runtime.cpp revision 2062:3582bf76420e
1/*
2 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "classfile/vmSymbols.hpp"
28#include "code/compiledIC.hpp"
29#include "code/icBuffer.hpp"
30#include "code/nmethod.hpp"
31#include "code/pcDesc.hpp"
32#include "code/scopeDesc.hpp"
33#include "code/vtableStubs.hpp"
34#include "compiler/compileBroker.hpp"
35#include "compiler/compilerOracle.hpp"
36#include "compiler/oopMap.hpp"
37#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
38#include "gc_implementation/g1/heapRegion.hpp"
39#include "gc_interface/collectedHeap.hpp"
40#include "interpreter/bytecode.hpp"
41#include "interpreter/interpreter.hpp"
42#include "interpreter/linkResolver.hpp"
43#include "memory/barrierSet.hpp"
44#include "memory/gcLocker.inline.hpp"
45#include "memory/oopFactory.hpp"
46#include "oops/objArrayKlass.hpp"
47#include "oops/oop.inline.hpp"
48#include "opto/addnode.hpp"
49#include "opto/callnode.hpp"
50#include "opto/cfgnode.hpp"
51#include "opto/connode.hpp"
52#include "opto/graphKit.hpp"
53#include "opto/machnode.hpp"
54#include "opto/matcher.hpp"
55#include "opto/memnode.hpp"
56#include "opto/mulnode.hpp"
57#include "opto/runtime.hpp"
58#include "opto/subnode.hpp"
59#include "runtime/fprofiler.hpp"
60#include "runtime/handles.inline.hpp"
61#include "runtime/interfaceSupport.hpp"
62#include "runtime/javaCalls.hpp"
63#include "runtime/sharedRuntime.hpp"
64#include "runtime/signature.hpp"
65#include "runtime/threadCritical.hpp"
66#include "runtime/vframe.hpp"
67#include "runtime/vframeArray.hpp"
68#include "runtime/vframe_hp.hpp"
69#include "utilities/copy.hpp"
70#include "utilities/preserveException.hpp"
71#ifdef TARGET_ARCH_MODEL_x86_32
72# include "adfiles/ad_x86_32.hpp"
73#endif
74#ifdef TARGET_ARCH_MODEL_x86_64
75# include "adfiles/ad_x86_64.hpp"
76#endif
77#ifdef TARGET_ARCH_MODEL_sparc
78# include "adfiles/ad_sparc.hpp"
79#endif
80#ifdef TARGET_ARCH_MODEL_zero
81# include "adfiles/ad_zero.hpp"
82#endif
83
84
85// For debugging purposes:
86//  To force FullGCALot inside a runtime function, add the following two lines
87//
88//  Universe::release_fullgc_alot_dummy();
89//  MarkSweep::invoke(0, "Debugging");
90//
91// At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
92
93
94
95
96// Compiled code entry points
97address OptoRuntime::_new_instance_Java                           = NULL;
98address OptoRuntime::_new_array_Java                              = NULL;
99address OptoRuntime::_multianewarray2_Java                        = NULL;
100address OptoRuntime::_multianewarray3_Java                        = NULL;
101address OptoRuntime::_multianewarray4_Java                        = NULL;
102address OptoRuntime::_multianewarray5_Java                        = NULL;
103address OptoRuntime::_g1_wb_pre_Java                              = NULL;
104address OptoRuntime::_g1_wb_post_Java                             = NULL;
105address OptoRuntime::_vtable_must_compile_Java                    = NULL;
106address OptoRuntime::_complete_monitor_locking_Java               = NULL;
107address OptoRuntime::_rethrow_Java                                = NULL;
108
109address OptoRuntime::_slow_arraycopy_Java                         = NULL;
110address OptoRuntime::_register_finalizer_Java                     = NULL;
111
112# ifdef ENABLE_ZAP_DEAD_LOCALS
113address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
114address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
115# endif
116
117
118// This should be called in an assertion at the start of OptoRuntime routines
119// which are entered from compiled code (all of them)
120#ifndef PRODUCT
121static bool check_compiled_frame(JavaThread* thread) {
122  assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
123#ifdef ASSERT
124  RegisterMap map(thread, false);
125  frame caller = thread->last_frame().sender(&map);
126  assert(caller.is_compiled_frame(), "not being called from compiled like code");
127#endif  /* ASSERT */
128  return true;
129}
130#endif
131
132
133#define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
134  var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc)
135
136void OptoRuntime::generate(ciEnv* env) {
137
138  generate_exception_blob();
139
140  // Note: tls: Means fetching the return oop out of the thread-local storage
141  //
142  //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
143  // -------------------------------------------------------------------------------------------------------------------------------
144  gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
145  gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
146  gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
147  gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
148  gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
149  gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
150  gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
151  gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
152  gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C      ,    0 , false, false, false);
153  gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
154
155  gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
156  gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
157
158# ifdef ENABLE_ZAP_DEAD_LOCALS
159  gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
160  gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
161# endif
162
163}
164
165#undef gen
166
167
168// Helper method to do generation of RunTimeStub's
169address OptoRuntime::generate_stub( ciEnv* env,
170                                    TypeFunc_generator gen, address C_function,
171                                    const char *name, int is_fancy_jump,
172                                    bool pass_tls,
173                                    bool save_argument_registers,
174                                    bool return_pc ) {
175  ResourceMark rm;
176  Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
177  return  C.stub_entry_point();
178}
179
180const char* OptoRuntime::stub_name(address entry) {
181#ifndef PRODUCT
182  CodeBlob* cb = CodeCache::find_blob(entry);
183  RuntimeStub* rs =(RuntimeStub *)cb;
184  assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
185  return rs->name();
186#else
187  // Fast implementation for product mode (maybe it should be inlined too)
188  return "runtime stub";
189#endif
190}
191
192
193//=============================================================================
194// Opto compiler runtime routines
195//=============================================================================
196
197
198//=============================allocation======================================
199// We failed the fast-path allocation.  Now we need to do a scavenge or GC
200// and try allocation again.
