subnode.cpp revision 113:ba764ed4b6f2
1/*
2 * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// Portions of code courtesy of Clifford Click
26
27// Optimization - Graph Style
28
29#include "incls/_precompiled.incl"
30#include "incls/_subnode.cpp.incl"
31#include "math.h"
32
33//=============================================================================
34//------------------------------Identity---------------------------------------
35// If right input is a constant 0, return the left input.
36Node *SubNode::Identity( PhaseTransform *phase ) {
37  assert(in(1) != this, "Must already have called Value");
38  assert(in(2) != this, "Must already have called Value");
39
40  // Remove double negation
41  const Type *zero = add_id();
42  if( phase->type( in(1) )->higher_equal( zero ) &&
43      in(2)->Opcode() == Opcode() &&
44      phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
45    return in(2)->in(2);
46  }
47
48  // Convert "(X+Y) - Y" into X
49  if( in(1)->Opcode() == Op_AddI ) {
50    if( phase->eqv(in(1)->in(2),in(2)) )
51      return in(1)->in(1);
52    // Also catch: "(X + Opaque2(Y)) - Y".  In this case, 'Y' is a loop-varying
53    // trip counter and X is likely to be loop-invariant (that's how O2 Nodes
54    // are originally used, although the optimizer sometimes jiggers things).
55    // This folding through an O2 removes a loop-exit use of a loop-varying
56    // value and generally lowers register pressure in and around the loop.
57    if( in(1)->in(2)->Opcode() == Op_Opaque2 &&
58        phase->eqv(in(1)->in(2)->in(1),in(2)) )
59      return in(1)->in(1);
60  }
61
62  return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
63}
64
65//------------------------------Value------------------------------------------
66// A subtract node differences it's two inputs.
67const Type *SubNode::Value( PhaseTransform *phase ) const {
68  const Node* in1 = in(1);
69  const Node* in2 = in(2);
70  // Either input is TOP ==> the result is TOP
71  const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
72  if( t1 == Type::TOP ) return Type::TOP;
73  const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
74  if( t2 == Type::TOP ) return Type::TOP;
75
76  // Not correct for SubFnode and AddFNode (must check for infinity)
77  // Equal?  Subtract is zero
78  if (phase->eqv_uncast(in1, in2))  return add_id();
79
80  // Either input is BOTTOM ==> the result is the local BOTTOM
81  if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
82    return bottom_type();
83
84  return sub(t1,t2);            // Local flavor of type subtraction
85
86}
87
88//=============================================================================
89
90//------------------------------Helper function--------------------------------
91static bool ok_to_convert(Node* inc, Node* iv) {
92    // Do not collapse (x+c0)-y if "+" is a loop increment, because the
93    // "-" is loop invariant and collapsing extends the live-range of "x"
94    // to overlap with the "+", forcing another register to be used in
95    // the loop.
96    // This test will be clearer with '&&' (apply DeMorgan's rule)
97    // but I like the early cutouts that happen here.
98    const PhiNode *phi;
99    if( ( !inc->in(1)->is_Phi() ||
100          !(phi=inc->in(1)->as_Phi()) ||
101          phi->is_copy() ||
102          !phi->region()->is_CountedLoop() ||
103          inc != phi->region()->as_CountedLoop()->incr() )
104       &&
105        // Do not collapse (x+c0)-iv if "iv" is a loop induction variable,
106        // because "x" maybe invariant.
107        ( !iv->is_loop_iv() )
108      ) {
109      return true;
110    } else {
111      return false;
112    }
113}
114//------------------------------Ideal------------------------------------------
115Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
116  Node *in1 = in(1);
117  Node *in2 = in(2);
118  uint op1 = in1->Opcode();
119  uint op2 = in2->Opcode();
120
121#ifdef ASSERT
122  // Check for dead loop
123  if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
124      ( op1 == Op_AddI || op1 == Op_SubI ) &&
125      ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
126        phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1 ) ) )
127    assert(false, "dead loop in SubINode::Ideal");
128#endif
129
130  const Type *t2 = phase->type( in2 );
131  if( t2 == Type::TOP ) return NULL;
132  // Convert "x-c0" into "x+ -c0".
133  if( t2->base() == Type::Int ){        // Might be bottom or top...
134    const TypeInt *i = t2->is_int();
135    if( i->is_con() )
136      return new (phase->C, 3) AddINode(in1, phase->intcon(-i->get_con()));
137  }
138
139  // Convert "(x+c0) - y" into (x-y) + c0"
140  // Do not collapse (x+c0)-y if "+" is a loop increment or
141  // if "y" is a loop induction variable.
142  if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
143    const Type *tadd = phase->type( in1->in(2) );
144    if( tadd->singleton() && tadd != Type::TOP ) {
145      Node *sub2 = phase->transform( new (phase->C, 3) SubINode( in1->in(1), in2 ));
146      return new (phase->C, 3) AddINode( sub2, in1->in(2) );
147    }
148  }
149
150
151  // Convert "x - (y+c0)" into "(x-y) - c0"
152  // Need the same check as in above optimization but reversed.
153  if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
154    Node* in21 = in2->in(1);
155    Node* in22 = in2->in(2);
156    const TypeInt* tcon = phase->type(in22)->isa_int();
157    if (tcon != NULL && tcon->is_con()) {
158      Node* sub2 = phase->transform( new (phase->C, 3) SubINode(in1, in21) );
159      Node* neg_c0 = phase->intcon(- tcon->get_con());
160      return new (phase->C, 3) AddINode(sub2, neg_c0);
161    }
162  }
163
164  const Type *t1 = phase->type( in1 );
165  if( t1 == Type::TOP ) return NULL;
166
167#ifdef ASSERT
168  // Check for dead loop
169  if( ( op2 == Op_AddI || op2 == Op_SubI ) &&
170      ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
171        phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
172    assert(false, "dead loop in SubINode::Ideal");
173#endif
174
175  // Convert "x - (x+y)" into "-y"
176  if( op2 == Op_AddI &&
177      phase->eqv( in1, in2->in(1) ) )
178    return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(2));
179  // Convert "(x-y) - x" into "-y"
180  if( op1 == Op_SubI &&
181      phase->eqv( in1->in(1), in2 ) )
182    return new (phase->C, 3) SubINode( phase->intcon(0),in1->in(2));
183  // Convert "x - (y+x)" into "-y"
184  if( op2 == Op_AddI &&
185      phase->eqv( in1, in2->in(2) ) )
186    return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(1));
187
188  // Convert "0 - (x-y)" into "y-x"
189  if( t1 == TypeInt::ZERO && op2 == Op_SubI )
190    return new (phase->C, 3) SubINode( in2->in(2), in2->in(1) );
191
192  // Convert "0 - (x+con)" into "-con-x"
193  jint con;
194  if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
195      (con = in2->in(2)->find_int_con(0)) != 0 )
196    return new (phase->C, 3) SubINode( phase->intcon(-con), in2->in(1) );
197
198  // Convert "(X+A) - (X+B)" into "A - B"
199  if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
200    return new (phase->C, 3) SubINode( in1->in(2), in2->in(2) );
201
202  // Convert "(A+X) - (B+X)" into "A - B"
203  if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
204    return new (phase->C, 3) SubINode( in1->in(1), in2->in(1) );
205
206  // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
207  // nicer to optimize than subtract.
