regmask.hpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1997, 2006, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// Some fun naming (textual) substitutions:
26//
27// RegMask::get_low_elem() ==> RegMask::find_first_elem()
28// RegMask::Special        ==> RegMask::Empty
29// RegMask::_flags         ==> RegMask::is_AllStack()
30// RegMask::operator<<=()  ==> RegMask::Insert()
31// RegMask::operator>>=()  ==> RegMask::Remove()
32// RegMask::Union()        ==> RegMask::OR
33// RegMask::Inter()        ==> RegMask::AND
34//
35// OptoRegister::RegName   ==> OptoReg::Name
36//
37// OptoReg::stack0()       ==> _last_Mach_Reg  or ZERO in core version
38//
39// numregs in chaitin      ==> proper degree in chaitin
40
41//-------------Non-zero bit search methods used by RegMask---------------------
42// Find lowest 1, or return 32 if empty
43int find_lowest_bit( uint32 mask );
44// Find highest 1, or return 32 if empty
45int find_hihghest_bit( uint32 mask );
46
47//------------------------------RegMask----------------------------------------
48// The ADL file describes how to print the machine-specific registers, as well
49// as any notion of register classes.  We provide a register mask, which is
50// just a collection of Register numbers.
51
52// The ADLC defines 2 macros, RM_SIZE and FORALL_BODY.
53// RM_SIZE is the size of a register mask in words.
54// FORALL_BODY replicates a BODY macro once per word in the register mask.
55// The usage is somewhat clumsy and limited to the regmask.[h,c]pp files.
56// However, it means the ADLC can redefine the unroll macro and all loops
57// over register masks will be unrolled by the correct amount.
58
59class RegMask VALUE_OBJ_CLASS_SPEC {
60  union {
61    double _dummy_force_double_alignment[RM_SIZE>>1];
62    // Array of Register Mask bits.  This array is large enough to cover
63    // all the machine registers and all parameters that need to be passed
64    // on the stack (stack registers) up to some interesting limit.  Methods
65    // that need more parameters will NOT be compiled.  On Intel, the limit
66    // is something like 90+ parameters.
67    int _A[RM_SIZE];
68  };
69
70  enum {
71    _WordBits    = BitsPerInt,
72    _LogWordBits = LogBitsPerInt,
73    _RM_SIZE     = RM_SIZE   // local constant, imported, then hidden by #undef
74  };
75
76public:
77  enum { CHUNK_SIZE = RM_SIZE*_WordBits };
78
79  // SlotsPerLong is 2, since slots are 32 bits and longs are 64 bits.
80  // Also, consider the maximum alignment size for a normally allocated
81  // value.  Since we allocate register pairs but not register quads (at
82  // present), this alignment is SlotsPerLong (== 2).  A normally
83  // aligned allocated register is either a single register, or a pair
84  // of adjacent registers, the lower-numbered being even.
85  // See also is_aligned_Pairs() below, and the padding added before
86  // Matcher::_new_SP to keep allocated pairs aligned properly.
87  // If we ever go to quad-word allocations, SlotsPerQuad will become
88  // the controlling alignment constraint.  Note that this alignment
89  // requirement is internal to the allocator, and independent of any
90  // particular platform.
91  enum { SlotsPerLong = 2 };
92
93  // A constructor only used by the ADLC output.  All mask fields are filled
94  // in directly.  Calls to this look something like RM(1,2,3,4);
95  RegMask(
96#   define BODY(I) int a##I,
97    FORALL_BODY
98#   undef BODY
99    int dummy = 0 ) {
100#   define BODY(I) _A[I] = a##I;
101    FORALL_BODY
102#   undef BODY
103  }
104
105  // Handy copying constructor
106  RegMask( RegMask *rm ) {
107#   define BODY(I) _A[I] = rm->_A[I];
108    FORALL_BODY
109#   undef BODY
110  }
111
112  // Construct an empty mask
113  RegMask( ) { Clear(); }
114
115  // Construct a mask with a single bit
116  RegMask( OptoReg::Name reg ) { Clear(); Insert(reg); }
117
118  // Check for register being in mask
119  int Member( OptoReg::Name reg ) const {
120    assert( reg < CHUNK_SIZE, "" );
121    return _A[reg>>_LogWordBits] & (1<<(reg&(_WordBits-1)));
122  }
123
124  // The last bit in the register mask indicates that the mask should repeat
125  // indefinitely with ONE bits.  Returns TRUE if mask is infinite or
126  // unbounded in size.  Returns FALSE if mask is finite size.
127  int is_AllStack() const { return _A[RM_SIZE-1] >> (_WordBits-1); }
128
129  // Work around an -xO3 optimization problme in WS6U1. The old way:
130  //   void set_AllStack() { _A[RM_SIZE-1] |= (1<<(_WordBits-1)); }
131  // will cause _A[RM_SIZE-1] to be clobbered, not updated when set_AllStack()
132  // follows an Insert() loop, like the one found in init_spill_mask(). Using
133  // Insert() instead works because the index into _A in computed instead of
134  // constant.  See bug 4665841.