201
202void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
203  // After any safepoint, just before going back to compiled code,
204  // we inform the GC that we will be doing initializing writes to
205  // this object in the future without emitting card-marks, so
206  // GC may take any compensating steps.
207  // NOTE: Keep this code consistent with GraphKit::store_barrier.
208
209  oop new_obj = thread->vm_result();
210  if (new_obj == NULL)  return;
211
212  assert(Universe::heap()->can_elide_tlab_store_barriers(),
213         "compiler must check this first");
214  // GC may decide to give back a safer copy of new_obj.
215  new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
216  thread->set_vm_result(new_obj);
217}
218
219// object allocation
220JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(klassOopDesc* klass, JavaThread* thread))
221  JRT_BLOCK;
222#ifndef PRODUCT
223  SharedRuntime::_new_instance_ctr++;         // new instance requires GC
224#endif
225  assert(check_compiled_frame(thread), "incorrect caller");
226
227  // These checks are cheap to make and support reflective allocation.
228  int lh = Klass::cast(klass)->layout_helper();
229  if (Klass::layout_helper_needs_slow_path(lh)
230      || !instanceKlass::cast(klass)->is_initialized()) {
231    KlassHandle kh(THREAD, klass);
232    kh->check_valid_for_instantiation(false, THREAD);
233    if (!HAS_PENDING_EXCEPTION) {
234      instanceKlass::cast(kh())->initialize(THREAD);
235    }
236    if (!HAS_PENDING_EXCEPTION) {
237      klass = kh();
238    } else {
239      klass = NULL;
240    }
241  }
242
243  if (klass != NULL) {
244    // Scavenge and allocate an instance.
245    oop result = instanceKlass::cast(klass)->allocate_instance(THREAD);
246    thread->set_vm_result(result);
247
248    // Pass oops back through thread local storage.  Our apparent type to Java
249    // is that we return an oop, but we can block on exit from this routine and
250    // a GC can trash the oop in C's return register.  The generated stub will
251    // fetch the oop from TLS after any possible GC.
252  }
253
254  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
255  JRT_BLOCK_END;
256
257  if (GraphKit::use_ReduceInitialCardMarks()) {
258    // inform GC that we won't do card marks for initializing writes.
259    new_store_pre_barrier(thread);
260  }
261JRT_END
262
263
264// array allocation
265JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(klassOopDesc* array_type, int len, JavaThread *thread))
266  JRT_BLOCK;
267#ifndef PRODUCT
268  SharedRuntime::_new_array_ctr++;            // new array requires GC
269#endif
270  assert(check_compiled_frame(thread), "incorrect caller");
271
272  // Scavenge and allocate an instance.
273  oop result;
274
275  if (Klass::cast(array_type)->oop_is_typeArray()) {
276    // The oopFactory likes to work with the element type.
277    // (We could bypass the oopFactory, since it doesn't add much value.)
278    BasicType elem_type = typeArrayKlass::cast(array_type)->element_type();
279    result = oopFactory::new_typeArray(elem_type, len, THREAD);
280  } else {
281    // Although the oopFactory likes to work with the elem_type,
282    // the compiler prefers the array_type, since it must already have
283    // that latter value in hand for the fast path.
284    klassOopDesc* elem_type = objArrayKlass::cast(array_type)->element_klass();
285    result = oopFactory::new_objArray(elem_type, len, THREAD);
286  }
287
288  // Pass oops back through thread local storage.  Our apparent type to Java
289  // is that we return an oop, but we can block on exit from this routine and
290  // a GC can trash the oop in C's return register.  The generated stub will
291  // fetch the oop from TLS after any possible GC.
292  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
293  thread->set_vm_result(result);
294  JRT_BLOCK_END;
295
296  if (GraphKit::use_ReduceInitialCardMarks()) {
297    // inform GC that we won't do card marks for initializing writes.
