regmask.hpp revision 5945:d2907f74462e
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OPTO_REGMASK_HPP
26#define SHARE_VM_OPTO_REGMASK_HPP
27
28#include "code/vmreg.hpp"
29#include "libadt/port.hpp"
30#include "opto/optoreg.hpp"
31#ifdef TARGET_ARCH_MODEL_x86_32
32# include "adfiles/adGlobals_x86_32.hpp"
33#endif
34#ifdef TARGET_ARCH_MODEL_x86_64
35# include "adfiles/adGlobals_x86_64.hpp"
36#endif
37#ifdef TARGET_ARCH_MODEL_sparc
38# include "adfiles/adGlobals_sparc.hpp"
39#endif
40#ifdef TARGET_ARCH_MODEL_zero
41# include "adfiles/adGlobals_zero.hpp"
42#endif
43#ifdef TARGET_ARCH_MODEL_arm
44# include "adfiles/adGlobals_arm.hpp"
45#endif
46#ifdef TARGET_ARCH_MODEL_ppc_32
47# include "adfiles/adGlobals_ppc_32.hpp"
48#endif
49#ifdef TARGET_ARCH_MODEL_ppc_64
50# include "adfiles/adGlobals_ppc_64.hpp"
51#endif
52
53// Some fun naming (textual) substitutions:
54//
55// RegMask::get_low_elem() ==> RegMask::find_first_elem()
56// RegMask::Special        ==> RegMask::Empty
57// RegMask::_flags         ==> RegMask::is_AllStack()
58// RegMask::operator<<=()  ==> RegMask::Insert()
59// RegMask::operator>>=()  ==> RegMask::Remove()
60// RegMask::Union()        ==> RegMask::OR
61// RegMask::Inter()        ==> RegMask::AND
62//
63// OptoRegister::RegName   ==> OptoReg::Name
64//
65// OptoReg::stack0()       ==> _last_Mach_Reg  or ZERO in core version
66//
67// numregs in chaitin      ==> proper degree in chaitin
68
69//-------------Non-zero bit search methods used by RegMask---------------------
70// Find lowest 1, or return 32 if empty
71int find_lowest_bit( uint32 mask );
72// Find highest 1, or return 32 if empty
73int find_hihghest_bit( uint32 mask );
74
75//------------------------------RegMask----------------------------------------
76// The ADL file describes how to print the machine-specific registers, as well
77// as any notion of register classes.  We provide a register mask, which is
78// just a collection of Register numbers.
79
80// The ADLC defines 2 macros, RM_SIZE and FORALL_BODY.
81// RM_SIZE is the size of a register mask in words.
82// FORALL_BODY replicates a BODY macro once per word in the register mask.
83// The usage is somewhat clumsy and limited to the regmask.[h,c]pp files.
84// However, it means the ADLC can redefine the unroll macro and all loops
85// over register masks will be unrolled by the correct amount.
86
87class RegMask VALUE_OBJ_CLASS_SPEC {
88  union {
89    double _dummy_force_double_alignment[RM_SIZE>>1];
90    // Array of Register Mask bits.  This array is large enough to cover
91    // all the machine registers and all parameters that need to be passed
92    // on the stack (stack registers) up to some interesting limit.  Methods
93    // that need more parameters will NOT be compiled.  On Intel, the limit
94    // is something like 90+ parameters.
95    int _A[RM_SIZE];
96  };
97
98  enum {
99    _WordBits    = BitsPerInt,
100    _LogWordBits = LogBitsPerInt,
101    _RM_SIZE     = RM_SIZE   // local constant, imported, then hidden by #undef
102  };
103
104public:
105  enum { CHUNK_SIZE = RM_SIZE*_WordBits };
106
107  // SlotsPerLong is 2, since slots are 32 bits and longs are 64 bits.
108  // Also, consider the maximum alignment size for a normally allocated
109  // value.  Since we allocate register pairs but not register quads (at
110  // present), this alignment is SlotsPerLong (== 2).  A normally
111  // aligned allocated register is either a single register, or a pair
112  // of adjacent registers, the lower-numbered being even.
113  // See also is_aligned_Pairs() below, and the padding added before
114  // Matcher::_new_SP to keep allocated pairs aligned properly.
115  // If we ever go to quad-word allocations, SlotsPerQuad will become
116  // the controlling alignment constraint.  Note that this alignment
117  // requirement is internal to the allocator, and independent of any
118  // particular platform.
