runtime.cpp revision 5976:2b8e28fdf503
1/*
2 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "classfile/vmSymbols.hpp"
28#include "code/compiledIC.hpp"
29#include "code/icBuffer.hpp"
30#include "code/nmethod.hpp"
31#include "code/pcDesc.hpp"
32#include "code/scopeDesc.hpp"
33#include "code/vtableStubs.hpp"
34#include "compiler/compileBroker.hpp"
35#include "compiler/compilerOracle.hpp"
36#include "compiler/oopMap.hpp"
37#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
38#include "gc_implementation/g1/heapRegion.hpp"
39#include "gc_interface/collectedHeap.hpp"
40#include "interpreter/bytecode.hpp"
41#include "interpreter/interpreter.hpp"
42#include "interpreter/linkResolver.hpp"
43#include "memory/barrierSet.hpp"
44#include "memory/gcLocker.inline.hpp"
45#include "memory/oopFactory.hpp"
46#include "oops/objArrayKlass.hpp"
47#include "oops/oop.inline.hpp"
48#include "opto/addnode.hpp"
49#include "opto/callnode.hpp"
50#include "opto/cfgnode.hpp"
51#include "opto/connode.hpp"
52#include "opto/graphKit.hpp"
53#include "opto/machnode.hpp"
54#include "opto/matcher.hpp"
55#include "opto/memnode.hpp"
56#include "opto/mulnode.hpp"
57#include "opto/runtime.hpp"
58#include "opto/subnode.hpp"
59#include "runtime/fprofiler.hpp"
60#include "runtime/handles.inline.hpp"
61#include "runtime/interfaceSupport.hpp"
62#include "runtime/javaCalls.hpp"
63#include "runtime/sharedRuntime.hpp"
64#include "runtime/signature.hpp"
65#include "runtime/threadCritical.hpp"
66#include "runtime/vframe.hpp"
67#include "runtime/vframeArray.hpp"
68#include "runtime/vframe_hp.hpp"
69#include "utilities/copy.hpp"
70#include "utilities/preserveException.hpp"
71#ifdef TARGET_ARCH_MODEL_x86_32
72# include "adfiles/ad_x86_32.hpp"
73#endif
74#ifdef TARGET_ARCH_MODEL_x86_64
75# include "adfiles/ad_x86_64.hpp"
76#endif
77#ifdef TARGET_ARCH_MODEL_sparc
78# include "adfiles/ad_sparc.hpp"
79#endif
80#ifdef TARGET_ARCH_MODEL_zero
81# include "adfiles/ad_zero.hpp"
82#endif
83#ifdef TARGET_ARCH_MODEL_arm
84# include "adfiles/ad_arm.hpp"
85#endif
86#ifdef TARGET_ARCH_MODEL_ppc_32
87# include "adfiles/ad_ppc_32.hpp"
88#endif
89#ifdef TARGET_ARCH_MODEL_ppc_64
90# include "adfiles/ad_ppc_64.hpp"
91#endif
92
93
94// For debugging purposes:
95//  To force FullGCALot inside a runtime function, add the following two lines
96//
97//  Universe::release_fullgc_alot_dummy();
98//  MarkSweep::invoke(0, "Debugging");
99//
100// At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
101
102
103
104
105// Compiled code entry points
106address OptoRuntime::_new_instance_Java                           = NULL;
107address OptoRuntime::_new_array_Java                              = NULL;
108address OptoRuntime::_new_array_nozero_Java                       = NULL;
109address OptoRuntime::_multianewarray2_Java                        = NULL;
110address OptoRuntime::_multianewarray3_Java                        = NULL;
111address OptoRuntime::_multianewarray4_Java                        = NULL;
112address OptoRuntime::_multianewarray5_Java                        = NULL;
113address OptoRuntime::_multianewarrayN_Java                        = NULL;
114address OptoRuntime::_g1_wb_pre_Java                              = NULL;
115address OptoRuntime::_g1_wb_post_Java                             = NULL;
116address OptoRuntime::_vtable_must_compile_Java                    = NULL;
117address OptoRuntime::_complete_monitor_locking_Java               = NULL;
118address OptoRuntime::_rethrow_Java                                = NULL;
119
120address OptoRuntime::_slow_arraycopy_Java                         = NULL;
121address OptoRuntime::_register_finalizer_Java                     = NULL;
122
123# ifdef ENABLE_ZAP_DEAD_LOCALS
124address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
125address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
126# endif
127
128ExceptionBlob* OptoRuntime::_exception_blob;
129
130// This should be called in an assertion at the start of OptoRuntime routines
131// which are entered from compiled code (all of them)
132#ifdef ASSERT
133static bool check_compiled_frame(JavaThread* thread) {
134  assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
135  RegisterMap map(thread, false);
136  frame caller = thread->last_frame().sender(&map);
137  assert(caller.is_compiled_frame(), "not being called from compiled like code");
138  return true;
139}
140#endif // ASSERT
141
142
143#define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
144  var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
145  if (var == NULL) { return false; }
146
147bool OptoRuntime::generate(ciEnv* env) {
148
149  generate_exception_blob();
150
151  // Note: tls: Means fetching the return oop out of the thread-local storage
152  //
153  //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
154  // -------------------------------------------------------------------------------------------------------------------------------
155  gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
156  gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
157  gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
158  gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
159  gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
160  gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
161  gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
162  gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
163  gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
164  gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
165  gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
166  gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
167
168  gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
169  gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
170
171# ifdef ENABLE_ZAP_DEAD_LOCALS
172  gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
173  gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
174# endif
175  return true;
176}
177
178#undef gen
179
180
181// Helper method to do generation of RunTimeStub's
182address OptoRuntime::generate_stub( ciEnv* env,
183                                    TypeFunc_generator gen, address C_function,
184                                    const char *name, int is_fancy_jump,
185                                    bool pass_tls,
186                                    bool save_argument_registers,
187                                    bool return_pc ) {
188  ResourceMark rm;
189  Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
190  return  C.stub_entry_point();
191}
192
193const char* OptoRuntime::stub_name(address entry) {
194#ifndef PRODUCT
195  CodeBlob* cb = CodeCache::find_blob(entry);
196  RuntimeStub* rs =(RuntimeStub *)cb;
197  assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
198  return rs->name();
199#else
200  // Fast implementation for product mode (maybe it should be inlined too)
201  return "runtime stub";
202#endif
203}
204
205
206//=============================================================================
207// Opto compiler runtime routines
208//=============================================================================
209
210
211//=============================allocation======================================
212// We failed the fast-path allocation.  Now we need to do a scavenge or GC
213// and try allocation again.