298    new_store_pre_barrier(thread);
299  }
300JRT_END
301
302// Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
303
304// multianewarray for 2 dimensions
305JRT_ENTRY(void, OptoRuntime::multianewarray2_C(klassOopDesc* elem_type, int len1, int len2, JavaThread *thread))
306#ifndef PRODUCT
307  SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
308#endif
309  assert(check_compiled_frame(thread), "incorrect caller");
310  assert(oop(elem_type)->is_klass(), "not a class");
311  jint dims[2];
312  dims[0] = len1;
313  dims[1] = len2;
314  oop obj = arrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
315  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
316  thread->set_vm_result(obj);
317JRT_END
318
319// multianewarray for 3 dimensions
320JRT_ENTRY(void, OptoRuntime::multianewarray3_C(klassOopDesc* elem_type, int len1, int len2, int len3, JavaThread *thread))
321#ifndef PRODUCT
322  SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
323#endif
324  assert(check_compiled_frame(thread), "incorrect caller");
325  assert(oop(elem_type)->is_klass(), "not a class");
326  jint dims[3];
327  dims[0] = len1;
328  dims[1] = len2;
329  dims[2] = len3;
330  oop obj = arrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
331  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
332  thread->set_vm_result(obj);
333JRT_END
334
335// multianewarray for 4 dimensions
336JRT_ENTRY(void, OptoRuntime::multianewarray4_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
337#ifndef PRODUCT
338  SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
339#endif
340  assert(check_compiled_frame(thread), "incorrect caller");
341  assert(oop(elem_type)->is_klass(), "not a class");
342  jint dims[4];
343  dims[0] = len1;
344  dims[1] = len2;
345  dims[2] = len3;
346  dims[3] = len4;
347  oop obj = arrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
348  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
349  thread->set_vm_result(obj);
350JRT_END
351
352// multianewarray for 5 dimensions
353JRT_ENTRY(void, OptoRuntime::multianewarray5_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
354#ifndef PRODUCT
355  SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
356#endif
357  assert(check_compiled_frame(thread), "incorrect caller");
358  assert(oop(elem_type)->is_klass(), "not a class");
359  jint dims[5];
360  dims[0] = len1;
361  dims[1] = len2;
362  dims[2] = len3;
363  dims[3] = len4;
364  dims[4] = len5;
365  oop obj = arrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
366  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
367  thread->set_vm_result(obj);
368JRT_END
369
370const TypeFunc *OptoRuntime::new_instance_Type() {
371  // create input type (domain)
372  const Type **fields = TypeTuple::fields(1);
373  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
374  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
375
376  // create result type (range)
377  fields = TypeTuple::fields(1);
378  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
379
380  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
381
382  return TypeFunc::make(domain, range);
383}
384
385
386const TypeFunc *OptoRuntime::athrow_Type() {
387  // create input type (domain)
388  const Type **fields = TypeTuple::fields(1);
389  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
390  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
391
392  // create result type (range)
393  fields = TypeTuple::fields(0);
394
395  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
396
397  return TypeFunc::make(domain, range);
398}
399
400
401const TypeFunc *OptoRuntime::new_array_Type() {
402  // create input type (domain)
403  const Type **fields = TypeTuple::fields(2);
404  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
405  fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
406  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
407
408  // create result type (range)
409  fields = TypeTuple::fields(1);
410  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
411
412  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
413
414  return TypeFunc::make(domain, range);
415}
416
417const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
418  // create input type (domain)
419  const int nargs = ndim + 1;
420  const Type **fields = TypeTuple::fields(nargs);
421  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
422  for( int i = 1; i < nargs; i++ )
423    fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
424  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
425
426  // create result type (range)
427  fields = TypeTuple::fields(1);
428  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
429  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
430
431  return TypeFunc::make(domain, range);
432}
433
434const TypeFunc *OptoRuntime::multianewarray2_Type() {
435  return multianewarray_Type(2);
436}
437
438const TypeFunc *OptoRuntime::multianewarray3_Type() {
439  return multianewarray_Type(3);
440}
441
442const TypeFunc *OptoRuntime::multianewarray4_Type() {
443  return multianewarray_Type(4);
444}
445
446const TypeFunc *OptoRuntime::multianewarray5_Type() {
447  return multianewarray_Type(5);
448}
449
450const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
451  const Type **fields = TypeTuple::fields(2);
452  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
453  fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
454  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
455
456  // create result type (range)
457  fields = TypeTuple::fields(0);
458  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
459
460  return TypeFunc::make(domain, range);
461}
462
463const TypeFunc *OptoRuntime::g1_wb_post_Type() {
464
465  const Type **fields = TypeTuple::fields(2);
466  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
467  fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
468  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
469
470  // create result type (range)
471  fields = TypeTuple::fields(0);
472  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
473
474  return TypeFunc::make(domain, range);
475}
476
477const TypeFunc *OptoRuntime::uncommon_trap_Type() {
478  // create input type (domain)
479  const Type **fields = TypeTuple::fields(1);
480  // Symbol* name of class to be loaded
481  fields[TypeFunc::Parms+0] = TypeInt::INT;
482  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
483
484  // create result type (range)
485  fields = TypeTuple::fields(0);
486  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
487
488  return TypeFunc::make(domain, range);
489}
490
491# ifdef ENABLE_ZAP_DEAD_LOCALS
492// Type used for stub generation for zap_dead_locals.