119  enum { SlotsPerLong = 2,
120         SlotsPerVecS = 1,
121         SlotsPerVecD = 2,
122         SlotsPerVecX = 4,
123         SlotsPerVecY = 8 };
124
125  // A constructor only used by the ADLC output.  All mask fields are filled
126  // in directly.  Calls to this look something like RM(1,2,3,4);
127  RegMask(
128#   define BODY(I) int a##I,
129    FORALL_BODY
130#   undef BODY
131    int dummy = 0 ) {
132#   define BODY(I) _A[I] = a##I;
133    FORALL_BODY
134#   undef BODY
135  }
136
137  // Handy copying constructor
138  RegMask( RegMask *rm ) {
139#   define BODY(I) _A[I] = rm->_A[I];
140    FORALL_BODY
141#   undef BODY
142  }
143
144  // Construct an empty mask
145  RegMask( ) { Clear(); }
146
147  // Construct a mask with a single bit
148  RegMask( OptoReg::Name reg ) { Clear(); Insert(reg); }
149
150  // Check for register being in mask
151  int Member( OptoReg::Name reg ) const {
152    assert( reg < CHUNK_SIZE, "" );
153    return _A[reg>>_LogWordBits] & (1<<(reg&(_WordBits-1)));
154  }
155
156  // The last bit in the register mask indicates that the mask should repeat
157  // indefinitely with ONE bits.  Returns TRUE if mask is infinite or
158  // unbounded in size.  Returns FALSE if mask is finite size.
159  int is_AllStack() const { return _A[RM_SIZE-1] >> (_WordBits-1); }
160
161  // Work around an -xO3 optimization problme in WS6U1. The old way:
162  //   void set_AllStack() { _A[RM_SIZE-1] |= (1<<(_WordBits-1)); }
163  // will cause _A[RM_SIZE-1] to be clobbered, not updated when set_AllStack()
164  // follows an Insert() loop, like the one found in init_spill_mask(). Using
165  // Insert() instead works because the index into _A in computed instead of
166  // constant.  See bug 4665841.
167  void set_AllStack() { Insert(OptoReg::Name(CHUNK_SIZE-1)); }
168
169  // Test for being a not-empty mask.
170  int is_NotEmpty( ) const {
171    int tmp = 0;
172#   define BODY(I) tmp |= _A[I];
173    FORALL_BODY
174#   undef BODY
175    return tmp;
176  }
177
178  // Find lowest-numbered register from mask, or BAD if mask is empty.
179  OptoReg::Name find_first_elem() const {
180    int base, bits;
181#   define BODY(I) if( (bits = _A[I]) != 0 ) base = I<<_LogWordBits; else
182    FORALL_BODY
183#   undef BODY
184      { base = OptoReg::Bad; bits = 1<<0; }
185    return OptoReg::Name(base + find_lowest_bit(bits));
186  }
187  // Get highest-numbered register from mask, or BAD if mask is empty.
188  OptoReg::Name find_last_elem() const {
189    int base, bits;
190#   define BODY(I) if( (bits = _A[RM_SIZE-1-I]) != 0 ) base = (RM_SIZE-1-I)<<_LogWordBits; else
191    FORALL_BODY
192#   undef BODY
193      { base = OptoReg::Bad; bits = 1<<0; }
194    return OptoReg::Name(base + find_hihghest_bit(bits));
195  }
196
197  // Find the lowest-numbered register pair in the mask.  Return the
198  // HIGHEST register number in the pair, or BAD if no pairs.
199  // Assert that the mask contains only bit pairs.
200  OptoReg::Name find_first_pair() const;
201
202  // Clear out partial bits; leave only aligned adjacent bit pairs.
203  void clear_to_pairs();
204  // Smear out partial bits; leave only aligned adjacent bit pairs.
205  void smear_to_pairs();
206  // Verify that the mask contains only aligned adjacent bit pairs
207  void verify_pairs() const { assert( is_aligned_pairs(), "mask is not aligned, adjacent pairs" ); }
208  // Test that the mask contains only aligned adjacent bit pairs
209  bool is_aligned_pairs() const;
210
211  // mask is a pair of misaligned registers
212  bool is_misaligned_pair() const { return Size()==2 && !is_aligned_pairs(); }
213  // Test for single register
214  int is_bound1() const;
215  // Test for a single adjacent pair
216  int is_bound_pair() const;
217  // Test for a single adjacent set of ideal register's size.
