runtime.cpp revision 9898:2794bc7859f5
1/*
2 * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "classfile/vmSymbols.hpp"
28#include "code/codeCache.hpp"
29#include "code/compiledIC.hpp"
30#include "code/icBuffer.hpp"
31#include "code/nmethod.hpp"
32#include "code/pcDesc.hpp"
33#include "code/scopeDesc.hpp"
34#include "code/vtableStubs.hpp"
35#include "compiler/compileBroker.hpp"
36#include "compiler/oopMap.hpp"
37#include "gc/g1/g1SATBCardTableModRefBS.hpp"
38#include "gc/g1/heapRegion.hpp"
39#include "gc/shared/barrierSet.hpp"
40#include "gc/shared/collectedHeap.hpp"
41#include "gc/shared/gcLocker.inline.hpp"
42#include "interpreter/bytecode.hpp"
43#include "interpreter/interpreter.hpp"
44#include "interpreter/linkResolver.hpp"
45#include "logging/log.hpp"
46#include "memory/oopFactory.hpp"
47#include "oops/objArrayKlass.hpp"
48#include "oops/oop.inline.hpp"
49#include "opto/ad.hpp"
50#include "opto/addnode.hpp"
51#include "opto/callnode.hpp"
52#include "opto/cfgnode.hpp"
53#include "opto/graphKit.hpp"
54#include "opto/machnode.hpp"
55#include "opto/matcher.hpp"
56#include "opto/memnode.hpp"
57#include "opto/mulnode.hpp"
58#include "opto/runtime.hpp"
59#include "opto/subnode.hpp"
60#include "runtime/atomic.inline.hpp"
61#include "runtime/fprofiler.hpp"
62#include "runtime/handles.inline.hpp"
63#include "runtime/interfaceSupport.hpp"
64#include "runtime/javaCalls.hpp"
65#include "runtime/sharedRuntime.hpp"
66#include "runtime/signature.hpp"
67#include "runtime/threadCritical.hpp"
68#include "runtime/vframe.hpp"
69#include "runtime/vframeArray.hpp"
70#include "runtime/vframe_hp.hpp"
71#include "utilities/copy.hpp"
72#include "utilities/preserveException.hpp"
73
74
75// For debugging purposes:
76//  To force FullGCALot inside a runtime function, add the following two lines
77//
78//  Universe::release_fullgc_alot_dummy();
79//  MarkSweep::invoke(0, "Debugging");
80//
81// At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
82
83
84
85
86// Compiled code entry points
87address OptoRuntime::_new_instance_Java                           = NULL;
88address OptoRuntime::_new_array_Java                              = NULL;
89address OptoRuntime::_new_array_nozero_Java                       = NULL;
90address OptoRuntime::_multianewarray2_Java                        = NULL;
91address OptoRuntime::_multianewarray3_Java                        = NULL;
92address OptoRuntime::_multianewarray4_Java                        = NULL;
93address OptoRuntime::_multianewarray5_Java                        = NULL;
94address OptoRuntime::_multianewarrayN_Java                        = NULL;
95address OptoRuntime::_g1_wb_pre_Java                              = NULL;
96address OptoRuntime::_g1_wb_post_Java                             = NULL;
97address OptoRuntime::_vtable_must_compile_Java                    = NULL;
98address OptoRuntime::_complete_monitor_locking_Java               = NULL;
99address OptoRuntime::_monitor_notify_Java                         = NULL;
100address OptoRuntime::_monitor_notifyAll_Java                      = NULL;
101address OptoRuntime::_rethrow_Java                                = NULL;
102
103address OptoRuntime::_slow_arraycopy_Java                         = NULL;
104address OptoRuntime::_register_finalizer_Java                     = NULL;
105
106ExceptionBlob* OptoRuntime::_exception_blob;
107
108// This should be called in an assertion at the start of OptoRuntime routines
109// which are entered from compiled code (all of them)
110#ifdef ASSERT
111static bool check_compiled_frame(JavaThread* thread) {
112  assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
113  RegisterMap map(thread, false);
114  frame caller = thread->last_frame().sender(&map);
115  assert(caller.is_compiled_frame(), "not being called from compiled like code");
116  return true;
117}
118#endif // ASSERT
119
120
121#define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
122  var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
123  if (var == NULL) { return false; }
124
125bool OptoRuntime::generate(ciEnv* env) {
126
127  generate_exception_blob();
128
129  // Note: tls: Means fetching the return oop out of the thread-local storage
130  //
131  //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
132  // -------------------------------------------------------------------------------------------------------------------------------
133  gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
134  gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
135  gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
136  gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
137  gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
138  gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
139  gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
140  gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
141  gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
142  gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
143  gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
144  gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false, false);
145  gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false, false);
146  gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
147
148  gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
149  gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
150
151  return true;
152}
153
154#undef gen
155
156
157// Helper method to do generation of RunTimeStub's
158address OptoRuntime::generate_stub( ciEnv* env,
159                                    TypeFunc_generator gen, address C_function,
160                                    const char *name, int is_fancy_jump,
161                                    bool pass_tls,
162                                    bool save_argument_registers,
163                                    bool return_pc) {
164
165  // Matching the default directive, we currently have no method to match.
166  DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
167  ResourceMark rm;
168  Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc, directive);
169  DirectivesStack::release(directive);
170  return  C.stub_entry_point();
171}
172
173const char* OptoRuntime::stub_name(address entry) {
174#ifndef PRODUCT
175  CodeBlob* cb = CodeCache::find_blob(entry);
176  RuntimeStub* rs =(RuntimeStub *)cb;
177  assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
178  return rs->name();
179#else
180  // Fast implementation for product mode (maybe it should be inlined too)
181  return "runtime stub";
182#endif
183}
184
185
186//=============================================================================
187// Opto compiler runtime routines
188//=============================================================================
189
190
191//=============================allocation======================================
192// We failed the fast-path allocation.  Now we need to do a scavenge or GC
193// and try allocation again.
194
195void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
196  // After any safepoint, just before going back to compiled code,
197  // we inform the GC that we will be doing initializing writes to
198  // this object in the future without emitting card-marks, so
199  // GC may take any compensating steps.
200  // NOTE: Keep this code consistent with GraphKit::store_barrier.
201
202  oop new_obj = thread->vm_result();
203  if (new_obj == NULL)  return;
204
205  assert(Universe::heap()->can_elide_tlab_store_barriers(),
206         "compiler must check this first");
207  // GC may decide to give back a safer copy of new_obj.
