postaloc.cpp revision 605:98cb887364d3
1/*
2 * Copyright 1998-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_postaloc.cpp.incl"
27
28// see if this register kind does not requires two registers
29static bool is_single_register(uint x) {
30#ifdef _LP64
31  return (x != Op_RegD && x != Op_RegL && x != Op_RegP);
32#else
33  return (x != Op_RegD && x != Op_RegL);
34#endif
35}
36
37//---------------------------may_be_copy_of_callee-----------------------------
38// Check to see if we can possibly be a copy of a callee-save value.
39bool PhaseChaitin::may_be_copy_of_callee( Node *def ) const {
40  // Short circuit if there are no callee save registers
41  if (_matcher.number_of_saved_registers() == 0) return false;
42
43  // Expect only a spill-down and reload on exit for callee-save spills.
44  // Chains of copies cannot be deep.
45  // 5008997 - This is wishful thinking. Register allocator seems to
46  // be splitting live ranges for callee save registers to such
47  // an extent that in large methods the chains can be very long
48  // (50+). The conservative answer is to return true if we don't
49  // know as this prevents optimizations from occurring.
50
51  const int limit = 60;
52  int i;
53  for( i=0; i < limit; i++ ) {
54    if( def->is_Proj() && def->in(0)->is_Start() &&
55        _matcher.is_save_on_entry(lrgs(n2lidx(def)).reg()) )
56      return true;              // Direct use of callee-save proj
57    if( def->is_Copy() )        // Copies carry value through
58      def = def->in(def->is_Copy());
59    else if( def->is_Phi() )    // Phis can merge it from any direction
60      def = def->in(1);
61    else
62      break;
63    guarantee(def != NULL, "must not resurrect dead copy");
64  }
65  // If we reached the end and didn't find a callee save proj
66  // then this may be a callee save proj so we return true
67  // as the conservative answer. If we didn't reach then end
68  // we must have discovered that it was not a callee save
69  // else we would have returned.
70  return i == limit;
71}
72
73
74
75//------------------------------yank_if_dead-----------------------------------
76// Removed an edge from 'old'.  Yank if dead.  Return adjustment counts to
77// iterators in the current block.
78int PhaseChaitin::yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
79  int blk_adjust=0;
80  while (old->outcnt() == 0 && old != C->top()) {
81    Block *oldb = _cfg._bbs[old->_idx];
82    oldb->find_remove(old);
83    // Count 1 if deleting an instruction from the current block
84    if( oldb == current_block ) blk_adjust++;
85    _cfg._bbs.map(old->_idx,NULL);
86    OptoReg::Name old_reg = lrgs(n2lidx(old)).reg();
87    if( regnd && (*regnd)[old_reg]==old ) { // Instruction is currently available?
88      value->map(old_reg,NULL);  // Yank from value/regnd maps
89      regnd->map(old_reg,NULL);  // This register's value is now unknown
90    }
91    Node *tmp = old->req() > 1 ? old->in(1) : NULL;
92    old->disconnect_inputs(NULL);
93    if( !tmp ) break;
94    old = tmp;
95  }
96  return blk_adjust;
97}
98
99//------------------------------use_prior_register-----------------------------
100// Use the prior value instead of the current value, in an effort to make
101// the current value go dead.  Return block iterator adjustment, in case
102// we yank some instructions from this block.
103int PhaseChaitin::use_prior_register( Node *n, uint idx, Node *def, Block *current_block, Node_List &value, Node_List &regnd ) {
104  // No effect?
105  if( def == n->in(idx) ) return 0;
106  // Def is currently dead and can be removed?  Do not resurrect
107  if( def->outcnt() == 0 ) return 0;
108
109  // Not every pair of physical registers are assignment compatible,
110  // e.g. on sparc floating point registers are not assignable to integer
111  // registers.
112  const LRG &def_lrg = lrgs(n2lidx(def));
113  OptoReg::Name def_reg = def_lrg.reg();
114  const RegMask &use_mask = n->in_RegMask(idx);
115  bool can_use = ( RegMask::can_represent(def_reg) ? (use_mask.Member(def_reg) != 0)
116                                                   : (use_mask.is_AllStack() != 0));
117  // Check for a copy to or from a misaligned pair.
118  can_use = can_use && !use_mask.is_misaligned_Pair() && !def_lrg.mask().is_misaligned_Pair();
119
120  if (!can_use)
121    return 0;
122
123  // Capture the old def in case it goes dead...