214
215void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
216  // After any safepoint, just before going back to compiled code,
217  // we inform the GC that we will be doing initializing writes to
218  // this object in the future without emitting card-marks, so
219  // GC may take any compensating steps.
220  // NOTE: Keep this code consistent with GraphKit::store_barrier.
221
222  oop new_obj = thread->vm_result();
223  if (new_obj == NULL)  return;
224
225  assert(Universe::heap()->can_elide_tlab_store_barriers(),
226         "compiler must check this first");
227  // GC may decide to give back a safer copy of new_obj.
228  new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
229  thread->set_vm_result(new_obj);
230}
231
232// object allocation
233JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
234  JRT_BLOCK;
235#ifndef PRODUCT
236  SharedRuntime::_new_instance_ctr++;         // new instance requires GC
237#endif
238  assert(check_compiled_frame(thread), "incorrect caller");
239
240  // These checks are cheap to make and support reflective allocation.
241  int lh = klass->layout_helper();
242  if (Klass::layout_helper_needs_slow_path(lh)
243      || !InstanceKlass::cast(klass)->is_initialized()) {
244    KlassHandle kh(THREAD, klass);
245    kh->check_valid_for_instantiation(false, THREAD);
246    if (!HAS_PENDING_EXCEPTION) {
247      InstanceKlass::cast(kh())->initialize(THREAD);
248    }
249    if (!HAS_PENDING_EXCEPTION) {
250      klass = kh();
251    } else {
252      klass = NULL;
253    }
254  }
255
256  if (klass != NULL) {
257    // Scavenge and allocate an instance.
258    oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
259    thread->set_vm_result(result);
260
261    // Pass oops back through thread local storage.  Our apparent type to Java
262    // is that we return an oop, but we can block on exit from this routine and
263    // a GC can trash the oop in C's return register.  The generated stub will
264    // fetch the oop from TLS after any possible GC.
265  }
266
267  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
268  JRT_BLOCK_END;
269
270  if (GraphKit::use_ReduceInitialCardMarks()) {
271    // inform GC that we won't do card marks for initializing writes.
272    new_store_pre_barrier(thread);
273  }
274JRT_END
275
276
277// array allocation
278JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
279  JRT_BLOCK;
280#ifndef PRODUCT
281  SharedRuntime::_new_array_ctr++;            // new array requires GC
282#endif
283  assert(check_compiled_frame(thread), "incorrect caller");
284
285  // Scavenge and allocate an instance.
286  oop result;
287
288  if (array_type->oop_is_typeArray()) {
289    // The oopFactory likes to work with the element type.
290    // (We could bypass the oopFactory, since it doesn't add much value.)
291    BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
292    result = oopFactory::new_typeArray(elem_type, len, THREAD);
293  } else {
294    // Although the oopFactory likes to work with the elem_type,
295    // the compiler prefers the array_type, since it must already have
296    // that latter value in hand for the fast path.
297    Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
298    result = oopFactory::new_objArray(elem_type, len, THREAD);
299  }
300
301  // Pass oops back through thread local storage.  Our apparent type to Java
302  // is that we return an oop, but we can block on exit from this routine and
303  // a GC can trash the oop in C's return register.  The generated stub will
304  // fetch the oop from TLS after any possible GC.
305  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
306  thread->set_vm_result(result);
307  JRT_BLOCK_END;
308
309  if (GraphKit::use_ReduceInitialCardMarks()) {
310    // inform GC that we won't do card marks for initializing writes.
311    new_store_pre_barrier(thread);
312  }
313JRT_END
314
315// array allocation without zeroing
316JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
317  JRT_BLOCK;
318#ifndef PRODUCT
319  SharedRuntime::_new_array_ctr++;            // new array requires GC
320#endif
321  assert(check_compiled_frame(thread), "incorrect caller");
322
323  // Scavenge and allocate an instance.
324  oop result;
325
326  assert(array_type->oop_is_typeArray(), "should be called only for type array");
327  // The oopFactory likes to work with the element type.
328  BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
329  result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
330
331  // Pass oops back through thread local storage.  Our apparent type to Java
332  // is that we return an oop, but we can block on exit from this routine and
333  // a GC can trash the oop in C's return register.  The generated stub will
334  // fetch the oop from TLS after any possible GC.
335  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
336  thread->set_vm_result(result);
337  JRT_BLOCK_END;
338
339  if (GraphKit::use_ReduceInitialCardMarks()) {
340    // inform GC that we won't do card marks for initializing writes.
