runtime.cpp revision 6412:53a41e7cbe05
1/*
2 * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "classfile/vmSymbols.hpp"
28#include "code/compiledIC.hpp"
29#include "code/icBuffer.hpp"
30#include "code/nmethod.hpp"
31#include "code/pcDesc.hpp"
32#include "code/scopeDesc.hpp"
33#include "code/vtableStubs.hpp"
34#include "compiler/compileBroker.hpp"
35#include "compiler/compilerOracle.hpp"
36#include "compiler/oopMap.hpp"
37#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
38#include "gc_implementation/g1/heapRegion.hpp"
39#include "gc_interface/collectedHeap.hpp"
40#include "interpreter/bytecode.hpp"
41#include "interpreter/interpreter.hpp"
42#include "interpreter/linkResolver.hpp"
43#include "memory/barrierSet.hpp"
44#include "memory/gcLocker.inline.hpp"
45#include "memory/oopFactory.hpp"
46#include "oops/objArrayKlass.hpp"
47#include "oops/oop.inline.hpp"
48#include "opto/addnode.hpp"
49#include "opto/callnode.hpp"
50#include "opto/cfgnode.hpp"
51#include "opto/graphKit.hpp"
52#include "opto/machnode.hpp"
53#include "opto/matcher.hpp"
54#include "opto/memnode.hpp"
55#include "opto/mulnode.hpp"
56#include "opto/runtime.hpp"
57#include "opto/subnode.hpp"
58#include "runtime/fprofiler.hpp"
59#include "runtime/handles.inline.hpp"
60#include "runtime/interfaceSupport.hpp"
61#include "runtime/javaCalls.hpp"
62#include "runtime/sharedRuntime.hpp"
63#include "runtime/signature.hpp"
64#include "runtime/threadCritical.hpp"
65#include "runtime/vframe.hpp"
66#include "runtime/vframeArray.hpp"
67#include "runtime/vframe_hp.hpp"
68#include "utilities/copy.hpp"
69#include "utilities/preserveException.hpp"
70#ifdef TARGET_ARCH_MODEL_x86_32
71# include "adfiles/ad_x86_32.hpp"
72#endif
73#ifdef TARGET_ARCH_MODEL_x86_64
74# include "adfiles/ad_x86_64.hpp"
75#endif
76#ifdef TARGET_ARCH_MODEL_sparc
77# include "adfiles/ad_sparc.hpp"
78#endif
79#ifdef TARGET_ARCH_MODEL_zero
80# include "adfiles/ad_zero.hpp"
81#endif
82#ifdef TARGET_ARCH_MODEL_arm
83# include "adfiles/ad_arm.hpp"
84#endif
85#ifdef TARGET_ARCH_MODEL_ppc_32
86# include "adfiles/ad_ppc_32.hpp"
87#endif
88#ifdef TARGET_ARCH_MODEL_ppc_64
89# include "adfiles/ad_ppc_64.hpp"
90#endif
91
92
93// For debugging purposes:
94//  To force FullGCALot inside a runtime function, add the following two lines
95//
96//  Universe::release_fullgc_alot_dummy();
97//  MarkSweep::invoke(0, "Debugging");
98//
99// At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
100
101
102
103
104// Compiled code entry points
105address OptoRuntime::_new_instance_Java                           = NULL;
106address OptoRuntime::_new_array_Java                              = NULL;
107address OptoRuntime::_new_array_nozero_Java                       = NULL;
108address OptoRuntime::_multianewarray2_Java                        = NULL;
109address OptoRuntime::_multianewarray3_Java                        = NULL;
110address OptoRuntime::_multianewarray4_Java                        = NULL;
111address OptoRuntime::_multianewarray5_Java                        = NULL;
112address OptoRuntime::_multianewarrayN_Java                        = NULL;
113address OptoRuntime::_g1_wb_pre_Java                              = NULL;
114address OptoRuntime::_g1_wb_post_Java                             = NULL;
115address OptoRuntime::_vtable_must_compile_Java                    = NULL;
116address OptoRuntime::_complete_monitor_locking_Java               = NULL;
117address OptoRuntime::_rethrow_Java                                = NULL;
118
119address OptoRuntime::_slow_arraycopy_Java                         = NULL;
120address OptoRuntime::_register_finalizer_Java                     = NULL;
121
122# ifdef ENABLE_ZAP_DEAD_LOCALS
123address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
124address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
125# endif
126
127ExceptionBlob* OptoRuntime::_exception_blob;
128
129// This should be called in an assertion at the start of OptoRuntime routines
130// which are entered from compiled code (all of them)
131#ifdef ASSERT
132static bool check_compiled_frame(JavaThread* thread) {
133  assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
134  RegisterMap map(thread, false);
135  frame caller = thread->last_frame().sender(&map);
136  assert(caller.is_compiled_frame(), "not being called from compiled like code");
137  return true;
138}
139#endif // ASSERT
140
141
142#define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
143  var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
144  if (var == NULL) { return false; }
145
146bool OptoRuntime::generate(ciEnv* env) {
147
148  generate_exception_blob();
149
150  // Note: tls: Means fetching the return oop out of the thread-local storage
151  //
152  //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
153  // -------------------------------------------------------------------------------------------------------------------------------
154  gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
155  gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
156  gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
157  gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
158  gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
159  gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
160  gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
161  gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
162  gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
163  gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
164  gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
165  gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
166
167  gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
168  gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
169
170# ifdef ENABLE_ZAP_DEAD_LOCALS
171  gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
172  gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
173# endif
174  return true;
175}
176
177#undef gen
178
179
180// Helper method to do generation of RunTimeStub's
181address OptoRuntime::generate_stub( ciEnv* env,
182                                    TypeFunc_generator gen, address C_function,
183                                    const char *name, int is_fancy_jump,
184                                    bool pass_tls,
185                                    bool save_argument_registers,
186                                    bool return_pc ) {
187  ResourceMark rm;
188  Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
189  return  C.stub_entry_point();
190}
191
192const char* OptoRuntime::stub_name(address entry) {
193#ifndef PRODUCT
194  CodeBlob* cb = CodeCache::find_blob(entry);
195  RuntimeStub* rs =(RuntimeStub *)cb;
196  assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
197  return rs->name();
198#else
199  // Fast implementation for product mode (maybe it should be inlined too)
200  return "runtime stub";
201#endif
202}
203
204
205//=============================================================================
206// Opto compiler runtime routines
207//=============================================================================
208
209
210//=============================allocation======================================
211// We failed the fast-path allocation.  Now we need to do a scavenge or GC
212// and try allocation again.