124  Node *old = n->in(idx);
125
126  // Save-on-call copies can only be elided if the entire copy chain can go
127  // away, lest we get the same callee-save value alive in 2 locations at
128  // once.  We check for the obvious trivial case here.  Although it can
129  // sometimes be elided with cooperation outside our scope, here we will just
130  // miss the opportunity.  :-(
131  if( may_be_copy_of_callee(def) ) {
132    if( old->outcnt() > 1 ) return 0; // We're the not last user
133    int idx = old->is_Copy();
134    assert( idx, "chain of copies being removed" );
135    Node *old2 = old->in(idx);  // Chain of copies
136    if( old2->outcnt() > 1 ) return 0; // old is not the last user
137    int idx2 = old2->is_Copy();
138    if( !idx2 ) return 0;       // Not a chain of 2 copies
139    if( def != old2->in(idx2) ) return 0; // Chain of exactly 2 copies
140  }
141
142  // Use the new def
143  n->set_req(idx,def);
144  _post_alloc++;
145
146  // Is old def now dead?  We successfully yanked a copy?
147  return yank_if_dead(old,current_block,&value,&regnd);
148}
149
150
151//------------------------------skip_copies------------------------------------
152// Skip through any number of copies (that don't mod oop-i-ness)
153Node *PhaseChaitin::skip_copies( Node *c ) {
154  int idx = c->is_Copy();
155  uint is_oop = lrgs(n2lidx(c))._is_oop;
156  while (idx != 0) {
157    guarantee(c->in(idx) != NULL, "must not resurrect dead copy");
158    if (lrgs(n2lidx(c->in(idx)))._is_oop != is_oop)
159      break;  // casting copy, not the same value
160    c = c->in(idx);
161    idx = c->is_Copy();
162  }
163  return c;
164}
165
166//------------------------------elide_copy-------------------------------------
167// Remove (bypass) copies along Node n, edge k.
168int PhaseChaitin::elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List &regnd, bool can_change_regs ) {
169  int blk_adjust = 0;
170
171  uint nk_idx = n2lidx(n->in(k));
172  OptoReg::Name nk_reg = lrgs(nk_idx ).reg();
173
174  // Remove obvious same-register copies
175  Node *x = n->in(k);
176  int idx;
177  while( (idx=x->is_Copy()) != 0 ) {
178    Node *copy = x->in(idx);
179    guarantee(copy != NULL, "must not resurrect dead copy");
180    if( lrgs(n2lidx(copy)).reg() != nk_reg ) break;
181    blk_adjust += use_prior_register(n,k,copy,current_block,value,regnd);
182    if( n->in(k) != copy ) break; // Failed for some cutout?
183    x = copy;                   // Progress, try again
184  }
185
186  // Phis and 2-address instructions cannot change registers so easily - their
187  // outputs must match their input.
188  if( !can_change_regs )
189    return blk_adjust;          // Only check stupid copies!
190
191  // Loop backedges won't have a value-mapping yet
192  if( &value == NULL ) return blk_adjust;
193
194  // Skip through all copies to the _value_ being used.  Do not change from
195  // int to pointer.  This attempts to jump through a chain of copies, where
196  // intermediate copies might be illegal, i.e., value is stored down to stack
197  // then reloaded BUT survives in a register the whole way.
198  Node *val = skip_copies(n->in(k));
199
200  if( val == x ) return blk_adjust; // No progress?
201
202  bool single = is_single_register(val->ideal_reg());
203  uint val_idx = n2lidx(val);
204  OptoReg::Name val_reg = lrgs(val_idx).reg();
205
206  // See if it happens to already be in the correct register!
207  // (either Phi's direct register, or the common case of the name
208  // never-clobbered original-def register)
209  if( value[val_reg] == val &&
210      // Doubles check both halves
211      ( single || value[val_reg-1] == val ) ) {
212    blk_adjust += use_prior_register(n,k,regnd[val_reg],current_block,value,regnd);
213    if( n->in(k) == regnd[val_reg] ) // Success!  Quit trying
214      return blk_adjust;
215  }
216
217  // See if we can skip the copy by changing registers.  Don't change from
218  // using a register to using the stack unless we know we can remove a
219  // copy-load.  Otherwise we might end up making a pile of Intel cisc-spill
220  // ops reading from memory instead of just loading once and using the
221  // register.
222
223  // Also handle duplicate copies here.