208  new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
209  thread->set_vm_result(new_obj);
210}
211
212// object allocation
213JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
214  JRT_BLOCK;
215#ifndef PRODUCT
216  SharedRuntime::_new_instance_ctr++;         // new instance requires GC
217#endif
218  assert(check_compiled_frame(thread), "incorrect caller");
219
220  // These checks are cheap to make and support reflective allocation.
221  int lh = klass->layout_helper();
222  if (Klass::layout_helper_needs_slow_path(lh)
223      || !InstanceKlass::cast(klass)->is_initialized()) {
224    KlassHandle kh(THREAD, klass);
225    kh->check_valid_for_instantiation(false, THREAD);
226    if (!HAS_PENDING_EXCEPTION) {
227      InstanceKlass::cast(kh())->initialize(THREAD);
228    }
229    if (!HAS_PENDING_EXCEPTION) {
230      klass = kh();
231    } else {
232      klass = NULL;
233    }
234  }
235
236  if (klass != NULL) {
237    // Scavenge and allocate an instance.
238    oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
239    thread->set_vm_result(result);
240
241    // Pass oops back through thread local storage.  Our apparent type to Java
242    // is that we return an oop, but we can block on exit from this routine and
243    // a GC can trash the oop in C's return register.  The generated stub will
244    // fetch the oop from TLS after any possible GC.
245  }
246
247  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
248  JRT_BLOCK_END;
249
250  if (GraphKit::use_ReduceInitialCardMarks()) {
251    // inform GC that we won't do card marks for initializing writes.
252    new_store_pre_barrier(thread);
253  }
254JRT_END
255
256
257// array allocation
258JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
259  JRT_BLOCK;
260#ifndef PRODUCT
261  SharedRuntime::_new_array_ctr++;            // new array requires GC
262#endif
263  assert(check_compiled_frame(thread), "incorrect caller");
264
265  // Scavenge and allocate an instance.
266  oop result;
267
268  if (array_type->is_typeArray_klass()) {
269    // The oopFactory likes to work with the element type.
270    // (We could bypass the oopFactory, since it doesn't add much value.)
271    BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
272    result = oopFactory::new_typeArray(elem_type, len, THREAD);
273  } else {
274    // Although the oopFactory likes to work with the elem_type,
275    // the compiler prefers the array_type, since it must already have
276    // that latter value in hand for the fast path.
277    Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
278    result = oopFactory::new_objArray(elem_type, len, THREAD);
279  }
280
281  // Pass oops back through thread local storage.  Our apparent type to Java
282  // is that we return an oop, but we can block on exit from this routine and
283  // a GC can trash the oop in C's return register.  The generated stub will
284  // fetch the oop from TLS after any possible GC.
285  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
286  thread->set_vm_result(result);
287  JRT_BLOCK_END;
288
289  if (GraphKit::use_ReduceInitialCardMarks()) {
290    // inform GC that we won't do card marks for initializing writes.
291    new_store_pre_barrier(thread);
292  }
293JRT_END
294
295// array allocation without zeroing
296JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
297  JRT_BLOCK;
298#ifndef PRODUCT
299  SharedRuntime::_new_array_ctr++;            // new array requires GC
300#endif
301  assert(check_compiled_frame(thread), "incorrect caller");
302
303  // Scavenge and allocate an instance.
304  oop result;
305
306  assert(array_type->is_typeArray_klass(), "should be called only for type array");
307  // The oopFactory likes to work with the element type.
308  BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
309  result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
310
311  // Pass oops back through thread local storage.  Our apparent type to Java
312  // is that we return an oop, but we can block on exit from this routine and
313  // a GC can trash the oop in C's return register.  The generated stub will
314  // fetch the oop from TLS after any possible GC.
315  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
316  thread->set_vm_result(result);
317  JRT_BLOCK_END;
318
319  if (GraphKit::use_ReduceInitialCardMarks()) {
320    // inform GC that we won't do card marks for initializing writes.
321    new_store_pre_barrier(thread);
322  }
323
324  oop result = thread->vm_result();
325  if ((len > 0) && (result != NULL) &&
326      is_deoptimized_caller_frame(thread)) {
327    // Zero array here if the caller is deoptimized.
328    int size = ((typeArrayOop)result)->object_size();
329    BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
330    const size_t hs = arrayOopDesc::header_size(elem_type);
331    // Align to next 8 bytes to avoid trashing arrays's length.
332    const size_t aligned_hs = align_object_offset(hs);
333    HeapWord* obj = (HeapWord*)result;
334    if (aligned_hs > hs) {
335      Copy::zero_to_words(obj+hs, aligned_hs-hs);
336    }
337    // Optimized zeroing.
338    Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
339  }
340
341JRT_END
342
343// Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
344
345// multianewarray for 2 dimensions
346JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
347#ifndef PRODUCT
348  SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
349#endif
350  assert(check_compiled_frame(thread), "incorrect caller");
351  assert(elem_type->is_klass(), "not a class");
352  jint dims[2];
353  dims[0] = len1;
354  dims[1] = len2;
355  oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
356  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
357  thread->set_vm_result(obj);
358JRT_END
359
360// multianewarray for 3 dimensions
361JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
362#ifndef PRODUCT
363  SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
364#endif
365  assert(check_compiled_frame(thread), "incorrect caller");
366  assert(elem_type->is_klass(), "not a class");
367  jint dims[3];
368  dims[0] = len1;
369  dims[1] = len2;
370  dims[2] = len3;
371  oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
372  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
373  thread->set_vm_result(obj);
374JRT_END
375
376// multianewarray for 4 dimensions
377JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
378#ifndef PRODUCT
379  SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
380#endif
381  assert(check_compiled_frame(thread), "incorrect caller");
382  assert(elem_type->is_klass(), "not a class");
383  jint dims[4];
384  dims[0] = len1;
385  dims[1] = len2;
386  dims[2] = len3;
387  dims[3] = len4;
388  oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
389  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
390  thread->set_vm_result(obj);
391JRT_END
392
393// multianewarray for 5 dimensions
394JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
395#ifndef PRODUCT
396  SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
397#endif
398  assert(check_compiled_frame(thread), "incorrect caller");
399  assert(elem_type->is_klass(), "not a class");
400  jint dims[5];
401  dims[0] = len1;
402  dims[1] = len2;
403  dims[2] = len3;
404  dims[3] = len4;
405  dims[4] = len5;
406  oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
407  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
408  thread->set_vm_result(obj);
409JRT_END
410
411JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
412  assert(check_compiled_frame(thread), "incorrect caller");
413  assert(elem_type->is_klass(), "not a class");
414  assert(oop(dims)->is_typeArray(), "not an array");
415
416  ResourceMark rm;
417  jint len = dims->length();
418  assert(len > 0, "Dimensions array should contain data");
419  jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
420  jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
421  Copy::conjoint_jints_atomic(j_dims, c_dims, len);
422
423  oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
424  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
425  thread->set_vm_result(obj);
426JRT_END
427
428JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
429
430  // Very few notify/notifyAll operations find any threads on the waitset, so
431  // the dominant fast-path is to simply return.