493// No inputs or outputs
494const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
495  // create input type (domain)
496  const Type **fields = TypeTuple::fields(0);
497  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
498
499  // create result type (range)
500  fields = TypeTuple::fields(0);
501  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
502
503  return TypeFunc::make(domain,range);
504}
505# endif
506
507
508//-----------------------------------------------------------------------------
509// Monitor Handling
510const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
511  // create input type (domain)
512  const Type **fields = TypeTuple::fields(2);
513  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
514  fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
515  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
516
517  // create result type (range)
518  fields = TypeTuple::fields(0);
519
520  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
521
522  return TypeFunc::make(domain,range);
523}
524
525
526//-----------------------------------------------------------------------------
527const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
528  // create input type (domain)
529  const Type **fields = TypeTuple::fields(2);
530  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
531  fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
532  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
533
534  // create result type (range)
535  fields = TypeTuple::fields(0);
536
537  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
538
539  return TypeFunc::make(domain,range);
540}
541
542const TypeFunc* OptoRuntime::flush_windows_Type() {
543  // create input type (domain)
544  const Type** fields = TypeTuple::fields(1);
545  fields[TypeFunc::Parms+0] = NULL; // void
546  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
547
548  // create result type
549  fields = TypeTuple::fields(1);
550  fields[TypeFunc::Parms+0] = NULL; // void
551  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
552
553  return TypeFunc::make(domain, range);
554}
555
556const TypeFunc* OptoRuntime::l2f_Type() {
557  // create input type (domain)
558  const Type **fields = TypeTuple::fields(2);
559  fields[TypeFunc::Parms+0] = TypeLong::LONG;
560  fields[TypeFunc::Parms+1] = Type::HALF;
561  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
562
563  // create result type (range)
564  fields = TypeTuple::fields(1);
565  fields[TypeFunc::Parms+0] = Type::FLOAT;
566  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
567
568  return TypeFunc::make(domain, range);
569}
570
571const TypeFunc* OptoRuntime::modf_Type() {
572  const Type **fields = TypeTuple::fields(2);
573  fields[TypeFunc::Parms+0] = Type::FLOAT;
574  fields[TypeFunc::Parms+1] = Type::FLOAT;
575  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
576
577  // create result type (range)
578  fields = TypeTuple::fields(1);
579  fields[TypeFunc::Parms+0] = Type::FLOAT;
580
581  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
582
583  return TypeFunc::make(domain, range);
584}
585
586const TypeFunc *OptoRuntime::Math_D_D_Type() {
587  // create input type (domain)
588  const Type **fields = TypeTuple::fields(2);
589  // Symbol* name of class to be loaded
590  fields[TypeFunc::Parms+0] = Type::DOUBLE;
591  fields[TypeFunc::Parms+1] = Type::HALF;
592  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
593
594  // create result type (range)
595  fields = TypeTuple::fields(2);
596  fields[TypeFunc::Parms+0] = Type::DOUBLE;
597  fields[TypeFunc::Parms+1] = Type::HALF;
598  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
599
600  return TypeFunc::make(domain, range);
601}
602
603const TypeFunc* OptoRuntime::Math_DD_D_Type() {
604  const Type **fields = TypeTuple::fields(4);
605  fields[TypeFunc::Parms+0] = Type::DOUBLE;
606  fields[TypeFunc::Parms+1] = Type::HALF;
607  fields[TypeFunc::Parms+2] = Type::DOUBLE;
608  fields[TypeFunc::Parms+3] = Type::HALF;
609  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
610
611  // create result type (range)
612  fields = TypeTuple::fields(2);
613  fields[TypeFunc::Parms+0] = Type::DOUBLE;
614  fields[TypeFunc::Parms+1] = Type::HALF;
615  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
616
617  return TypeFunc::make(domain, range);
618}
619
620//-------------- currentTimeMillis
621
622const TypeFunc* OptoRuntime::current_time_millis_Type() {
623  // create input type (domain)
624  const Type **fields = TypeTuple::fields(0);
625  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
626
627  // create result type (range)
628  fields = TypeTuple::fields(2);
629  fields[TypeFunc::Parms+0] = TypeLong::LONG;
630  fields[TypeFunc::Parms+1] = Type::HALF;
631  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
632
633  return TypeFunc::make(domain, range);
634}
635
636// arraycopy stub variations:
637enum ArrayCopyType {
638  ac_fast,                      // void(ptr, ptr, size_t)
639  ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
640  ac_slow,                      // void(ptr, int, ptr, int, int)
641  ac_generic                    //  int(ptr, int, ptr, int, int)
642};
643
644static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
645  // create input type (domain)
646  int num_args      = (act == ac_fast ? 3 : 5);
647  int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
648  int argcnt = num_args;
649  LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
650  const Type** fields = TypeTuple::fields(argcnt);
651  int argp = TypeFunc::Parms;
652  fields[argp++] = TypePtr::NOTNULL;    // src
653  if (num_size_args == 0) {
654    fields[argp++] = TypeInt::INT;      // src_pos
655  }
656  fields[argp++] = TypePtr::NOTNULL;    // dest
657  if (num_size_args == 0) {
658    fields[argp++] = TypeInt::INT;      // dest_pos
659    fields[argp++] = TypeInt::INT;      // length
660  }
661  while (num_size_args-- > 0) {
662    fields[argp++] = TypeX_X;               // size in whatevers (size_t)
663    LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
664  }
665  if (act == ac_checkcast) {
666    fields[argp++] = TypePtr::NOTNULL;  // super_klass
667  }
668  assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
669  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
670
671  // create result type if needed
672  int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
673  fields = TypeTuple::fields(1);
674  if (retcnt == 0)
675    fields[TypeFunc::Parms+0] = NULL; // void
676  else
677    fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
678  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
679  return TypeFunc::make(domain, range);
680}
681
682const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
683  // This signature is simple:  Two base pointers and a size_t.