341    new_store_pre_barrier(thread);
342  }
343
344  oop result = thread->vm_result();
345  if ((len > 0) && (result != NULL) &&
346      is_deoptimized_caller_frame(thread)) {
347    // Zero array here if the caller is deoptimized.
348    int size = ((typeArrayOop)result)->object_size();
349    BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
350    const size_t hs = arrayOopDesc::header_size(elem_type);
351    // Align to next 8 bytes to avoid trashing arrays's length.
352    const size_t aligned_hs = align_object_offset(hs);
353    HeapWord* obj = (HeapWord*)result;
354    if (aligned_hs > hs) {
355      Copy::zero_to_words(obj+hs, aligned_hs-hs);
356    }
357    // Optimized zeroing.
358    Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
359  }
360
361JRT_END
362
363// Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
364
365// multianewarray for 2 dimensions
366JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
367#ifndef PRODUCT
368  SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
369#endif
370  assert(check_compiled_frame(thread), "incorrect caller");
371  assert(elem_type->is_klass(), "not a class");
372  jint dims[2];
373  dims[0] = len1;
374  dims[1] = len2;
375  oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
376  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
377  thread->set_vm_result(obj);
378JRT_END
379
380// multianewarray for 3 dimensions
381JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
382#ifndef PRODUCT
383  SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
384#endif
385  assert(check_compiled_frame(thread), "incorrect caller");
386  assert(elem_type->is_klass(), "not a class");
387  jint dims[3];
388  dims[0] = len1;
389  dims[1] = len2;
390  dims[2] = len3;
391  oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
392  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
393  thread->set_vm_result(obj);
394JRT_END
395
396// multianewarray for 4 dimensions
397JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
398#ifndef PRODUCT
399  SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
400#endif
401  assert(check_compiled_frame(thread), "incorrect caller");
402  assert(elem_type->is_klass(), "not a class");
403  jint dims[4];
404  dims[0] = len1;
405  dims[1] = len2;
406  dims[2] = len3;
407  dims[3] = len4;
408  oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
409  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
410  thread->set_vm_result(obj);
411JRT_END
412
413// multianewarray for 5 dimensions
414JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
415#ifndef PRODUCT
416  SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
417#endif
418  assert(check_compiled_frame(thread), "incorrect caller");
419  assert(elem_type->is_klass(), "not a class");
420  jint dims[5];
421  dims[0] = len1;
422  dims[1] = len2;
423  dims[2] = len3;
424  dims[3] = len4;
425  dims[4] = len5;
426  oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
427  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
428  thread->set_vm_result(obj);
429JRT_END
430
431JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
432  assert(check_compiled_frame(thread), "incorrect caller");
433  assert(elem_type->is_klass(), "not a class");
434  assert(oop(dims)->is_typeArray(), "not an array");
435
436  ResourceMark rm;
437  jint len = dims->length();
438  assert(len > 0, "Dimensions array should contain data");
439  jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
440  jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
441  Copy::conjoint_jints_atomic(j_dims, c_dims, len);
442
443  oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
444  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
445  thread->set_vm_result(obj);
446JRT_END
447
448
449const TypeFunc *OptoRuntime::new_instance_Type() {
450  // create input type (domain)
451  const Type **fields = TypeTuple::fields(1);
452  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
453  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
454
455  // create result type (range)
456  fields = TypeTuple::fields(1);
457  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
458
459  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
460
461  return TypeFunc::make(domain, range);
462}
463
464
465const TypeFunc *OptoRuntime::athrow_Type() {
466  // create input type (domain)
467  const Type **fields = TypeTuple::fields(1);
468  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
469  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
470
471  // create result type (range)
472  fields = TypeTuple::fields(0);
473
474  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
475
476  return TypeFunc::make(domain, range);
477}
478
479
480const TypeFunc *OptoRuntime::new_array_Type() {
481  // create input type (domain)
482  const Type **fields = TypeTuple::fields(2);
483  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
484  fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
485  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
486
487  // create result type (range)
488  fields = TypeTuple::fields(1);
489  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
490
491  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
492
493  return TypeFunc::make(domain, range);
494}
495
496const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
497  // create input type (domain)
498  const int nargs = ndim + 1;
499  const Type **fields = TypeTuple::fields(nargs);
500  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
501  for( int i = 1; i < nargs; i++ )
502    fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
503  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
504
505  // create result type (range)
506  fields = TypeTuple::fields(1);
507  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
508  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
509
510  return TypeFunc::make(domain, range);
511}
512
513const TypeFunc *OptoRuntime::multianewarray2_Type() {
514  return multianewarray_Type(2);
515}
516
517const TypeFunc *OptoRuntime::multianewarray3_Type() {
518  return multianewarray_Type(3);
519}
520
521const TypeFunc *OptoRuntime::multianewarray4_Type() {
522  return multianewarray_Type(4);
523}
524
525const TypeFunc *OptoRuntime::multianewarray5_Type() {
526  return multianewarray_Type(5);
527}
528
529const TypeFunc *OptoRuntime::multianewarrayN_Type() {
530  // create input type (domain)
531  const Type **fields = TypeTuple::fields(2);
532  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
533  fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
534  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
535
536  // create result type (range)
537  fields = TypeTuple::fields(1);
538  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
539  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
540
541  return TypeFunc::make(domain, range);
542}
543
544const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
545  const Type **fields = TypeTuple::fields(2);
546  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
547  fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
548  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
549
550  // create result type (range)
551  fields = TypeTuple::fields(0);
552  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
553
554  return TypeFunc::make(domain, range);
555}
556
557const TypeFunc *OptoRuntime::g1_wb_post_Type() {
558
559  const Type **fields = TypeTuple::fields(2);
560  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
561  fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
562  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
563
564  // create result type (range)
565  fields = TypeTuple::fields(0);
566  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
567
568  return TypeFunc::make(domain, range);
569}
570
571const TypeFunc *OptoRuntime::uncommon_trap_Type() {
572  // create input type (domain)
573  const Type **fields = TypeTuple::fields(1);
574  // Symbol* name of class to be loaded
575  fields[TypeFunc::Parms+0] = TypeInt::INT;
576  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
577
578  // create result type (range)
579  fields = TypeTuple::fields(0);
580  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
581
582  return TypeFunc::make(domain, range);
583}
584
585# ifdef ENABLE_ZAP_DEAD_LOCALS
586// Type used for stub generation for zap_dead_locals.
