1055    if( _test == le ) return TypeInt::ONE;
1056    if( _test == gt ) return TypeInt::ZERO;
1057  }
1058
1059  return TypeInt::BOOL;
1060}
1061
1062//------------------------------dump_spec-------------------------------------
1063// Print special per-node info
1064#ifndef PRODUCT
1065void BoolTest::dump_on(outputStream *st) const {
1066  const char *msg[] = {"eq","gt","??","lt","ne","le","??","ge"};
1067  st->print(msg[_test]);
1068}
1069#endif
1070
1071//=============================================================================
1072uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
1073uint BoolNode::size_of() const { return sizeof(BoolNode); }
1074
1075//------------------------------operator==-------------------------------------
1076uint BoolNode::cmp( const Node &n ) const {
1077  const BoolNode *b = (const BoolNode *)&n; // Cast up
1078  return (_test._test == b->_test._test);
1079}
1080
1081//------------------------------clone_cmp--------------------------------------
1082// Clone a compare/bool tree
1083static Node *clone_cmp( Node *cmp, Node *cmp1, Node *cmp2, PhaseGVN *gvn, BoolTest::mask test ) {
1084  Node *ncmp = cmp->clone();
1085  ncmp->set_req(1,cmp1);
1086  ncmp->set_req(2,cmp2);
1087  ncmp = gvn->transform( ncmp );
1088  return new (gvn->C) BoolNode( ncmp, test );
1089}
1090
1091//-------------------------------make_predicate--------------------------------
1092Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
1093  if (test_value->is_Con())   return test_value;
1094  if (test_value->is_Bool())  return test_value;
1095  Compile* C = phase->C;
1096  if (test_value->is_CMove() &&
1097      test_value->in(CMoveNode::Condition)->is_Bool()) {
1098    BoolNode*   bol   = test_value->in(CMoveNode::Condition)->as_Bool();
1099    const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
1100    const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
1101    if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
1102      return bol;
1103    } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
1104      return phase->transform( bol->negate(phase) );
1105    }
1106    // Else fall through.  The CMove gets in the way of the test.
1107    // It should be the case that make_predicate(bol->as_int_value()) == bol.
1108  }
1109  Node* cmp = new (C) CmpINode(test_value, phase->intcon(0));
1110  cmp = phase->transform(cmp);
1111  Node* bol = new (C) BoolNode(cmp, BoolTest::ne);
1112  return phase->transform(bol);
1113}
1114
1115//--------------------------------as_int_value---------------------------------
1116Node* BoolNode::as_int_value(PhaseGVN* phase) {
1117  // Inverse to make_predicate.  The CMove probably boils down to a Conv2B.
1118  Node* cmov = CMoveNode::make(phase->C, NULL, this,
1119                               phase->intcon(0), phase->intcon(1),
1120                               TypeInt::BOOL);
1121  return phase->transform(cmov);
1122}
1123
1124//----------------------------------negate-------------------------------------
1125BoolNode* BoolNode::negate(PhaseGVN* phase) {
1126  Compile* C = phase->C;
1127  return new (C) BoolNode(in(1), _test.negate());
1128}
1129
1130
1131//------------------------------Ideal------------------------------------------
1132Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1133  // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
1134  // This moves the constant to the right.  Helps value-numbering.
1135  Node *cmp = in(1);
1136  if( !cmp->is_Sub() ) return NULL;
1137  int cop = cmp->Opcode();
1138  if( cop == Op_FastLock || cop == Op_FastUnlock ) return NULL;
1139  Node *cmp1 = cmp->in(1);
1140  Node *cmp2 = cmp->in(2);
1141  if( !cmp1 ) return NULL;
1142
1143  // Constant on left?
1144  Node *con = cmp1;
1145  uint op2 = cmp2->Opcode();
1146  // Move constants to the right of compare's to canonicalize.
1147  // Do not muck with Opaque1 nodes, as this indicates a loop
1148  // guard that cannot change shape.
1149  if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
1150      // Because of NaN's, CmpD and CmpF are not commutative
1151      cop != Op_CmpD && cop != Op_CmpF &&
1152      // Protect against swapping inputs to a compare when it is used by a
1153      // counted loop exit, which requires maintaining the loop-limit as in(2)
1154      !is_counted_loop_exit_test() ) {
1155    // Ok, commute the constant to the right of the cmp node.
1156    // Clone the Node, getting a new Node of the same class
1157    cmp = cmp->clone();
1158    // Swap inputs to the clone
1159    cmp->swap_edges(1, 2);
1160    cmp = phase->transform( cmp );
1161    return new (phase->C) BoolNode( cmp, _test.commute() );
1162  }
1163
1164  // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
1165  // The XOR-1 is an idiom used to flip the sense of a bool.  We flip the
1166  // test instead.
