runtime.cpp revision 605:98cb887364d3
1/*
2 * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_runtime.cpp.incl"
27
28
29// For debugging purposes:
30//  To force FullGCALot inside a runtime function, add the following two lines
31//
32//  Universe::release_fullgc_alot_dummy();
33//  MarkSweep::invoke(0, "Debugging");
34//
35// At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
36
37
38
39
40// Compiled code entry points
41address OptoRuntime::_new_instance_Java                           = NULL;
42address OptoRuntime::_new_array_Java                              = NULL;
43address OptoRuntime::_multianewarray2_Java                        = NULL;
44address OptoRuntime::_multianewarray3_Java                        = NULL;
45address OptoRuntime::_multianewarray4_Java                        = NULL;
46address OptoRuntime::_multianewarray5_Java                        = NULL;
47address OptoRuntime::_g1_wb_pre_Java                              = NULL;
48address OptoRuntime::_g1_wb_post_Java                             = NULL;
49address OptoRuntime::_vtable_must_compile_Java                    = NULL;
50address OptoRuntime::_complete_monitor_locking_Java               = NULL;
51address OptoRuntime::_rethrow_Java                                = NULL;
52
53address OptoRuntime::_slow_arraycopy_Java                         = NULL;
54address OptoRuntime::_register_finalizer_Java                     = NULL;
55
56# ifdef ENABLE_ZAP_DEAD_LOCALS
57address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
58address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
59# endif
60
61
62// This should be called in an assertion at the start of OptoRuntime routines
63// which are entered from compiled code (all of them)
64#ifndef PRODUCT
65static bool check_compiled_frame(JavaThread* thread) {
66  assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
67#ifdef ASSERT
68  RegisterMap map(thread, false);
69  frame caller = thread->last_frame().sender(&map);
70  assert(caller.is_compiled_frame(), "not being called from compiled like code");
71#endif  /* ASSERT */
72  return true;
73}
74#endif
75
76
77#define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
78  var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc)
79
80void OptoRuntime::generate(ciEnv* env) {
81
82  generate_exception_blob();
83
84  // Note: tls: Means fetching the return oop out of the thread-local storage
85  //
86  //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
87  // -------------------------------------------------------------------------------------------------------------------------------
88  gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
89  gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
90  gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
91  gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
92  gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
93  gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
94  gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
95  gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
96  gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C      ,    0 , false, false, false);
97  gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
98
99  gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
100  gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
101
102# ifdef ENABLE_ZAP_DEAD_LOCALS
103  gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
104  gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
105# endif
106
107}
108
109#undef gen
110
111
112// Helper method to do generation of RunTimeStub's
113address OptoRuntime::generate_stub( ciEnv* env,
114                                    TypeFunc_generator gen, address C_function,
115                                    const char *name, int is_fancy_jump,
116                                    bool pass_tls,
117                                    bool save_argument_registers,
118                                    bool return_pc ) {
119  ResourceMark rm;
120  Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
121  return  C.stub_entry_point();
122}
123
124const char* OptoRuntime::stub_name(address entry) {
125#ifndef PRODUCT
126  CodeBlob* cb = CodeCache::find_blob(entry);
127  RuntimeStub* rs =(RuntimeStub *)cb;
128  assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
129  return rs->name();
130#else
131  // Fast implementation for product mode (maybe it should be inlined too)
132  return "runtime stub";
133#endif
134}
135
136
137//=============================================================================
138// Opto compiler runtime routines
139//=============================================================================
140
141
142//=============================allocation======================================
143// We failed the fast-path allocation.  Now we need to do a scavenge or GC
144// and try allocation again.
145
146void OptoRuntime::do_eager_card_mark(JavaThread* thread) {
147  // After any safepoint, just before going back to compiled code,
148  // we perform a card mark.  This lets the compiled code omit
149  // card marks for initialization of new objects.
150  // Keep this code consistent with GraphKit::store_barrier.
151
152  oop new_obj = thread->vm_result();
153  if (new_obj == NULL)  return;
154
155  assert(Universe::heap()->can_elide_tlab_store_barriers(),
156         "compiler must check this first");
157  new_obj = Universe::heap()->new_store_barrier(new_obj);
158  thread->set_vm_result(new_obj);
159}
160
161// object allocation
162JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(klassOopDesc* klass, JavaThread* thread))
163  JRT_BLOCK;
164#ifndef PRODUCT
165  SharedRuntime::_new_instance_ctr++;         // new instance requires GC
166#endif
167  assert(check_compiled_frame(thread), "incorrect caller");
168
169  // These checks are cheap to make and support reflective allocation.