587// No inputs or outputs
588const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
589  // create input type (domain)
590  const Type **fields = TypeTuple::fields(0);
591  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
592
593  // create result type (range)
594  fields = TypeTuple::fields(0);
595  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
596
597  return TypeFunc::make(domain,range);
598}
599# endif
600
601
602//-----------------------------------------------------------------------------
603// Monitor Handling
604const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
605  // create input type (domain)
606  const Type **fields = TypeTuple::fields(2);
607  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
608  fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
609  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
610
611  // create result type (range)
612  fields = TypeTuple::fields(0);
613
614  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
615
616  return TypeFunc::make(domain,range);
617}
618
619
620//-----------------------------------------------------------------------------
621const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
622  // create input type (domain)
623  const Type **fields = TypeTuple::fields(2);
624  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
625  fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
626  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
627
628  // create result type (range)
629  fields = TypeTuple::fields(0);
630
631  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
632
633  return TypeFunc::make(domain,range);
634}
635
636const TypeFunc* OptoRuntime::flush_windows_Type() {
637  // create input type (domain)
638  const Type** fields = TypeTuple::fields(1);
639  fields[TypeFunc::Parms+0] = NULL; // void
640  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
641
642  // create result type
643  fields = TypeTuple::fields(1);
644  fields[TypeFunc::Parms+0] = NULL; // void
645  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
646
647  return TypeFunc::make(domain, range);
648}
649
650const TypeFunc* OptoRuntime::l2f_Type() {
651  // create input type (domain)
652  const Type **fields = TypeTuple::fields(2);
653  fields[TypeFunc::Parms+0] = TypeLong::LONG;
654  fields[TypeFunc::Parms+1] = Type::HALF;
655  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
656
657  // create result type (range)
658  fields = TypeTuple::fields(1);
659  fields[TypeFunc::Parms+0] = Type::FLOAT;
660  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
661
662  return TypeFunc::make(domain, range);
663}
664
665const TypeFunc* OptoRuntime::modf_Type() {
666  const Type **fields = TypeTuple::fields(2);
667  fields[TypeFunc::Parms+0] = Type::FLOAT;
668  fields[TypeFunc::Parms+1] = Type::FLOAT;
669  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
670
671  // create result type (range)
672  fields = TypeTuple::fields(1);
673  fields[TypeFunc::Parms+0] = Type::FLOAT;
674
675  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
676
677  return TypeFunc::make(domain, range);
678}
679
680const TypeFunc *OptoRuntime::Math_D_D_Type() {
681  // create input type (domain)
682  const Type **fields = TypeTuple::fields(2);
683  // Symbol* name of class to be loaded
684  fields[TypeFunc::Parms+0] = Type::DOUBLE;
685  fields[TypeFunc::Parms+1] = Type::HALF;
686  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
687
688  // create result type (range)
689  fields = TypeTuple::fields(2);
690  fields[TypeFunc::Parms+0] = Type::DOUBLE;
691  fields[TypeFunc::Parms+1] = Type::HALF;
692  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
693
694  return TypeFunc::make(domain, range);
695}
696
697const TypeFunc* OptoRuntime::Math_DD_D_Type() {
698  const Type **fields = TypeTuple::fields(4);
699  fields[TypeFunc::Parms+0] = Type::DOUBLE;
700  fields[TypeFunc::Parms+1] = Type::HALF;
701  fields[TypeFunc::Parms+2] = Type::DOUBLE;
702  fields[TypeFunc::Parms+3] = Type::HALF;
703  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
704
705  // create result type (range)
706  fields = TypeTuple::fields(2);
707  fields[TypeFunc::Parms+0] = Type::DOUBLE;
708  fields[TypeFunc::Parms+1] = Type::HALF;
709  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
710
711  return TypeFunc::make(domain, range);
712}
713
714//-------------- currentTimeMillis, currentTimeNanos, etc
715
716const TypeFunc* OptoRuntime::void_long_Type() {
717  // create input type (domain)
718  const Type **fields = TypeTuple::fields(0);
719  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
720
721  // create result type (range)
722  fields = TypeTuple::fields(2);
723  fields[TypeFunc::Parms+0] = TypeLong::LONG;
724  fields[TypeFunc::Parms+1] = Type::HALF;
725  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
726
727  return TypeFunc::make(domain, range);
728}
729
730// arraycopy stub variations:
731enum ArrayCopyType {
732  ac_fast,                      // void(ptr, ptr, size_t)
733  ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
734  ac_slow,                      // void(ptr, int, ptr, int, int)
735  ac_generic                    //  int(ptr, int, ptr, int, int)
736};
737
738static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
739  // create input type (domain)
740  int num_args      = (act == ac_fast ? 3 : 5);
741  int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
742  int argcnt = num_args;
743  LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
744  const Type** fields = TypeTuple::fields(argcnt);
745  int argp = TypeFunc::Parms;
746  fields[argp++] = TypePtr::NOTNULL;    // src
747  if (num_size_args == 0) {
748    fields[argp++] = TypeInt::INT;      // src_pos
749  }
750  fields[argp++] = TypePtr::NOTNULL;    // dest
751  if (num_size_args == 0) {
752    fields[argp++] = TypeInt::INT;      // dest_pos
753    fields[argp++] = TypeInt::INT;      // length
754  }
755  while (num_size_args-- > 0) {
756    fields[argp++] = TypeX_X;               // size in whatevers (size_t)
757    LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
758  }
759  if (act == ac_checkcast) {
760    fields[argp++] = TypePtr::NOTNULL;  // super_klass
761  }
762  assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
763  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
764
765  // create result type if needed
766  int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
767  fields = TypeTuple::fields(1);
768  if (retcnt == 0)
769    fields[TypeFunc::Parms+0] = NULL; // void
770  else
771    fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
772  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
773  return TypeFunc::make(domain, range);
774}
775
776const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
777  // This signature is simple:  Two base pointers and a size_t.