1167  int cmp1_op = cmp1->Opcode();
1168  const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
1169  if (cmp2_type == NULL)  return NULL;
1170  Node* j_xor = cmp1;
1171  if( cmp2_type == TypeInt::ZERO &&
1172      cmp1_op == Op_XorI &&
1173      j_xor->in(1) != j_xor &&          // An xor of itself is dead
1174      phase->type( j_xor->in(1) ) == TypeInt::BOOL &&
1175      phase->type( j_xor->in(2) ) == TypeInt::ONE &&
1176      (_test._test == BoolTest::eq ||
1177       _test._test == BoolTest::ne) ) {
1178    Node *ncmp = phase->transform(new (phase->C) CmpINode(j_xor->in(1),cmp2));
1179    return new (phase->C) BoolNode( ncmp, _test.negate() );
1180  }
1181
1182  // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
1183  // This is a standard idiom for branching on a boolean value.
1184  Node *c2b = cmp1;
1185  if( cmp2_type == TypeInt::ZERO &&
1186      cmp1_op == Op_Conv2B &&
1187      (_test._test == BoolTest::eq ||
1188       _test._test == BoolTest::ne) ) {
1189    Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
1190       ? (Node*)new (phase->C) CmpINode(c2b->in(1),cmp2)
1191       : (Node*)new (phase->C) CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
1192    );
1193    return new (phase->C) BoolNode( ncmp, _test._test );
1194  }
1195
1196  // Comparing a SubI against a zero is equal to comparing the SubI
1197  // arguments directly.  This only works for eq and ne comparisons
1198  // due to possible integer overflow.
1199  if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1200        (cop == Op_CmpI) &&
1201        (cmp1->Opcode() == Op_SubI) &&
1202        ( cmp2_type == TypeInt::ZERO ) ) {
1203    Node *ncmp = phase->transform( new (phase->C) CmpINode(cmp1->in(1),cmp1->in(2)));
1204    return new (phase->C) BoolNode( ncmp, _test._test );
1205  }
1206
1207  // Change (-A vs 0) into (A vs 0) by commuting the test.  Disallow in the
1208  // most general case because negating 0x80000000 does nothing.  Needed for
1209  // the CmpF3/SubI/CmpI idiom.
1210  if( cop == Op_CmpI &&
1211      cmp1->Opcode() == Op_SubI &&
1212      cmp2_type == TypeInt::ZERO &&
1213      phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
1214      phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
1215    Node *ncmp = phase->transform( new (phase->C) CmpINode(cmp1->in(2),cmp2));
1216    return new (phase->C) BoolNode( ncmp, _test.commute() );
1217  }
1218
1219  //  The transformation below is not valid for either signed or unsigned
1220  //  comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
1221  //  This transformation can be resurrected when we are able to
1222  //  make inferences about the range of values being subtracted from
1223  //  (or added to) relative to the wraparound point.
1224  //
1225  //    // Remove +/-1's if possible.
1226  //    // "X <= Y-1" becomes "X <  Y"
1227  //    // "X+1 <= Y" becomes "X <  Y"
1228  //    // "X <  Y+1" becomes "X <= Y"
1229  //    // "X-1 <  Y" becomes "X <= Y"
1230  //    // Do not this to compares off of the counted-loop-end.  These guys are
1231  //    // checking the trip counter and they want to use the post-incremented
1232  //    // counter.  If they use the PRE-incremented counter, then the counter has
1233  //    // to be incremented in a private block on a loop backedge.
1234  //    if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
1235  //      return NULL;
1236  //  #ifndef PRODUCT
1237  //    // Do not do this in a wash GVN pass during verification.
1238  //    // Gets triggered by too many simple optimizations to be bothered with
1239  //    // re-trying it again and again.
1240  //    if( !phase->allow_progress() ) return NULL;
1241  //  #endif
1242  //    // Not valid for unsigned compare because of corner cases in involving zero.
1243  //    // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
1244  //    // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
1245  //    // "0 <=u Y" is always true).
1246  //    if( cmp->Opcode() == Op_CmpU ) return NULL;
1247  //    int cmp2_op = cmp2->Opcode();
1248  //    if( _test._test == BoolTest::le ) {
1249  //      if( cmp1_op == Op_AddI &&
1250  //          phase->type( cmp1->in(2) ) == TypeInt::ONE )
1251  //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
1252  //      else if( cmp2_op == Op_AddI &&
1253  //         phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
1254  //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
1255  //    } else if( _test._test == BoolTest::lt ) {
1256  //      if( cmp1_op == Op_AddI &&
1257  //          phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
1258  //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
1259  //      else if( cmp2_op == Op_AddI &&
1260  //         phase->type( cmp2->in(2) ) == TypeInt::ONE )
1261  //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
1262  //    }
1263
1264  return NULL;
1265}
1266
1267//------------------------------Value------------------------------------------
1268// Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
1269// based on local information.   If the input is constant, do it.