213
214void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
215  // After any safepoint, just before going back to compiled code,
216  // we inform the GC that we will be doing initializing writes to
217  // this object in the future without emitting card-marks, so
218  // GC may take any compensating steps.
219  // NOTE: Keep this code consistent with GraphKit::store_barrier.
220
221  oop new_obj = thread->vm_result();
222  if (new_obj == NULL)  return;
223
224  assert(Universe::heap()->can_elide_tlab_store_barriers(),
225         "compiler must check this first");
226  // GC may decide to give back a safer copy of new_obj.
227  new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
228  thread->set_vm_result(new_obj);
229}
230
231// object allocation
232JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
233  JRT_BLOCK;
234#ifndef PRODUCT
235  SharedRuntime::_new_instance_ctr++;         // new instance requires GC
236#endif
237  assert(check_compiled_frame(thread), "incorrect caller");
238
239  // These checks are cheap to make and support reflective allocation.
240  int lh = klass->layout_helper();
241  if (Klass::layout_helper_needs_slow_path(lh)
242      || !InstanceKlass::cast(klass)->is_initialized()) {
243    KlassHandle kh(THREAD, klass);
244    kh->check_valid_for_instantiation(false, THREAD);
245    if (!HAS_PENDING_EXCEPTION) {
246      InstanceKlass::cast(kh())->initialize(THREAD);
247    }
248    if (!HAS_PENDING_EXCEPTION) {
249      klass = kh();
250    } else {
251      klass = NULL;
252    }
253  }
254
255  if (klass != NULL) {
256    // Scavenge and allocate an instance.
257    oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
258    thread->set_vm_result(result);
259
260    // Pass oops back through thread local storage.  Our apparent type to Java
261    // is that we return an oop, but we can block on exit from this routine and
262    // a GC can trash the oop in C's return register.  The generated stub will
263    // fetch the oop from TLS after any possible GC.
264  }
265
266  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
267  JRT_BLOCK_END;
268
269  if (GraphKit::use_ReduceInitialCardMarks()) {
270    // inform GC that we won't do card marks for initializing writes.
271    new_store_pre_barrier(thread);
272  }
273JRT_END
274
275
276// array allocation
277JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
278  JRT_BLOCK;
279#ifndef PRODUCT
280  SharedRuntime::_new_array_ctr++;            // new array requires GC
281#endif
282  assert(check_compiled_frame(thread), "incorrect caller");
283
284  // Scavenge and allocate an instance.
285  oop result;
286
287  if (array_type->oop_is_typeArray()) {
288    // The oopFactory likes to work with the element type.
289    // (We could bypass the oopFactory, since it doesn't add much value.)
290    BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
291    result = oopFactory::new_typeArray(elem_type, len, THREAD);
292  } else {
293    // Although the oopFactory likes to work with the elem_type,
294    // the compiler prefers the array_type, since it must already have
295    // that latter value in hand for the fast path.
296    Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
297    result = oopFactory::new_objArray(elem_type, len, THREAD);
298  }
299
300  // Pass oops back through thread local storage.  Our apparent type to Java
301  // is that we return an oop, but we can block on exit from this routine and
302  // a GC can trash the oop in C's return register.  The generated stub will
303  // fetch the oop from TLS after any possible GC.
304  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
305  thread->set_vm_result(result);
306  JRT_BLOCK_END;
307
308  if (GraphKit::use_ReduceInitialCardMarks()) {
309    // inform GC that we won't do card marks for initializing writes.
310    new_store_pre_barrier(thread);
311  }
312JRT_END
313
314// array allocation without zeroing
315JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
316  JRT_BLOCK;
317#ifndef PRODUCT
318  SharedRuntime::_new_array_ctr++;            // new array requires GC
319#endif
320  assert(check_compiled_frame(thread), "incorrect caller");
321
322  // Scavenge and allocate an instance.
323  oop result;
324
325  assert(array_type->oop_is_typeArray(), "should be called only for type array");
326  // The oopFactory likes to work with the element type.
327  BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
328  result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
329
330  // Pass oops back through thread local storage.  Our apparent type to Java
331  // is that we return an oop, but we can block on exit from this routine and
332  // a GC can trash the oop in C's return register.  The generated stub will
333  // fetch the oop from TLS after any possible GC.
334  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
335  thread->set_vm_result(result);
336  JRT_BLOCK_END;
337
338  if (GraphKit::use_ReduceInitialCardMarks()) {
339    // inform GC that we won't do card marks for initializing writes.
340    new_store_pre_barrier(thread);
341  }
342
343  oop result = thread->vm_result();
344  if ((len > 0) && (result != NULL) &&
345      is_deoptimized_caller_frame(thread)) {
346    // Zero array here if the caller is deoptimized.