170  int lh = Klass::cast(klass)->layout_helper();
171  if (Klass::layout_helper_needs_slow_path(lh)
172      || !instanceKlass::cast(klass)->is_initialized()) {
173    KlassHandle kh(THREAD, klass);
174    kh->check_valid_for_instantiation(false, THREAD);
175    if (!HAS_PENDING_EXCEPTION) {
176      instanceKlass::cast(kh())->initialize(THREAD);
177    }
178    if (!HAS_PENDING_EXCEPTION) {
179      klass = kh();
180    } else {
181      klass = NULL;
182    }
183  }
184
185  if (klass != NULL) {
186    // Scavenge and allocate an instance.
187    oop result = instanceKlass::cast(klass)->allocate_instance(THREAD);
188    thread->set_vm_result(result);
189
190    // Pass oops back through thread local storage.  Our apparent type to Java
191    // is that we return an oop, but we can block on exit from this routine and
192    // a GC can trash the oop in C's return register.  The generated stub will
193    // fetch the oop from TLS after any possible GC.
194  }
195
196  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
197  JRT_BLOCK_END;
198
199  if (GraphKit::use_ReduceInitialCardMarks()) {
200    // do them now so we don't have to do them on the fast path
201    do_eager_card_mark(thread);
202  }
203JRT_END
204
205
206// array allocation
207JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(klassOopDesc* array_type, int len, JavaThread *thread))
208  JRT_BLOCK;
209#ifndef PRODUCT
210  SharedRuntime::_new_array_ctr++;            // new array requires GC
211#endif
212  assert(check_compiled_frame(thread), "incorrect caller");
213
214  // Scavenge and allocate an instance.
215  oop result;
216
217  if (Klass::cast(array_type)->oop_is_typeArray()) {
218    // The oopFactory likes to work with the element type.
219    // (We could bypass the oopFactory, since it doesn't add much value.)
220    BasicType elem_type = typeArrayKlass::cast(array_type)->element_type();
221    result = oopFactory::new_typeArray(elem_type, len, THREAD);
222  } else {
223    // Although the oopFactory likes to work with the elem_type,
224    // the compiler prefers the array_type, since it must already have
225    // that latter value in hand for the fast path.
226    klassOopDesc* elem_type = objArrayKlass::cast(array_type)->element_klass();
227    result = oopFactory::new_objArray(elem_type, len, THREAD);
228  }
229
230  // Pass oops back through thread local storage.  Our apparent type to Java
231  // is that we return an oop, but we can block on exit from this routine and
232  // a GC can trash the oop in C's return register.  The generated stub will
233  // fetch the oop from TLS after any possible GC.
234  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
235  thread->set_vm_result(result);
236  JRT_BLOCK_END;
237
238  if (GraphKit::use_ReduceInitialCardMarks()) {
239    // do them now so we don't have to do them on the fast path
240    do_eager_card_mark(thread);
241  }
242JRT_END
243
244// Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
245
246// multianewarray for 2 dimensions
247JRT_ENTRY(void, OptoRuntime::multianewarray2_C(klassOopDesc* elem_type, int len1, int len2, JavaThread *thread))
248#ifndef PRODUCT
249  SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
250#endif
251  assert(check_compiled_frame(thread), "incorrect caller");
252  assert(oop(elem_type)->is_klass(), "not a class");
253  jint dims[2];
254  dims[0] = len1;
255  dims[1] = len2;
256  oop obj = arrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
257  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
258  thread->set_vm_result(obj);
259JRT_END
260
261// multianewarray for 3 dimensions
262JRT_ENTRY(void, OptoRuntime::multianewarray3_C(klassOopDesc* elem_type, int len1, int len2, int len3, JavaThread *thread))
263#ifndef PRODUCT
264  SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
265#endif
266  assert(check_compiled_frame(thread), "incorrect caller");
267  assert(oop(elem_type)->is_klass(), "not a class");
268  jint dims[3];
269  dims[0] = len1;
270  dims[1] = len2;
271  dims[2] = len3;
272  oop obj = arrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
273  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
274  thread->set_vm_result(obj);
275JRT_END
276
277// multianewarray for 4 dimensions
278JRT_ENTRY(void, OptoRuntime::multianewarray4_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
279#ifndef PRODUCT
280  SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
281#endif
282  assert(check_compiled_frame(thread), "incorrect caller");
283  assert(oop(elem_type)->is_klass(), "not a class");
284  jint dims[4];
285  dims[0] = len1;
286  dims[1] = len2;
287  dims[2] = len3;
288  dims[3] = len4;
289  oop obj = arrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
290  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
