runtime.cpp revision 3274:0105f367a14c
1/*
2 * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "classfile/vmSymbols.hpp"
28#include "code/compiledIC.hpp"
29#include "code/icBuffer.hpp"
30#include "code/nmethod.hpp"
31#include "code/pcDesc.hpp"
32#include "code/scopeDesc.hpp"
33#include "code/vtableStubs.hpp"
34#include "compiler/compileBroker.hpp"
35#include "compiler/compilerOracle.hpp"
36#include "compiler/oopMap.hpp"
37#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
38#include "gc_implementation/g1/heapRegion.hpp"
39#include "gc_interface/collectedHeap.hpp"
40#include "interpreter/bytecode.hpp"
41#include "interpreter/interpreter.hpp"
42#include "interpreter/linkResolver.hpp"
43#include "memory/barrierSet.hpp"
44#include "memory/gcLocker.inline.hpp"
45#include "memory/oopFactory.hpp"
46#include "oops/objArrayKlass.hpp"
47#include "oops/oop.inline.hpp"
48#include "opto/addnode.hpp"
49#include "opto/callnode.hpp"
50#include "opto/cfgnode.hpp"
51#include "opto/connode.hpp"
52#include "opto/graphKit.hpp"
53#include "opto/machnode.hpp"
54#include "opto/matcher.hpp"
55#include "opto/memnode.hpp"
56#include "opto/mulnode.hpp"
57#include "opto/runtime.hpp"
58#include "opto/subnode.hpp"
59#include "runtime/fprofiler.hpp"
60#include "runtime/handles.inline.hpp"
61#include "runtime/interfaceSupport.hpp"
62#include "runtime/javaCalls.hpp"
63#include "runtime/sharedRuntime.hpp"
64#include "runtime/signature.hpp"
65#include "runtime/threadCritical.hpp"
66#include "runtime/vframe.hpp"
67#include "runtime/vframeArray.hpp"
68#include "runtime/vframe_hp.hpp"
69#include "utilities/copy.hpp"
70#include "utilities/preserveException.hpp"
71#ifdef TARGET_ARCH_MODEL_x86_32
72# include "adfiles/ad_x86_32.hpp"
73#endif
74#ifdef TARGET_ARCH_MODEL_x86_64
75# include "adfiles/ad_x86_64.hpp"
76#endif
77#ifdef TARGET_ARCH_MODEL_sparc
78# include "adfiles/ad_sparc.hpp"
79#endif
80#ifdef TARGET_ARCH_MODEL_zero
81# include "adfiles/ad_zero.hpp"
82#endif
83#ifdef TARGET_ARCH_MODEL_arm
84# include "adfiles/ad_arm.hpp"
85#endif
86#ifdef TARGET_ARCH_MODEL_ppc
87# include "adfiles/ad_ppc.hpp"
88#endif
89
90
91// For debugging purposes:
92//  To force FullGCALot inside a runtime function, add the following two lines
93//
94//  Universe::release_fullgc_alot_dummy();
95//  MarkSweep::invoke(0, "Debugging");
96//
97// At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
98
99
100
101
102// Compiled code entry points
103address OptoRuntime::_new_instance_Java                           = NULL;
104address OptoRuntime::_new_array_Java                              = NULL;
105address OptoRuntime::_new_array_nozero_Java                       = NULL;
106address OptoRuntime::_multianewarray2_Java                        = NULL;
107address OptoRuntime::_multianewarray3_Java                        = NULL;
108address OptoRuntime::_multianewarray4_Java                        = NULL;
109address OptoRuntime::_multianewarray5_Java                        = NULL;
110address OptoRuntime::_multianewarrayN_Java                        = NULL;
111address OptoRuntime::_g1_wb_pre_Java                              = NULL;
112address OptoRuntime::_g1_wb_post_Java                             = NULL;
113address OptoRuntime::_vtable_must_compile_Java                    = NULL;
114address OptoRuntime::_complete_monitor_locking_Java               = NULL;
115address OptoRuntime::_rethrow_Java                                = NULL;
116
117address OptoRuntime::_slow_arraycopy_Java                         = NULL;
118address OptoRuntime::_register_finalizer_Java                     = NULL;
119
120# ifdef ENABLE_ZAP_DEAD_LOCALS
121address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
122address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
123# endif
124
125ExceptionBlob* OptoRuntime::_exception_blob;
126
127// This should be called in an assertion at the start of OptoRuntime routines
128// which are entered from compiled code (all of them)
129#ifndef PRODUCT
130static bool check_compiled_frame(JavaThread* thread) {
131  assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
132#ifdef ASSERT
133  RegisterMap map(thread, false);
134  frame caller = thread->last_frame().sender(&map);
135  assert(caller.is_compiled_frame(), "not being called from compiled like code");
136#endif  /* ASSERT */
137  return true;
138}
139#endif
140
141
142#define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
143  var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc)
144
145void OptoRuntime::generate(ciEnv* env) {
146
147  generate_exception_blob();
148
149  // Note: tls: Means fetching the return oop out of the thread-local storage
150  //
151  //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
152  // -------------------------------------------------------------------------------------------------------------------------------
153  gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
154  gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
155  gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
156  gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
157  gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
158  gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
159  gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
160  gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
161  gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
162  gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
163  gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C      ,    0 , false, false, false);
164  gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
165
166  gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
167  gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
168
169# ifdef ENABLE_ZAP_DEAD_LOCALS
170  gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
171  gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
172# endif
173
174}
175
176#undef gen
177
178
179// Helper method to do generation of RunTimeStub's
180address OptoRuntime::generate_stub( ciEnv* env,
181                                    TypeFunc_generator gen, address C_function,
182                                    const char *name, int is_fancy_jump,
183                                    bool pass_tls,
184                                    bool save_argument_registers,
185                                    bool return_pc ) {
186  ResourceMark rm;
187  Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
188  return  C.stub_entry_point();
189}
190
191const char* OptoRuntime::stub_name(address entry) {
192#ifndef PRODUCT
193  CodeBlob* cb = CodeCache::find_blob(entry);
194  RuntimeStub* rs =(RuntimeStub *)cb;
195  assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
196  return rs->name();
197#else
198  // Fast implementation for product mode (maybe it should be inlined too)
199  return "runtime stub";
200#endif
201}
202
203
204//=============================================================================
205// Opto compiler runtime routines
206//=============================================================================
207
208
209//=============================allocation======================================
210// We failed the fast-path allocation.  Now we need to do a scavenge or GC
211// and try allocation again.