347    int size = ((typeArrayOop)result)->object_size();
348    BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
349    const size_t hs = arrayOopDesc::header_size(elem_type);
350    // Align to next 8 bytes to avoid trashing arrays's length.
351    const size_t aligned_hs = align_object_offset(hs);
352    HeapWord* obj = (HeapWord*)result;
353    if (aligned_hs > hs) {
354      Copy::zero_to_words(obj+hs, aligned_hs-hs);
355    }
356    // Optimized zeroing.
357    Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
358  }
359
360JRT_END
361
362// Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
363
364// multianewarray for 2 dimensions
365JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
366#ifndef PRODUCT
367  SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
368#endif
369  assert(check_compiled_frame(thread), "incorrect caller");
370  assert(elem_type->is_klass(), "not a class");
371  jint dims[2];
372  dims[0] = len1;
373  dims[1] = len2;
374  oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
375  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
376  thread->set_vm_result(obj);
377JRT_END
378
379// multianewarray for 3 dimensions
380JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
381#ifndef PRODUCT
382  SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
383#endif
384  assert(check_compiled_frame(thread), "incorrect caller");
385  assert(elem_type->is_klass(), "not a class");
386  jint dims[3];
387  dims[0] = len1;
388  dims[1] = len2;
389  dims[2] = len3;
390  oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
391  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
392  thread->set_vm_result(obj);
393JRT_END
394
395// multianewarray for 4 dimensions
396JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
397#ifndef PRODUCT
398  SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
399#endif
400  assert(check_compiled_frame(thread), "incorrect caller");
401  assert(elem_type->is_klass(), "not a class");
402  jint dims[4];
403  dims[0] = len1;
404  dims[1] = len2;
405  dims[2] = len3;
406  dims[3] = len4;
407  oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
408  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
409  thread->set_vm_result(obj);
410JRT_END
411
412// multianewarray for 5 dimensions
413JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
414#ifndef PRODUCT
415  SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
416#endif
417  assert(check_compiled_frame(thread), "incorrect caller");
418  assert(elem_type->is_klass(), "not a class");
419  jint dims[5];
420  dims[0] = len1;
421  dims[1] = len2;
422  dims[2] = len3;
423  dims[3] = len4;
424  dims[4] = len5;
425  oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
426  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
427  thread->set_vm_result(obj);
428JRT_END
429
430JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
431  assert(check_compiled_frame(thread), "incorrect caller");
432  assert(elem_type->is_klass(), "not a class");
433  assert(oop(dims)->is_typeArray(), "not an array");
434
435  ResourceMark rm;
436  jint len = dims->length();
437  assert(len > 0, "Dimensions array should contain data");
438  jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
439  jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
440  Copy::conjoint_jints_atomic(j_dims, c_dims, len);
441
442  oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
443  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
444  thread->set_vm_result(obj);
445JRT_END
446
447
448const TypeFunc *OptoRuntime::new_instance_Type() {
449  // create input type (domain)
450  const Type **fields = TypeTuple::fields(1);
451  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
452  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
453
454  // create result type (range)
455  fields = TypeTuple::fields(1);
456  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
457
458  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
459
460  return TypeFunc::make(domain, range);
461}
462
463
464const TypeFunc *OptoRuntime::athrow_Type() {
465  // create input type (domain)
466  const Type **fields = TypeTuple::fields(1);
467  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
468  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
469
470  // create result type (range)
471  fields = TypeTuple::fields(0);
472
473  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
474
475  return TypeFunc::make(domain, range);
476}
477
478
479const TypeFunc *OptoRuntime::new_array_Type() {
480  // create input type (domain)
481  const Type **fields = TypeTuple::fields(2);
482  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
483  fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
484  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
485
486  // create result type (range)
487  fields = TypeTuple::fields(1);
488  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
489
490  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
491
492  return TypeFunc::make(domain, range);
493}
494
495const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
496  // create input type (domain)
497  const int nargs = ndim + 1;
498  const Type **fields = TypeTuple::fields(nargs);
499  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
500  for( int i = 1; i < nargs; i++ )
501    fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
502  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
503
504  // create result type (range)
505  fields = TypeTuple::fields(1);
506  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
507  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
508
509  return TypeFunc::make(domain, range);
510}
511
512const TypeFunc *OptoRuntime::multianewarray2_Type() {
513  return multianewarray_Type(2);
514}
515
516const TypeFunc *OptoRuntime::multianewarray3_Type() {
517  return multianewarray_Type(3);
518}
519
520const TypeFunc *OptoRuntime::multianewarray4_Type() {
521  return multianewarray_Type(4);
522}
523
524const TypeFunc *OptoRuntime::multianewarray5_Type() {
525  return multianewarray_Type(5);
526}
527
528const TypeFunc *OptoRuntime::multianewarrayN_Type() {
529  // create input type (domain)
530  const Type **fields = TypeTuple::fields(2);
531  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
532  fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
533  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
534
535  // create result type (range)
536  fields = TypeTuple::fields(1);
537  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
538  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
539
540  return TypeFunc::make(domain, range);
541}
542
543const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
544  const Type **fields = TypeTuple::fields(2);
545  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
546  fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
547  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
548
549  // create result type (range)
550  fields = TypeTuple::fields(0);
551  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
552
553  return TypeFunc::make(domain, range);
554}
555
556const TypeFunc *OptoRuntime::g1_wb_post_Type() {
557
558  const Type **fields = TypeTuple::fields(2);
559  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
560  fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
561  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
562
563  // create result type (range)
564  fields = TypeTuple::fields(0);
565  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
566
567  return TypeFunc::make(domain, range);
568}
569
570const TypeFunc *OptoRuntime::uncommon_trap_Type() {
571  // create input type (domain)
572  const Type **fields = TypeTuple::fields(1);
573  fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
574  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
575
576  // create result type (range)
577  fields = TypeTuple::fields(0);
578  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
579
580  return TypeFunc::make(domain, range);
581}
582
583# ifdef ENABLE_ZAP_DEAD_LOCALS
584// Type used for stub generation for zap_dead_locals.