208  if( op2 == Op_SubI && in2->outcnt() == 1) {
209    Node *add1 = phase->transform( new (phase->C, 3) AddINode( in1, in2->in(2) ) );
210    return new (phase->C, 3) SubINode( add1, in2->in(1) );
211  }
212
213  return NULL;
214}
215
216//------------------------------sub--------------------------------------------
217// A subtract node differences it's two inputs.
218const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
219  const TypeInt *r0 = t1->is_int(); // Handy access
220  const TypeInt *r1 = t2->is_int();
221  int32 lo = r0->_lo - r1->_hi;
222  int32 hi = r0->_hi - r1->_lo;
223
224  // We next check for 32-bit overflow.
225  // If that happens, we just assume all integers are possible.
226  if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
227       ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
228      (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
229       ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
230    return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
231  else                          // Overflow; assume all integers
232    return TypeInt::INT;
233}
234
235//=============================================================================
236//------------------------------Ideal------------------------------------------
237Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
238  Node *in1 = in(1);
239  Node *in2 = in(2);
240  uint op1 = in1->Opcode();
241  uint op2 = in2->Opcode();
242
243#ifdef ASSERT
244  // Check for dead loop
245  if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
246      ( op1 == Op_AddL || op1 == Op_SubL ) &&
247      ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
248        phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1  ) ) )
249    assert(false, "dead loop in SubLNode::Ideal");
250#endif
251
252  if( phase->type( in2 ) == Type::TOP ) return NULL;
253  const TypeLong *i = phase->type( in2 )->isa_long();
254  // Convert "x-c0" into "x+ -c0".
255  if( i &&                      // Might be bottom or top...
256      i->is_con() )
257    return new (phase->C, 3) AddLNode(in1, phase->longcon(-i->get_con()));
258
259  // Convert "(x+c0) - y" into (x-y) + c0"
260  // Do not collapse (x+c0)-y if "+" is a loop increment or
261  // if "y" is a loop induction variable.
262  if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
263    Node *in11 = in1->in(1);
264    const Type *tadd = phase->type( in1->in(2) );
265    if( tadd->singleton() && tadd != Type::TOP ) {
266      Node *sub2 = phase->transform( new (phase->C, 3) SubLNode( in11, in2 ));
267      return new (phase->C, 3) AddLNode( sub2, in1->in(2) );
268    }
269  }
270
271  // Convert "x - (y+c0)" into "(x-y) - c0"
272  // Need the same check as in above optimization but reversed.
273  if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
274    Node* in21 = in2->in(1);
275    Node* in22 = in2->in(2);
276    const TypeLong* tcon = phase->type(in22)->isa_long();
277    if (tcon != NULL && tcon->is_con()) {
278      Node* sub2 = phase->transform( new (phase->C, 3) SubLNode(in1, in21) );
279      Node* neg_c0 = phase->longcon(- tcon->get_con());
280      return new (phase->C, 3) AddLNode(sub2, neg_c0);
281    }
282  }
283
284  const Type *t1 = phase->type( in1 );
285  if( t1 == Type::TOP ) return NULL;
286
287#ifdef ASSERT
288  // Check for dead loop
289  if( ( op2 == Op_AddL || op2 == Op_SubL ) &&
290      ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
291        phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
292    assert(false, "dead loop in SubLNode::Ideal");
293#endif
294
295  // Convert "x - (x+y)" into "-y"
296  if( op2 == Op_AddL &&
297      phase->eqv( in1, in2->in(1) ) )
298    return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2));
299  // Convert "x - (y+x)" into "-y"
300  if( op2 == Op_AddL &&
301      phase->eqv( in1, in2->in(2) ) )
302    return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1));
303
304  // Convert "0 - (x-y)" into "y-x"
305  if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
306    return new (phase->C, 3) SubLNode( in2->in(2), in2->in(1) );
307
308  // Convert "(X+A) - (X+B)" into "A - B"
309  if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
310    return new (phase->C, 3) SubLNode( in1->in(2), in2->in(2) );
311
312  // Convert "(A+X) - (B+X)" into "A - B"
313  if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
314    return new (phase->C, 3) SubLNode( in1->in(1), in2->in(1) );
315
316  // Convert "A-(B-C)" into (A+C)-B"
317  if( op2 == Op_SubL && in2->outcnt() == 1) {
318    Node *add1 = phase->transform( new (phase->C, 3) AddLNode( in1, in2->in(2) ) );
319    return new (phase->C, 3) SubLNode( add1, in2->in(1) );
320  }
321
322  return NULL;
323}
324
325//------------------------------sub--------------------------------------------
326// A subtract node differences it's two inputs.
327const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
328  const TypeLong *r0 = t1->is_long(); // Handy access
329  const TypeLong *r1 = t2->is_long();
330  jlong lo = r0->_lo - r1->_hi;
331  jlong hi = r0->_hi - r1->_lo;
332
333  // We next check for 32-bit overflow.
334  // If that happens, we just assume all integers are possible.
335  if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
336       ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
337      (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
338       ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
339    return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
340  else                          // Overflow; assume all integers
341    return TypeLong::LONG;
342}
343
344//=============================================================================
345//------------------------------Value------------------------------------------
346// A subtract node differences its two inputs.