212
213void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
214  // After any safepoint, just before going back to compiled code,
215  // we inform the GC that we will be doing initializing writes to
216  // this object in the future without emitting card-marks, so
217  // GC may take any compensating steps.
218  // NOTE: Keep this code consistent with GraphKit::store_barrier.
219
220  oop new_obj = thread->vm_result();
221  if (new_obj == NULL)  return;
222
223  assert(Universe::heap()->can_elide_tlab_store_barriers(),
224         "compiler must check this first");
225  // GC may decide to give back a safer copy of new_obj.
226  new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
227  thread->set_vm_result(new_obj);
228}
229
230// object allocation
231JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(klassOopDesc* klass, JavaThread* thread))
232  JRT_BLOCK;
233#ifndef PRODUCT
234  SharedRuntime::_new_instance_ctr++;         // new instance requires GC
235#endif
236  assert(check_compiled_frame(thread), "incorrect caller");
237
238  // These checks are cheap to make and support reflective allocation.
239  int lh = Klass::cast(klass)->layout_helper();
240  if (Klass::layout_helper_needs_slow_path(lh)
241      || !instanceKlass::cast(klass)->is_initialized()) {
242    KlassHandle kh(THREAD, klass);
243    kh->check_valid_for_instantiation(false, THREAD);
244    if (!HAS_PENDING_EXCEPTION) {
245      instanceKlass::cast(kh())->initialize(THREAD);
246    }
247    if (!HAS_PENDING_EXCEPTION) {
248      klass = kh();
249    } else {
250      klass = NULL;
251    }
252  }
253
254  if (klass != NULL) {
255    // Scavenge and allocate an instance.
256    oop result = instanceKlass::cast(klass)->allocate_instance(THREAD);
257    thread->set_vm_result(result);
258
259    // Pass oops back through thread local storage.  Our apparent type to Java
260    // is that we return an oop, but we can block on exit from this routine and
261    // a GC can trash the oop in C's return register.  The generated stub will
262    // fetch the oop from TLS after any possible GC.
263  }
264
265  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
266  JRT_BLOCK_END;
267
268  if (GraphKit::use_ReduceInitialCardMarks()) {
269    // inform GC that we won't do card marks for initializing writes.
270    new_store_pre_barrier(thread);
271  }
272JRT_END
273
274
275// array allocation
276JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(klassOopDesc* array_type, int len, JavaThread *thread))
277  JRT_BLOCK;
278#ifndef PRODUCT
279  SharedRuntime::_new_array_ctr++;            // new array requires GC
280#endif
281  assert(check_compiled_frame(thread), "incorrect caller");
282
283  // Scavenge and allocate an instance.
284  oop result;
285
286  if (Klass::cast(array_type)->oop_is_typeArray()) {
287    // The oopFactory likes to work with the element type.
288    // (We could bypass the oopFactory, since it doesn't add much value.)
289    BasicType elem_type = typeArrayKlass::cast(array_type)->element_type();
290    result = oopFactory::new_typeArray(elem_type, len, THREAD);
291  } else {
292    // Although the oopFactory likes to work with the elem_type,
293    // the compiler prefers the array_type, since it must already have
294    // that latter value in hand for the fast path.
295    klassOopDesc* elem_type = objArrayKlass::cast(array_type)->element_klass();
296    result = oopFactory::new_objArray(elem_type, len, THREAD);
297  }
298
299  // Pass oops back through thread local storage.  Our apparent type to Java
300  // is that we return an oop, but we can block on exit from this routine and
301  // a GC can trash the oop in C's return register.  The generated stub will
302  // fetch the oop from TLS after any possible GC.
303  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
304  thread->set_vm_result(result);
305  JRT_BLOCK_END;
306
307  if (GraphKit::use_ReduceInitialCardMarks()) {
308    // inform GC that we won't do card marks for initializing writes.
309    new_store_pre_barrier(thread);
310  }
311JRT_END
312
313// array allocation without zeroing
314JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(klassOopDesc* array_type, int len, JavaThread *thread))
315  JRT_BLOCK;
316#ifndef PRODUCT
317  SharedRuntime::_new_array_ctr++;            // new array requires GC
318#endif
319  assert(check_compiled_frame(thread), "incorrect caller");
320
321  // Scavenge and allocate an instance.
322  oop result;
323
324  assert(Klass::cast(array_type)->oop_is_typeArray(), "should be called only for type array");
325  // The oopFactory likes to work with the element type.