1270const Type *BoolNode::Value( PhaseTransform *phase ) const {
1271  return _test.cc2logical( phase->type( in(1) ) );
1272}
1273
1274//------------------------------dump_spec--------------------------------------
1275// Dump special per-node info
1276#ifndef PRODUCT
1277void BoolNode::dump_spec(outputStream *st) const {
1278  st->print("[");
1279  _test.dump_on(st);
1280  st->print("]");
1281}
1282#endif
1283
1284//------------------------------is_counted_loop_exit_test--------------------------------------
1285// Returns true if node is used by a counted loop node.
1286bool BoolNode::is_counted_loop_exit_test() {
1287  for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
1288    Node* use = fast_out(i);
1289    if (use->is_CountedLoopEnd()) {
1290      return true;
1291    }
1292  }
1293  return false;
1294}
1295
1296//=============================================================================
1297//------------------------------Value------------------------------------------
1298// Compute sqrt
1299const Type *SqrtDNode::Value( PhaseTransform *phase ) const {
1300  const Type *t1 = phase->type( in(1) );
1301  if( t1 == Type::TOP ) return Type::TOP;
1302  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1303  double d = t1->getd();
1304  if( d < 0.0 ) return Type::DOUBLE;
1305  return TypeD::make( sqrt( d ) );
1306}
1307
1308//=============================================================================
1309//------------------------------Value------------------------------------------
1310// Compute cos
1311const Type *CosDNode::Value( PhaseTransform *phase ) const {
1312  const Type *t1 = phase->type( in(1) );
1313  if( t1 == Type::TOP ) return Type::TOP;
1314  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1315  double d = t1->getd();
1316  return TypeD::make( StubRoutines::intrinsic_cos( d ) );
1317}
1318
1319//=============================================================================
1320//------------------------------Value------------------------------------------
1321// Compute sin
1322const Type *SinDNode::Value( PhaseTransform *phase ) const {
1323  const Type *t1 = phase->type( in(1) );
1324  if( t1 == Type::TOP ) return Type::TOP;
1325  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1326  double d = t1->getd();
1327  return TypeD::make( StubRoutines::intrinsic_sin( d ) );
1328}
1329
1330//=============================================================================
1331//------------------------------Value------------------------------------------
1332// Compute tan
1333const Type *TanDNode::Value( PhaseTransform *phase ) const {
1334  const Type *t1 = phase->type( in(1) );
1335  if( t1 == Type::TOP ) return Type::TOP;
1336  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1337  double d = t1->getd();
1338  return TypeD::make( StubRoutines::intrinsic_tan( d ) );
1339}
1340
1341//=============================================================================
1342//------------------------------Value------------------------------------------
1343// Compute log
1344const Type *LogDNode::Value( PhaseTransform *phase ) const {
1345  const Type *t1 = phase->type( in(1) );
1346  if( t1 == Type::TOP ) return Type::TOP;
1347  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1348  double d = t1->getd();
1349  return TypeD::make( StubRoutines::intrinsic_log( d ) );
1350}
1351
1352//=============================================================================
1353//------------------------------Value------------------------------------------
1354// Compute log10
1355const Type *Log10DNode::Value( PhaseTransform *phase ) const {
1356  const Type *t1 = phase->type( in(1) );
1357  if( t1 == Type::TOP ) return Type::TOP;
1358  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1359  double d = t1->getd();
1360  return TypeD::make( StubRoutines::intrinsic_log10( d ) );
1361}
1362
1363//=============================================================================
1364//------------------------------Value------------------------------------------
1365// Compute exp
1366const Type *ExpDNode::Value( PhaseTransform *phase ) const {
1367  const Type *t1 = phase->type( in(1) );
1368  if( t1 == Type::TOP ) return Type::TOP;
1369  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1370  double d = t1->getd();
1371  return TypeD::make( StubRoutines::intrinsic_exp( d ) );
1372}
1373
1374
1375//=============================================================================
1376//------------------------------Value------------------------------------------
1377// Compute pow
1378const Type *PowDNode::Value( PhaseTransform *phase ) const {
1379  const Type *t1 = phase->type( in(1) );
1380  if( t1 == Type::TOP ) return Type::TOP;
1381  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1382  const Type *t2 = phase->type( in(2) );
1383  if( t2 == Type::TOP ) return Type::TOP;
1384  if( t2->base() != Type::DoubleCon ) return Type::DOUBLE;
1385  double d1 = t1->getd();
1386  double d2 = t2->getd();
1387  return TypeD::make( StubRoutines::intrinsic_pow( d1, d2 ) );
1388}
1389