224  const Type *t = val->is_Con() ? val->bottom_type() : NULL;
225
226  // Scan all registers to see if this value is around already
227  for( uint reg = 0; reg < (uint)_max_reg; reg++ ) {
228    if (reg == (uint)nk_reg) {
229      // Found ourselves so check if there is only one user of this
230      // copy and keep on searching for a better copy if so.
231      bool ignore_self = true;
232      x = n->in(k);
233      DUIterator_Fast imax, i = x->fast_outs(imax);
234      Node* first = x->fast_out(i); i++;
235      while (i < imax && ignore_self) {
236        Node* use = x->fast_out(i); i++;
237        if (use != first) ignore_self = false;
238      }
239      if (ignore_self) continue;
240    }
241
242    Node *vv = value[reg];
243    if( !single ) {             // Doubles check for aligned-adjacent pair
244      if( (reg&1)==0 ) continue;  // Wrong half of a pair
245      if( vv != value[reg-1] ) continue; // Not a complete pair
246    }
247    if( vv == val ||            // Got a direct hit?
248        (t && vv && vv->bottom_type() == t && vv->is_Mach() &&
249         vv->as_Mach()->rule() == val->as_Mach()->rule()) ) { // Or same constant?
250      assert( !n->is_Phi(), "cannot change registers at a Phi so easily" );
251      if( OptoReg::is_stack(nk_reg) || // CISC-loading from stack OR
252          OptoReg::is_reg(reg) || // turning into a register use OR
253          regnd[reg]->outcnt()==1 ) { // last use of a spill-load turns into a CISC use
254        blk_adjust += use_prior_register(n,k,regnd[reg],current_block,value,regnd);
255        if( n->in(k) == regnd[reg] ) // Success!  Quit trying
256          return blk_adjust;
257      } // End of if not degrading to a stack
258    } // End of if found value in another register
259  } // End of scan all machine registers
260  return blk_adjust;
261}
262
263
264//
265// Check if nreg already contains the constant value val.  Normal copy
266// elimination doesn't doesn't work on constants because multiple
267// nodes can represent the same constant so the type and rule of the
268// MachNode must be checked to ensure equivalence.
269//
270bool PhaseChaitin::eliminate_copy_of_constant(Node* val, Node* n,
271                                              Block *current_block,
272                                              Node_List& value, Node_List& regnd,
273                                              OptoReg::Name nreg, OptoReg::Name nreg2) {
274  if (value[nreg] != val && val->is_Con() &&
275      value[nreg] != NULL && value[nreg]->is_Con() &&
276      (nreg2 == OptoReg::Bad || value[nreg] == value[nreg2]) &&
277      value[nreg]->bottom_type() == val->bottom_type() &&
278      value[nreg]->as_Mach()->rule() == val->as_Mach()->rule()) {
279    // This code assumes that two MachNodes representing constants
280    // which have the same rule and the same bottom type will produce
281    // identical effects into a register.  This seems like it must be
282    // objectively true unless there are hidden inputs to the nodes
283    // but if that were to change this code would need to updated.
284    // Since they are equivalent the second one if redundant and can
285    // be removed.
286    //
287    // n will be replaced with the old value but n might have
288    // kills projections associated with it so remove them now so that
289    // yank_if_dead will be able to eliminate the copy once the uses
290    // have been transferred to the old[value].
291    for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
292      Node* use = n->fast_out(i);
293      if (use->is_Proj() && use->outcnt() == 0) {
294        // Kill projections have no users and one input
295        use->set_req(0, C->top());
296        yank_if_dead(use, current_block, &value, &regnd);
297        --i; --imax;
298      }
299    }
300    _post_alloc++;
301    return true;
302  }
303  return false;
304}
305
306
307//------------------------------post_allocate_copy_removal---------------------
308// Post-Allocation peephole copy removal.  We do this in 1 pass over the
309// basic blocks.  We maintain a mapping of registers to Nodes (an  array of
310// Nodes indexed by machine register or stack slot number).  NULL means that a
311// register is not mapped to any Node.  We can (want to have!) have several
312// registers map to the same Node.  We walk forward over the instructions
313// updating the mapping as we go.  At merge points we force a NULL if we have
314// to merge 2 different Nodes into the same register.  Phi functions will give
315// us a new Node if there is a proper value merging.  Since the blocks are
316// arranged in some RPO, we will visit all parent blocks before visiting any
317// successor blocks (except at loops).