326  BasicType elem_type = typeArrayKlass::cast(array_type)->element_type();
327  result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
328
329  // Pass oops back through thread local storage.  Our apparent type to Java
330  // is that we return an oop, but we can block on exit from this routine and
331  // a GC can trash the oop in C's return register.  The generated stub will
332  // fetch the oop from TLS after any possible GC.
333  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
334  thread->set_vm_result(result);
335  JRT_BLOCK_END;
336
337  if (GraphKit::use_ReduceInitialCardMarks()) {
338    // inform GC that we won't do card marks for initializing writes.
339    new_store_pre_barrier(thread);
340  }
341
342  oop result = thread->vm_result();
343  if ((len > 0) && (result != NULL) &&
344      is_deoptimized_caller_frame(thread)) {
345    // Zero array here if the caller is deoptimized.
346    int size = ((typeArrayOop)result)->object_size();
347    BasicType elem_type = typeArrayKlass::cast(array_type)->element_type();
348    const size_t hs = arrayOopDesc::header_size(elem_type);
349    // Align to next 8 bytes to avoid trashing arrays's length.
350    const size_t aligned_hs = align_object_offset(hs);
351    HeapWord* obj = (HeapWord*)result;
352    if (aligned_hs > hs) {
353      Copy::zero_to_words(obj+hs, aligned_hs-hs);
354    }
355    // Optimized zeroing.
356    Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
357  }
358
359JRT_END
360
361// Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
362
363// multianewarray for 2 dimensions
364JRT_ENTRY(void, OptoRuntime::multianewarray2_C(klassOopDesc* elem_type, int len1, int len2, JavaThread *thread))
365#ifndef PRODUCT
366  SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
367#endif
368  assert(check_compiled_frame(thread), "incorrect caller");
369  assert(oop(elem_type)->is_klass(), "not a class");
370  jint dims[2];
371  dims[0] = len1;
372  dims[1] = len2;
373  oop obj = arrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
374  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
375  thread->set_vm_result(obj);
376JRT_END
377
378// multianewarray for 3 dimensions
379JRT_ENTRY(void, OptoRuntime::multianewarray3_C(klassOopDesc* elem_type, int len1, int len2, int len3, JavaThread *thread))
380#ifndef PRODUCT
381  SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
382#endif
383  assert(check_compiled_frame(thread), "incorrect caller");
384  assert(oop(elem_type)->is_klass(), "not a class");
385  jint dims[3];
386  dims[0] = len1;
387  dims[1] = len2;
388  dims[2] = len3;
389  oop obj = arrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
390  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
391  thread->set_vm_result(obj);
392JRT_END
393
394// multianewarray for 4 dimensions
395JRT_ENTRY(void, OptoRuntime::multianewarray4_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
396#ifndef PRODUCT
397  SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
398#endif
399  assert(check_compiled_frame(thread), "incorrect caller");
400  assert(oop(elem_type)->is_klass(), "not a class");
401  jint dims[4];
402  dims[0] = len1;
403  dims[1] = len2;
404  dims[2] = len3;
405  dims[3] = len4;
406  oop obj = arrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
407  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
408  thread->set_vm_result(obj);
409JRT_END
410
411// multianewarray for 5 dimensions
412JRT_ENTRY(void, OptoRuntime::multianewarray5_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
413#ifndef PRODUCT
414  SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
415#endif
416  assert(check_compiled_frame(thread), "incorrect caller");
417  assert(oop(elem_type)->is_klass(), "not a class");
418  jint dims[5];
419  dims[0] = len1;
420  dims[1] = len2;
421  dims[2] = len3;
422  dims[3] = len4;
423  dims[4] = len5;
424  oop obj = arrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
425  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
426  thread->set_vm_result(obj);
427JRT_END
428
429JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(klassOopDesc* elem_type, arrayOopDesc* dims, JavaThread *thread))
430  assert(check_compiled_frame(thread), "incorrect caller");
431  assert(oop(elem_type)->is_klass(), "not a class");
432  assert(oop(dims)->is_typeArray(), "not an array");
433
434  ResourceMark rm;
435  jint len = dims->length();
436  assert(len > 0, "Dimensions array should contain data");
437  jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
438  jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
439  Copy::conjoint_jints_atomic(j_dims, c_dims, len);
440
441  oop obj = arrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
442  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
443  thread->set_vm_result(obj);
444JRT_END
445
446
447const TypeFunc *OptoRuntime::new_instance_Type() {
448  // create input type (domain)
449  const Type **fields = TypeTuple::fields(1);
450  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
451  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
452
453  // create result type (range)
454  fields = TypeTuple::fields(1);
455  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
456
457  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
458
459  return TypeFunc::make(domain, range);
460}
461
462
463const TypeFunc *OptoRuntime::athrow_Type() {
464  // create input type (domain)
465  const Type **fields = TypeTuple::fields(1);
466  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
467  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
468
469  // create result type (range)
470  fields = TypeTuple::fields(0);
471
472  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
473
474  return TypeFunc::make(domain, range);
475}
476
477
478const TypeFunc *OptoRuntime::new_array_Type() {
479  // create input type (domain)
480  const Type **fields = TypeTuple::fields(2);
481  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
482  fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
483  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
484
485  // create result type (range)
486  fields = TypeTuple::fields(1);
487  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
488
489  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
490
491  return TypeFunc::make(domain, range);
492}
493
494const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
495  // create input type (domain)
496  const int nargs = ndim + 1;
497  const Type **fields = TypeTuple::fields(nargs);
498  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
499  for( int i = 1; i < nargs; i++ )
500    fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
501  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
502
503  // create result type (range)