684  return make_arraycopy_Type(ac_fast);
685}
686
687const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
688  // An extension of fast_arraycopy_Type which adds type checking.
689  return make_arraycopy_Type(ac_checkcast);
690}
691
692const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
693  // This signature is exactly the same as System.arraycopy.
694  // There are no intptr_t (int/long) arguments.
695  return make_arraycopy_Type(ac_slow);
696}
697
698const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
699  // This signature is like System.arraycopy, except that it returns status.
700  return make_arraycopy_Type(ac_generic);
701}
702
703
704const TypeFunc* OptoRuntime::array_fill_Type() {
705  // create input type (domain): pointer, int, size_t
706  const Type** fields = TypeTuple::fields(3 LP64_ONLY( + 1));
707  int argp = TypeFunc::Parms;
708  fields[argp++] = TypePtr::NOTNULL;
709  fields[argp++] = TypeInt::INT;
710  fields[argp++] = TypeX_X;               // size in whatevers (size_t)
711  LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
712  const TypeTuple *domain = TypeTuple::make(argp, fields);
713
714  // create result type
715  fields = TypeTuple::fields(1);
716  fields[TypeFunc::Parms+0] = NULL; // void
717  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
718
719  return TypeFunc::make(domain, range);
720}
721
722//------------- Interpreter state access for on stack replacement
723const TypeFunc* OptoRuntime::osr_end_Type() {
724  // create input type (domain)
725  const Type **fields = TypeTuple::fields(1);
726  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
727  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
728
729  // create result type
730  fields = TypeTuple::fields(1);
731  // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
732  fields[TypeFunc::Parms+0] = NULL; // void
733  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
734  return TypeFunc::make(domain, range);
735}
736
737//-------------- methodData update helpers
738
739const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
740  // create input type (domain)
741  const Type **fields = TypeTuple::fields(2);
742  fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
743  fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
744  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
745
746  // create result type
747  fields = TypeTuple::fields(1);
748  fields[TypeFunc::Parms+0] = NULL; // void
749  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
750  return TypeFunc::make(domain,range);
751}
752
753JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
754  if (receiver == NULL) return;
755  klassOop receiver_klass = receiver->klass();
756
757  intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
758  int empty_row = -1;           // free row, if any is encountered
759
760  // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
761  for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
762    // if (vc->receiver(row) == receiver_klass)
763    int receiver_off = ReceiverTypeData::receiver_cell_index(row);
764    intptr_t row_recv = *(mdp + receiver_off);
765    if (row_recv == (intptr_t) receiver_klass) {
766      // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
767      int count_off = ReceiverTypeData::receiver_count_cell_index(row);
768      *(mdp + count_off) += DataLayout::counter_increment;
769      return;
770    } else if (row_recv == 0) {
771      // else if (vc->receiver(row) == NULL)
772      empty_row = (int) row;
773    }
774  }
775
776  if (empty_row != -1) {
777    int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
778    // vc->set_receiver(empty_row, receiver_klass);
779    *(mdp + receiver_off) = (intptr_t) receiver_klass;
780    // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
781    int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
782    *(mdp + count_off) = DataLayout::counter_increment;
783  } else {
784    // Receiver did not match any saved receiver and there is no empty row for it.
785    // Increment total counter to indicate polymorphic case.
786    intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
787    *count_p += DataLayout::counter_increment;
788  }
789JRT_END
790
791//-----------------------------------------------------------------------------
792// implicit exception support.