778  return make_arraycopy_Type(ac_fast);
779}
780
781const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
782  // An extension of fast_arraycopy_Type which adds type checking.
783  return make_arraycopy_Type(ac_checkcast);
784}
785
786const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
787  // This signature is exactly the same as System.arraycopy.
788  // There are no intptr_t (int/long) arguments.
789  return make_arraycopy_Type(ac_slow);
790}
791
792const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
793  // This signature is like System.arraycopy, except that it returns status.
794  return make_arraycopy_Type(ac_generic);
795}
796
797
798const TypeFunc* OptoRuntime::array_fill_Type() {
799  const Type** fields;
800  int argp = TypeFunc::Parms;
801  if (CCallingConventionRequiresIntsAsLongs) {
802  // create input type (domain): pointer, int, size_t
803    fields = TypeTuple::fields(3 LP64_ONLY( + 2));
804    fields[argp++] = TypePtr::NOTNULL;
805    fields[argp++] = TypeLong::LONG;
806    fields[argp++] = Type::HALF;
807  } else {
808    // create input type (domain): pointer, int, size_t
809    fields = TypeTuple::fields(3 LP64_ONLY( + 1));
810    fields[argp++] = TypePtr::NOTNULL;
811    fields[argp++] = TypeInt::INT;
812  }
813  fields[argp++] = TypeX_X;               // size in whatevers (size_t)
814  LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
815  const TypeTuple *domain = TypeTuple::make(argp, fields);
816
817  // create result type
818  fields = TypeTuple::fields(1);
819  fields[TypeFunc::Parms+0] = NULL; // void
820  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
821
822  return TypeFunc::make(domain, range);
823}
824
825// for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
826const TypeFunc* OptoRuntime::aescrypt_block_Type() {
827  // create input type (domain)
828  int num_args      = 3;
829  int argcnt = num_args;
830  const Type** fields = TypeTuple::fields(argcnt);
831  int argp = TypeFunc::Parms;
832  fields[argp++] = TypePtr::NOTNULL;    // src
833  fields[argp++] = TypePtr::NOTNULL;    // dest
834  fields[argp++] = TypePtr::NOTNULL;    // k array
835  assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
836  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
837
838  // no result type needed
839  fields = TypeTuple::fields(1);
840  fields[TypeFunc::Parms+0] = NULL; // void
841  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
842  return TypeFunc::make(domain, range);
843}
844
845/**
846 * int updateBytesCRC32(int crc, byte* b, int len)
847 */
848const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
849  // create input type (domain)
850  int num_args      = 3;
851  int argcnt = num_args;
852  const Type** fields = TypeTuple::fields(argcnt);
853  int argp = TypeFunc::Parms;
854  fields[argp++] = TypeInt::INT;        // crc
855  fields[argp++] = TypePtr::NOTNULL;    // src
856  fields[argp++] = TypeInt::INT;        // len
857  assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
858  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
859
860  // result type needed
861  fields = TypeTuple::fields(1);
862  fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
863  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
864  return TypeFunc::make(domain, range);
865}
866
867// for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning void
868const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
869  // create input type (domain)
870  int num_args      = 5;
871  int argcnt = num_args;
872  const Type** fields = TypeTuple::fields(argcnt);
873  int argp = TypeFunc::Parms;
874  fields[argp++] = TypePtr::NOTNULL;    // src
875  fields[argp++] = TypePtr::NOTNULL;    // dest
876  fields[argp++] = TypePtr::NOTNULL;    // k array
877  fields[argp++] = TypePtr::NOTNULL;    // r array
878  fields[argp++] = TypeInt::INT;        // src len
879  assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
880  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
881
882  // no result type needed
883  fields = TypeTuple::fields(1);
884  fields[TypeFunc::Parms+0] = NULL; // void
885  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
886  return TypeFunc::make(domain, range);
887}
888
889//------------- Interpreter state access for on stack replacement
890const TypeFunc* OptoRuntime::osr_end_Type() {
891  // create input type (domain)
892  const Type **fields = TypeTuple::fields(1);
893  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
894  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
895
896  // create result type
897  fields = TypeTuple::fields(1);
898  // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
899  fields[TypeFunc::Parms+0] = NULL; // void
900  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
901  return TypeFunc::make(domain, range);
902}
903
904//-------------- methodData update helpers
905
906const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
907  // create input type (domain)
908  const Type **fields = TypeTuple::fields(2);
909  fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
910  fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
911  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
912
913  // create result type
914  fields = TypeTuple::fields(1);
915  fields[TypeFunc::Parms+0] = NULL; // void
916  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
917  return TypeFunc::make(domain,range);
918}
919
920JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
921  if (receiver == NULL) return;
922  Klass* receiver_klass = receiver->klass();
923
924  intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
925  int empty_row = -1;           // free row, if any is encountered
926
927  // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
928  for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
929    // if (vc->receiver(row) == receiver_klass)
930    int receiver_off = ReceiverTypeData::receiver_cell_index(row);
931    intptr_t row_recv = *(mdp + receiver_off);
932    if (row_recv == (intptr_t) receiver_klass) {
933      // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
934      int count_off = ReceiverTypeData::receiver_count_cell_index(row);
935      *(mdp + count_off) += DataLayout::counter_increment;
936      return;
937    } else if (row_recv == 0) {
938      // else if (vc->receiver(row) == NULL)
939      empty_row = (int) row;
940    }
941  }
942
943  if (empty_row != -1) {
944    int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
945    // vc->set_receiver(empty_row, receiver_klass);
946    *(mdp + receiver_off) = (intptr_t) receiver_klass;
947    // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
948    int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
949    *(mdp + count_off) = DataLayout::counter_increment;
950  } else {
951    // Receiver did not match any saved receiver and there is no empty row for it.