504  fields = TypeTuple::fields(1);
505  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
506  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
507
508  return TypeFunc::make(domain, range);
509}
510
511const TypeFunc *OptoRuntime::multianewarray2_Type() {
512  return multianewarray_Type(2);
513}
514
515const TypeFunc *OptoRuntime::multianewarray3_Type() {
516  return multianewarray_Type(3);
517}
518
519const TypeFunc *OptoRuntime::multianewarray4_Type() {
520  return multianewarray_Type(4);
521}
522
523const TypeFunc *OptoRuntime::multianewarray5_Type() {
524  return multianewarray_Type(5);
525}
526
527const TypeFunc *OptoRuntime::multianewarrayN_Type() {
528  // create input type (domain)
529  const Type **fields = TypeTuple::fields(2);
530  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
531  fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
532  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
533
534  // create result type (range)
535  fields = TypeTuple::fields(1);
536  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
537  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
538
539  return TypeFunc::make(domain, range);
540}
541
542const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
543  const Type **fields = TypeTuple::fields(2);
544  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
545  fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
546  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
547
548  // create result type (range)
549  fields = TypeTuple::fields(0);
550  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
551
552  return TypeFunc::make(domain, range);
553}
554
555const TypeFunc *OptoRuntime::g1_wb_post_Type() {
556
557  const Type **fields = TypeTuple::fields(2);
558  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
559  fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
560  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
561
562  // create result type (range)
563  fields = TypeTuple::fields(0);
564  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
565
566  return TypeFunc::make(domain, range);
567}
568
569const TypeFunc *OptoRuntime::uncommon_trap_Type() {
570  // create input type (domain)
571  const Type **fields = TypeTuple::fields(1);
572  // Symbol* name of class to be loaded
573  fields[TypeFunc::Parms+0] = TypeInt::INT;
574  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
575
576  // create result type (range)
577  fields = TypeTuple::fields(0);
578  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
579
580  return TypeFunc::make(domain, range);
581}
582
583# ifdef ENABLE_ZAP_DEAD_LOCALS
584// Type used for stub generation for zap_dead_locals.
585// No inputs or outputs
586const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
587  // create input type (domain)
588  const Type **fields = TypeTuple::fields(0);
589  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
590
591  // create result type (range)
592  fields = TypeTuple::fields(0);
593  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
594
595  return TypeFunc::make(domain,range);
596}
597# endif
598
599
600//-----------------------------------------------------------------------------
601// Monitor Handling
602const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
603  // create input type (domain)
604  const Type **fields = TypeTuple::fields(2);
605  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
606  fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
607  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
608
609  // create result type (range)
610  fields = TypeTuple::fields(0);
611
612  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
613
614  return TypeFunc::make(domain,range);
615}
616
617
618//-----------------------------------------------------------------------------
619const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
620  // create input type (domain)
621  const Type **fields = TypeTuple::fields(2);
622  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
623  fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
624  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
625
626  // create result type (range)
627  fields = TypeTuple::fields(0);
628
629  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
630
631  return TypeFunc::make(domain,range);
632}
633
634const TypeFunc* OptoRuntime::flush_windows_Type() {
635  // create input type (domain)
636  const Type** fields = TypeTuple::fields(1);
637  fields[TypeFunc::Parms+0] = NULL; // void
638  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
639
640  // create result type
641  fields = TypeTuple::fields(1);
642  fields[TypeFunc::Parms+0] = NULL; // void
643  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
644
645  return TypeFunc::make(domain, range);
646}
647
648const TypeFunc* OptoRuntime::l2f_Type() {
649  // create input type (domain)
650  const Type **fields = TypeTuple::fields(2);
651  fields[TypeFunc::Parms+0] = TypeLong::LONG;
652  fields[TypeFunc::Parms+1] = Type::HALF;
653  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
654
655  // create result type (range)
656  fields = TypeTuple::fields(1);
657  fields[TypeFunc::Parms+0] = Type::FLOAT;
658  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
659
660  return TypeFunc::make(domain, range);
661}
662
663const TypeFunc* OptoRuntime::modf_Type() {
664  const Type **fields = TypeTuple::fields(2);
665  fields[TypeFunc::Parms+0] = Type::FLOAT;
666  fields[TypeFunc::Parms+1] = Type::FLOAT;
667  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
668
669  // create result type (range)
670  fields = TypeTuple::fields(1);
671  fields[TypeFunc::Parms+0] = Type::FLOAT;
672
673  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
674
675  return TypeFunc::make(domain, range);
676}
677
678const TypeFunc *OptoRuntime::Math_D_D_Type() {
679  // create input type (domain)
680  const Type **fields = TypeTuple::fields(2);
681  // Symbol* name of class to be loaded
682  fields[TypeFunc::Parms+0] = Type::DOUBLE;
683  fields[TypeFunc::Parms+1] = Type::HALF;
684  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
685
686  // create result type (range)
687  fields = TypeTuple::fields(2);
688  fields[TypeFunc::Parms+0] = Type::DOUBLE;
689  fields[TypeFunc::Parms+1] = Type::HALF;
690  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
691
692  return TypeFunc::make(domain, range);
693}
694
695const TypeFunc* OptoRuntime::Math_DD_D_Type() {
696  const Type **fields = TypeTuple::fields(4);
697  fields[TypeFunc::Parms+0] = Type::DOUBLE;
698  fields[TypeFunc::Parms+1] = Type::HALF;
699  fields[TypeFunc::Parms+2] = Type::DOUBLE;
700  fields[TypeFunc::Parms+3] = Type::HALF;
701  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
702
703  // create result type (range)