793
794static void report_null_exception_in_code_cache(address exception_pc) {
795  ResourceMark rm;
796  CodeBlob* n = CodeCache::find_blob(exception_pc);
797  if (n != NULL) {
798    tty->print_cr("#");
799    tty->print_cr("# HotSpot Runtime Error, null exception in generated code");
800    tty->print_cr("#");
801    tty->print_cr("# pc where exception happened = " INTPTR_FORMAT, exception_pc);
802
803    if (n->is_nmethod()) {
804      methodOop method = ((nmethod*)n)->method();
805      tty->print_cr("# Method where it happened %s.%s ", Klass::cast(method->method_holder())->name()->as_C_string(), method->name()->as_C_string());
806      tty->print_cr("#");
807      if (ShowMessageBoxOnError && UpdateHotSpotCompilerFileOnError) {
808        const char* title    = "HotSpot Runtime Error";
809        const char* question = "Do you want to exclude compilation of this method in future runs?";
810        if (os::message_box(title, question)) {
811          CompilerOracle::append_comment_to_file("");
812          CompilerOracle::append_comment_to_file("Null exception in compiled code resulted in the following exclude");
813          CompilerOracle::append_comment_to_file("");
814          CompilerOracle::append_exclude_to_file(method);
815          tty->print_cr("#");
816          tty->print_cr("# %s has been updated to exclude the specified method", CompileCommandFile);
817          tty->print_cr("#");
818        }
819      }
820      fatal("Implicit null exception happened in compiled method");
821    } else {
822      n->print();
823      fatal("Implicit null exception happened in generated stub");
824    }
825  }
826  fatal("Implicit null exception at wrong place");
827}
828
829
830//-------------------------------------------------------------------------------------
831// register policy
832
833bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
834  assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
835  switch (register_save_policy[reg]) {
836    case 'C': return false; //SOC
837    case 'E': return true ; //SOE
838    case 'N': return false; //NS
839    case 'A': return false; //AS
840  }
841  ShouldNotReachHere();
842  return false;
843}
844
845//-----------------------------------------------------------------------
846// Exceptions
847//
848
849static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
850
851// The method is an entry that is always called by a C++ method not
852// directly from compiled code. Compiled code will call the C++ method following.
853// We can't allow async exception to be installed during  exception processing.
854JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
855
856  // Do not confuse exception_oop with pending_exception. The exception_oop
857  // is only used to pass arguments into the method. Not for general
858  // exception handling.  DO NOT CHANGE IT to use pending_exception, since
859  // the runtime stubs checks this on exit.
860  assert(thread->exception_oop() != NULL, "exception oop is found");
861  address handler_address = NULL;
862
863  Handle exception(thread, thread->exception_oop());
864
865  if (TraceExceptions) {
866    trace_exception(exception(), thread->exception_pc(), "");
867  }
868  // for AbortVMOnException flag
869  NOT_PRODUCT(Exceptions::debug_check_abort(exception));
870
871  #ifdef ASSERT
872    if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
873      // should throw an exception here
874      ShouldNotReachHere();
875    }
876  #endif
877
878
879  // new exception handling: this method is entered only from adapters
880  // exceptions from compiled java methods are handled in compiled code
881  // using rethrow node
882
883  address pc = thread->exception_pc();
884  nm = CodeCache::find_nmethod(pc);
885  assert(nm != NULL, "No NMethod found");
886  if (nm->is_native_method()) {
887    fatal("Native mathod should not have path to exception handling");
888  } else {
889    // we are switching to old paradigm: search for exception handler in caller_frame
890    // instead in exception handler of caller_frame.sender()
891
892    if (JvmtiExport::can_post_on_exceptions()) {
893      // "Full-speed catching" is not necessary here,
894      // since we're notifying the VM on every catch.
895      // Force deoptimization and the rest of the lookup
896      // will be fine.
897      deoptimize_caller_frame(thread, true);
898    }
899
900    // Check the stack guard pages.  If enabled, look for handler in this frame;
901    // otherwise, forcibly unwind the frame.
902    //
903    // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
904    bool force_unwind = !thread->reguard_stack();
905    bool deopting = false;
906    if (nm->is_deopt_pc(pc)) {
907      deopting = true;
908      RegisterMap map(thread, false);
909      frame deoptee = thread->last_frame().sender(&map);
910      assert(deoptee.is_deoptimized_frame(), "must be deopted");
911      // Adjust the pc back to the original throwing pc
912      pc = deoptee.pc();
913    }
914
915    // If we are forcing an unwind because of stack overflow then deopt is
916    // irrelevant sice we are throwing the frame away anyway.
917
918    if (deopting && !force_unwind) {
919      handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
920    } else {
921
922      handler_address =
923        force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
924
925      if (handler_address == NULL) {
926        handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
927        assert (handler_address != NULL, "must have compiled handler");
928        // Update the exception cache only when the unwind was not forced.
929        if (!force_unwind) {
930          nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
931        }
932      } else {
933        assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
934      }
935    }
936
937    thread->set_exception_pc(pc);
938    thread->set_exception_handler_pc(handler_address);
939    thread->set_exception_stack_size(0);
940
941    // Check if the exception PC is a MethodHandle call site.
942    thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
943  }
944
945  // Restore correct return pc.  Was saved above.