218  int is_bound(uint ireg) const {
219    if (is_vector(ireg)) {
220      if (is_bound_set(num_registers(ireg)))
221        return true;
222    } else if (is_bound1() || is_bound_pair()) {
223      return true;
224    }
225    return false;
226  }
227
228  // Find the lowest-numbered register set in the mask.  Return the
229  // HIGHEST register number in the set, or BAD if no sets.
230  // Assert that the mask contains only bit sets.
231  OptoReg::Name find_first_set(const int size) const;
232
233  // Clear out partial bits; leave only aligned adjacent bit sets of size.
234  void clear_to_sets(const int size);
235  // Smear out partial bits to aligned adjacent bit sets.
236  void smear_to_sets(const int size);
237  // Verify that the mask contains only aligned adjacent bit sets
238  void verify_sets(int size) const { assert(is_aligned_sets(size), "mask is not aligned, adjacent sets"); }
239  // Test that the mask contains only aligned adjacent bit sets
240  bool is_aligned_sets(const int size) const;
241
242  // mask is a set of misaligned registers
243  bool is_misaligned_set(int size) const { return (int)Size()==size && !is_aligned_sets(size);}
244
245  // Test for a single adjacent set
246  int is_bound_set(const int size) const;
247
248  static bool is_vector(uint ireg);
249  static int num_registers(uint ireg);
250
251  // Fast overlap test.  Non-zero if any registers in common.
252  int overlap( const RegMask &rm ) const {
253    return
254#   define BODY(I) (_A[I] & rm._A[I]) |
255    FORALL_BODY
256#   undef BODY
257    0 ;
258  }
259
260  // Special test for register pressure based splitting
261  // UP means register only, Register plus stack, or stack only is DOWN
262  bool is_UP() const;
263
264  // Clear a register mask
265  void Clear( ) {
266#   define BODY(I) _A[I] = 0;
267    FORALL_BODY
268#   undef BODY
269  }
270
271  // Fill a register mask with 1's
272  void Set_All( ) {
273#   define BODY(I) _A[I] = -1;
274    FORALL_BODY
275#   undef BODY
276  }
277
278  // Insert register into mask
279  void Insert( OptoReg::Name reg ) {
280    assert( reg < CHUNK_SIZE, "" );
281    _A[reg>>_LogWordBits] |= (1<<(reg&(_WordBits-1)));
282  }
283
284  // Remove register from mask
285  void Remove( OptoReg::Name reg ) {
286    assert( reg < CHUNK_SIZE, "" );
287    _A[reg>>_LogWordBits] &= ~(1<<(reg&(_WordBits-1)));
288  }
289
290  // OR 'rm' into 'this'
291  void OR( const RegMask &rm ) {
292#   define BODY(I) this->_A[I] |= rm._A[I];
293    FORALL_BODY
294#   undef BODY
295  }
296
297  // AND 'rm' into 'this'
298  void AND( const RegMask &rm ) {
299#   define BODY(I) this->_A[I] &= rm._A[I];
300    FORALL_BODY
301#   undef BODY
302  }
303
304  // Subtract 'rm' from 'this'
305  void SUBTRACT( const RegMask &rm ) {
306#   define BODY(I) _A[I] &= ~rm._A[I];
307    FORALL_BODY
308#   undef BODY
309  }
310
311  // Compute size of register mask: number of bits
312  uint Size() const;
313
314#ifndef PRODUCT
315  void print() const { dump(); }
316  void dump(outputStream *st = tty) const; // Print a mask
317#endif
318
319  static const RegMask Empty;   // Common empty mask
320
321  static bool can_represent(OptoReg::Name reg) {
322    // NOTE: -1 in computation reflects the usage of the last
323    //       bit of the regmask as an infinite stack flag and
324    //       -7 is to keep mask aligned for largest value (VecY).
325    return (int)reg < (int)(CHUNK_SIZE-1);
326  }
327  static bool can_represent_arg(OptoReg::Name reg) {
328    // NOTE: -SlotsPerVecY in computation reflects the need
329    //       to keep mask aligned for largest value (VecY).
330    return (int)reg < (int)(CHUNK_SIZE-SlotsPerVecY);
331  }
332};
333
334// Do not use this constant directly in client code!
335#undef RM_SIZE
336
337#endif // SHARE_VM_OPTO_REGMASK_HPP
338