704  fields = TypeTuple::fields(2);
705  fields[TypeFunc::Parms+0] = Type::DOUBLE;
706  fields[TypeFunc::Parms+1] = Type::HALF;
707  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
708
709  return TypeFunc::make(domain, range);
710}
711
712//-------------- currentTimeMillis, currentTimeNanos, etc
713
714const TypeFunc* OptoRuntime::void_long_Type() {
715  // create input type (domain)
716  const Type **fields = TypeTuple::fields(0);
717  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
718
719  // create result type (range)
720  fields = TypeTuple::fields(2);
721  fields[TypeFunc::Parms+0] = TypeLong::LONG;
722  fields[TypeFunc::Parms+1] = Type::HALF;
723  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
724
725  return TypeFunc::make(domain, range);
726}
727
728// arraycopy stub variations:
729enum ArrayCopyType {
730  ac_fast,                      // void(ptr, ptr, size_t)
731  ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
732  ac_slow,                      // void(ptr, int, ptr, int, int)
733  ac_generic                    //  int(ptr, int, ptr, int, int)
734};
735
736static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
737  // create input type (domain)
738  int num_args      = (act == ac_fast ? 3 : 5);
739  int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
740  int argcnt = num_args;
741  LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
742  const Type** fields = TypeTuple::fields(argcnt);
743  int argp = TypeFunc::Parms;
744  fields[argp++] = TypePtr::NOTNULL;    // src
745  if (num_size_args == 0) {
746    fields[argp++] = TypeInt::INT;      // src_pos
747  }
748  fields[argp++] = TypePtr::NOTNULL;    // dest
749  if (num_size_args == 0) {
750    fields[argp++] = TypeInt::INT;      // dest_pos
751    fields[argp++] = TypeInt::INT;      // length
752  }
753  while (num_size_args-- > 0) {
754    fields[argp++] = TypeX_X;               // size in whatevers (size_t)
755    LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
756  }
757  if (act == ac_checkcast) {
758    fields[argp++] = TypePtr::NOTNULL;  // super_klass
759  }
760  assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
761  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
762
763  // create result type if needed
764  int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
765  fields = TypeTuple::fields(1);
766  if (retcnt == 0)
767    fields[TypeFunc::Parms+0] = NULL; // void
768  else
769    fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
770  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
771  return TypeFunc::make(domain, range);
772}
773
774const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
775  // This signature is simple:  Two base pointers and a size_t.
776  return make_arraycopy_Type(ac_fast);
777}
778
779const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
780  // An extension of fast_arraycopy_Type which adds type checking.
781  return make_arraycopy_Type(ac_checkcast);
782}
783
784const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
785  // This signature is exactly the same as System.arraycopy.
786  // There are no intptr_t (int/long) arguments.
787  return make_arraycopy_Type(ac_slow);
788}
789
790const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
791  // This signature is like System.arraycopy, except that it returns status.
792  return make_arraycopy_Type(ac_generic);
793}
794
795
796const TypeFunc* OptoRuntime::array_fill_Type() {
797  // create input type (domain): pointer, int, size_t
798  const Type** fields = TypeTuple::fields(3 LP64_ONLY( + 1));
799  int argp = TypeFunc::Parms;
800  fields[argp++] = TypePtr::NOTNULL;
801  fields[argp++] = TypeInt::INT;
802  fields[argp++] = TypeX_X;               // size in whatevers (size_t)
803  LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
804  const TypeTuple *domain = TypeTuple::make(argp, fields);
805
806  // create result type
807  fields = TypeTuple::fields(1);
808  fields[TypeFunc::Parms+0] = NULL; // void
809  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
810
811  return TypeFunc::make(domain, range);
812}
813
814//------------- Interpreter state access for on stack replacement
815const TypeFunc* OptoRuntime::osr_end_Type() {
816  // create input type (domain)
817  const Type **fields = TypeTuple::fields(1);
818  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
819  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
820
821  // create result type
822  fields = TypeTuple::fields(1);
823  // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
824  fields[TypeFunc::Parms+0] = NULL; // void
825  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
826  return TypeFunc::make(domain, range);
827}
828
829//-------------- methodData update helpers
830
831const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
832  // create input type (domain)
833  const Type **fields = TypeTuple::fields(2);
834  fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
835  fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
836  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
837
838  // create result type
839  fields = TypeTuple::fields(1);
840  fields[TypeFunc::Parms+0] = NULL; // void
841  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
842  return TypeFunc::make(domain,range);
843}
844
845JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
846  if (receiver == NULL) return;
847  klassOop receiver_klass = receiver->klass();
848
849  intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
850  int empty_row = -1;           // free row, if any is encountered
851
852  // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
853  for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
854    // if (vc->receiver(row) == receiver_klass)
855    int receiver_off = ReceiverTypeData::receiver_cell_index(row);
856    intptr_t row_recv = *(mdp + receiver_off);
857    if (row_recv == (intptr_t) receiver_klass) {
858      // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
859      int count_off = ReceiverTypeData::receiver_count_cell_index(row);
860      *(mdp + count_off) += DataLayout::counter_increment;
861      return;
862    } else if (row_recv == 0) {
863      // else if (vc->receiver(row) == NULL)
864      empty_row = (int) row;
865    }
866  }
867
868  if (empty_row != -1) {
869    int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
870    // vc->set_receiver(empty_row, receiver_klass);
871    *(mdp + receiver_off) = (intptr_t) receiver_klass;
872    // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
873    int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
874    *(mdp + count_off) = DataLayout::counter_increment;
875  } else {
876    // Receiver did not match any saved receiver and there is no empty row for it.