432  // Relatedly, it's critical that notify/notifyAll be fast in order to
433  // reduce lock hold times.
434  if (!SafepointSynchronize::is_synchronizing()) {
435    if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
436      return;
437    }
438  }
439
440  // This is the case the fast-path above isn't provisioned to handle.
441  // The fast-path is designed to handle frequently arising cases in an efficient manner.
442  // (The fast-path is just a degenerate variant of the slow-path).
443  // Perform the dreaded state transition and pass control into the slow-path.
444  JRT_BLOCK;
445  Handle h_obj(THREAD, obj);
446  ObjectSynchronizer::notify(h_obj, CHECK);
447  JRT_BLOCK_END;
448JRT_END
449
450JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
451
452  if (!SafepointSynchronize::is_synchronizing() ) {
453    if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
454      return;
455    }
456  }
457
458  // This is the case the fast-path above isn't provisioned to handle.
459  // The fast-path is designed to handle frequently arising cases in an efficient manner.
460  // (The fast-path is just a degenerate variant of the slow-path).
461  // Perform the dreaded state transition and pass control into the slow-path.
462  JRT_BLOCK;
463  Handle h_obj(THREAD, obj);
464  ObjectSynchronizer::notifyall(h_obj, CHECK);
465  JRT_BLOCK_END;
466JRT_END
467
468const TypeFunc *OptoRuntime::new_instance_Type() {
469  // create input type (domain)
470  const Type **fields = TypeTuple::fields(1);
471  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
472  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
473
474  // create result type (range)
475  fields = TypeTuple::fields(1);
476  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
477
478  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
479
480  return TypeFunc::make(domain, range);
481}
482
483
484const TypeFunc *OptoRuntime::athrow_Type() {
485  // create input type (domain)
486  const Type **fields = TypeTuple::fields(1);
487  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
488  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
489
490  // create result type (range)
491  fields = TypeTuple::fields(0);
492
493  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
494
495  return TypeFunc::make(domain, range);
496}
497
498
499const TypeFunc *OptoRuntime::new_array_Type() {
500  // create input type (domain)
501  const Type **fields = TypeTuple::fields(2);
502  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
503  fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
504  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
505
506  // create result type (range)
507  fields = TypeTuple::fields(1);
508  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
509
510  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
511
512  return TypeFunc::make(domain, range);
513}
514
515const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
516  // create input type (domain)
517  const int nargs = ndim + 1;
518  const Type **fields = TypeTuple::fields(nargs);
519  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
520  for( int i = 1; i < nargs; i++ )
521    fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
522  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
523
524  // create result type (range)
525  fields = TypeTuple::fields(1);
526  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
527  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
528
529  return TypeFunc::make(domain, range);
530}
531
532const TypeFunc *OptoRuntime::multianewarray2_Type() {
533  return multianewarray_Type(2);
534}
535
536const TypeFunc *OptoRuntime::multianewarray3_Type() {
537  return multianewarray_Type(3);
538}
539
540const TypeFunc *OptoRuntime::multianewarray4_Type() {
541  return multianewarray_Type(4);
542}
543
544const TypeFunc *OptoRuntime::multianewarray5_Type() {
545  return multianewarray_Type(5);
546}
547
548const TypeFunc *OptoRuntime::multianewarrayN_Type() {
549  // create input type (domain)
550  const Type **fields = TypeTuple::fields(2);
551  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
552  fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
553  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
554
555  // create result type (range)
556  fields = TypeTuple::fields(1);
557  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
558  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
559
560  return TypeFunc::make(domain, range);
561}
562
563const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
564  const Type **fields = TypeTuple::fields(2);
565  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
566  fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
567  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
568
569  // create result type (range)
570  fields = TypeTuple::fields(0);
571  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
572
573  return TypeFunc::make(domain, range);
574}
575
576const TypeFunc *OptoRuntime::g1_wb_post_Type() {
577
578  const Type **fields = TypeTuple::fields(2);
579  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
580  fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
581  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
582
583  // create result type (range)
584  fields = TypeTuple::fields(0);
585  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
586
587  return TypeFunc::make(domain, range);
588}
589
590const TypeFunc *OptoRuntime::uncommon_trap_Type() {
591  // create input type (domain)
592  const Type **fields = TypeTuple::fields(1);
593  fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
594  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
595
596  // create result type (range)
597  fields = TypeTuple::fields(0);
598  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
599
600  return TypeFunc::make(domain, range);
601}
602
603//-----------------------------------------------------------------------------
604// Monitor Handling
605const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
606  // create input type (domain)
607  const Type **fields = TypeTuple::fields(2);
608  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
609  fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
610  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
611
612  // create result type (range)
613  fields = TypeTuple::fields(0);
614
615  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
616
617  return TypeFunc::make(domain,range);
618}
619
620
621//-----------------------------------------------------------------------------
622const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
623  // create input type (domain)
624  const Type **fields = TypeTuple::fields(3);
625  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
626  fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
627  fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
628  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
629
630  // create result type (range)
631  fields = TypeTuple::fields(0);
632
633  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
634
635  return TypeFunc::make(domain, range);
636}
637
638const TypeFunc *OptoRuntime::monitor_notify_Type() {
639  // create input type (domain)
640  const Type **fields = TypeTuple::fields(1);
641  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
642  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
643
644  // create result type (range)
645  fields = TypeTuple::fields(0);
646  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
647  return TypeFunc::make(domain, range);
648}