347const Type *SubFPNode::Value( PhaseTransform *phase ) const {
348  const Node* in1 = in(1);
349  const Node* in2 = in(2);
350  // Either input is TOP ==> the result is TOP
351  const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
352  if( t1 == Type::TOP ) return Type::TOP;
353  const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
354  if( t2 == Type::TOP ) return Type::TOP;
355
356  // if both operands are infinity of same sign, the result is NaN; do
357  // not replace with zero
358  if( (t1->is_finite() && t2->is_finite()) ) {
359    if( phase->eqv(in1, in2) ) return add_id();
360  }
361
362  // Either input is BOTTOM ==> the result is the local BOTTOM
363  const Type *bot = bottom_type();
364  if( (t1 == bot) || (t2 == bot) ||
365      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
366    return bot;
367
368  return sub(t1,t2);            // Local flavor of type subtraction
369}
370
371
372//=============================================================================
373//------------------------------Ideal------------------------------------------
374Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
375  const Type *t2 = phase->type( in(2) );
376  // Convert "x-c0" into "x+ -c0".
377  if( t2->base() == Type::FloatCon ) {  // Might be bottom or top...
378    // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
379  }
380
381  // Not associative because of boundary conditions (infinity)
382  if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
383    // Convert "x - (x+y)" into "-y"
384    if( in(2)->is_Add() &&
385        phase->eqv(in(1),in(2)->in(1) ) )
386      return new (phase->C, 3) SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2));
387  }
388
389  // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
390  // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
391  //if( phase->type(in(1)) == TypeF::ZERO )
392  //return new (phase->C, 2) NegFNode(in(2));
393
394  return NULL;
395}
396
397//------------------------------sub--------------------------------------------
398// A subtract node differences its two inputs.
399const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
400  // no folding if one of operands is infinity or NaN, do not do constant folding
401  if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
402    return TypeF::make( t1->getf() - t2->getf() );
403  }
404  else if( g_isnan(t1->getf()) ) {
405    return t1;
406  }
407  else if( g_isnan(t2->getf()) ) {
408    return t2;
409  }
410  else {
411    return Type::FLOAT;
412  }
413}
414
415//=============================================================================
416//------------------------------Ideal------------------------------------------
417Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
418  const Type *t2 = phase->type( in(2) );
419  // Convert "x-c0" into "x+ -c0".
420  if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
421    // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
422  }
423
424  // Not associative because of boundary conditions (infinity)
425  if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
426    // Convert "x - (x+y)" into "-y"
427    if( in(2)->is_Add() &&
428        phase->eqv(in(1),in(2)->in(1) ) )
429      return new (phase->C, 3) SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2));
430  }
431
432  // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
433  // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
434  //if( phase->type(in(1)) == TypeD::ZERO )
435  //return new (phase->C, 2) NegDNode(in(2));
436
437  return NULL;
438}
439
440//------------------------------sub--------------------------------------------
441// A subtract node differences its two inputs.
442const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
443  // no folding if one of operands is infinity or NaN, do not do constant folding
444  if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
445    return TypeD::make( t1->getd() - t2->getd() );
446  }
447  else if( g_isnan(t1->getd()) ) {
448    return t1;
449  }
450  else if( g_isnan(t2->getd()) ) {
451    return t2;
452  }
453  else {
454    return Type::DOUBLE;
455  }
456}
457
458//=============================================================================
459//------------------------------Idealize---------------------------------------
460// Unlike SubNodes, compare must still flatten return value to the
461// range -1, 0, 1.
462// And optimizations like those for (X + Y) - X fail if overflow happens.
463Node *CmpNode::Identity( PhaseTransform *phase ) {
464  return this;
465}
466
467//=============================================================================
468//------------------------------cmp--------------------------------------------
469// Simplify a CmpI (compare 2 integers) node, based on local information.
470// If both inputs are constants, compare them.
471const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
472  const TypeInt *r0 = t1->is_int(); // Handy access
473  const TypeInt *r1 = t2->is_int();
474
475  if( r0->_hi < r1->_lo )       // Range is always low?
476    return TypeInt::CC_LT;
477  else if( r0->_lo > r1->_hi )  // Range is always high?
478    return TypeInt::CC_GT;
479
480  else if( r0->is_con() && r1->is_con() ) { // comparing constants?
481    assert(r0->get_con() == r1->get_con(), "must be equal");
482    return TypeInt::CC_EQ;      // Equal results.
483  } else if( r0->_hi == r1->_lo ) // Range is never high?
484    return TypeInt::CC_LE;
485  else if( r0->_lo == r1->_hi ) // Range is never low?
486    return TypeInt::CC_GE;
487  return TypeInt::CC;           // else use worst case results
488}
489
490// Simplify a CmpU (compare 2 integers) node, based on local information.
491// If both inputs are constants, compare them.
492const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
493  assert(!t1->isa_ptr(), "obsolete usage of CmpU");
494
495  // comparing two unsigned ints
496  const TypeInt *r0 = t1->is_int();   // Handy access
497  const TypeInt *r1 = t2->is_int();
498
499  // Current installed version
500  // Compare ranges for non-overlap
501  juint lo0 = r0->_lo;
502  juint hi0 = r0->_hi;
503  juint lo1 = r1->_lo;
504  juint hi1 = r1->_hi;
505
506  // If either one has both negative and positive values,
507  // it therefore contains both 0 and -1, and since [0..-1] is the
508  // full unsigned range, the type must act as an unsigned bottom.
509  bool bot0 = ((jint)(lo0 ^ hi0) < 0);
510  bool bot1 = ((jint)(lo1 ^ hi1) < 0);
511
512  if (bot0 || bot1) {
513    // All unsigned values are LE -1 and GE 0.
514    if (lo0 == 0 && hi0 == 0) {
515      return TypeInt::CC_LE;            //   0 <= bot
516    } else if (lo1 == 0 && hi1 == 0) {
517      return TypeInt::CC_GE;            // bot >= 0
518    }
519  } else {
520    // We can use ranges of the form [lo..hi] if signs are the same.
521    assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
522    // results are reversed, '-' > '+' for unsigned compare
523    if (hi0 < lo1) {
524      return TypeInt::CC_LT;            // smaller
525    } else if (lo0 > hi1) {
526      return TypeInt::CC_GT;            // greater
527    } else if (hi0 == lo1 && lo0 == hi1) {
528      return TypeInt::CC_EQ;            // Equal results
529    } else if (lo0 >= hi1) {
530      return TypeInt::CC_GE;
531    } else if (hi0 <= lo1) {
532      // Check for special case in Hashtable::get.  (See below.)