135  void set_AllStack() { Insert(OptoReg::Name(CHUNK_SIZE-1)); }
136
137  // Test for being a not-empty mask.
138  int is_NotEmpty( ) const {
139    int tmp = 0;
140#   define BODY(I) tmp |= _A[I];
141    FORALL_BODY
142#   undef BODY
143    return tmp;
144  }
145
146  // Find lowest-numbered register from mask, or BAD if mask is empty.
147  OptoReg::Name find_first_elem() const {
148    int base, bits;
149#   define BODY(I) if( (bits = _A[I]) != 0 ) base = I<<_LogWordBits; else
150    FORALL_BODY
151#   undef BODY
152      { base = OptoReg::Bad; bits = 1<<0; }
153    return OptoReg::Name(base + find_lowest_bit(bits));
154  }
155  // Get highest-numbered register from mask, or BAD if mask is empty.
156  OptoReg::Name find_last_elem() const {
157    int base, bits;
158#   define BODY(I) if( (bits = _A[RM_SIZE-1-I]) != 0 ) base = (RM_SIZE-1-I)<<_LogWordBits; else
159    FORALL_BODY
160#   undef BODY
161      { base = OptoReg::Bad; bits = 1<<0; }
162    return OptoReg::Name(base + find_hihghest_bit(bits));
163  }
164
165  // Find the lowest-numbered register pair in the mask.  Return the
166  // HIGHEST register number in the pair, or BAD if no pairs.
167  // Assert that the mask contains only bit pairs.
168  OptoReg::Name find_first_pair() const;
169
170  // Clear out partial bits; leave only aligned adjacent bit pairs.
171  void ClearToPairs();
172  // Smear out partial bits; leave only aligned adjacent bit pairs.
173  void SmearToPairs();
174  // Verify that the mask contains only aligned adjacent bit pairs
175  void VerifyPairs() const { assert( is_aligned_Pairs(), "mask is not aligned, adjacent pairs" ); }
176  // Test that the mask contains only aligned adjacent bit pairs
177  bool is_aligned_Pairs() const;
178
179  // mask is a pair of misaligned registers
180  bool is_misaligned_Pair() const { return Size()==2 && !is_aligned_Pairs();}
181  // Test for single register
182  int is_bound1() const;
183  // Test for a single adjacent pair
184  int is_bound2() const;
185
186  // Fast overlap test.  Non-zero if any registers in common.
187  int overlap( const RegMask &rm ) const {
188    return
189#   define BODY(I) (_A[I] & rm._A[I]) |
190    FORALL_BODY
191#   undef BODY
192    0 ;
193  }
194
195  // Special test for register pressure based splitting
196  // UP means register only, Register plus stack, or stack only is DOWN
197  bool is_UP() const;
198
199  // Clear a register mask
200  void Clear( ) {
201#   define BODY(I) _A[I] = 0;
202    FORALL_BODY
203#   undef BODY
204  }
205
206  // Fill a register mask with 1's
207  void Set_All( ) {
208#   define BODY(I) _A[I] = -1;
209    FORALL_BODY
210#   undef BODY
211  }
212
213  // Insert register into mask
214  void Insert( OptoReg::Name reg ) {
215    assert( reg < CHUNK_SIZE, "" );
216    _A[reg>>_LogWordBits] |= (1<<(reg&(_WordBits-1)));
217  }
218
219  // Remove register from mask
220  void Remove( OptoReg::Name reg ) {
221    assert( reg < CHUNK_SIZE, "" );
222    _A[reg>>_LogWordBits] &= ~(1<<(reg&(_WordBits-1)));
223  }
224
225  // OR 'rm' into 'this'
226  void OR( const RegMask &rm ) {
227#   define BODY(I) this->_A[I] |= rm._A[I];
228    FORALL_BODY
229#   undef BODY
230  }
231
232  // AND 'rm' into 'this'
233  void AND( const RegMask &rm ) {
234#   define BODY(I) this->_A[I] &= rm._A[I];
235    FORALL_BODY
236#   undef BODY
237  }
238
239  // Subtract 'rm' from 'this'
240  void SUBTRACT( const RegMask &rm ) {
241#   define BODY(I) _A[I] &= ~rm._A[I];
242    FORALL_BODY
243#   undef BODY
244  }
245
246  // Compute size of register mask: number of bits
247  uint Size() const;
248
249#ifndef PRODUCT
250  void print() const { dump(); }
251  void dump() const;            // Print a mask
252#endif
253
254  static const RegMask Empty;   // Common empty mask
255
256  static bool can_represent(OptoReg::Name reg) {
257    // NOTE: -1 in computation reflects the usage of the last
258    //       bit of the regmask as an infinite stack flag.
259    return (int)reg < (int)(CHUNK_SIZE-1);
260  }
261};
262
263// Do not use this constant directly in client code!
264#undef RM_SIZE
265