585// No inputs or outputs
586const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
587  // create input type (domain)
588  const Type **fields = TypeTuple::fields(0);
589  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
590
591  // create result type (range)
592  fields = TypeTuple::fields(0);
593  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
594
595  return TypeFunc::make(domain,range);
596}
597# endif
598
599
600//-----------------------------------------------------------------------------
601// Monitor Handling
602const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
603  // create input type (domain)
604  const Type **fields = TypeTuple::fields(2);
605  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
606  fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
607  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
608
609  // create result type (range)
610  fields = TypeTuple::fields(0);
611
612  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
613
614  return TypeFunc::make(domain,range);
615}
616
617
618//-----------------------------------------------------------------------------
619const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
620  // create input type (domain)
621  const Type **fields = TypeTuple::fields(2);
622  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
623  fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
624  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
625
626  // create result type (range)
627  fields = TypeTuple::fields(0);
628
629  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
630
631  return TypeFunc::make(domain,range);
632}
633
634const TypeFunc* OptoRuntime::flush_windows_Type() {
635  // create input type (domain)
636  const Type** fields = TypeTuple::fields(1);
637  fields[TypeFunc::Parms+0] = NULL; // void
638  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
639
640  // create result type
641  fields = TypeTuple::fields(1);
642  fields[TypeFunc::Parms+0] = NULL; // void
643  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
644
645  return TypeFunc::make(domain, range);
646}
647
648const TypeFunc* OptoRuntime::l2f_Type() {
649  // create input type (domain)
650  const Type **fields = TypeTuple::fields(2);
651  fields[TypeFunc::Parms+0] = TypeLong::LONG;
652  fields[TypeFunc::Parms+1] = Type::HALF;
653  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
654
655  // create result type (range)
656  fields = TypeTuple::fields(1);
657  fields[TypeFunc::Parms+0] = Type::FLOAT;
658  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
659
660  return TypeFunc::make(domain, range);
661}
662
663const TypeFunc* OptoRuntime::modf_Type() {
664  const Type **fields = TypeTuple::fields(2);
665  fields[TypeFunc::Parms+0] = Type::FLOAT;
666  fields[TypeFunc::Parms+1] = Type::FLOAT;
667  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
668
669  // create result type (range)
670  fields = TypeTuple::fields(1);
671  fields[TypeFunc::Parms+0] = Type::FLOAT;
672
673  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
674
675  return TypeFunc::make(domain, range);
676}
677
678const TypeFunc *OptoRuntime::Math_D_D_Type() {
679  // create input type (domain)
680  const Type **fields = TypeTuple::fields(2);
681  // Symbol* name of class to be loaded
682  fields[TypeFunc::Parms+0] = Type::DOUBLE;
683  fields[TypeFunc::Parms+1] = Type::HALF;
684  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
685
686  // create result type (range)
687  fields = TypeTuple::fields(2);
688  fields[TypeFunc::Parms+0] = Type::DOUBLE;
689  fields[TypeFunc::Parms+1] = Type::HALF;
690  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
691
692  return TypeFunc::make(domain, range);
693}
694
695const TypeFunc* OptoRuntime::Math_DD_D_Type() {
696  const Type **fields = TypeTuple::fields(4);
697  fields[TypeFunc::Parms+0] = Type::DOUBLE;
698  fields[TypeFunc::Parms+1] = Type::HALF;
699  fields[TypeFunc::Parms+2] = Type::DOUBLE;
700  fields[TypeFunc::Parms+3] = Type::HALF;
701  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
702
703  // create result type (range)
704  fields = TypeTuple::fields(2);
705  fields[TypeFunc::Parms+0] = Type::DOUBLE;
706  fields[TypeFunc::Parms+1] = Type::HALF;
707  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
708
709  return TypeFunc::make(domain, range);
710}
711
712//-------------- currentTimeMillis, currentTimeNanos, etc
713
714const TypeFunc* OptoRuntime::void_long_Type() {
715  // create input type (domain)
716  const Type **fields = TypeTuple::fields(0);
717  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
718
719  // create result type (range)
720  fields = TypeTuple::fields(2);
721  fields[TypeFunc::Parms+0] = TypeLong::LONG;
722  fields[TypeFunc::Parms+1] = Type::HALF;
723  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
724
725  return TypeFunc::make(domain, range);
726}
727
728// arraycopy stub variations:
729enum ArrayCopyType {
730  ac_fast,                      // void(ptr, ptr, size_t)
731  ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
732  ac_slow,                      // void(ptr, int, ptr, int, int)
733  ac_generic                    //  int(ptr, int, ptr, int, int)
734};
735
736static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
737  // create input type (domain)
738  int num_args      = (act == ac_fast ? 3 : 5);
739  int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
740  int argcnt = num_args;
741  LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
742  const Type** fields = TypeTuple::fields(argcnt);
743  int argp = TypeFunc::Parms;
744  fields[argp++] = TypePtr::NOTNULL;    // src
745  if (num_size_args == 0) {
746    fields[argp++] = TypeInt::INT;      // src_pos
747  }
748  fields[argp++] = TypePtr::NOTNULL;    // dest
749  if (num_size_args == 0) {
750    fields[argp++] = TypeInt::INT;      // dest_pos
751    fields[argp++] = TypeInt::INT;      // length
752  }
753  while (num_size_args-- > 0) {
754    fields[argp++] = TypeX_X;               // size in whatevers (size_t)
755    LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
756  }
757  if (act == ac_checkcast) {
758    fields[argp++] = TypePtr::NOTNULL;  // super_klass
759  }
760  assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
761  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
762
763  // create result type if needed
764  int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
765  fields = TypeTuple::fields(1);
766  if (retcnt == 0)
767    fields[TypeFunc::Parms+0] = NULL; // void
768  else
769    fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
770  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
771  return TypeFunc::make(domain, range);
772}
773
774const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
775  // This signature is simple:  Two base pointers and a size_t.