533      if ((jint)lo0 >= 0 && (jint)lo1 >= 0 &&
534          in(1)->Opcode() == Op_ModI &&
535          in(1)->in(2) == in(2) )
536        return TypeInt::CC_LT;
537      return TypeInt::CC_LE;
538    }
539  }
540  // Check for special case in Hashtable::get - the hash index is
541  // mod'ed to the table size so the following range check is useless.
542  // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
543  // to be positive.
544  // (This is a gross hack, since the sub method never
545  // looks at the structure of the node in any other case.)
546  if ((jint)lo0 >= 0 && (jint)lo1 >= 0 &&
547      in(1)->Opcode() == Op_ModI &&
548      in(1)->in(2)->uncast() == in(2)->uncast())
549    return TypeInt::CC_LT;
550  return TypeInt::CC;                   // else use worst case results
551}
552
553//------------------------------Idealize---------------------------------------
554Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
555  if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
556    switch (in(1)->Opcode()) {
557    case Op_CmpL3:              // Collapse a CmpL3/CmpI into a CmpL
558      return new (phase->C, 3) CmpLNode(in(1)->in(1),in(1)->in(2));
559    case Op_CmpF3:              // Collapse a CmpF3/CmpI into a CmpF
560      return new (phase->C, 3) CmpFNode(in(1)->in(1),in(1)->in(2));
561    case Op_CmpD3:              // Collapse a CmpD3/CmpI into a CmpD
562      return new (phase->C, 3) CmpDNode(in(1)->in(1),in(1)->in(2));
563    //case Op_SubI:
564      // If (x - y) cannot overflow, then ((x - y) <?> 0)
565      // can be turned into (x <?> y).
566      // This is handled (with more general cases) by Ideal_sub_algebra.
567    }
568  }
569  return NULL;                  // No change
570}
571
572
573//=============================================================================
574// Simplify a CmpL (compare 2 longs ) node, based on local information.
575// If both inputs are constants, compare them.
576const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
577  const TypeLong *r0 = t1->is_long(); // Handy access
578  const TypeLong *r1 = t2->is_long();
579
580  if( r0->_hi < r1->_lo )       // Range is always low?
581    return TypeInt::CC_LT;
582  else if( r0->_lo > r1->_hi )  // Range is always high?
583    return TypeInt::CC_GT;
584
585  else if( r0->is_con() && r1->is_con() ) { // comparing constants?
586    assert(r0->get_con() == r1->get_con(), "must be equal");
587    return TypeInt::CC_EQ;      // Equal results.
588  } else if( r0->_hi == r1->_lo ) // Range is never high?
589    return TypeInt::CC_LE;
590  else if( r0->_lo == r1->_hi ) // Range is never low?
591    return TypeInt::CC_GE;
592  return TypeInt::CC;           // else use worst case results
593}
594
595//=============================================================================
596//------------------------------sub--------------------------------------------
597// Simplify an CmpP (compare 2 pointers) node, based on local information.
598// If both inputs are constants, compare them.
599const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
600  const TypePtr *r0 = t1->is_ptr(); // Handy access
601  const TypePtr *r1 = t2->is_ptr();
602
603  // Undefined inputs makes for an undefined result
604  if( TypePtr::above_centerline(r0->_ptr) ||
605      TypePtr::above_centerline(r1->_ptr) )
606    return Type::TOP;
607
608  if (r0 == r1 && r0->singleton()) {
609    // Equal pointer constants (klasses, nulls, etc.)
610    return TypeInt::CC_EQ;
611  }
612
613  // See if it is 2 unrelated classes.
614  const TypeOopPtr* p0 = r0->isa_oopptr();
615  const TypeOopPtr* p1 = r1->isa_oopptr();
616  if (p0 && p1) {
617    Node* in1 = in(1)->uncast();
618    Node* in2 = in(2)->uncast();
619    AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL);
620    AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL);
621    if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) {
622      return TypeInt::CC_GT;  // different pointers
623    }
624    ciKlass* klass0 = p0->klass();
625    bool    xklass0 = p0->klass_is_exact();
626    ciKlass* klass1 = p1->klass();
627    bool    xklass1 = p1->klass_is_exact();
628    int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
629    if (klass0 && klass1 &&
630        kps != 1 &&             // both or neither are klass pointers
631        !klass0->is_interface() && // do not trust interfaces
632        !klass1->is_interface()) {
633      // See if neither subclasses the other, or if the class on top
634      // is precise.  In either of these cases, the compare must fail.
635      if (klass0->equals(klass1)   ||   // if types are unequal but klasses are
636          !klass0->is_java_klass() ||   // types not part of Java language?
637          !klass1->is_java_klass()) {   // types not part of Java language?
638        // Do nothing; we know nothing for imprecise types
639      } else if (klass0->is_subtype_of(klass1)) {
640        // If klass1's type is PRECISE, then we can fail.
641        if (xklass1)  return TypeInt::CC_GT;
642      } else if (klass1->is_subtype_of(klass0)) {
643        // If klass0's type is PRECISE, then we can fail.
644        if (xklass0)  return TypeInt::CC_GT;
645      } else {                  // Neither subtypes the other
646        return TypeInt::CC_GT;  // ...so always fail
647      }
648    }
649  }
650
651  // Known constants can be compared exactly
652  // Null can be distinguished from any NotNull pointers
653  // Unknown inputs makes an unknown result
654  if( r0->singleton() ) {
655    intptr_t bits0 = r0->get_con();
656    if( r1->singleton() )
657      return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
658    return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
659  } else if( r1->singleton() ) {
660    intptr_t bits1 = r1->get_con();
661    return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
662  } else
663    return TypeInt::CC;
664}
665
666//------------------------------Ideal------------------------------------------
667// Check for the case of comparing an unknown klass loaded from the primary
668// super-type array vs a known klass with no subtypes.  This amounts to
669// checking to see an unknown klass subtypes a known klass with no subtypes;
670// this only happens on an exact match.  We can shorten this test by 1 load.
671Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
672  // Constant pointer on right?