649
650const TypeFunc* OptoRuntime::flush_windows_Type() {
651  // create input type (domain)
652  const Type** fields = TypeTuple::fields(1);
653  fields[TypeFunc::Parms+0] = NULL; // void
654  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
655
656  // create result type
657  fields = TypeTuple::fields(1);
658  fields[TypeFunc::Parms+0] = NULL; // void
659  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
660
661  return TypeFunc::make(domain, range);
662}
663
664const TypeFunc* OptoRuntime::l2f_Type() {
665  // create input type (domain)
666  const Type **fields = TypeTuple::fields(2);
667  fields[TypeFunc::Parms+0] = TypeLong::LONG;
668  fields[TypeFunc::Parms+1] = Type::HALF;
669  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
670
671  // create result type (range)
672  fields = TypeTuple::fields(1);
673  fields[TypeFunc::Parms+0] = Type::FLOAT;
674  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
675
676  return TypeFunc::make(domain, range);
677}
678
679const TypeFunc* OptoRuntime::modf_Type() {
680  const Type **fields = TypeTuple::fields(2);
681  fields[TypeFunc::Parms+0] = Type::FLOAT;
682  fields[TypeFunc::Parms+1] = Type::FLOAT;
683  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
684
685  // create result type (range)
686  fields = TypeTuple::fields(1);
687  fields[TypeFunc::Parms+0] = Type::FLOAT;
688
689  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
690
691  return TypeFunc::make(domain, range);
692}
693
694const TypeFunc *OptoRuntime::Math_D_D_Type() {
695  // create input type (domain)
696  const Type **fields = TypeTuple::fields(2);
697  // Symbol* name of class to be loaded
698  fields[TypeFunc::Parms+0] = Type::DOUBLE;
699  fields[TypeFunc::Parms+1] = Type::HALF;
700  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
701
702  // create result type (range)
703  fields = TypeTuple::fields(2);
704  fields[TypeFunc::Parms+0] = Type::DOUBLE;
705  fields[TypeFunc::Parms+1] = Type::HALF;
706  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
707
708  return TypeFunc::make(domain, range);
709}
710
711const TypeFunc* OptoRuntime::Math_DD_D_Type() {
712  const Type **fields = TypeTuple::fields(4);
713  fields[TypeFunc::Parms+0] = Type::DOUBLE;
714  fields[TypeFunc::Parms+1] = Type::HALF;
715  fields[TypeFunc::Parms+2] = Type::DOUBLE;
716  fields[TypeFunc::Parms+3] = Type::HALF;
717  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
718
719  // create result type (range)
720  fields = TypeTuple::fields(2);
721  fields[TypeFunc::Parms+0] = Type::DOUBLE;
722  fields[TypeFunc::Parms+1] = Type::HALF;
723  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
724
725  return TypeFunc::make(domain, range);
726}
727
728//-------------- currentTimeMillis, currentTimeNanos, etc
729
730const TypeFunc* OptoRuntime::void_long_Type() {
731  // create input type (domain)
732  const Type **fields = TypeTuple::fields(0);
733  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
734
735  // create result type (range)
736  fields = TypeTuple::fields(2);
737  fields[TypeFunc::Parms+0] = TypeLong::LONG;
738  fields[TypeFunc::Parms+1] = Type::HALF;
739  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
740
741  return TypeFunc::make(domain, range);
742}
743
744// arraycopy stub variations:
745enum ArrayCopyType {
746  ac_fast,                      // void(ptr, ptr, size_t)
747  ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
748  ac_slow,                      // void(ptr, int, ptr, int, int)
749  ac_generic                    //  int(ptr, int, ptr, int, int)
750};
751
752static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
753  // create input type (domain)
754  int num_args      = (act == ac_fast ? 3 : 5);
755  int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
756  int argcnt = num_args;
757  LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
758  const Type** fields = TypeTuple::fields(argcnt);
759  int argp = TypeFunc::Parms;
760  fields[argp++] = TypePtr::NOTNULL;    // src
761  if (num_size_args == 0) {
762    fields[argp++] = TypeInt::INT;      // src_pos
763  }
764  fields[argp++] = TypePtr::NOTNULL;    // dest
765  if (num_size_args == 0) {
766    fields[argp++] = TypeInt::INT;      // dest_pos
767    fields[argp++] = TypeInt::INT;      // length
768  }
769  while (num_size_args-- > 0) {
770    fields[argp++] = TypeX_X;               // size in whatevers (size_t)
771    LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
772  }
773  if (act == ac_checkcast) {
774    fields[argp++] = TypePtr::NOTNULL;  // super_klass
775  }
776  assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
777  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
778
779  // create result type if needed
780  int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
781  fields = TypeTuple::fields(1);
782  if (retcnt == 0)
783    fields[TypeFunc::Parms+0] = NULL; // void
784  else
785    fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
786  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
787  return TypeFunc::make(domain, range);
788}
789
790const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
791  // This signature is simple:  Two base pointers and a size_t.
792  return make_arraycopy_Type(ac_fast);
793}
794
795const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
796  // An extension of fast_arraycopy_Type which adds type checking.
797  return make_arraycopy_Type(ac_checkcast);
798}
799
800const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
801  // This signature is exactly the same as System.arraycopy.
802  // There are no intptr_t (int/long) arguments.
803  return make_arraycopy_Type(ac_slow);
804}
805
806const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
807  // This signature is like System.arraycopy, except that it returns status.
808  return make_arraycopy_Type(ac_generic);
809}
810
811
812const TypeFunc* OptoRuntime::array_fill_Type() {
813  const Type** fields;
814  int argp = TypeFunc::Parms;
815  // create input type (domain): pointer, int, size_t
816  fields = TypeTuple::fields(3 LP64_ONLY( + 1));
817  fields[argp++] = TypePtr::NOTNULL;
818  fields[argp++] = TypeInt::INT;
819  fields[argp++] = TypeX_X;               // size in whatevers (size_t)
820  LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
821  const TypeTuple *domain = TypeTuple::make(argp, fields);
822
823  // create result type
824  fields = TypeTuple::fields(1);
825  fields[TypeFunc::Parms+0] = NULL; // void
826  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
827
828  return TypeFunc::make(domain, range);
829}
830
831// for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
832const TypeFunc* OptoRuntime::aescrypt_block_Type() {
833  // create input type (domain)
834  int num_args      = 3;
835  if (Matcher::pass_original_key_for_aes()) {
836    num_args = 4;
837  }
838  int argcnt = num_args;
839  const Type** fields = TypeTuple::fields(argcnt);
840  int argp = TypeFunc::Parms;
841  fields[argp++] = TypePtr::NOTNULL;    // src
842  fields[argp++] = TypePtr::NOTNULL;    // dest
843  fields[argp++] = TypePtr::NOTNULL;    // k array
844  if (Matcher::pass_original_key_for_aes()) {
845    fields[argp++] = TypePtr::NOTNULL;    // original k array
846  }
847  assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
848  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
849
850  // no result type needed
851  fields = TypeTuple::fields(1);
852  fields[TypeFunc::Parms+0] = NULL; // void
853  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
854  return TypeFunc::make(domain, range);
855}
856
857/**
858 * int updateBytesCRC32(int crc, byte* b, int len)