776  return make_arraycopy_Type(ac_fast);
777}
778
779const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
780  // An extension of fast_arraycopy_Type which adds type checking.
781  return make_arraycopy_Type(ac_checkcast);
782}
783
784const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
785  // This signature is exactly the same as System.arraycopy.
786  // There are no intptr_t (int/long) arguments.
787  return make_arraycopy_Type(ac_slow);
788}
789
790const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
791  // This signature is like System.arraycopy, except that it returns status.
792  return make_arraycopy_Type(ac_generic);
793}
794
795
796const TypeFunc* OptoRuntime::array_fill_Type() {
797  const Type** fields;
798  int argp = TypeFunc::Parms;
799  if (CCallingConventionRequiresIntsAsLongs) {
800  // create input type (domain): pointer, int, size_t
801    fields = TypeTuple::fields(3 LP64_ONLY( + 2));
802    fields[argp++] = TypePtr::NOTNULL;
803    fields[argp++] = TypeLong::LONG;
804    fields[argp++] = Type::HALF;
805  } else {
806    // create input type (domain): pointer, int, size_t
807    fields = TypeTuple::fields(3 LP64_ONLY( + 1));
808    fields[argp++] = TypePtr::NOTNULL;
809    fields[argp++] = TypeInt::INT;
810  }
811  fields[argp++] = TypeX_X;               // size in whatevers (size_t)
812  LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
813  const TypeTuple *domain = TypeTuple::make(argp, fields);
814
815  // create result type
816  fields = TypeTuple::fields(1);
817  fields[TypeFunc::Parms+0] = NULL; // void
818  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
819
820  return TypeFunc::make(domain, range);
821}
822
823// for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
824const TypeFunc* OptoRuntime::aescrypt_block_Type() {
825  // create input type (domain)
826  int num_args      = 3;
827  if (Matcher::pass_original_key_for_aes()) {
828    num_args = 4;
829  }
830  int argcnt = num_args;
831  const Type** fields = TypeTuple::fields(argcnt);
832  int argp = TypeFunc::Parms;
833  fields[argp++] = TypePtr::NOTNULL;    // src
834  fields[argp++] = TypePtr::NOTNULL;    // dest
835  fields[argp++] = TypePtr::NOTNULL;    // k array
836  if (Matcher::pass_original_key_for_aes()) {
837    fields[argp++] = TypePtr::NOTNULL;    // original k array
838  }
839  assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
840  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
841
842  // no result type needed
843  fields = TypeTuple::fields(1);
844  fields[TypeFunc::Parms+0] = NULL; // void
845  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
846  return TypeFunc::make(domain, range);
847}
848
849/**
850 * int updateBytesCRC32(int crc, byte* b, int len)
851 */
852const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
853  // create input type (domain)
854  int num_args      = 3;
855  int argcnt = num_args;
856  const Type** fields = TypeTuple::fields(argcnt);
857  int argp = TypeFunc::Parms;
858  fields[argp++] = TypeInt::INT;        // crc
859  fields[argp++] = TypePtr::NOTNULL;    // src
860  fields[argp++] = TypeInt::INT;        // len
861  assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
862  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
863
864  // result type needed
865  fields = TypeTuple::fields(1);
866  fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
867  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
868  return TypeFunc::make(domain, range);
869}
870
871// for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
872const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
873  // create input type (domain)
874  int num_args      = 5;
875  if (Matcher::pass_original_key_for_aes()) {
876    num_args = 6;
877  }
878  int argcnt = num_args;
879  const Type** fields = TypeTuple::fields(argcnt);
880  int argp = TypeFunc::Parms;
881  fields[argp++] = TypePtr::NOTNULL;    // src
882  fields[argp++] = TypePtr::NOTNULL;    // dest
883  fields[argp++] = TypePtr::NOTNULL;    // k array
884  fields[argp++] = TypePtr::NOTNULL;    // r array
885  fields[argp++] = TypeInt::INT;        // src len
886  if (Matcher::pass_original_key_for_aes()) {
887    fields[argp++] = TypePtr::NOTNULL;    // original k array
888  }
889  assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
890  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
891
892  // returning cipher len (int)
893  fields = TypeTuple::fields(1);
894  fields[TypeFunc::Parms+0] = TypeInt::INT;
895  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
896  return TypeFunc::make(domain, range);
897}
898
899//------------- Interpreter state access for on stack replacement
900const TypeFunc* OptoRuntime::osr_end_Type() {
901  // create input type (domain)
902  const Type **fields = TypeTuple::fields(1);
903  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
904  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
905
906  // create result type
907  fields = TypeTuple::fields(1);
908  // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
909  fields[TypeFunc::Parms+0] = NULL; // void
910  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
911  return TypeFunc::make(domain, range);
912}
913
914//-------------- methodData update helpers
915
916const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
917  // create input type (domain)
918  const Type **fields = TypeTuple::fields(2);
919  fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
920  fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
921  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
922
923  // create result type
924  fields = TypeTuple::fields(1);
925  fields[TypeFunc::Parms+0] = NULL; // void
926  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
927  return TypeFunc::make(domain,range);
928}
929
930JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
931  if (receiver == NULL) return;
932  Klass* receiver_klass = receiver->klass();
933
934  intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
935  int empty_row = -1;           // free row, if any is encountered
936
937  // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
938  for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
939    // if (vc->receiver(row) == receiver_klass)
940    int receiver_off = ReceiverTypeData::receiver_cell_index(row);
941    intptr_t row_recv = *(mdp + receiver_off);
942    if (row_recv == (intptr_t) receiver_klass) {
943      // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
944      int count_off = ReceiverTypeData::receiver_count_cell_index(row);
945      *(mdp + count_off) += DataLayout::counter_increment;
946      return;
947    } else if (row_recv == 0) {
948      // else if (vc->receiver(row) == NULL)
949      empty_row = (int) row;
950    }
951  }
952
953  if (empty_row != -1) {
954    int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
955    // vc->set_receiver(empty_row, receiver_klass);
956    *(mdp + receiver_off) = (intptr_t) receiver_klass;
957    // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
958    int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
959    *(mdp + count_off) = DataLayout::counter_increment;
960  } else {
961    // Receiver did not match any saved receiver and there is no empty row for it.