291  thread->set_vm_result(obj);
292JRT_END
293
294// multianewarray for 5 dimensions
295JRT_ENTRY(void, OptoRuntime::multianewarray5_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
296#ifndef PRODUCT
297  SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
298#endif
299  assert(check_compiled_frame(thread), "incorrect caller");
300  assert(oop(elem_type)->is_klass(), "not a class");
301  jint dims[5];
302  dims[0] = len1;
303  dims[1] = len2;
304  dims[2] = len3;
305  dims[3] = len4;
306  dims[4] = len5;
307  oop obj = arrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
308  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
309  thread->set_vm_result(obj);
310JRT_END
311
312const TypeFunc *OptoRuntime::new_instance_Type() {
313  // create input type (domain)
314  const Type **fields = TypeTuple::fields(1);
315  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
316  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
317
318  // create result type (range)
319  fields = TypeTuple::fields(1);
320  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
321
322  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
323
324  return TypeFunc::make(domain, range);
325}
326
327
328const TypeFunc *OptoRuntime::athrow_Type() {
329  // create input type (domain)
330  const Type **fields = TypeTuple::fields(1);
331  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
332  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
333
334  // create result type (range)
335  fields = TypeTuple::fields(0);
336
337  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
338
339  return TypeFunc::make(domain, range);
340}
341
342
343const TypeFunc *OptoRuntime::new_array_Type() {
344  // create input type (domain)
345  const Type **fields = TypeTuple::fields(2);
346  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
347  fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
348  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
349
350  // create result type (range)
351  fields = TypeTuple::fields(1);
352  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
353
354  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
355
356  return TypeFunc::make(domain, range);
357}
358
359const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
360  // create input type (domain)
361  const int nargs = ndim + 1;
362  const Type **fields = TypeTuple::fields(nargs);
363  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
364  for( int i = 1; i < nargs; i++ )
365    fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
366  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
367
368  // create result type (range)
369  fields = TypeTuple::fields(1);
370  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
371  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
372
373  return TypeFunc::make(domain, range);
374}
375
376const TypeFunc *OptoRuntime::multianewarray2_Type() {
377  return multianewarray_Type(2);
378}
379
380const TypeFunc *OptoRuntime::multianewarray3_Type() {
381  return multianewarray_Type(3);
382}
383
384const TypeFunc *OptoRuntime::multianewarray4_Type() {
385  return multianewarray_Type(4);
386}
387
388const TypeFunc *OptoRuntime::multianewarray5_Type() {
389  return multianewarray_Type(5);
390}
391
392const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
393  const Type **fields = TypeTuple::fields(2);
394  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
395  fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
396  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
397
398  // create result type (range)
399  fields = TypeTuple::fields(0);
400  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
401
402  return TypeFunc::make(domain, range);
403}
404
405const TypeFunc *OptoRuntime::g1_wb_post_Type() {
406
407  const Type **fields = TypeTuple::fields(2);
408  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
409  fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
410  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
411
412  // create result type (range)
413  fields = TypeTuple::fields(0);
414  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
415
416  return TypeFunc::make(domain, range);
417}
418
419const TypeFunc *OptoRuntime::uncommon_trap_Type() {
420  // create input type (domain)
421  const Type **fields = TypeTuple::fields(1);
422  // symbolOop name of class to be loaded
423  fields[TypeFunc::Parms+0] = TypeInt::INT;
424  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
425
426  // create result type (range)
427  fields = TypeTuple::fields(0);
428  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
429
430  return TypeFunc::make(domain, range);
431}
432
433# ifdef ENABLE_ZAP_DEAD_LOCALS
434// Type used for stub generation for zap_dead_locals.