952    // Increment total counter to indicate polymorphic case.
953    intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
954    *count_p += DataLayout::counter_increment;
955  }
956JRT_END
957
958//-------------------------------------------------------------------------------------
959// register policy
960
961bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
962  assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
963  switch (register_save_policy[reg]) {
964    case 'C': return false; //SOC
965    case 'E': return true ; //SOE
966    case 'N': return false; //NS
967    case 'A': return false; //AS
968  }
969  ShouldNotReachHere();
970  return false;
971}
972
973//-----------------------------------------------------------------------
974// Exceptions
975//
976
977static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
978
979// The method is an entry that is always called by a C++ method not
980// directly from compiled code. Compiled code will call the C++ method following.
981// We can't allow async exception to be installed during  exception processing.
982JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
983
984  // Do not confuse exception_oop with pending_exception. The exception_oop
985  // is only used to pass arguments into the method. Not for general
986  // exception handling.  DO NOT CHANGE IT to use pending_exception, since
987  // the runtime stubs checks this on exit.
988  assert(thread->exception_oop() != NULL, "exception oop is found");
989  address handler_address = NULL;
990
991  Handle exception(thread, thread->exception_oop());
992  address pc = thread->exception_pc();
993
994  // Clear out the exception oop and pc since looking up an
995  // exception handler can cause class loading, which might throw an
996  // exception and those fields are expected to be clear during
997  // normal bytecode execution.
998  thread->clear_exception_oop_and_pc();
999
1000  if (TraceExceptions) {
1001    trace_exception(exception(), pc, "");
1002  }
1003
1004  // for AbortVMOnException flag
1005  NOT_PRODUCT(Exceptions::debug_check_abort(exception));
1006
1007#ifdef ASSERT
1008  if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1009    // should throw an exception here
1010    ShouldNotReachHere();
1011  }
1012#endif
1013
1014  // new exception handling: this method is entered only from adapters
1015  // exceptions from compiled java methods are handled in compiled code
1016  // using rethrow node
1017
1018  nm = CodeCache::find_nmethod(pc);
1019  assert(nm != NULL, "No NMethod found");
1020  if (nm->is_native_method()) {
1021    fatal("Native method should not have path to exception handling");
1022  } else {
1023    // we are switching to old paradigm: search for exception handler in caller_frame
1024    // instead in exception handler of caller_frame.sender()
1025
1026    if (JvmtiExport::can_post_on_exceptions()) {
1027      // "Full-speed catching" is not necessary here,
1028      // since we're notifying the VM on every catch.
1029      // Force deoptimization and the rest of the lookup
1030      // will be fine.
1031      deoptimize_caller_frame(thread);
1032    }
1033
1034    // Check the stack guard pages.  If enabled, look for handler in this frame;
1035    // otherwise, forcibly unwind the frame.
1036    //
1037    // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1038    bool force_unwind = !thread->reguard_stack();
1039    bool deopting = false;
1040    if (nm->is_deopt_pc(pc)) {
1041      deopting = true;
1042      RegisterMap map(thread, false);
1043      frame deoptee = thread->last_frame().sender(&map);
1044      assert(deoptee.is_deoptimized_frame(), "must be deopted");
1045      // Adjust the pc back to the original throwing pc
1046      pc = deoptee.pc();
1047    }
1048
1049    // If we are forcing an unwind because of stack overflow then deopt is
1050    // irrelevant since we are throwing the frame away anyway.
1051
1052    if (deopting && !force_unwind) {
1053      handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1054    } else {
1055
1056      handler_address =
1057        force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1058
1059      if (handler_address == NULL) {
1060        Handle original_exception(thread, exception());
1061        handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1062        assert (handler_address != NULL, "must have compiled handler");
1063        // Update the exception cache only when the unwind was not forced
1064        // and there didn't happen another exception during the computation of the
1065        // compiled exception handler.