962    // Increment total counter to indicate polymorphic case.
963    intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
964    *count_p += DataLayout::counter_increment;
965  }
966JRT_END
967
968//-------------------------------------------------------------------------------------
969// register policy
970
971bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
972  assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
973  switch (register_save_policy[reg]) {
974    case 'C': return false; //SOC
975    case 'E': return true ; //SOE
976    case 'N': return false; //NS
977    case 'A': return false; //AS
978  }
979  ShouldNotReachHere();
980  return false;
981}
982
983//-----------------------------------------------------------------------
984// Exceptions
985//
986
987static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
988
989// The method is an entry that is always called by a C++ method not
990// directly from compiled code. Compiled code will call the C++ method following.
991// We can't allow async exception to be installed during  exception processing.
992JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
993
994  // Do not confuse exception_oop with pending_exception. The exception_oop
995  // is only used to pass arguments into the method. Not for general
996  // exception handling.  DO NOT CHANGE IT to use pending_exception, since
997  // the runtime stubs checks this on exit.
998  assert(thread->exception_oop() != NULL, "exception oop is found");
999  address handler_address = NULL;
1000
1001  Handle exception(thread, thread->exception_oop());
1002  address pc = thread->exception_pc();
1003
1004  // Clear out the exception oop and pc since looking up an
1005  // exception handler can cause class loading, which might throw an
1006  // exception and those fields are expected to be clear during
1007  // normal bytecode execution.
1008  thread->clear_exception_oop_and_pc();
1009
1010  if (TraceExceptions) {
1011    trace_exception(exception(), pc, "");
1012  }
1013
1014  // for AbortVMOnException flag
1015  NOT_PRODUCT(Exceptions::debug_check_abort(exception));
1016
1017#ifdef ASSERT
1018  if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1019    // should throw an exception here
1020    ShouldNotReachHere();
1021  }
1022#endif
1023
1024  // new exception handling: this method is entered only from adapters
1025  // exceptions from compiled java methods are handled in compiled code
1026  // using rethrow node
1027
1028  nm = CodeCache::find_nmethod(pc);
1029  assert(nm != NULL, "No NMethod found");
1030  if (nm->is_native_method()) {
1031    fatal("Native method should not have path to exception handling");
1032  } else {
1033    // we are switching to old paradigm: search for exception handler in caller_frame
1034    // instead in exception handler of caller_frame.sender()
1035
1036    if (JvmtiExport::can_post_on_exceptions()) {
1037      // "Full-speed catching" is not necessary here,
1038      // since we're notifying the VM on every catch.
1039      // Force deoptimization and the rest of the lookup
1040      // will be fine.
1041      deoptimize_caller_frame(thread);
1042    }
1043
1044    // Check the stack guard pages.  If enabled, look for handler in this frame;
1045    // otherwise, forcibly unwind the frame.
1046    //
1047    // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1048    bool force_unwind = !thread->reguard_stack();
1049    bool deopting = false;
1050    if (nm->is_deopt_pc(pc)) {
1051      deopting = true;
1052      RegisterMap map(thread, false);
1053      frame deoptee = thread->last_frame().sender(&map);
1054      assert(deoptee.is_deoptimized_frame(), "must be deopted");
1055      // Adjust the pc back to the original throwing pc
1056      pc = deoptee.pc();
1057    }
1058
1059    // If we are forcing an unwind because of stack overflow then deopt is
1060    // irrelevant since we are throwing the frame away anyway.
1061
1062    if (deopting && !force_unwind) {
1063      handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1064    } else {
1065
1066      handler_address =
1067        force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1068
1069      if (handler_address == NULL) {
1070        Handle original_exception(thread, exception());
1071        handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1072        assert (handler_address != NULL, "must have compiled handler");
1073        // Update the exception cache only when the unwind was not forced
1074        // and there didn't happen another exception during the computation of the
1075        // compiled exception handler.
1076        if (!force_unwind && original_exception() == exception()) {
1077          nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1078        }
1079      } else {
1080        assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1081      }
1082    }
1083
1084    thread->set_exception_pc(pc);
1085    thread->set_exception_handler_pc(handler_address);
1086
1087    // Check if the exception PC is a MethodHandle call site.