435// No inputs or outputs
436const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
437  // create input type (domain)
438  const Type **fields = TypeTuple::fields(0);
439  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
440
441  // create result type (range)
442  fields = TypeTuple::fields(0);
443  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
444
445  return TypeFunc::make(domain,range);
446}
447# endif
448
449
450//-----------------------------------------------------------------------------
451// Monitor Handling
452const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
453  // create input type (domain)
454  const Type **fields = TypeTuple::fields(2);
455  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
456  fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
457  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
458
459  // create result type (range)
460  fields = TypeTuple::fields(0);
461
462  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
463
464  return TypeFunc::make(domain,range);
465}
466
467
468//-----------------------------------------------------------------------------
469const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
470  // create input type (domain)
471  const Type **fields = TypeTuple::fields(2);
472  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
473  fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
474  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
475
476  // create result type (range)
477  fields = TypeTuple::fields(0);
478
479  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
480
481  return TypeFunc::make(domain,range);
482}
483
484const TypeFunc* OptoRuntime::flush_windows_Type() {
485  // create input type (domain)
486  const Type** fields = TypeTuple::fields(1);
487  fields[TypeFunc::Parms+0] = NULL; // void
488  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
489
490  // create result type
491  fields = TypeTuple::fields(1);
492  fields[TypeFunc::Parms+0] = NULL; // void
493  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
494
495  return TypeFunc::make(domain, range);
496}
497
498const TypeFunc* OptoRuntime::l2f_Type() {
499  // create input type (domain)
500  const Type **fields = TypeTuple::fields(2);
501  fields[TypeFunc::Parms+0] = TypeLong::LONG;
502  fields[TypeFunc::Parms+1] = Type::HALF;
503  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
504
505  // create result type (range)
506  fields = TypeTuple::fields(1);
507  fields[TypeFunc::Parms+0] = Type::FLOAT;
508  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
509
510  return TypeFunc::make(domain, range);
511}
512
513const TypeFunc* OptoRuntime::modf_Type() {
514  const Type **fields = TypeTuple::fields(2);
515  fields[TypeFunc::Parms+0] = Type::FLOAT;
516  fields[TypeFunc::Parms+1] = Type::FLOAT;
517  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
518
519  // create result type (range)
520  fields = TypeTuple::fields(1);
521  fields[TypeFunc::Parms+0] = Type::FLOAT;
522
523  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
524
525  return TypeFunc::make(domain, range);
526}
527
528const TypeFunc *OptoRuntime::Math_D_D_Type() {
529  // create input type (domain)
530  const Type **fields = TypeTuple::fields(2);
531  // symbolOop name of class to be loaded
532  fields[TypeFunc::Parms+0] = Type::DOUBLE;
533  fields[TypeFunc::Parms+1] = Type::HALF;
534  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
535
536  // create result type (range)
537  fields = TypeTuple::fields(2);
538  fields[TypeFunc::Parms+0] = Type::DOUBLE;
539  fields[TypeFunc::Parms+1] = Type::HALF;
540  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
541
542  return TypeFunc::make(domain, range);
543}
544
545const TypeFunc* OptoRuntime::Math_DD_D_Type() {
546  const Type **fields = TypeTuple::fields(4);
547  fields[TypeFunc::Parms+0] = Type::DOUBLE;
548  fields[TypeFunc::Parms+1] = Type::HALF;
549  fields[TypeFunc::Parms+2] = Type::DOUBLE;
550  fields[TypeFunc::Parms+3] = Type::HALF;
551  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
552
553  // create result type (range)
554  fields = TypeTuple::fields(2);
555  fields[TypeFunc::Parms+0] = Type::DOUBLE;
556  fields[TypeFunc::Parms+1] = Type::HALF;
557  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
558
559  return TypeFunc::make(domain, range);
560}
561
562//-------------- currentTimeMillis
563
564const TypeFunc* OptoRuntime::current_time_millis_Type() {
565  // create input type (domain)
566  const Type **fields = TypeTuple::fields(0);
567  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
568
569  // create result type (range)
570  fields = TypeTuple::fields(2);
571  fields[TypeFunc::Parms+0] = TypeLong::LONG;
572  fields[TypeFunc::Parms+1] = Type::HALF;
573  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
574
575  return TypeFunc::make(domain, range);
576}
577
578// arraycopy stub variations:
579enum ArrayCopyType {
580  ac_fast,                      // void(ptr, ptr, size_t)
581  ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
582  ac_slow,                      // void(ptr, int, ptr, int, int)
583  ac_generic                    //  int(ptr, int, ptr, int, int)
584};
585
586static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
587  // create input type (domain)
588  int num_args      = (act == ac_fast ? 3 : 5);
589  int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
590  int argcnt = num_args;
591  LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
592  const Type** fields = TypeTuple::fields(argcnt);
593  int argp = TypeFunc::Parms;
594  fields[argp++] = TypePtr::NOTNULL;    // src
595  if (num_size_args == 0) {
596    fields[argp++] = TypeInt::INT;      // src_pos
597  }
598  fields[argp++] = TypePtr::NOTNULL;    // dest
599  if (num_size_args == 0) {
600    fields[argp++] = TypeInt::INT;      // dest_pos
601    fields[argp++] = TypeInt::INT;      // length
602  }
603  while (num_size_args-- > 0) {
604    fields[argp++] = TypeX_X;               // size in whatevers (size_t)
605    LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
606  }
607  if (act == ac_checkcast) {
608    fields[argp++] = TypePtr::NOTNULL;  // super_klass
609  }
610  assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
611  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
612
613  // create result type if needed
614  int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
615  fields = TypeTuple::fields(1);
616  if (retcnt == 0)
617    fields[TypeFunc::Parms+0] = NULL; // void
618  else
619    fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
620  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
621  return TypeFunc::make(domain, range);
622}
623
624const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
625  // This signature is simple:  Two base pointers and a size_t.