1066        if (!force_unwind && original_exception() == exception()) {
1067          nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1068        }
1069      } else {
1070        assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1071      }
1072    }
1073
1074    thread->set_exception_pc(pc);
1075    thread->set_exception_handler_pc(handler_address);
1076
1077    // Check if the exception PC is a MethodHandle call site.
1078    thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1079  }
1080
1081  // Restore correct return pc.  Was saved above.
1082  thread->set_exception_oop(exception());
1083  return handler_address;
1084
1085JRT_END
1086
1087// We are entering here from exception_blob
1088// If there is a compiled exception handler in this method, we will continue there;
1089// otherwise we will unwind the stack and continue at the caller of top frame method
1090// Note we enter without the usual JRT wrapper. We will call a helper routine that
1091// will do the normal VM entry. We do it this way so that we can see if the nmethod
1092// we looked up the handler for has been deoptimized in the meantime. If it has been
1093// we must not use the handler and instead return the deopt blob.
1094address OptoRuntime::handle_exception_C(JavaThread* thread) {
1095//
1096// We are in Java not VM and in debug mode we have a NoHandleMark
1097//
1098#ifndef PRODUCT
1099  SharedRuntime::_find_handler_ctr++;          // find exception handler
1100#endif
1101  debug_only(NoHandleMark __hm;)
1102  nmethod* nm = NULL;
1103  address handler_address = NULL;
1104  {
1105    // Enter the VM
1106
1107    ResetNoHandleMark rnhm;
1108    handler_address = handle_exception_C_helper(thread, nm);
1109  }
1110
1111  // Back in java: Use no oops, DON'T safepoint
1112
1113  // Now check to see if the handler we are returning is in a now
1114  // deoptimized frame
1115
1116  if (nm != NULL) {
1117    RegisterMap map(thread, false);
1118    frame caller = thread->last_frame().sender(&map);
1119#ifdef ASSERT
1120    assert(caller.is_compiled_frame(), "must be");
1121#endif // ASSERT
1122    if (caller.is_deoptimized_frame()) {
1123      handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1124    }
1125  }
1126  return handler_address;
1127}
1128
1129//------------------------------rethrow----------------------------------------
1130// We get here after compiled code has executed a 'RethrowNode'.  The callee
1131// is either throwing or rethrowing an exception.  The callee-save registers
1132// have been restored, synchronized objects have been unlocked and the callee
1133// stack frame has been removed.  The return address was passed in.
1134// Exception oop is passed as the 1st argument.  This routine is then called
1135// from the stub.  On exit, we know where to jump in the caller's code.
1136// After this C code exits, the stub will pop his frame and end in a jump
1137// (instead of a return).  We enter the caller's default handler.
1138//
1139// This must be JRT_LEAF:
1140//     - caller will not change its state as we cannot block on exit,
1141//       therefore raw_exception_handler_for_return_address is all it takes
1142//       to handle deoptimized blobs
1143//
1144// However, there needs to be a safepoint check in the middle!  So compiled
1145// safepoints are completely watertight.
1146//
1147// Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1148//
1149// *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1150//
1151address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1152#ifndef PRODUCT
1153  SharedRuntime::_rethrow_ctr++;               // count rethrows
1154#endif
1155  assert (exception != NULL, "should have thrown a NULLPointerException");
1156#ifdef ASSERT
1157  if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1158    // should throw an exception here
1159    ShouldNotReachHere();
1160  }
1161#endif
1162
1163  thread->set_vm_result(exception);
1164  // Frame not compiled (handles deoptimization blob)
1165  return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1166}
1167
1168
1169const TypeFunc *OptoRuntime::rethrow_Type() {
1170  // create input type (domain)
1171  const Type **fields = TypeTuple::fields(1);
1172  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1173  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1174
1175  // create result type (range)
1176  fields = TypeTuple::fields(1);
1177  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1178  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1179
1180  return TypeFunc::make(domain, range);
1181}
1182
1183
1184void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1185  // Deoptimize the caller before continuing, as the compiled
1186  // exception handler table may not be valid.
1187  if (!StressCompiledExceptionHandlers && doit) {
1188    deoptimize_caller_frame(thread);
1189  }
1190}
1191
1192void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1193  // Called from within the owner thread, so no need for safepoint
1194  RegisterMap reg_map(thread);
1195  frame stub_frame = thread->last_frame();
1196  assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1197  frame caller_frame = stub_frame.sender(&reg_map);
1198
1199  // Deoptimize the caller frame.
1200  Deoptimization::deoptimize_frame(thread, caller_frame.id());
1201}
1202
1203
1204bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1205  // Called from within the owner thread, so no need for safepoint
1206  RegisterMap reg_map(thread);
1207  frame stub_frame = thread->last_frame();
1208  assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1209  frame caller_frame = stub_frame.sender(&reg_map);
1210  return caller_frame.is_deoptimized_frame();
1211}
1212
1213
1214const TypeFunc *OptoRuntime::register_finalizer_Type() {
1215  // create input type (domain)
1216  const Type **fields = TypeTuple::fields(1);
1217  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1218  // // The JavaThread* is passed to each routine as the last argument
1219  // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1220  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1221
1222  // create result type (range)
1223  fields = TypeTuple::fields(0);
1224
1225  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1226
1227  return TypeFunc::make(domain,range);
1228}
1229
1230
1231//-----------------------------------------------------------------------------
1232// Dtrace support.  entry and exit probes have the same signature
1233const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1234  // create input type (domain)
1235  const Type **fields = TypeTuple::fields(2);
1236  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1237  fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1238  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1239
1240  // create result type (range)
1241  fields = TypeTuple::fields(0);
1242
1243  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1244
1245  return TypeFunc::make(domain,range);
1246}
1247
1248const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1249  // create input type (domain)
1250  const Type **fields = TypeTuple::fields(2);
1251  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1252  fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1253
1254  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1255
1256  // create result type (range)
1257  fields = TypeTuple::fields(0);
1258
1259  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1260
1261  return TypeFunc::make(domain,range);
1262}
1263
1264
1265JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1266  assert(obj->is_oop(), "must be a valid oop");
1267  assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1268  InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1269JRT_END
1270
1271//-----------------------------------------------------------------------------
1272
1273NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1274
1275//
1276// dump the collected NamedCounters.