946  thread->set_exception_oop(exception());
947  return handler_address;
948
949JRT_END
950
951// We are entering here from exception_blob
952// If there is a compiled exception handler in this method, we will continue there;
953// otherwise we will unwind the stack and continue at the caller of top frame method
954// Note we enter without the usual JRT wrapper. We will call a helper routine that
955// will do the normal VM entry. We do it this way so that we can see if the nmethod
956// we looked up the handler for has been deoptimized in the meantime. If it has been
957// we must not use the handler and instread return the deopt blob.
958address OptoRuntime::handle_exception_C(JavaThread* thread) {
959//
960// We are in Java not VM and in debug mode we have a NoHandleMark
961//
962#ifndef PRODUCT
963  SharedRuntime::_find_handler_ctr++;          // find exception handler
964#endif
965  debug_only(NoHandleMark __hm;)
966  nmethod* nm = NULL;
967  address handler_address = NULL;
968  {
969    // Enter the VM
970
971    ResetNoHandleMark rnhm;
972    handler_address = handle_exception_C_helper(thread, nm);
973  }
974
975  // Back in java: Use no oops, DON'T safepoint
976
977  // Now check to see if the handler we are returning is in a now
978  // deoptimized frame
979
980  if (nm != NULL) {
981    RegisterMap map(thread, false);
982    frame caller = thread->last_frame().sender(&map);
983#ifdef ASSERT
984    assert(caller.is_compiled_frame(), "must be");
985#endif // ASSERT
986    if (caller.is_deoptimized_frame()) {
987      handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
988    }
989  }
990  return handler_address;
991}
992
993//------------------------------rethrow----------------------------------------
994// We get here after compiled code has executed a 'RethrowNode'.  The callee
995// is either throwing or rethrowing an exception.  The callee-save registers
996// have been restored, synchronized objects have been unlocked and the callee
997// stack frame has been removed.  The return address was passed in.
998// Exception oop is passed as the 1st argument.  This routine is then called
999// from the stub.  On exit, we know where to jump in the caller's code.
1000// After this C code exits, the stub will pop his frame and end in a jump
1001// (instead of a return).  We enter the caller's default handler.
1002//
1003// This must be JRT_LEAF:
1004//     - caller will not change its state as we cannot block on exit,
1005//       therefore raw_exception_handler_for_return_address is all it takes
1006//       to handle deoptimized blobs
1007//
1008// However, there needs to be a safepoint check in the middle!  So compiled
1009// safepoints are completely watertight.
1010//
1011// Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1012//
1013// *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1014//
1015address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1016#ifndef PRODUCT
1017  SharedRuntime::_rethrow_ctr++;               // count rethrows
1018#endif
1019  assert (exception != NULL, "should have thrown a NULLPointerException");
1020#ifdef ASSERT
1021  if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1022    // should throw an exception here
1023    ShouldNotReachHere();
1024  }
1025#endif
1026
1027  thread->set_vm_result(exception);
1028  // Frame not compiled (handles deoptimization blob)
1029  return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1030}
1031
1032
1033const TypeFunc *OptoRuntime::rethrow_Type() {
1034  // create input type (domain)
1035  const Type **fields = TypeTuple::fields(1);
1036  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1037  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1038
1039  // create result type (range)
1040  fields = TypeTuple::fields(1);
1041  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1042  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1043
1044  return TypeFunc::make(domain, range);
1045}
1046
1047
1048void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1049  // Deoptimize frame
1050  if (doit) {
1051    // Called from within the owner thread, so no need for safepoint
1052    RegisterMap reg_map(thread);
1053    frame stub_frame = thread->last_frame();
1054    assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1055    frame caller_frame = stub_frame.sender(&reg_map);
1056
1057    // bypass VM_DeoptimizeFrame and deoptimize the frame directly
1058    Deoptimization::deoptimize_frame(thread, caller_frame.id());
1059  }
1060}
1061
1062
1063const TypeFunc *OptoRuntime::register_finalizer_Type() {
1064  // create input type (domain)
1065  const Type **fields = TypeTuple::fields(1);
1066  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1067  // // The JavaThread* is passed to each routine as the last argument
1068  // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1069  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1070
1071  // create result type (range)
1072  fields = TypeTuple::fields(0);
1073
1074  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1075
1076  return TypeFunc::make(domain,range);
1077}
1078
1079
1080//-----------------------------------------------------------------------------
1081// Dtrace support.  entry and exit probes have the same signature
1082const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1083  // create input type (domain)
1084  const Type **fields = TypeTuple::fields(2);
1085  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1086  fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // methodOop;    Method we are entering
1087  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1088
1089  // create result type (range)
1090  fields = TypeTuple::fields(0);
1091
1092  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1093
1094  return TypeFunc::make(domain,range);
1095}
1096
1097const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1098  // create input type (domain)
1099  const Type **fields = TypeTuple::fields(2);
1100  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1101  fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1102
1103  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1104
1105  // create result type (range)
1106  fields = TypeTuple::fields(0);
1107
1108  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1109
1110  return TypeFunc::make(domain,range);
1111}
1112
1113
1114JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1115  assert(obj->is_oop(), "must be a valid oop");
1116  assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
1117  instanceKlass::register_finalizer(instanceOop(obj), CHECK);
1118JRT_END
1119
1120//-----------------------------------------------------------------------------
1121
1122NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1123
1124//
1125// dump the collected NamedCounters.