626  return make_arraycopy_Type(ac_fast);
627}
628
629const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
630  // An extension of fast_arraycopy_Type which adds type checking.
631  return make_arraycopy_Type(ac_checkcast);
632}
633
634const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
635  // This signature is exactly the same as System.arraycopy.
636  // There are no intptr_t (int/long) arguments.
637  return make_arraycopy_Type(ac_slow);
638}
639
640const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
641  // This signature is like System.arraycopy, except that it returns status.
642  return make_arraycopy_Type(ac_generic);
643}
644
645
646//------------- Interpreter state access for on stack replacement
647const TypeFunc* OptoRuntime::osr_end_Type() {
648  // create input type (domain)
649  const Type **fields = TypeTuple::fields(1);
650  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
651  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
652
653  // create result type
654  fields = TypeTuple::fields(1);
655  // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
656  fields[TypeFunc::Parms+0] = NULL; // void
657  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
658  return TypeFunc::make(domain, range);
659}
660
661//-------------- methodData update helpers
662
663const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
664  // create input type (domain)
665  const Type **fields = TypeTuple::fields(2);
666  fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
667  fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
668  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
669
670  // create result type
671  fields = TypeTuple::fields(1);
672  fields[TypeFunc::Parms+0] = NULL; // void
673  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
674  return TypeFunc::make(domain,range);
675}
676
677JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
678  if (receiver == NULL) return;
679  klassOop receiver_klass = receiver->klass();
680
681  intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
682  int empty_row = -1;           // free row, if any is encountered
683
684  // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
685  for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
686    // if (vc->receiver(row) == receiver_klass)
687    int receiver_off = ReceiverTypeData::receiver_cell_index(row);
688    intptr_t row_recv = *(mdp + receiver_off);
689    if (row_recv == (intptr_t) receiver_klass) {
690      // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
691      int count_off = ReceiverTypeData::receiver_count_cell_index(row);
692      *(mdp + count_off) += DataLayout::counter_increment;
693      return;
694    } else if (row_recv == 0) {
695      // else if (vc->receiver(row) == NULL)
696      empty_row = (int) row;
697    }
698  }
699
700  if (empty_row != -1) {
701    int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
702    // vc->set_receiver(empty_row, receiver_klass);
703    *(mdp + receiver_off) = (intptr_t) receiver_klass;
704    // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
705    int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
706    *(mdp + count_off) = DataLayout::counter_increment;
707  }
708JRT_END
709
710//-----------------------------------------------------------------------------
711// implicit exception support.
712
713static void report_null_exception_in_code_cache(address exception_pc) {
714  ResourceMark rm;
715  CodeBlob* n = CodeCache::find_blob(exception_pc);
716  if (n != NULL) {
717    tty->print_cr("#");
718    tty->print_cr("# HotSpot Runtime Error, null exception in generated code");
719    tty->print_cr("#");
720    tty->print_cr("# pc where exception happened = " INTPTR_FORMAT, exception_pc);
721
722    if (n->is_nmethod()) {
723      methodOop method = ((nmethod*)n)->method();
724      tty->print_cr("# Method where it happened %s.%s ", Klass::cast(method->method_holder())->name()->as_C_string(), method->name()->as_C_string());
725      tty->print_cr("#");
726      if (ShowMessageBoxOnError && UpdateHotSpotCompilerFileOnError) {
727        const char* title    = "HotSpot Runtime Error";
728        const char* question = "Do you want to exclude compilation of this method in future runs?";
729        if (os::message_box(title, question)) {
730          CompilerOracle::append_comment_to_file("");
731          CompilerOracle::append_comment_to_file("Null exception in compiled code resulted in the following exclude");
732          CompilerOracle::append_comment_to_file("");
733          CompilerOracle::append_exclude_to_file(method);
734          tty->print_cr("#");
735          tty->print_cr("# %s has been updated to exclude the specified method", CompileCommandFile);
736          tty->print_cr("#");
737        }
738      }
739      fatal("Implicit null exception happened in compiled method");
740    } else {
741      n->print();
742      fatal("Implicit null exception happened in generated stub");
743    }
744  }
745  fatal("Implicit null exception at wrong place");
746}
747
748
749//-------------------------------------------------------------------------------------
750// register policy
751
752bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
753  assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
754  switch (register_save_policy[reg]) {
755    case 'C': return false; //SOC
756    case 'E': return true ; //SOE
757    case 'N': return false; //NS
758    case 'A': return false; //AS
759  }
760  ShouldNotReachHere();
761  return false;
762}
763
764//-----------------------------------------------------------------------
765// Exceptions
766//
767
768static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
769
770// The method is an entry that is always called by a C++ method not
771// directly from compiled code. Compiled code will call the C++ method following.