1088    thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1089  }
1090
1091  // Restore correct return pc.  Was saved above.
1092  thread->set_exception_oop(exception());
1093  return handler_address;
1094
1095JRT_END
1096
1097// We are entering here from exception_blob
1098// If there is a compiled exception handler in this method, we will continue there;
1099// otherwise we will unwind the stack and continue at the caller of top frame method
1100// Note we enter without the usual JRT wrapper. We will call a helper routine that
1101// will do the normal VM entry. We do it this way so that we can see if the nmethod
1102// we looked up the handler for has been deoptimized in the meantime. If it has been
1103// we must not use the handler and instead return the deopt blob.
1104address OptoRuntime::handle_exception_C(JavaThread* thread) {
1105//
1106// We are in Java not VM and in debug mode we have a NoHandleMark
1107//
1108#ifndef PRODUCT
1109  SharedRuntime::_find_handler_ctr++;          // find exception handler
1110#endif
1111  debug_only(NoHandleMark __hm;)
1112  nmethod* nm = NULL;
1113  address handler_address = NULL;
1114  {
1115    // Enter the VM
1116
1117    ResetNoHandleMark rnhm;
1118    handler_address = handle_exception_C_helper(thread, nm);
1119  }
1120
1121  // Back in java: Use no oops, DON'T safepoint
1122
1123  // Now check to see if the handler we are returning is in a now
1124  // deoptimized frame
1125
1126  if (nm != NULL) {
1127    RegisterMap map(thread, false);
1128    frame caller = thread->last_frame().sender(&map);
1129#ifdef ASSERT
1130    assert(caller.is_compiled_frame(), "must be");
1131#endif // ASSERT
1132    if (caller.is_deoptimized_frame()) {
1133      handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1134    }
1135  }
1136  return handler_address;
1137}
1138
1139//------------------------------rethrow----------------------------------------
1140// We get here after compiled code has executed a 'RethrowNode'.  The callee
1141// is either throwing or rethrowing an exception.  The callee-save registers
1142// have been restored, synchronized objects have been unlocked and the callee
1143// stack frame has been removed.  The return address was passed in.
1144// Exception oop is passed as the 1st argument.  This routine is then called
1145// from the stub.  On exit, we know where to jump in the caller's code.
1146// After this C code exits, the stub will pop his frame and end in a jump
1147// (instead of a return).  We enter the caller's default handler.
1148//
1149// This must be JRT_LEAF:
1150//     - caller will not change its state as we cannot block on exit,
1151//       therefore raw_exception_handler_for_return_address is all it takes
1152//       to handle deoptimized blobs
1153//
1154// However, there needs to be a safepoint check in the middle!  So compiled
1155// safepoints are completely watertight.
1156//
1157// Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1158//
1159// *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1160//
1161address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1162#ifndef PRODUCT
1163  SharedRuntime::_rethrow_ctr++;               // count rethrows
1164#endif
1165  assert (exception != NULL, "should have thrown a NULLPointerException");
1166#ifdef ASSERT
1167  if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1168    // should throw an exception here
1169    ShouldNotReachHere();
1170  }
1171#endif
1172
1173  thread->set_vm_result(exception);
1174  // Frame not compiled (handles deoptimization blob)
1175  return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1176}
1177
1178
1179const TypeFunc *OptoRuntime::rethrow_Type() {
1180  // create input type (domain)
1181  const Type **fields = TypeTuple::fields(1);
1182  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1183  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1184
1185  // create result type (range)
1186  fields = TypeTuple::fields(1);
1187  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1188  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1189
1190  return TypeFunc::make(domain, range);
1191}
1192
1193
1194void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1195  // Deoptimize the caller before continuing, as the compiled
1196  // exception handler table may not be valid.
1197  if (!StressCompiledExceptionHandlers && doit) {
1198    deoptimize_caller_frame(thread);
1199  }
1200}
1201
1202void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1203  // Called from within the owner thread, so no need for safepoint
1204  RegisterMap reg_map(thread);
1205  frame stub_frame = thread->last_frame();
1206  assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1207  frame caller_frame = stub_frame.sender(&reg_map);
1208
1209  // Deoptimize the caller frame.
1210  Deoptimization::deoptimize_frame(thread, caller_frame.id());
1211}
1212
1213
1214bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1215  // Called from within the owner thread, so no need for safepoint
1216  RegisterMap reg_map(thread);
1217  frame stub_frame = thread->last_frame();
1218  assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1219  frame caller_frame = stub_frame.sender(&reg_map);
1220  return caller_frame.is_deoptimized_frame();
1221}
1222
1223
1224const TypeFunc *OptoRuntime::register_finalizer_Type() {
1225  // create input type (domain)
1226  const Type **fields = TypeTuple::fields(1);
1227  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1228  // // The JavaThread* is passed to each routine as the last argument
1229  // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1230  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1231
1232  // create result type (range)
1233  fields = TypeTuple::fields(0);
1234
1235  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1236
1237  return TypeFunc::make(domain,range);
1238}
1239
1240
1241//-----------------------------------------------------------------------------
1242// Dtrace support.  entry and exit probes have the same signature
1243const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1244  // create input type (domain)
1245  const Type **fields = TypeTuple::fields(2);
1246  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1247  fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1248  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1249
1250  // create result type (range)
1251  fields = TypeTuple::fields(0);
1252
1253  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1254
1255  return TypeFunc::make(domain,range);
1256}
1257
1258const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1259  // create input type (domain)
1260  const Type **fields = TypeTuple::fields(2);
1261  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1262  fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1263
1264  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1265
1266  // create result type (range)
1267  fields = TypeTuple::fields(0);
1268
1269  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1270
1271  return TypeFunc::make(domain,range);
1272}
1273
1274
1275JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1276  assert(obj->is_oop(), "must be a valid oop");
1277  assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1278  InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1279JRT_END
1280
1281//-----------------------------------------------------------------------------
1282
1283NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1284
1285//
1286// dump the collected NamedCounters.