1277//
1278void OptoRuntime::print_named_counters() {
1279  int total_lock_count = 0;
1280  int eliminated_lock_count = 0;
1281
1282  NamedCounter* c = _named_counters;
1283  while (c) {
1284    if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1285      int count = c->count();
1286      if (count > 0) {
1287        bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1288        if (Verbose) {
1289          tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1290        }
1291        total_lock_count += count;
1292        if (eliminated) {
1293          eliminated_lock_count += count;
1294        }
1295      }
1296    } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1297      BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1298      if (blc->nonzero()) {
1299        tty->print_cr("%s", c->name());
1300        blc->print_on(tty);
1301      }
1302    }
1303    c = c->next();
1304  }
1305  if (total_lock_count > 0) {
1306    tty->print_cr("dynamic locks: %d", total_lock_count);
1307    if (eliminated_lock_count) {
1308      tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1309                    (int)(eliminated_lock_count * 100.0 / total_lock_count));
1310    }
1311  }
1312}
1313
1314//
1315//  Allocate a new NamedCounter.  The JVMState is used to generate the
1316//  name which consists of method@line for the inlining tree.
1317//
1318
1319NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1320  int max_depth = youngest_jvms->depth();
1321
1322  // Visit scopes from youngest to oldest.
1323  bool first = true;
1324  stringStream st;
1325  for (int depth = max_depth; depth >= 1; depth--) {
1326    JVMState* jvms = youngest_jvms->of_depth(depth);
1327    ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1328    if (!first) {
1329      st.print(" ");
1330    } else {
1331      first = false;
1332    }
1333    int bci = jvms->bci();
1334    if (bci < 0) bci = 0;
1335    st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1336    // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1337  }
1338  NamedCounter* c;
1339  if (tag == NamedCounter::BiasedLockingCounter) {
1340    c = new BiasedLockingNamedCounter(strdup(st.as_string()));
1341  } else {
1342    c = new NamedCounter(strdup(st.as_string()), tag);
1343  }
1344
1345  // atomically add the new counter to the head of the list.  We only
1346  // add counters so this is safe.
1347  NamedCounter* head;
1348  do {
1349    head = _named_counters;
1350    c->set_next(head);
1351  } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1352  return c;
1353}
1354
1355//-----------------------------------------------------------------------------
1356// Non-product code
1357#ifndef PRODUCT
1358
1359int trace_exception_counter = 0;
1360static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1361  ttyLocker ttyl;
1362  trace_exception_counter++;
1363  tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1364  exception_oop->print_value();
1365  tty->print(" in ");
1366  CodeBlob* blob = CodeCache::find_blob(exception_pc);
1367  if (blob->is_nmethod()) {
1368    nmethod* nm = blob->as_nmethod_or_null();
1369    nm->method()->print_value();
1370  } else if (blob->is_runtime_stub()) {
1371    tty->print("<runtime-stub>");
1372  } else {
1373    tty->print("<unknown>");
1374  }
1375  tty->print(" at " INTPTR_FORMAT,  exception_pc);
1376  tty->print_cr("]");
1377}
1378
1379#endif  // PRODUCT
1380
1381
1382# ifdef ENABLE_ZAP_DEAD_LOCALS
1383// Called from call sites in compiled code with oop maps (actually safepoints)
1384// Zaps dead locals in first java frame.
1385// Is entry because may need to lock to generate oop maps
1386// Currently, only used for compiler frames, but someday may be used
1387// for interpreter frames, too.
1388
1389int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1390
1391// avoid pointers to member funcs with these helpers
1392static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1393static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1394
1395
1396void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1397                                                bool (*is_this_the_right_frame_to_zap)(frame*)) {
1398  assert(JavaThread::current() == thread, "is this needed?");
1399
1400  if ( !ZapDeadCompiledLocals )  return;
1401
1402  bool skip = false;
1403
1404       if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1405  else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1406  else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1407    warning("starting zapping after skipping");
1408
1409       if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1410  else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1411  else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1412    warning("about to zap last zap");
1413
1414  ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1415
1416  if ( skip )  return;
1417
1418  // find java frame and zap it
1419
1420  for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1421    if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1422      sfs.current()->zap_dead_locals(thread, sfs.register_map());
1423      return;
1424    }
1425  }
1426  warning("no frame found to zap in zap_dead_Java_locals_C");
1427}
1428
1429JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1430  zap_dead_java_or_native_locals(thread, is_java_frame);
1431JRT_END
1432
1433// The following does not work because for one thing, the
1434// thread state is wrong; it expects java, but it is native.
1435// Also, the invariants in a native stub are different and
1436// I'm not sure it is safe to have a MachCalRuntimeDirectNode
1437// in there.
1438// So for now, we do not zap in native stubs.
1439
1440JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1441  zap_dead_java_or_native_locals(thread, is_native_frame);
1442JRT_END
1443
1444# endif
1445