772// We can't allow async exception to be installed during  exception processing.
773JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
774
775  // Do not confuse exception_oop with pending_exception. The exception_oop
776  // is only used to pass arguments into the method. Not for general
777  // exception handling.  DO NOT CHANGE IT to use pending_exception, since
778  // the runtime stubs checks this on exit.
779  assert(thread->exception_oop() != NULL, "exception oop is found");
780  address handler_address = NULL;
781
782  Handle exception(thread, thread->exception_oop());
783
784  if (TraceExceptions) {
785    trace_exception(exception(), thread->exception_pc(), "");
786  }
787  // for AbortVMOnException flag
788  NOT_PRODUCT(Exceptions::debug_check_abort(exception));
789
790  #ifdef ASSERT
791    if (!(exception->is_a(SystemDictionary::throwable_klass()))) {
792      // should throw an exception here
793      ShouldNotReachHere();
794    }
795  #endif
796
797
798  // new exception handling: this method is entered only from adapters
799  // exceptions from compiled java methods are handled in compiled code
800  // using rethrow node
801
802  address pc = thread->exception_pc();
803  nm = CodeCache::find_nmethod(pc);
804  assert(nm != NULL, "No NMethod found");
805  if (nm->is_native_method()) {
806    fatal("Native mathod should not have path to exception handling");
807  } else {
808    // we are switching to old paradigm: search for exception handler in caller_frame
809    // instead in exception handler of caller_frame.sender()
810
811    if (JvmtiExport::can_post_exceptions()) {
812      // "Full-speed catching" is not necessary here,
813      // since we're notifying the VM on every catch.
814      // Force deoptimization and the rest of the lookup
815      // will be fine.
816      deoptimize_caller_frame(thread, true);
817    }
818
819    // Check the stack guard pages.  If enabled, look for handler in this frame;
820    // otherwise, forcibly unwind the frame.
821    //
822    // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
823    bool force_unwind = !thread->reguard_stack();
824    bool deopting = false;
825    if (nm->is_deopt_pc(pc)) {
826      deopting = true;
827      RegisterMap map(thread, false);
828      frame deoptee = thread->last_frame().sender(&map);
829      assert(deoptee.is_deoptimized_frame(), "must be deopted");
830      // Adjust the pc back to the original throwing pc
831      pc = deoptee.pc();
832    }
833
834    // If we are forcing an unwind because of stack overflow then deopt is
835    // irrelevant sice we are throwing the frame away anyway.
836
837    if (deopting && !force_unwind) {
838      handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
839    } else {
840
841      handler_address =
842        force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
843
844      if (handler_address == NULL) {
845        handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
846        assert (handler_address != NULL, "must have compiled handler");
847        // Update the exception cache only when the unwind was not forced.
848        if (!force_unwind) {
849          nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
850        }
851      } else {
852        assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
853      }
854    }
855
856    thread->set_exception_pc(pc);
857    thread->set_exception_handler_pc(handler_address);
858    thread->set_exception_stack_size(0);
859  }
860
861  // Restore correct return pc.  Was saved above.
862  thread->set_exception_oop(exception());
863  return handler_address;
864
865JRT_END
866
867// We are entering here from exception_blob
868// If there is a compiled exception handler in this method, we will continue there;
869// otherwise we will unwind the stack and continue at the caller of top frame method
870// Note we enter without the usual JRT wrapper. We will call a helper routine that
871// will do the normal VM entry. We do it this way so that we can see if the nmethod
872// we looked up the handler for has been deoptimized in the meantime. If it has been
873// we must not use the handler and instread return the deopt blob.