673  const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
674  if (t2 == NULL || !t2->klass_is_exact())
675    return NULL;
676  // Get the constant klass we are comparing to.
677  ciKlass* superklass = t2->klass();
678
679  // Now check for LoadKlass on left.
680  Node* ldk1 = in(1);
681  if (ldk1->Opcode() != Op_LoadKlass)
682    return NULL;
683  // Take apart the address of the LoadKlass:
684  Node* adr1 = ldk1->in(MemNode::Address);
685  intptr_t con2 = 0;
686  Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
687  if (ldk2 == NULL)
688    return NULL;
689  if (con2 == oopDesc::klass_offset_in_bytes()) {
690    // We are inspecting an object's concrete class.
691    // Short-circuit the check if the query is abstract.
692    if (superklass->is_interface() ||
693        superklass->is_abstract()) {
694      // Make it come out always false:
695      this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
696      return this;
697    }
698  }
699
700  // Check for a LoadKlass from primary supertype array.
701  // Any nested loadklass from loadklass+con must be from the p.s. array.
702  if (ldk2->Opcode() != Op_LoadKlass)
703    return NULL;
704
705  // Verify that we understand the situation
706  if (con2 != (intptr_t) superklass->super_check_offset())
707    return NULL;                // Might be element-klass loading from array klass
708
709  // If 'superklass' has no subklasses and is not an interface, then we are
710  // assured that the only input which will pass the type check is
711  // 'superklass' itself.
712  //
713  // We could be more liberal here, and allow the optimization on interfaces
714  // which have a single implementor.  This would require us to increase the
715  // expressiveness of the add_dependency() mechanism.
716  // %%% Do this after we fix TypeOopPtr:  Deps are expressive enough now.
717
718  // Object arrays must have their base element have no subtypes
719  while (superklass->is_obj_array_klass()) {
720    ciType* elem = superklass->as_obj_array_klass()->element_type();
721    superklass = elem->as_klass();
722  }
723  if (superklass->is_instance_klass()) {
724    ciInstanceKlass* ik = superklass->as_instance_klass();
725    if (ik->has_subklass() || ik->is_interface())  return NULL;
726    // Add a dependency if there is a chance that a subclass will be added later.
727    if (!ik->is_final()) {
728      phase->C->dependencies()->assert_leaf_type(ik);
729    }
730  }
731
732  // Bypass the dependent load, and compare directly
733  this->set_req(1,ldk2);
734
735  return this;
736}
737
738//=============================================================================
739//------------------------------sub--------------------------------------------
740// Simplify an CmpN (compare 2 pointers) node, based on local information.
741// If both inputs are constants, compare them.
742const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
743  const TypePtr *r0 = t1->is_narrowoop()->make_oopptr(); // Handy access
744  const TypePtr *r1 = t2->is_narrowoop()->make_oopptr();
745
746  // Undefined inputs makes for an undefined result
747  if( TypePtr::above_centerline(r0->_ptr) ||
748      TypePtr::above_centerline(r1->_ptr) )
749    return Type::TOP;
750
751  if (r0 == r1 && r0->singleton()) {
752    // Equal pointer constants (klasses, nulls, etc.)
753    return TypeInt::CC_EQ;
754  }
755
756  // See if it is 2 unrelated classes.
757  const TypeOopPtr* p0 = r0->isa_oopptr();
758  const TypeOopPtr* p1 = r1->isa_oopptr();
759  if (p0 && p1) {
760    ciKlass* klass0 = p0->klass();
761    bool    xklass0 = p0->klass_is_exact();
762    ciKlass* klass1 = p1->klass();
763    bool    xklass1 = p1->klass_is_exact();
764    int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
765    if (klass0 && klass1 &&
766        kps != 1 &&             // both or neither are klass pointers
767        !klass0->is_interface() && // do not trust interfaces
768        !klass1->is_interface()) {
769      // See if neither subclasses the other, or if the class on top
770      // is precise.  In either of these cases, the compare must fail.
771      if (klass0->equals(klass1)   ||   // if types are unequal but klasses are
772          !klass0->is_java_klass() ||   // types not part of Java language?
773          !klass1->is_java_klass()) {   // types not part of Java language?
774        // Do nothing; we know nothing for imprecise types
775      } else if (klass0->is_subtype_of(klass1)) {
776        // If klass1's type is PRECISE, then we can fail.
777        if (xklass1)  return TypeInt::CC_GT;
778      } else if (klass1->is_subtype_of(klass0)) {
779        // If klass0's type is PRECISE, then we can fail.
780        if (xklass0)  return TypeInt::CC_GT;
781      } else {                  // Neither subtypes the other
782        return TypeInt::CC_GT;  // ...so always fail
783      }
784    }
785  }
786
787  // Known constants can be compared exactly
788  // Null can be distinguished from any NotNull pointers
789  // Unknown inputs makes an unknown result
790  if( r0->singleton() ) {
791    intptr_t bits0 = r0->get_con();
792    if( r1->singleton() )
793      return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
794    return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
795  } else if( r1->singleton() ) {
796    intptr_t bits1 = r1->get_con();
797    return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
798  } else
799    return TypeInt::CC;
800}
801
802//------------------------------Ideal------------------------------------------
803Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
804  return NULL;
805}
806
807//=============================================================================
808//------------------------------Value------------------------------------------
809// Simplify an CmpF (compare 2 floats ) node, based on local information.
810// If both inputs are constants, compare them.
811const Type *CmpFNode::Value( PhaseTransform *phase ) const {
812  const Node* in1 = in(1);
813  const Node* in2 = in(2);
814  // Either input is TOP ==> the result is TOP
815  const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
816  if( t1 == Type::TOP ) return Type::TOP;
817  const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
818  if( t2 == Type::TOP ) return Type::TOP;
819
820  // Not constants?  Don't know squat - even if they are the same
821  // value!  If they are NaN's they compare to LT instead of EQ.
822  const TypeF *tf1 = t1->isa_float_constant();
823  const TypeF *tf2 = t2->isa_float_constant();
824  if( !tf1 || !tf2 ) return TypeInt::CC;
825
826  // This implements the Java bytecode fcmpl, so unordered returns -1.
827  if( tf1->is_nan() || tf2->is_nan() )
828    return TypeInt::CC_LT;
829
830  if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
831  if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
832  assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
833  return TypeInt::CC_EQ;
834}
835
836
837//=============================================================================
838//------------------------------Value------------------------------------------
839// Simplify an CmpD (compare 2 doubles ) node, based on local information.