877    // Increment total counter to indicate polymorphic case.
878    intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
879    *count_p += DataLayout::counter_increment;
880  }
881JRT_END
882
883//-----------------------------------------------------------------------------
884// implicit exception support.
885
886static void report_null_exception_in_code_cache(address exception_pc) {
887  ResourceMark rm;
888  CodeBlob* n = CodeCache::find_blob(exception_pc);
889  if (n != NULL) {
890    tty->print_cr("#");
891    tty->print_cr("# HotSpot Runtime Error, null exception in generated code");
892    tty->print_cr("#");
893    tty->print_cr("# pc where exception happened = " INTPTR_FORMAT, exception_pc);
894
895    if (n->is_nmethod()) {
896      methodOop method = ((nmethod*)n)->method();
897      tty->print_cr("# Method where it happened %s.%s ", Klass::cast(method->method_holder())->name()->as_C_string(), method->name()->as_C_string());
898      tty->print_cr("#");
899      if (ShowMessageBoxOnError && UpdateHotSpotCompilerFileOnError) {
900        const char* title    = "HotSpot Runtime Error";
901        const char* question = "Do you want to exclude compilation of this method in future runs?";
902        if (os::message_box(title, question)) {
903          CompilerOracle::append_comment_to_file("");
904          CompilerOracle::append_comment_to_file("Null exception in compiled code resulted in the following exclude");
905          CompilerOracle::append_comment_to_file("");
906          CompilerOracle::append_exclude_to_file(method);
907          tty->print_cr("#");
908          tty->print_cr("# %s has been updated to exclude the specified method", CompileCommandFile);
909          tty->print_cr("#");
910        }
911      }
912      fatal("Implicit null exception happened in compiled method");
913    } else {
914      n->print();
915      fatal("Implicit null exception happened in generated stub");
916    }
917  }
918  fatal("Implicit null exception at wrong place");
919}
920
921
922//-------------------------------------------------------------------------------------
923// register policy
924
925bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
926  assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
927  switch (register_save_policy[reg]) {
928    case 'C': return false; //SOC
929    case 'E': return true ; //SOE
930    case 'N': return false; //NS
931    case 'A': return false; //AS
932  }
933  ShouldNotReachHere();
934  return false;
935}
936
937//-----------------------------------------------------------------------
938// Exceptions
939//
940
941static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
942
943// The method is an entry that is always called by a C++ method not
944// directly from compiled code. Compiled code will call the C++ method following.
945// We can't allow async exception to be installed during  exception processing.
946JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
947
948  // Do not confuse exception_oop with pending_exception. The exception_oop
949  // is only used to pass arguments into the method. Not for general
950  // exception handling.  DO NOT CHANGE IT to use pending_exception, since
951  // the runtime stubs checks this on exit.
952  assert(thread->exception_oop() != NULL, "exception oop is found");
953  address handler_address = NULL;
954
955  Handle exception(thread, thread->exception_oop());
956
957  if (TraceExceptions) {
958    trace_exception(exception(), thread->exception_pc(), "");
959  }
960  // for AbortVMOnException flag
961  NOT_PRODUCT(Exceptions::debug_check_abort(exception));
962
963  #ifdef ASSERT
964    if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
965      // should throw an exception here
966      ShouldNotReachHere();
967    }
968  #endif
969
970
971  // new exception handling: this method is entered only from adapters
972  // exceptions from compiled java methods are handled in compiled code
973  // using rethrow node
974
975  address pc = thread->exception_pc();
976  nm = CodeCache::find_nmethod(pc);
977  assert(nm != NULL, "No NMethod found");
978  if (nm->is_native_method()) {
979    fatal("Native mathod should not have path to exception handling");
980  } else {
981    // we are switching to old paradigm: search for exception handler in caller_frame
982    // instead in exception handler of caller_frame.sender()
983
984    if (JvmtiExport::can_post_on_exceptions()) {
985      // "Full-speed catching" is not necessary here,
986      // since we're notifying the VM on every catch.
987      // Force deoptimization and the rest of the lookup
988      // will be fine.
989      deoptimize_caller_frame(thread, true);
990    }
991
992    // Check the stack guard pages.  If enabled, look for handler in this frame;
993    // otherwise, forcibly unwind the frame.
994    //
995    // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
996    bool force_unwind = !thread->reguard_stack();
997    bool deopting = false;
998    if (nm->is_deopt_pc(pc)) {
999      deopting = true;
1000      RegisterMap map(thread, false);
1001      frame deoptee = thread->last_frame().sender(&map);
1002      assert(deoptee.is_deoptimized_frame(), "must be deopted");
1003      // Adjust the pc back to the original throwing pc
1004      pc = deoptee.pc();
1005    }
1006
1007    // If we are forcing an unwind because of stack overflow then deopt is
1008    // irrelevant sice we are throwing the frame away anyway.
1009
1010    if (deopting && !force_unwind) {
1011      handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1012    } else {
1013
1014      handler_address =
1015        force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1016
1017      if (handler_address == NULL) {
1018        Handle original_exception(thread, exception());
1019        handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1020        assert (handler_address != NULL, "must have compiled handler");
1021        // Update the exception cache only when the unwind was not forced
1022        // and there didn't happen another exception during the computation of the
1023        // compiled exception handler.