1287//
1288void OptoRuntime::print_named_counters() {
1289  int total_lock_count = 0;
1290  int eliminated_lock_count = 0;
1291
1292  NamedCounter* c = _named_counters;
1293  while (c) {
1294    if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1295      int count = c->count();
1296      if (count > 0) {
1297        bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1298        if (Verbose) {
1299          tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1300        }
1301        total_lock_count += count;
1302        if (eliminated) {
1303          eliminated_lock_count += count;
1304        }
1305      }
1306    } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1307      BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1308      if (blc->nonzero()) {
1309        tty->print_cr("%s", c->name());
1310        blc->print_on(tty);
1311      }
1312#if INCLUDE_RTM_OPT
1313    } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1314      RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1315      if (rlc->nonzero()) {
1316        tty->print_cr("%s", c->name());
1317        rlc->print_on(tty);
1318      }
1319#endif
1320    }
1321    c = c->next();
1322  }
1323  if (total_lock_count > 0) {
1324    tty->print_cr("dynamic locks: %d", total_lock_count);
1325    if (eliminated_lock_count) {
1326      tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1327                    (int)(eliminated_lock_count * 100.0 / total_lock_count));
1328    }
1329  }
1330}
1331
1332//
1333//  Allocate a new NamedCounter.  The JVMState is used to generate the
1334//  name which consists of method@line for the inlining tree.
1335//
1336
1337NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1338  int max_depth = youngest_jvms->depth();
1339
1340  // Visit scopes from youngest to oldest.
1341  bool first = true;
1342  stringStream st;
1343  for (int depth = max_depth; depth >= 1; depth--) {
1344    JVMState* jvms = youngest_jvms->of_depth(depth);
1345    ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1346    if (!first) {
1347      st.print(" ");
1348    } else {
1349      first = false;
1350    }
1351    int bci = jvms->bci();
1352    if (bci < 0) bci = 0;
1353    st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1354    // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1355  }
1356  NamedCounter* c;
1357  if (tag == NamedCounter::BiasedLockingCounter) {
1358    c = new BiasedLockingNamedCounter(strdup(st.as_string()));
1359  } else if (tag == NamedCounter::RTMLockingCounter) {
1360    c = new RTMLockingNamedCounter(strdup(st.as_string()));
1361  } else {
1362    c = new NamedCounter(strdup(st.as_string()), tag);
1363  }
1364
1365  // atomically add the new counter to the head of the list.  We only
1366  // add counters so this is safe.
1367  NamedCounter* head;
1368  do {
1369    c->set_next(NULL);
1370    head = _named_counters;
1371    c->set_next(head);
1372  } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1373  return c;
1374}
1375
1376//-----------------------------------------------------------------------------
1377// Non-product code
1378#ifndef PRODUCT
1379
1380int trace_exception_counter = 0;
1381static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1382  ttyLocker ttyl;
1383  trace_exception_counter++;
1384  tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1385  exception_oop->print_value();
1386  tty->print(" in ");
1387  CodeBlob* blob = CodeCache::find_blob(exception_pc);
1388  if (blob->is_nmethod()) {
1389    nmethod* nm = blob->as_nmethod_or_null();
1390    nm->method()->print_value();
1391  } else if (blob->is_runtime_stub()) {
1392    tty->print("<runtime-stub>");
1393  } else {
1394    tty->print("<unknown>");
1395  }
1396  tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1397  tty->print_cr("]");
1398}
1399
1400#endif  // PRODUCT
1401
1402
1403# ifdef ENABLE_ZAP_DEAD_LOCALS
1404// Called from call sites in compiled code with oop maps (actually safepoints)
1405// Zaps dead locals in first java frame.
1406// Is entry because may need to lock to generate oop maps
1407// Currently, only used for compiler frames, but someday may be used
1408// for interpreter frames, too.
1409
1410int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1411
1412// avoid pointers to member funcs with these helpers
1413static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1414static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1415
1416
1417void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1418                                                bool (*is_this_the_right_frame_to_zap)(frame*)) {
1419  assert(JavaThread::current() == thread, "is this needed?");
1420
1421  if ( !ZapDeadCompiledLocals )  return;
1422
1423  bool skip = false;
1424
1425       if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1426  else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1427  else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1428    warning("starting zapping after skipping");
1429
1430       if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1431  else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1432  else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1433    warning("about to zap last zap");
1434
1435  ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1436
1437  if ( skip )  return;
1438
1439  // find java frame and zap it
1440
1441  for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1442    if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1443      sfs.current()->zap_dead_locals(thread, sfs.register_map());
1444      return;
1445    }
1446  }
1447  warning("no frame found to zap in zap_dead_Java_locals_C");
1448}
1449
1450JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1451  zap_dead_java_or_native_locals(thread, is_java_frame);
1452JRT_END
1453
1454// The following does not work because for one thing, the
1455// thread state is wrong; it expects java, but it is native.
1456// Also, the invariants in a native stub are different and
1457// I'm not sure it is safe to have a MachCalRuntimeDirectNode
1458// in there.
1459// So for now, we do not zap in native stubs.
1460
1461JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1462  zap_dead_java_or_native_locals(thread, is_native_frame);
1463JRT_END
1464
1465# endif
1466