840// If both inputs are constants, compare them.
841const Type *CmpDNode::Value( PhaseTransform *phase ) const {
842  const Node* in1 = in(1);
843  const Node* in2 = in(2);
844  // Either input is TOP ==> the result is TOP
845  const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
846  if( t1 == Type::TOP ) return Type::TOP;
847  const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
848  if( t2 == Type::TOP ) return Type::TOP;
849
850  // Not constants?  Don't know squat - even if they are the same
851  // value!  If they are NaN's they compare to LT instead of EQ.
852  const TypeD *td1 = t1->isa_double_constant();
853  const TypeD *td2 = t2->isa_double_constant();
854  if( !td1 || !td2 ) return TypeInt::CC;
855
856  // This implements the Java bytecode dcmpl, so unordered returns -1.
857  if( td1->is_nan() || td2->is_nan() )
858    return TypeInt::CC_LT;
859
860  if( td1->_d < td2->_d ) return TypeInt::CC_LT;
861  if( td1->_d > td2->_d ) return TypeInt::CC_GT;
862  assert( td1->_d == td2->_d, "do not understand FP behavior" );
863  return TypeInt::CC_EQ;
864}
865
866//------------------------------Ideal------------------------------------------
867Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
868  // Check if we can change this to a CmpF and remove a ConvD2F operation.
869  // Change  (CMPD (F2D (float)) (ConD value))
870  // To      (CMPF      (float)  (ConF value))
871  // Valid when 'value' does not lose precision as a float.
872  // Benefits: eliminates conversion, does not require 24-bit mode
873
874  // NaNs prevent commuting operands.  This transform works regardless of the
875  // order of ConD and ConvF2D inputs by preserving the original order.
876  int idx_f2d = 1;              // ConvF2D on left side?
877  if( in(idx_f2d)->Opcode() != Op_ConvF2D )
878    idx_f2d = 2;                // No, swap to check for reversed args
879  int idx_con = 3-idx_f2d;      // Check for the constant on other input
880
881  if( ConvertCmpD2CmpF &&
882      in(idx_f2d)->Opcode() == Op_ConvF2D &&
883      in(idx_con)->Opcode() == Op_ConD ) {
884    const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
885    double t2_value_as_double = t2->_d;
886    float  t2_value_as_float  = (float)t2_value_as_double;
887    if( t2_value_as_double == (double)t2_value_as_float ) {
888      // Test value can be represented as a float
889      // Eliminate the conversion to double and create new comparison
890      Node *new_in1 = in(idx_f2d)->in(1);
891      Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
892      if( idx_f2d != 1 ) {      // Must flip args to match original order
893        Node *tmp = new_in1;
894        new_in1 = new_in2;
895        new_in2 = tmp;
896      }
897      CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
898        ? new (phase->C, 3) CmpF3Node( new_in1, new_in2 )
899        : new (phase->C, 3) CmpFNode ( new_in1, new_in2 ) ;
900      return new_cmp;           // Changed to CmpFNode
901    }
902    // Testing value required the precision of a double
903  }
904  return NULL;                  // No change
905}
906
907
908//=============================================================================
909//------------------------------cc2logical-------------------------------------
910// Convert a condition code type to a logical type
911const Type *BoolTest::cc2logical( const Type *CC ) const {
912  if( CC == Type::TOP ) return Type::TOP;
913  if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
914  const TypeInt *ti = CC->is_int();
915  if( ti->is_con() ) {          // Only 1 kind of condition codes set?
916    // Match low order 2 bits
917    int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
918    if( _test & 4 ) tmp = 1-tmp;     // Optionally complement result
919    return TypeInt::make(tmp);       // Boolean result
920  }
921
922  if( CC == TypeInt::CC_GE ) {
923    if( _test == ge ) return TypeInt::ONE;
924    if( _test == lt ) return TypeInt::ZERO;
925  }
926  if( CC == TypeInt::CC_LE ) {
927    if( _test == le ) return TypeInt::ONE;
928    if( _test == gt ) return TypeInt::ZERO;
929  }
930
931  return TypeInt::BOOL;
932}
933
934//------------------------------dump_spec-------------------------------------
935// Print special per-node info
936#ifndef PRODUCT
937void BoolTest::dump_on(outputStream *st) const {
938  const char *msg[] = {"eq","gt","??","lt","ne","le","??","ge"};
939  st->print(msg[_test]);
940}
941#endif
942
943//=============================================================================
944uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
945uint BoolNode::size_of() const { return sizeof(BoolNode); }
946
947//------------------------------operator==-------------------------------------
948uint BoolNode::cmp( const Node &n ) const {
949  const BoolNode *b = (const BoolNode *)&n; // Cast up
950  return (_test._test == b->_test._test);
951}
952
953//------------------------------clone_cmp--------------------------------------
954// Clone a compare/bool tree
955static Node *clone_cmp( Node *cmp, Node *cmp1, Node *cmp2, PhaseGVN *gvn, BoolTest::mask test ) {
956  Node *ncmp = cmp->clone();
957  ncmp->set_req(1,cmp1);
958  ncmp->set_req(2,cmp2);
959  ncmp = gvn->transform( ncmp );
960  return new (gvn->C, 2) BoolNode( ncmp, test );
961}
962
963//-------------------------------make_predicate--------------------------------
964Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
965  if (test_value->is_Con())   return test_value;
966  if (test_value->is_Bool())  return test_value;
967  Compile* C = phase->C;
968  if (test_value->is_CMove() &&
969      test_value->in(CMoveNode::Condition)->is_Bool()) {
970    BoolNode*   bol   = test_value->in(CMoveNode::Condition)->as_Bool();
971    const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
972    const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
973    if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
974      return bol;
975    } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
976      return phase->transform( bol->negate(phase) );
977    }
978    // Else fall through.  The CMove gets in the way of the test.
979    // It should be the case that make_predicate(bol->as_int_value()) == bol.
980  }
981  Node* cmp = new (C, 3) CmpINode(test_value, phase->intcon(0));
982  cmp = phase->transform(cmp);
983  Node* bol = new (C, 2) BoolNode(cmp, BoolTest::ne);
984  return phase->transform(bol);
985}
986
987//--------------------------------as_int_value---------------------------------
988Node* BoolNode::as_int_value(PhaseGVN* phase) {
989  // Inverse to make_predicate.  The CMove probably boils down to a Conv2B.