859 */
860const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
861  // create input type (domain)
862  int num_args      = 3;
863  int argcnt = num_args;
864  const Type** fields = TypeTuple::fields(argcnt);
865  int argp = TypeFunc::Parms;
866  fields[argp++] = TypeInt::INT;        // crc
867  fields[argp++] = TypePtr::NOTNULL;    // src
868  fields[argp++] = TypeInt::INT;        // len
869  assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
870  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
871
872  // result type needed
873  fields = TypeTuple::fields(1);
874  fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
875  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
876  return TypeFunc::make(domain, range);
877}
878
879/**
880 * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
881 */
882const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
883  // create input type (domain)
884  int num_args      = 4;
885  int argcnt = num_args;
886  const Type** fields = TypeTuple::fields(argcnt);
887  int argp = TypeFunc::Parms;
888  fields[argp++] = TypeInt::INT;        // crc
889  fields[argp++] = TypePtr::NOTNULL;    // buf
890  fields[argp++] = TypeInt::INT;        // len
891  fields[argp++] = TypePtr::NOTNULL;    // table
892  assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
893  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
894
895  // result type needed
896  fields = TypeTuple::fields(1);
897  fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
898  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
899  return TypeFunc::make(domain, range);
900}
901
902/**
903*  int updateBytesAdler32(int adler, bytes* b, int off, int len)
904*/
905const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
906  // create input type (domain)
907  int num_args      = 3;
908  int argcnt = num_args;
909  const Type** fields = TypeTuple::fields(argcnt);
910  int argp = TypeFunc::Parms;
911  fields[argp++] = TypeInt::INT;        // crc
912  fields[argp++] = TypePtr::NOTNULL;    // src + offset
913  fields[argp++] = TypeInt::INT;        // len
914  assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
915  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
916
917  // result type needed
918  fields = TypeTuple::fields(1);
919  fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
920  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
921  return TypeFunc::make(domain, range);
922}
923
924// for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
925const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
926  // create input type (domain)
927  int num_args      = 5;
928  if (Matcher::pass_original_key_for_aes()) {
929    num_args = 6;
930  }
931  int argcnt = num_args;
932  const Type** fields = TypeTuple::fields(argcnt);
933  int argp = TypeFunc::Parms;
934  fields[argp++] = TypePtr::NOTNULL;    // src
935  fields[argp++] = TypePtr::NOTNULL;    // dest
936  fields[argp++] = TypePtr::NOTNULL;    // k array
937  fields[argp++] = TypePtr::NOTNULL;    // r array
938  fields[argp++] = TypeInt::INT;        // src len
939  if (Matcher::pass_original_key_for_aes()) {
940    fields[argp++] = TypePtr::NOTNULL;    // original k array
941  }
942  assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
943  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
944
945  // returning cipher len (int)
946  fields = TypeTuple::fields(1);
947  fields[TypeFunc::Parms+0] = TypeInt::INT;
948  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
949  return TypeFunc::make(domain, range);
950}
951
952//for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
953const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
954  // create input type (domain)
955  int num_args = 7;
956  if (Matcher::pass_original_key_for_aes()) {
957    num_args = 8;
958  }
959  int argcnt = num_args;
960  const Type** fields = TypeTuple::fields(argcnt);
961  int argp = TypeFunc::Parms;
962  fields[argp++] = TypePtr::NOTNULL; // src
963  fields[argp++] = TypePtr::NOTNULL; // dest
964  fields[argp++] = TypePtr::NOTNULL; // k array
965  fields[argp++] = TypePtr::NOTNULL; // counter array
966  fields[argp++] = TypeInt::INT; // src len
967  fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
968  fields[argp++] = TypePtr::NOTNULL; // saved used addr
969  if (Matcher::pass_original_key_for_aes()) {
970    fields[argp++] = TypePtr::NOTNULL; // original k array
971  }
972  assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
973  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
974  // returning cipher len (int)
975  fields = TypeTuple::fields(1);
976  fields[TypeFunc::Parms + 0] = TypeInt::INT;
977  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
978  return TypeFunc::make(domain, range);
979}
980
981/*
982 * void implCompress(byte[] buf, int ofs)
983 */
984const TypeFunc* OptoRuntime::sha_implCompress_Type() {
985  // create input type (domain)
986  int num_args = 2;
987  int argcnt = num_args;
988  const Type** fields = TypeTuple::fields(argcnt);
989  int argp = TypeFunc::Parms;
990  fields[argp++] = TypePtr::NOTNULL; // buf
991  fields[argp++] = TypePtr::NOTNULL; // state
992  assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
993  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
994
995  // no result type needed
996  fields = TypeTuple::fields(1);
997  fields[TypeFunc::Parms+0] = NULL; // void
998  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
999  return TypeFunc::make(domain, range);
1000}
1001
1002/*
1003 * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1004 */
1005const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
1006  // create input type (domain)
1007  int num_args = 4;
1008  int argcnt = num_args;
1009  const Type** fields = TypeTuple::fields(argcnt);
1010  int argp = TypeFunc::Parms;
1011  fields[argp++] = TypePtr::NOTNULL; // buf
1012  fields[argp++] = TypePtr::NOTNULL; // state
1013  fields[argp++] = TypeInt::INT;     // ofs
1014  fields[argp++] = TypeInt::INT;     // limit
1015  assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1016  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1017
1018  // returning ofs (int)
1019  fields = TypeTuple::fields(1);
1020  fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1021  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1022  return TypeFunc::make(domain, range);
1023}
1024
1025const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1026  // create input type (domain)
1027  int num_args      = 6;
1028  int argcnt = num_args;
1029  const Type** fields = TypeTuple::fields(argcnt);
1030  int argp = TypeFunc::Parms;
1031  fields[argp++] = TypePtr::NOTNULL;    // x
1032  fields[argp++] = TypeInt::INT;        // xlen
1033  fields[argp++] = TypePtr::NOTNULL;    // y
1034  fields[argp++] = TypeInt::INT;        // ylen
1035  fields[argp++] = TypePtr::NOTNULL;    // z
1036  fields[argp++] = TypeInt::INT;        // zlen
1037  assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1038  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1039
1040  // no result type needed
1041  fields = TypeTuple::fields(1);
1042  fields[TypeFunc::Parms+0] = NULL;
1043  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1044  return TypeFunc::make(domain, range);
1045}
1046
1047const TypeFunc* OptoRuntime::squareToLen_Type() {
1048  // create input type (domain)
1049  int num_args      = 4;
1050  int argcnt = num_args;
1051  const Type** fields = TypeTuple::fields(argcnt);
1052  int argp = TypeFunc::Parms;
1053  fields[argp++] = TypePtr::NOTNULL;    // x
1054  fields[argp++] = TypeInt::INT;        // len