1024        if (!force_unwind && original_exception() == exception()) {
1025          nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1026        }
1027      } else {
1028        assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1029      }
1030    }
1031
1032    thread->set_exception_pc(pc);
1033    thread->set_exception_handler_pc(handler_address);
1034
1035    // Check if the exception PC is a MethodHandle call site.
1036    thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1037  }
1038
1039  // Restore correct return pc.  Was saved above.
1040  thread->set_exception_oop(exception());
1041  return handler_address;
1042
1043JRT_END
1044
1045// We are entering here from exception_blob
1046// If there is a compiled exception handler in this method, we will continue there;
1047// otherwise we will unwind the stack and continue at the caller of top frame method
1048// Note we enter without the usual JRT wrapper. We will call a helper routine that
1049// will do the normal VM entry. We do it this way so that we can see if the nmethod
1050// we looked up the handler for has been deoptimized in the meantime. If it has been
1051// we must not use the handler and instread return the deopt blob.
1052address OptoRuntime::handle_exception_C(JavaThread* thread) {
1053//
1054// We are in Java not VM and in debug mode we have a NoHandleMark
1055//
1056#ifndef PRODUCT
1057  SharedRuntime::_find_handler_ctr++;          // find exception handler
1058#endif
1059  debug_only(NoHandleMark __hm;)
1060  nmethod* nm = NULL;
1061  address handler_address = NULL;
1062  {
1063    // Enter the VM
1064
1065    ResetNoHandleMark rnhm;
1066    handler_address = handle_exception_C_helper(thread, nm);
1067  }
1068
1069  // Back in java: Use no oops, DON'T safepoint
1070
1071  // Now check to see if the handler we are returning is in a now
1072  // deoptimized frame
1073
1074  if (nm != NULL) {
1075    RegisterMap map(thread, false);
1076    frame caller = thread->last_frame().sender(&map);
1077#ifdef ASSERT
1078    assert(caller.is_compiled_frame(), "must be");
1079#endif // ASSERT
1080    if (caller.is_deoptimized_frame()) {
1081      handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1082    }
1083  }
1084  return handler_address;
1085}
1086
1087//------------------------------rethrow----------------------------------------
1088// We get here after compiled code has executed a 'RethrowNode'.  The callee
1089// is either throwing or rethrowing an exception.  The callee-save registers
1090// have been restored, synchronized objects have been unlocked and the callee
1091// stack frame has been removed.  The return address was passed in.
1092// Exception oop is passed as the 1st argument.  This routine is then called
1093// from the stub.  On exit, we know where to jump in the caller's code.
1094// After this C code exits, the stub will pop his frame and end in a jump
1095// (instead of a return).  We enter the caller's default handler.
1096//
1097// This must be JRT_LEAF:
1098//     - caller will not change its state as we cannot block on exit,
1099//       therefore raw_exception_handler_for_return_address is all it takes
1100//       to handle deoptimized blobs
1101//
1102// However, there needs to be a safepoint check in the middle!  So compiled
1103// safepoints are completely watertight.
1104//
1105// Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1106//
1107// *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1108//
1109address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1110#ifndef PRODUCT
1111  SharedRuntime::_rethrow_ctr++;               // count rethrows
1112#endif
1113  assert (exception != NULL, "should have thrown a NULLPointerException");
1114#ifdef ASSERT
1115  if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1116    // should throw an exception here
1117    ShouldNotReachHere();
1118  }
1119#endif
1120
1121  thread->set_vm_result(exception);
1122  // Frame not compiled (handles deoptimization blob)
1123  return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1124}
1125
1126
1127const TypeFunc *OptoRuntime::rethrow_Type() {
1128  // create input type (domain)
1129  const Type **fields = TypeTuple::fields(1);
1130  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1131  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1132
1133  // create result type (range)
1134  fields = TypeTuple::fields(1);
1135  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1136  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1137
1138  return TypeFunc::make(domain, range);
1139}
1140
1141
1142void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1143  // Deoptimize frame
1144  if (doit) {
1145    // Called from within the owner thread, so no need for safepoint
1146    RegisterMap reg_map(thread);
1147    frame stub_frame = thread->last_frame();
1148    assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1149    frame caller_frame = stub_frame.sender(&reg_map);
1150
1151    // Deoptimize the caller frame.
1152    Deoptimization::deoptimize_frame(thread, caller_frame.id());
1153  }
1154}
1155
1156
1157bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1158  // Called from within the owner thread, so no need for safepoint
1159  RegisterMap reg_map(thread);
1160  frame stub_frame = thread->last_frame();
1161  assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1162  frame caller_frame = stub_frame.sender(&reg_map);
1163  return caller_frame.is_deoptimized_frame();
1164}
1165
1166
1167const TypeFunc *OptoRuntime::register_finalizer_Type() {
1168  // create input type (domain)
1169  const Type **fields = TypeTuple::fields(1);
1170  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1171  // // The JavaThread* is passed to each routine as the last argument
1172  // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1173  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1174
1175  // create result type (range)
1176  fields = TypeTuple::fields(0);
1177
1178  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1179
1180  return TypeFunc::make(domain,range);
1181}
1182
1183
1184//-----------------------------------------------------------------------------
1185// Dtrace support.  entry and exit probes have the same signature
1186const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1187  // create input type (domain)
1188  const Type **fields = TypeTuple::fields(2);
1189  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1190  fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // methodOop;    Method we are entering
1191  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1192
1193  // create result type (range)
1194  fields = TypeTuple::fields(0);
1195
1196  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1197
1198  return TypeFunc::make(domain,range);
1199}
1200
1201const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1202  // create input type (domain)
1203  const Type **fields = TypeTuple::fields(2);
1204  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1205  fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1206
1207  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1208
1209  // create result type (range)
1210  fields = TypeTuple::fields(0);
1211
1212  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1213
1214  return TypeFunc::make(domain,range);
1215}
1216
1217
1218JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1219  assert(obj->is_oop(), "must be a valid oop");
1220  assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
1221  instanceKlass::register_finalizer(instanceOop(obj), CHECK);
1222JRT_END
1223
1224//-----------------------------------------------------------------------------
1225
1226NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1227
1228//
1229// dump the collected NamedCounters.