990  Node* cmov = CMoveNode::make(phase->C, NULL, this,
991                               phase->intcon(0), phase->intcon(1),
992                               TypeInt::BOOL);
993  return phase->transform(cmov);
994}
995
996//----------------------------------negate-------------------------------------
997BoolNode* BoolNode::negate(PhaseGVN* phase) {
998  Compile* C = phase->C;
999  return new (C, 2) BoolNode(in(1), _test.negate());
1000}
1001
1002
1003//------------------------------Ideal------------------------------------------
1004Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1005  // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
1006  // This moves the constant to the right.  Helps value-numbering.
1007  Node *cmp = in(1);
1008  if( !cmp->is_Sub() ) return NULL;
1009  int cop = cmp->Opcode();
1010  if( cop == Op_FastLock || cop == Op_FastUnlock ) return NULL;
1011  Node *cmp1 = cmp->in(1);
1012  Node *cmp2 = cmp->in(2);
1013  if( !cmp1 ) return NULL;
1014
1015  // Constant on left?
1016  Node *con = cmp1;
1017  uint op2 = cmp2->Opcode();
1018  // Move constants to the right of compare's to canonicalize.
1019  // Do not muck with Opaque1 nodes, as this indicates a loop
1020  // guard that cannot change shape.
1021  if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
1022      // Because of NaN's, CmpD and CmpF are not commutative
1023      cop != Op_CmpD && cop != Op_CmpF &&
1024      // Protect against swapping inputs to a compare when it is used by a
1025      // counted loop exit, which requires maintaining the loop-limit as in(2)
1026      !is_counted_loop_exit_test() ) {
1027    // Ok, commute the constant to the right of the cmp node.
1028    // Clone the Node, getting a new Node of the same class
1029    cmp = cmp->clone();
1030    // Swap inputs to the clone
1031    cmp->swap_edges(1, 2);
1032    cmp = phase->transform( cmp );
1033    return new (phase->C, 2) BoolNode( cmp, _test.commute() );
1034  }
1035
1036  // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
1037  // The XOR-1 is an idiom used to flip the sense of a bool.  We flip the
1038  // test instead.
1039  int cmp1_op = cmp1->Opcode();
1040  const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
1041  if (cmp2_type == NULL)  return NULL;
1042  Node* j_xor = cmp1;
1043  if( cmp2_type == TypeInt::ZERO &&
1044      cmp1_op == Op_XorI &&
1045      j_xor->in(1) != j_xor &&          // An xor of itself is dead
1046      phase->type( j_xor->in(2) ) == TypeInt::ONE &&
1047      (_test._test == BoolTest::eq ||
1048       _test._test == BoolTest::ne) ) {
1049    Node *ncmp = phase->transform(new (phase->C, 3) CmpINode(j_xor->in(1),cmp2));
1050    return new (phase->C, 2) BoolNode( ncmp, _test.negate() );
1051  }
1052
1053  // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
1054  // This is a standard idiom for branching on a boolean value.
1055  Node *c2b = cmp1;
1056  if( cmp2_type == TypeInt::ZERO &&
1057      cmp1_op == Op_Conv2B &&
1058      (_test._test == BoolTest::eq ||
1059       _test._test == BoolTest::ne) ) {
1060    Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
1061       ? (Node*)new (phase->C, 3) CmpINode(c2b->in(1),cmp2)
1062       : (Node*)new (phase->C, 3) CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
1063    );
1064    return new (phase->C, 2) BoolNode( ncmp, _test._test );
1065  }
1066
1067  // Comparing a SubI against a zero is equal to comparing the SubI
1068  // arguments directly.  This only works for eq and ne comparisons
1069  // due to possible integer overflow.
1070  if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1071        (cop == Op_CmpI) &&
1072        (cmp1->Opcode() == Op_SubI) &&
1073        ( cmp2_type == TypeInt::ZERO ) ) {
1074    Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(1),cmp1->in(2)));
1075    return new (phase->C, 2) BoolNode( ncmp, _test._test );
1076  }
1077
1078  // Change (-A vs 0) into (A vs 0) by commuting the test.  Disallow in the
1079  // most general case because negating 0x80000000 does nothing.  Needed for
1080  // the CmpF3/SubI/CmpI idiom.
1081  if( cop == Op_CmpI &&
1082      cmp1->Opcode() == Op_SubI &&
1083      cmp2_type == TypeInt::ZERO &&
1084      phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
1085      phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
1086    Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(2),cmp2));
1087    return new (phase->C, 2) BoolNode( ncmp, _test.commute() );
1088  }
1089
1090  //  The transformation below is not valid for either signed or unsigned
1091  //  comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
1092  //  This transformation can be resurrected when we are able to
1093  //  make inferences about the range of values being subtracted from
1094  //  (or added to) relative to the wraparound point.
1095  //
1096  //    // Remove +/-1's if possible.
1097  //    // "X <= Y-1" becomes "X <  Y"
1098  //    // "X+1 <= Y" becomes "X <  Y"
1099  //    // "X <  Y+1" becomes "X <= Y"
1100  //    // "X-1 <  Y" becomes "X <= Y"
1101  //    // Do not this to compares off of the counted-loop-end.  These guys are
1102  //    // checking the trip counter and they want to use the post-incremented
1103  //    // counter.  If they use the PRE-incremented counter, then the counter has
1104  //    // to be incremented in a private block on a loop backedge.
1105  //    if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
1106  //      return NULL;
1107  //  #ifndef PRODUCT
1108  //    // Do not do this in a wash GVN pass during verification.
1109  //    // Gets triggered by too many simple optimizations to be bothered with
1110  //    // re-trying it again and again.
1111  //    if( !phase->allow_progress() ) return NULL;
1112  //  #endif
1113  //    // Not valid for unsigned compare because of corner cases in involving zero.
1114  //    // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
1115  //    // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
1116  //    // "0 <=u Y" is always true).