1055  fields[argp++] = TypePtr::NOTNULL;    // z
1056  fields[argp++] = TypeInt::INT;        // zlen
1057  assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1058  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1059
1060  // no result type needed
1061  fields = TypeTuple::fields(1);
1062  fields[TypeFunc::Parms+0] = NULL;
1063  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1064  return TypeFunc::make(domain, range);
1065}
1066
1067// for mulAdd calls, 2 pointers and 3 ints, returning int
1068const TypeFunc* OptoRuntime::mulAdd_Type() {
1069  // create input type (domain)
1070  int num_args      = 5;
1071  int argcnt = num_args;
1072  const Type** fields = TypeTuple::fields(argcnt);
1073  int argp = TypeFunc::Parms;
1074  fields[argp++] = TypePtr::NOTNULL;    // out
1075  fields[argp++] = TypePtr::NOTNULL;    // in
1076  fields[argp++] = TypeInt::INT;        // offset
1077  fields[argp++] = TypeInt::INT;        // len
1078  fields[argp++] = TypeInt::INT;        // k
1079  assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1080  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1081
1082  // returning carry (int)
1083  fields = TypeTuple::fields(1);
1084  fields[TypeFunc::Parms+0] = TypeInt::INT;
1085  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1086  return TypeFunc::make(domain, range);
1087}
1088
1089const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1090  // create input type (domain)
1091  int num_args      = 7;
1092  int argcnt = num_args;
1093  const Type** fields = TypeTuple::fields(argcnt);
1094  int argp = TypeFunc::Parms;
1095  fields[argp++] = TypePtr::NOTNULL;    // a
1096  fields[argp++] = TypePtr::NOTNULL;    // b
1097  fields[argp++] = TypePtr::NOTNULL;    // n
1098  fields[argp++] = TypeInt::INT;        // len
1099  fields[argp++] = TypeLong::LONG;      // inv
1100  fields[argp++] = Type::HALF;
1101  fields[argp++] = TypePtr::NOTNULL;    // result
1102  assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1103  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1104
1105  // result type needed
1106  fields = TypeTuple::fields(1);
1107  fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1108
1109  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1110  return TypeFunc::make(domain, range);
1111}
1112
1113const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1114  // create input type (domain)
1115  int num_args      = 6;
1116  int argcnt = num_args;
1117  const Type** fields = TypeTuple::fields(argcnt);
1118  int argp = TypeFunc::Parms;
1119  fields[argp++] = TypePtr::NOTNULL;    // a
1120  fields[argp++] = TypePtr::NOTNULL;    // n
1121  fields[argp++] = TypeInt::INT;        // len
1122  fields[argp++] = TypeLong::LONG;      // inv
1123  fields[argp++] = Type::HALF;
1124  fields[argp++] = TypePtr::NOTNULL;    // result
1125  assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1126  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1127
1128  // result type needed
1129  fields = TypeTuple::fields(1);
1130  fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1131
1132  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1133  return TypeFunc::make(domain, range);
1134}
1135
1136const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1137  // create input type (domain)
1138  int num_args = 4;
1139  int argcnt = num_args;
1140  const Type** fields = TypeTuple::fields(argcnt);
1141  int argp = TypeFunc::Parms;
1142  fields[argp++] = TypePtr::NOTNULL;    // obja
1143  fields[argp++] = TypePtr::NOTNULL;    // objb
1144  fields[argp++] = TypeInt::INT;        // length, number of elements
1145  fields[argp++] = TypeInt::INT;        // log2scale, element size
1146  assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1147  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1148
1149  //return mismatch index (int)
1150  fields = TypeTuple::fields(1);
1151  fields[TypeFunc::Parms + 0] = TypeInt::INT;
1152  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1153  return TypeFunc::make(domain, range);
1154}
1155
1156// GHASH block processing
1157const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1158    int argcnt = 4;
1159
1160    const Type** fields = TypeTuple::fields(argcnt);
1161    int argp = TypeFunc::Parms;
1162    fields[argp++] = TypePtr::NOTNULL;    // state
1163    fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1164    fields[argp++] = TypePtr::NOTNULL;    // data
1165    fields[argp++] = TypeInt::INT;        // blocks
1166    assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1167    const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1168
1169    // result type needed
1170    fields = TypeTuple::fields(1);
1171    fields[TypeFunc::Parms+0] = NULL; // void
1172    const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1173    return TypeFunc::make(domain, range);
1174}
1175
1176//------------- Interpreter state access for on stack replacement
1177const TypeFunc* OptoRuntime::osr_end_Type() {
1178  // create input type (domain)
1179  const Type **fields = TypeTuple::fields(1);
1180  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1181  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1182
1183  // create result type
1184  fields = TypeTuple::fields(1);
1185  // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1186  fields[TypeFunc::Parms+0] = NULL; // void
1187  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1188  return TypeFunc::make(domain, range);
1189}
1190
1191//-------------- methodData update helpers
1192
1193const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1194  // create input type (domain)
1195  const Type **fields = TypeTuple::fields(2);
1196  fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1197  fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1198  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1199
1200  // create result type
1201  fields = TypeTuple::fields(1);
1202  fields[TypeFunc::Parms+0] = NULL; // void
1203  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1204  return TypeFunc::make(domain,range);
1205}
1206
1207JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1208  if (receiver == NULL) return;
1209  Klass* receiver_klass = receiver->klass();
1210
1211  intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1212  int empty_row = -1;           // free row, if any is encountered
1213
1214  // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1215  for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1216    // if (vc->receiver(row) == receiver_klass)
1217    int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1218    intptr_t row_recv = *(mdp + receiver_off);
1219    if (row_recv == (intptr_t) receiver_klass) {
1220      // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1221      int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1222      *(mdp + count_off) += DataLayout::counter_increment;
1223      return;
1224    } else if (row_recv == 0) {
1225      // else if (vc->receiver(row) == NULL)
1226      empty_row = (int) row;
1227    }
1228  }
1229
1230  if (empty_row != -1) {
1231    int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1232    // vc->set_receiver(empty_row, receiver_klass);
1233    *(mdp + receiver_off) = (intptr_t) receiver_klass;
1234    // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1235    int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1236    *(mdp + count_off) = DataLayout::counter_increment;
1237  } else {
1238    // Receiver did not match any saved receiver and there is no empty row for it.
1239    // Increment total counter to indicate polymorphic case.