874address OptoRuntime::handle_exception_C(JavaThread* thread) {
875//
876// We are in Java not VM and in debug mode we have a NoHandleMark
877//
878#ifndef PRODUCT
879  SharedRuntime::_find_handler_ctr++;          // find exception handler
880#endif
881  debug_only(NoHandleMark __hm;)
882  nmethod* nm = NULL;
883  address handler_address = NULL;
884  {
885    // Enter the VM
886
887    ResetNoHandleMark rnhm;
888    handler_address = handle_exception_C_helper(thread, nm);
889  }
890
891  // Back in java: Use no oops, DON'T safepoint
892
893  // Now check to see if the handler we are returning is in a now
894  // deoptimized frame
895
896  if (nm != NULL) {
897    RegisterMap map(thread, false);
898    frame caller = thread->last_frame().sender(&map);
899#ifdef ASSERT
900    assert(caller.is_compiled_frame(), "must be");
901#endif // ASSERT
902    if (caller.is_deoptimized_frame()) {
903      handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
904    }
905  }
906  return handler_address;
907}
908
909//------------------------------rethrow----------------------------------------
910// We get here after compiled code has executed a 'RethrowNode'.  The callee
911// is either throwing or rethrowing an exception.  The callee-save registers
912// have been restored, synchronized objects have been unlocked and the callee
913// stack frame has been removed.  The return address was passed in.
914// Exception oop is passed as the 1st argument.  This routine is then called
915// from the stub.  On exit, we know where to jump in the caller's code.
916// After this C code exits, the stub will pop his frame and end in a jump
917// (instead of a return).  We enter the caller's default handler.
918//
919// This must be JRT_LEAF:
920//     - caller will not change its state as we cannot block on exit,
921//       therefore raw_exception_handler_for_return_address is all it takes
922//       to handle deoptimized blobs
923//
924// However, there needs to be a safepoint check in the middle!  So compiled
925// safepoints are completely watertight.
926//
927// Thus, it cannot be a leaf since it contains the No_GC_Verifier.
928//
929// *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
930//
931address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
932#ifndef PRODUCT
933  SharedRuntime::_rethrow_ctr++;               // count rethrows
934#endif
935  assert (exception != NULL, "should have thrown a NULLPointerException");
936#ifdef ASSERT
937  if (!(exception->is_a(SystemDictionary::throwable_klass()))) {
938    // should throw an exception here
939    ShouldNotReachHere();
940  }
941#endif
942
943  thread->set_vm_result(exception);
944  // Frame not compiled (handles deoptimization blob)
945  return SharedRuntime::raw_exception_handler_for_return_address(ret_pc);
946}
947
948
949const TypeFunc *OptoRuntime::rethrow_Type() {
950  // create input type (domain)
951  const Type **fields = TypeTuple::fields(1);
952  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
953  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
954
955  // create result type (range)
956  fields = TypeTuple::fields(1);
957  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
958  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
959
960  return TypeFunc::make(domain, range);
961}
962
963
964void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
965  // Deoptimize frame
966  if (doit) {
967    // Called from within the owner thread, so no need for safepoint
968    RegisterMap reg_map(thread);
969    frame stub_frame = thread->last_frame();
970    assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
971    frame caller_frame = stub_frame.sender(&reg_map);
972
973    VM_DeoptimizeFrame deopt(thread, caller_frame.id());
974    VMThread::execute(&deopt);
975  }
976}
977
978
979const TypeFunc *OptoRuntime::register_finalizer_Type() {
980  // create input type (domain)
981  const Type **fields = TypeTuple::fields(1);
982  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
983  // // The JavaThread* is passed to each routine as the last argument
984  // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
985  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
986
987  // create result type (range)
988  fields = TypeTuple::fields(0);
989
990  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
991
992  return TypeFunc::make(domain,range);
993}
994
995
996//-----------------------------------------------------------------------------
997// Dtrace support.  entry and exit probes have the same signature
998const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
999  // create input type (domain)
1000  const Type **fields = TypeTuple::fields(2);
1001  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1002  fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // methodOop;    Method we are entering
1003  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1004
1005  // create result type (range)
1006  fields = TypeTuple::fields(0);
1007
1008  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1009
1010  return TypeFunc::make(domain,range);
1011}
1012
1013const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1014  // create input type (domain)
1015  const Type **fields = TypeTuple::fields(2);
1016  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1017  fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1018
1019  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1020
1021  // create result type (range)
1022  fields = TypeTuple::fields(0);
1023
1024  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1025
1026  return TypeFunc::make(domain,range);
1027}
1028
1029
1030JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1031  assert(obj->is_oop(), "must be a valid oop");
1032  assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
1033  instanceKlass::register_finalizer(instanceOop(obj), CHECK);
1034JRT_END
1035
1036//-----------------------------------------------------------------------------
1037
1038NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1039
1040//
1041// dump the collected NamedCounters.