1117  //    if( cmp->Opcode() == Op_CmpU ) return NULL;
1118  //    int cmp2_op = cmp2->Opcode();
1119  //    if( _test._test == BoolTest::le ) {
1120  //      if( cmp1_op == Op_AddI &&
1121  //          phase->type( cmp1->in(2) ) == TypeInt::ONE )
1122  //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
1123  //      else if( cmp2_op == Op_AddI &&
1124  //         phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
1125  //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
1126  //    } else if( _test._test == BoolTest::lt ) {
1127  //      if( cmp1_op == Op_AddI &&
1128  //          phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
1129  //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
1130  //      else if( cmp2_op == Op_AddI &&
1131  //         phase->type( cmp2->in(2) ) == TypeInt::ONE )
1132  //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
1133  //    }
1134
1135  return NULL;
1136}
1137
1138//------------------------------Value------------------------------------------
1139// Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
1140// based on local information.   If the input is constant, do it.
1141const Type *BoolNode::Value( PhaseTransform *phase ) const {
1142  return _test.cc2logical( phase->type( in(1) ) );
1143}
1144
1145//------------------------------dump_spec--------------------------------------
1146// Dump special per-node info
1147#ifndef PRODUCT
1148void BoolNode::dump_spec(outputStream *st) const {
1149  st->print("[");
1150  _test.dump_on(st);
1151  st->print("]");
1152}
1153#endif
1154
1155//------------------------------is_counted_loop_exit_test--------------------------------------
1156// Returns true if node is used by a counted loop node.
1157bool BoolNode::is_counted_loop_exit_test() {
1158  for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
1159    Node* use = fast_out(i);
1160    if (use->is_CountedLoopEnd()) {
1161      return true;
1162    }
1163  }
1164  return false;
1165}
1166
1167//=============================================================================
1168//------------------------------NegNode----------------------------------------
1169Node *NegFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1170  if( in(1)->Opcode() == Op_SubF )
1171    return new (phase->C, 3) SubFNode( in(1)->in(2), in(1)->in(1) );
1172  return NULL;
1173}
1174
1175Node *NegDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1176  if( in(1)->Opcode() == Op_SubD )
1177    return new (phase->C, 3) SubDNode( in(1)->in(2), in(1)->in(1) );
1178  return NULL;
1179}
1180
1181
1182//=============================================================================
1183//------------------------------Value------------------------------------------
1184// Compute sqrt
1185const Type *SqrtDNode::Value( PhaseTransform *phase ) const {
1186  const Type *t1 = phase->type( in(1) );
1187  if( t1 == Type::TOP ) return Type::TOP;
1188  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1189  double d = t1->getd();
1190  if( d < 0.0 ) return Type::DOUBLE;
1191  return TypeD::make( sqrt( d ) );
1192}
1193
1194//=============================================================================
1195//------------------------------Value------------------------------------------
1196// Compute cos
1197const Type *CosDNode::Value( PhaseTransform *phase ) const {
1198  const Type *t1 = phase->type( in(1) );
1199  if( t1 == Type::TOP ) return Type::TOP;
1200  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1201  double d = t1->getd();
1202  if( d < 0.0 ) return Type::DOUBLE;
1203  return TypeD::make( SharedRuntime::dcos( d ) );
1204}
1205
1206//=============================================================================
1207//------------------------------Value------------------------------------------
1208// Compute sin
1209const Type *SinDNode::Value( PhaseTransform *phase ) const {
1210  const Type *t1 = phase->type( in(1) );
1211  if( t1 == Type::TOP ) return Type::TOP;
1212  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1213  double d = t1->getd();
1214  if( d < 0.0 ) return Type::DOUBLE;
1215  return TypeD::make( SharedRuntime::dsin( d ) );
1216}
1217
1218//=============================================================================
1219//------------------------------Value------------------------------------------
1220// Compute tan
1221const Type *TanDNode::Value( PhaseTransform *phase ) const {
1222  const Type *t1 = phase->type( in(1) );
1223  if( t1 == Type::TOP ) return Type::TOP;
1224  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1225  double d = t1->getd();
1226  if( d < 0.0 ) return Type::DOUBLE;
1227  return TypeD::make( SharedRuntime::dtan( d ) );
1228}
1229
1230//=============================================================================
1231//------------------------------Value------------------------------------------
1232// Compute log
1233const Type *LogDNode::Value( PhaseTransform *phase ) const {
1234  const Type *t1 = phase->type( in(1) );
1235  if( t1 == Type::TOP ) return Type::TOP;
1236  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1237  double d = t1->getd();
1238  if( d < 0.0 ) return Type::DOUBLE;
1239  return TypeD::make( SharedRuntime::dlog( d ) );
1240}
1241
1242//=============================================================================
1243//------------------------------Value------------------------------------------
1244// Compute log10
1245const Type *Log10DNode::Value( PhaseTransform *phase ) const {
1246  const Type *t1 = phase->type( in(1) );
1247  if( t1 == Type::TOP ) return Type::TOP;
1248  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1249  double d = t1->getd();
1250  if( d < 0.0 ) return Type::DOUBLE;
1251  return TypeD::make( SharedRuntime::dlog10( d ) );
1252}
1253
1254//=============================================================================
1255//------------------------------Value------------------------------------------
1256// Compute exp
1257const Type *ExpDNode::Value( PhaseTransform *phase ) const {
1258  const Type *t1 = phase->type( in(1) );
1259  if( t1 == Type::TOP ) return Type::TOP;
1260  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1261  double d = t1->getd();
1262  if( d < 0.0 ) return Type::DOUBLE;
1263  return TypeD::make( SharedRuntime::dexp( d ) );
1264}
1265
1266
1267//=============================================================================
1268//------------------------------Value------------------------------------------
1269// Compute pow
1270const Type *PowDNode::Value( PhaseTransform *phase ) const {
1271  const Type *t1 = phase->type( in(1) );
1272  if( t1 == Type::TOP ) return Type::TOP;
1273  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1274  const Type *t2 = phase->type( in(2) );
1275  if( t2 == Type::TOP ) return Type::TOP;
1276  if( t2->base() != Type::DoubleCon ) return Type::DOUBLE;
1277  double d1 = t1->getd();
1278  double d2 = t2->getd();
1279  if( d1 < 0.0 ) return Type::DOUBLE;
1280  if( d2 < 0.0 ) return Type::DOUBLE;
1281  return TypeD::make( SharedRuntime::dpow( d1, d2 ) );
1282}
1283