1240    intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1241    *count_p += DataLayout::counter_increment;
1242  }
1243JRT_END
1244
1245//-------------------------------------------------------------------------------------
1246// register policy
1247
1248bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1249  assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1250  switch (register_save_policy[reg]) {
1251    case 'C': return false; //SOC
1252    case 'E': return true ; //SOE
1253    case 'N': return false; //NS
1254    case 'A': return false; //AS
1255  }
1256  ShouldNotReachHere();
1257  return false;
1258}
1259
1260//-----------------------------------------------------------------------
1261// Exceptions
1262//
1263
1264static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1265
1266// The method is an entry that is always called by a C++ method not
1267// directly from compiled code. Compiled code will call the C++ method following.
1268// We can't allow async exception to be installed during  exception processing.
1269JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1270
1271  // Do not confuse exception_oop with pending_exception. The exception_oop
1272  // is only used to pass arguments into the method. Not for general
1273  // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1274  // the runtime stubs checks this on exit.
1275  assert(thread->exception_oop() != NULL, "exception oop is found");
1276  address handler_address = NULL;
1277
1278  Handle exception(thread, thread->exception_oop());
1279  address pc = thread->exception_pc();
1280
1281  // Clear out the exception oop and pc since looking up an
1282  // exception handler can cause class loading, which might throw an
1283  // exception and those fields are expected to be clear during
1284  // normal bytecode execution.
1285  thread->clear_exception_oop_and_pc();
1286
1287  if (log_is_enabled(Info, exceptions)) {
1288    ResourceMark rm;
1289    trace_exception(LogHandle(exceptions)::info_stream(), exception(), pc, "");
1290  }
1291
1292  // for AbortVMOnException flag
1293  Exceptions::debug_check_abort(exception);
1294
1295#ifdef ASSERT
1296  if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1297    // should throw an exception here
1298    ShouldNotReachHere();
1299  }
1300#endif
1301
1302  // new exception handling: this method is entered only from adapters
1303  // exceptions from compiled java methods are handled in compiled code
1304  // using rethrow node
1305
1306  nm = CodeCache::find_nmethod(pc);
1307  assert(nm != NULL, "No NMethod found");
1308  if (nm->is_native_method()) {
1309    fatal("Native method should not have path to exception handling");
1310  } else {
1311    // we are switching to old paradigm: search for exception handler in caller_frame
1312    // instead in exception handler of caller_frame.sender()
1313
1314    if (JvmtiExport::can_post_on_exceptions()) {
1315      // "Full-speed catching" is not necessary here,
1316      // since we're notifying the VM on every catch.
1317      // Force deoptimization and the rest of the lookup
1318      // will be fine.
1319      deoptimize_caller_frame(thread);
1320    }
1321
1322    // Check the stack guard pages.  If enabled, look for handler in this frame;
1323    // otherwise, forcibly unwind the frame.
1324    //
1325    // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1326    bool force_unwind = !thread->reguard_stack();
1327    bool deopting = false;
1328    if (nm->is_deopt_pc(pc)) {
1329      deopting = true;
1330      RegisterMap map(thread, false);
1331      frame deoptee = thread->last_frame().sender(&map);
1332      assert(deoptee.is_deoptimized_frame(), "must be deopted");
1333      // Adjust the pc back to the original throwing pc
1334      pc = deoptee.pc();
1335    }
1336
1337    // If we are forcing an unwind because of stack overflow then deopt is
1338    // irrelevant since we are throwing the frame away anyway.
1339
1340    if (deopting && !force_unwind) {
1341      handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1342    } else {
1343
1344      handler_address =
1345        force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1346
1347      if (handler_address == NULL) {
1348        Handle original_exception(thread, exception());
1349        handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1350        assert (handler_address != NULL, "must have compiled handler");
1351        // Update the exception cache only when the unwind was not forced
1352        // and there didn't happen another exception during the computation of the
1353        // compiled exception handler.
1354        if (!force_unwind && original_exception() == exception()) {
1355          nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1356        }
1357      } else {
1358        assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1359      }
1360    }
1361
1362    thread->set_exception_pc(pc);
1363    thread->set_exception_handler_pc(handler_address);
1364
1365    // Check if the exception PC is a MethodHandle call site.
1366    thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1367  }
1368
1369  // Restore correct return pc.  Was saved above.
1370  thread->set_exception_oop(exception());
1371  return handler_address;
1372
1373JRT_END
1374
1375// We are entering here from exception_blob
1376// If there is a compiled exception handler in this method, we will continue there;
1377// otherwise we will unwind the stack and continue at the caller of top frame method
1378// Note we enter without the usual JRT wrapper. We will call a helper routine that
1379// will do the normal VM entry. We do it this way so that we can see if the nmethod
1380// we looked up the handler for has been deoptimized in the meantime. If it has been
1381// we must not use the handler and instead return the deopt blob.
1382address OptoRuntime::handle_exception_C(JavaThread* thread) {
1383//
1384// We are in Java not VM and in debug mode we have a NoHandleMark
1385//
1386#ifndef PRODUCT
1387  SharedRuntime::_find_handler_ctr++;          // find exception handler
1388#endif
1389  debug_only(NoHandleMark __hm;)
1390  nmethod* nm = NULL;
1391  address handler_address = NULL;
1392  {
1393    // Enter the VM
1394
1395    ResetNoHandleMark rnhm;
1396    handler_address = handle_exception_C_helper(thread, nm);
1397  }
1398
1399  // Back in java: Use no oops, DON'T safepoint
1400
1401  // Now check to see if the handler we are returning is in a now
1402  // deoptimized frame
1403
1404  if (nm != NULL) {
1405    RegisterMap map(thread, false);
1406    frame caller = thread->last_frame().sender(&map);
1407#ifdef ASSERT
1408    assert(caller.is_compiled_frame(), "must be");
1409#endif // ASSERT
1410    if (caller.is_deoptimized_frame()) {
1411      handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1412    }
1413  }
1414  return handler_address;
1415}
1416
1417//------------------------------rethrow----------------------------------------
1418// We get here after compiled code has executed a 'RethrowNode'.  The callee
1419// is either throwing or rethrowing an exception.  The callee-save registers
1420// have been restored, synchronized objects have been unlocked and the callee
1421// stack frame has been removed.  The return address was passed in.
1422// Exception oop is passed as the 1st argument.  This routine is then called
1423// from the stub.  On exit, we know where to jump in the caller's code.
1424// After this C code exits, the stub will pop his frame and end in a jump
1425// (instead of a return).  We enter the caller's default handler.
1426//
1427// This must be JRT_LEAF:
1428//     - caller will not change its state as we cannot block on exit,
1429//       therefore raw_exception_handler_for_return_address is all it takes
1430//       to handle deoptimized blobs
1431//
1432// However, there needs to be a safepoint check in the middle!  So compiled
1433// safepoints are completely watertight.