1042//
1043void OptoRuntime::print_named_counters() {
1044  int total_lock_count = 0;
1045  int eliminated_lock_count = 0;
1046
1047  NamedCounter* c = _named_counters;
1048  while (c) {
1049    if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1050      int count = c->count();
1051      if (count > 0) {
1052        bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1053        if (Verbose) {
1054          tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1055        }
1056        total_lock_count += count;
1057        if (eliminated) {
1058          eliminated_lock_count += count;
1059        }
1060      }
1061    } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1062      BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1063      if (blc->nonzero()) {
1064        tty->print_cr("%s", c->name());
1065        blc->print_on(tty);
1066      }
1067    }
1068    c = c->next();
1069  }
1070  if (total_lock_count > 0) {
1071    tty->print_cr("dynamic locks: %d", total_lock_count);
1072    if (eliminated_lock_count) {
1073      tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1074                    (int)(eliminated_lock_count * 100.0 / total_lock_count));
1075    }
1076  }
1077}
1078
1079//
1080//  Allocate a new NamedCounter.  The JVMState is used to generate the
1081//  name which consists of method@line for the inlining tree.
1082//
1083
1084NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1085  int max_depth = youngest_jvms->depth();
1086
1087  // Visit scopes from youngest to oldest.
1088  bool first = true;
1089  stringStream st;
1090  for (int depth = max_depth; depth >= 1; depth--) {
1091    JVMState* jvms = youngest_jvms->of_depth(depth);
1092    ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1093    if (!first) {
1094      st.print(" ");
1095    } else {
1096      first = false;
1097    }
1098    int bci = jvms->bci();
1099    if (bci < 0) bci = 0;
1100    st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1101    // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1102  }
1103  NamedCounter* c;
1104  if (tag == NamedCounter::BiasedLockingCounter) {
1105    c = new BiasedLockingNamedCounter(strdup(st.as_string()));
1106  } else {
1107    c = new NamedCounter(strdup(st.as_string()), tag);
1108  }
1109
1110  // atomically add the new counter to the head of the list.  We only
1111  // add counters so this is safe.
1112  NamedCounter* head;
1113  do {
1114    head = _named_counters;
1115    c->set_next(head);
1116  } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1117  return c;
1118}
1119
1120//-----------------------------------------------------------------------------
1121// Non-product code
1122#ifndef PRODUCT
1123
1124int trace_exception_counter = 0;
1125static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1126  ttyLocker ttyl;
1127  trace_exception_counter++;
1128  tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1129  exception_oop->print_value();
1130  tty->print(" in ");
1131  CodeBlob* blob = CodeCache::find_blob(exception_pc);
1132  if (blob->is_nmethod()) {
1133    ((nmethod*)blob)->method()->print_value();
1134  } else if (blob->is_runtime_stub()) {
1135    tty->print("<runtime-stub>");
1136  } else {
1137    tty->print("<unknown>");
1138  }
1139  tty->print(" at " INTPTR_FORMAT,  exception_pc);
1140  tty->print_cr("]");
1141}
1142
1143#endif  // PRODUCT
1144
1145
1146# ifdef ENABLE_ZAP_DEAD_LOCALS
1147// Called from call sites in compiled code with oop maps (actually safepoints)
1148// Zaps dead locals in first java frame.
1149// Is entry because may need to lock to generate oop maps
1150// Currently, only used for compiler frames, but someday may be used
1151// for interpreter frames, too.
1152
1153int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1154
1155// avoid pointers to member funcs with these helpers
1156static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1157static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1158
1159
1160void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1161                                                bool (*is_this_the_right_frame_to_zap)(frame*)) {
1162  assert(JavaThread::current() == thread, "is this needed?");
1163
1164  if ( !ZapDeadCompiledLocals )  return;
1165
1166  bool skip = false;
1167
1168       if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1169  else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1170  else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1171    warning("starting zapping after skipping");
1172
1173       if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1174  else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1175  else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1176    warning("about to zap last zap");
1177
1178  ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1179
1180  if ( skip )  return;
1181
1182  // find java frame and zap it
1183
1184  for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1185    if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1186      sfs.current()->zap_dead_locals(thread, sfs.register_map());
1187      return;
1188    }
1189  }
1190  warning("no frame found to zap in zap_dead_Java_locals_C");
1191}
1192
1193JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1194  zap_dead_java_or_native_locals(thread, is_java_frame);
1195JRT_END
1196
1197// The following does not work because for one thing, the
1198// thread state is wrong; it expects java, but it is native.
1199// Also, the invariants in a native stub are different and
1200// I'm not sure it is safe to have a MachCalRuntimeDirectNode
1201// in there.
1202// So for now, we do not zap in native stubs.
1203
1204JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1205  zap_dead_java_or_native_locals(thread, is_native_frame);
1206JRT_END
1207
1208# endif
1209