1126//
1127void OptoRuntime::print_named_counters() {
1128  int total_lock_count = 0;
1129  int eliminated_lock_count = 0;
1130
1131  NamedCounter* c = _named_counters;
1132  while (c) {
1133    if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1134      int count = c->count();
1135      if (count > 0) {
1136        bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1137        if (Verbose) {
1138          tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1139        }
1140        total_lock_count += count;
1141        if (eliminated) {
1142          eliminated_lock_count += count;
1143        }
1144      }
1145    } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1146      BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1147      if (blc->nonzero()) {
1148        tty->print_cr("%s", c->name());
1149        blc->print_on(tty);
1150      }
1151    }
1152    c = c->next();
1153  }
1154  if (total_lock_count > 0) {
1155    tty->print_cr("dynamic locks: %d", total_lock_count);
1156    if (eliminated_lock_count) {
1157      tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1158                    (int)(eliminated_lock_count * 100.0 / total_lock_count));
1159    }
1160  }
1161}
1162
1163//
1164//  Allocate a new NamedCounter.  The JVMState is used to generate the
1165//  name which consists of method@line for the inlining tree.
1166//
1167
1168NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1169  int max_depth = youngest_jvms->depth();
1170
1171  // Visit scopes from youngest to oldest.
1172  bool first = true;
1173  stringStream st;
1174  for (int depth = max_depth; depth >= 1; depth--) {
1175    JVMState* jvms = youngest_jvms->of_depth(depth);
1176    ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1177    if (!first) {
1178      st.print(" ");
1179    } else {
1180      first = false;
1181    }
1182    int bci = jvms->bci();
1183    if (bci < 0) bci = 0;
1184    st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1185    // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1186  }
1187  NamedCounter* c;
1188  if (tag == NamedCounter::BiasedLockingCounter) {
1189    c = new BiasedLockingNamedCounter(strdup(st.as_string()));
1190  } else {
1191    c = new NamedCounter(strdup(st.as_string()), tag);
1192  }
1193
1194  // atomically add the new counter to the head of the list.  We only
1195  // add counters so this is safe.
1196  NamedCounter* head;
1197  do {
1198    head = _named_counters;
1199    c->set_next(head);
1200  } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1201  return c;
1202}
1203
1204//-----------------------------------------------------------------------------
1205// Non-product code
1206#ifndef PRODUCT
1207
1208int trace_exception_counter = 0;
1209static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1210  ttyLocker ttyl;
1211  trace_exception_counter++;
1212  tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1213  exception_oop->print_value();
1214  tty->print(" in ");
1215  CodeBlob* blob = CodeCache::find_blob(exception_pc);
1216  if (blob->is_nmethod()) {
1217    ((nmethod*)blob)->method()->print_value();
1218  } else if (blob->is_runtime_stub()) {
1219    tty->print("<runtime-stub>");
1220  } else {
1221    tty->print("<unknown>");
1222  }
1223  tty->print(" at " INTPTR_FORMAT,  exception_pc);
1224  tty->print_cr("]");
1225}
1226
1227#endif  // PRODUCT
1228
1229
1230# ifdef ENABLE_ZAP_DEAD_LOCALS
1231// Called from call sites in compiled code with oop maps (actually safepoints)
1232// Zaps dead locals in first java frame.
1233// Is entry because may need to lock to generate oop maps
1234// Currently, only used for compiler frames, but someday may be used
1235// for interpreter frames, too.
1236
1237int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1238
1239// avoid pointers to member funcs with these helpers
1240static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1241static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1242
1243
1244void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1245                                                bool (*is_this_the_right_frame_to_zap)(frame*)) {
1246  assert(JavaThread::current() == thread, "is this needed?");
1247
1248  if ( !ZapDeadCompiledLocals )  return;
1249
1250  bool skip = false;
1251
1252       if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1253  else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1254  else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1255    warning("starting zapping after skipping");
1256
1257       if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1258  else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1259  else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1260    warning("about to zap last zap");
1261
1262  ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1263
1264  if ( skip )  return;
1265
1266  // find java frame and zap it
1267
1268  for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1269    if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1270      sfs.current()->zap_dead_locals(thread, sfs.register_map());
1271      return;
1272    }
1273  }
1274  warning("no frame found to zap in zap_dead_Java_locals_C");
1275}
1276
1277JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1278  zap_dead_java_or_native_locals(thread, is_java_frame);
1279JRT_END
1280
1281// The following does not work because for one thing, the
1282// thread state is wrong; it expects java, but it is native.
1283// Also, the invariants in a native stub are different and
1284// I'm not sure it is safe to have a MachCalRuntimeDirectNode
1285// in there.
1286// So for now, we do not zap in native stubs.
1287
1288JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1289  zap_dead_java_or_native_locals(thread, is_native_frame);
1290JRT_END
1291
1292# endif
1293