1434//
1435// Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1436//
1437// *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1438//
1439address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1440#ifndef PRODUCT
1441  SharedRuntime::_rethrow_ctr++;               // count rethrows
1442#endif
1443  assert (exception != NULL, "should have thrown a NULLPointerException");
1444#ifdef ASSERT
1445  if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1446    // should throw an exception here
1447    ShouldNotReachHere();
1448  }
1449#endif
1450
1451  thread->set_vm_result(exception);
1452  // Frame not compiled (handles deoptimization blob)
1453  return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1454}
1455
1456
1457const TypeFunc *OptoRuntime::rethrow_Type() {
1458  // create input type (domain)
1459  const Type **fields = TypeTuple::fields(1);
1460  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1461  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1462
1463  // create result type (range)
1464  fields = TypeTuple::fields(1);
1465  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1466  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1467
1468  return TypeFunc::make(domain, range);
1469}
1470
1471
1472void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1473  // Deoptimize the caller before continuing, as the compiled
1474  // exception handler table may not be valid.
1475  if (!StressCompiledExceptionHandlers && doit) {
1476    deoptimize_caller_frame(thread);
1477  }
1478}
1479
1480void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1481  // Called from within the owner thread, so no need for safepoint
1482  RegisterMap reg_map(thread);
1483  frame stub_frame = thread->last_frame();
1484  assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1485  frame caller_frame = stub_frame.sender(&reg_map);
1486
1487  // Deoptimize the caller frame.
1488  Deoptimization::deoptimize_frame(thread, caller_frame.id());
1489}
1490
1491
1492bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1493  // Called from within the owner thread, so no need for safepoint
1494  RegisterMap reg_map(thread);
1495  frame stub_frame = thread->last_frame();
1496  assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1497  frame caller_frame = stub_frame.sender(&reg_map);
1498  return caller_frame.is_deoptimized_frame();
1499}
1500
1501
1502const TypeFunc *OptoRuntime::register_finalizer_Type() {
1503  // create input type (domain)
1504  const Type **fields = TypeTuple::fields(1);
1505  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1506  // // The JavaThread* is passed to each routine as the last argument
1507  // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1508  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1509
1510  // create result type (range)
1511  fields = TypeTuple::fields(0);
1512
1513  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1514
1515  return TypeFunc::make(domain,range);
1516}
1517
1518
1519//-----------------------------------------------------------------------------
1520// Dtrace support.  entry and exit probes have the same signature
1521const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1522  // create input type (domain)
1523  const Type **fields = TypeTuple::fields(2);
1524  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1525  fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1526  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1527
1528  // create result type (range)
1529  fields = TypeTuple::fields(0);
1530
1531  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1532
1533  return TypeFunc::make(domain,range);
1534}
1535
1536const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1537  // create input type (domain)
1538  const Type **fields = TypeTuple::fields(2);
1539  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1540  fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1541
1542  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1543
1544  // create result type (range)
1545  fields = TypeTuple::fields(0);
1546
1547  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1548
1549  return TypeFunc::make(domain,range);
1550}
1551
1552
1553JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1554  assert(obj->is_oop(), "must be a valid oop");
1555  assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1556  InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1557JRT_END
1558
1559//-----------------------------------------------------------------------------
1560
1561NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1562
1563//
1564// dump the collected NamedCounters.
1565//
1566void OptoRuntime::print_named_counters() {
1567  int total_lock_count = 0;
1568  int eliminated_lock_count = 0;
1569
1570  NamedCounter* c = _named_counters;
1571  while (c) {
1572    if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1573      int count = c->count();
1574      if (count > 0) {
1575        bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1576        if (Verbose) {
1577          tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1578        }
1579        total_lock_count += count;
1580        if (eliminated) {
1581          eliminated_lock_count += count;
1582        }
1583      }
1584    } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1585      BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1586      if (blc->nonzero()) {
1587        tty->print_cr("%s", c->name());
1588        blc->print_on(tty);
1589      }
1590#if INCLUDE_RTM_OPT
1591    } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1592      RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1593      if (rlc->nonzero()) {
1594        tty->print_cr("%s", c->name());
1595        rlc->print_on(tty);
1596      }
1597#endif
1598    }
1599    c = c->next();
1600  }
1601  if (total_lock_count > 0) {
1602    tty->print_cr("dynamic locks: %d", total_lock_count);
1603    if (eliminated_lock_count) {
1604      tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1605                    (int)(eliminated_lock_count * 100.0 / total_lock_count));
1606    }
1607  }
1608}
1609
1610//
1611//  Allocate a new NamedCounter.  The JVMState is used to generate the
1612//  name which consists of method@line for the inlining tree.
1613//
1614
1615NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1616  int max_depth = youngest_jvms->depth();
1617
1618  // Visit scopes from youngest to oldest.
1619  bool first = true;
1620  stringStream st;
1621  for (int depth = max_depth; depth >= 1; depth--) {
1622    JVMState* jvms = youngest_jvms->of_depth(depth);
1623    ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1624    if (!first) {
1625      st.print(" ");
1626    } else {
1627      first = false;
1628    }
1629    int bci = jvms->bci();
1630    if (bci < 0) bci = 0;
1631    st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1632    // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1633  }
1634  NamedCounter* c;
1635  if (tag == NamedCounter::BiasedLockingCounter) {
1636    c = new BiasedLockingNamedCounter(st.as_string());
1637  } else if (tag == NamedCounter::RTMLockingCounter) {
1638    c = new RTMLockingNamedCounter(st.as_string());
1639  } else {
1640    c = new NamedCounter(st.as_string(), tag);
1641  }
1642
1643  // atomically add the new counter to the head of the list.  We only
1644  // add counters so this is safe.
1645  NamedCounter* head;
1646  do {
1647    c->set_next(NULL);
1648    head = _named_counters;
1649    c->set_next(head);
1650  } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1651  return c;
1652}
1653
1654int trace_exception_counter = 0;
1655static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1656  trace_exception_counter++;
1657  stringStream tempst;
1658
1659  tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1660  exception_oop->print_value_on(&tempst);
1661  tempst.print(" in ");
1662  CodeBlob* blob = CodeCache::find_blob(exception_pc);
1663  if (blob->is_nmethod()) {
1664    nmethod* nm = blob->as_nmethod_or_null();
1665    nm->method()->print_value_on(&tempst);
1666  } else if (blob->is_runtime_stub()) {
1667    tempst.print("<runtime-stub>");
1668  } else {
1669    tempst.print("<unknown>");
1670  }
1671  tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1672  tempst.print("]");
1673
1674  st->print_raw_cr(tempst.as_string());
1675}
1676