1230//
1231void OptoRuntime::print_named_counters() {
1232  int total_lock_count = 0;
1233  int eliminated_lock_count = 0;
1234
1235  NamedCounter* c = _named_counters;
1236  while (c) {
1237    if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1238      int count = c->count();
1239      if (count > 0) {
1240        bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1241        if (Verbose) {
1242          tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1243        }
1244        total_lock_count += count;
1245        if (eliminated) {
1246          eliminated_lock_count += count;
1247        }
1248      }
1249    } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1250      BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1251      if (blc->nonzero()) {
1252        tty->print_cr("%s", c->name());
1253        blc->print_on(tty);
1254      }
1255    }
1256    c = c->next();
1257  }
1258  if (total_lock_count > 0) {
1259    tty->print_cr("dynamic locks: %d", total_lock_count);
1260    if (eliminated_lock_count) {
1261      tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1262                    (int)(eliminated_lock_count * 100.0 / total_lock_count));
1263    }
1264  }
1265}
1266
1267//
1268//  Allocate a new NamedCounter.  The JVMState is used to generate the
1269//  name which consists of method@line for the inlining tree.
1270//
1271
1272NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1273  int max_depth = youngest_jvms->depth();
1274
1275  // Visit scopes from youngest to oldest.
1276  bool first = true;
1277  stringStream st;
1278  for (int depth = max_depth; depth >= 1; depth--) {
1279    JVMState* jvms = youngest_jvms->of_depth(depth);
1280    ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1281    if (!first) {
1282      st.print(" ");
1283    } else {
1284      first = false;
1285    }
1286    int bci = jvms->bci();
1287    if (bci < 0) bci = 0;
1288    st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1289    // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1290  }
1291  NamedCounter* c;
1292  if (tag == NamedCounter::BiasedLockingCounter) {
1293    c = new BiasedLockingNamedCounter(strdup(st.as_string()));
1294  } else {
1295    c = new NamedCounter(strdup(st.as_string()), tag);
1296  }
1297
1298  // atomically add the new counter to the head of the list.  We only
1299  // add counters so this is safe.
1300  NamedCounter* head;
1301  do {
1302    head = _named_counters;
1303    c->set_next(head);
1304  } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1305  return c;
1306}
1307
1308//-----------------------------------------------------------------------------
1309// Non-product code
1310#ifndef PRODUCT
1311
1312int trace_exception_counter = 0;
1313static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1314  ttyLocker ttyl;
1315  trace_exception_counter++;
1316  tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1317  exception_oop->print_value();
1318  tty->print(" in ");
1319  CodeBlob* blob = CodeCache::find_blob(exception_pc);
1320  if (blob->is_nmethod()) {
1321    ((nmethod*)blob)->method()->print_value();
1322  } else if (blob->is_runtime_stub()) {
1323    tty->print("<runtime-stub>");
1324  } else {
1325    tty->print("<unknown>");
1326  }
1327  tty->print(" at " INTPTR_FORMAT,  exception_pc);
1328  tty->print_cr("]");
1329}
1330
1331#endif  // PRODUCT
1332
1333
1334# ifdef ENABLE_ZAP_DEAD_LOCALS
1335// Called from call sites in compiled code with oop maps (actually safepoints)
1336// Zaps dead locals in first java frame.
1337// Is entry because may need to lock to generate oop maps
1338// Currently, only used for compiler frames, but someday may be used
1339// for interpreter frames, too.
1340
1341int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1342
1343// avoid pointers to member funcs with these helpers
1344static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1345static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1346
1347
1348void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1349                                                bool (*is_this_the_right_frame_to_zap)(frame*)) {
1350  assert(JavaThread::current() == thread, "is this needed?");
1351
1352  if ( !ZapDeadCompiledLocals )  return;
1353
1354  bool skip = false;
1355
1356       if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1357  else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1358  else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1359    warning("starting zapping after skipping");
1360
1361       if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1362  else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1363  else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1364    warning("about to zap last zap");
1365
1366  ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1367
1368  if ( skip )  return;
1369
1370  // find java frame and zap it
1371
1372  for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1373    if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1374      sfs.current()->zap_dead_locals(thread, sfs.register_map());
1375      return;
1376    }
1377  }
1378  warning("no frame found to zap in zap_dead_Java_locals_C");
1379}
1380
1381JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1382  zap_dead_java_or_native_locals(thread, is_java_frame);
1383JRT_END
1384
1385// The following does not work because for one thing, the
1386// thread state is wrong; it expects java, but it is native.
1387// Also, the invariants in a native stub are different and
1388// I'm not sure it is safe to have a MachCalRuntimeDirectNode
1389// in there.
1390// So for now, we do not zap in native stubs.
1391
1392JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1393  zap_dead_java_or_native_locals(thread, is_native_frame);
1394JRT_END
1395
1396# endif
1397