318//
319// If we find a Copy we look to see if the Copy's source register is a stack
320// slot and that value has already been loaded into some machine register; if
321// so we use machine register directly.  This turns a Load into a reg-reg
322// Move.  We also look for reloads of identical constants.
323//
324// When we see a use from a reg-reg Copy, we will attempt to use the copy's
325// source directly and make the copy go dead.
326void PhaseChaitin::post_allocate_copy_removal() {
327  NOT_PRODUCT( Compile::TracePhase t3("postAllocCopyRemoval", &_t_postAllocCopyRemoval, TimeCompiler); )
328  ResourceMark rm;
329
330  // Need a mapping from basic block Node_Lists.  We need a Node_List to
331  // map from register number to value-producing Node.
332  Node_List **blk2value = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
333  memset( blk2value, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
334  // Need a mapping from basic block Node_Lists.  We need a Node_List to
335  // map from register number to register-defining Node.
336  Node_List **blk2regnd = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
337  memset( blk2regnd, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
338
339  // We keep unused Node_Lists on a free_list to avoid wasting
340  // memory.
341  GrowableArray<Node_List*> free_list = GrowableArray<Node_List*>(16);
342
343  // For all blocks
344  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
345    uint j;
346    Block *b = _cfg._blocks[i];
347
348    // Count of Phis in block
349    uint phi_dex;
350    for( phi_dex = 1; phi_dex < b->_nodes.size(); phi_dex++ ) {
351      Node *phi = b->_nodes[phi_dex];
352      if( !phi->is_Phi() )
353        break;
354    }
355
356    // If any predecessor has not been visited, we do not know the state
357    // of registers at the start.  Check for this, while updating copies
358    // along Phi input edges
359    bool missing_some_inputs = false;
360    Block *freed = NULL;
361    for( j = 1; j < b->num_preds(); j++ ) {
362      Block *pb = _cfg._bbs[b->pred(j)->_idx];
363      // Remove copies along phi edges
364      for( uint k=1; k<phi_dex; k++ )
365        elide_copy( b->_nodes[k], j, b, *blk2value[pb->_pre_order], *blk2regnd[pb->_pre_order], false );
366      if( blk2value[pb->_pre_order] ) { // Have a mapping on this edge?
367        // See if this predecessor's mappings have been used by everybody
368        // who wants them.  If so, free 'em.
369        uint k;
370        for( k=0; k<pb->_num_succs; k++ ) {
371          Block *pbsucc = pb->_succs[k];
372          if( !blk2value[pbsucc->_pre_order] && pbsucc != b )
373            break;              // Found a future user
374        }
375        if( k >= pb->_num_succs ) { // No more uses, free!
376          freed = pb;           // Record last block freed
377          free_list.push(blk2value[pb->_pre_order]);
378          free_list.push(blk2regnd[pb->_pre_order]);
379        }
380      } else {                  // This block has unvisited (loopback) inputs
381        missing_some_inputs = true;
382      }
383    }
384
385
386    // Extract Node_List mappings.  If 'freed' is non-zero, we just popped
387    // 'freed's blocks off the list
388    Node_List &regnd = *(free_list.is_empty() ? new Node_List() : free_list.pop());
389    Node_List &value = *(free_list.is_empty() ? new Node_List() : free_list.pop());
390    assert( !freed || blk2value[freed->_pre_order] == &value, "" );
391    value.map(_max_reg,NULL);
392    regnd.map(_max_reg,NULL);
393    // Set mappings as OUR mappings
394    blk2value[b->_pre_order] = &value;
395    blk2regnd[b->_pre_order] = &regnd;
396
397    // Initialize value & regnd for this block
398    if( missing_some_inputs ) {
399      // Some predecessor has not yet been visited; zap map to empty
400      for( uint k = 0; k < (uint)_max_reg; k++ ) {
401        value.map(k,NULL);
402        regnd.map(k,NULL);
403      }
404    } else {
405      if( !freed ) {            // Didn't get a freebie prior block
406        // Must clone some data
407        freed = _cfg._bbs[b->pred(1)->_idx];
408        Node_List &f_value = *blk2value[freed->_pre_order];
409        Node_List &f_regnd = *blk2regnd[freed->_pre_order];
410        for( uint k = 0; k < (uint)_max_reg; k++ ) {
411          value.map(k,f_value[k]);
412          regnd.map(k,f_regnd[k]);
413        }
414      }
415      // Merge all inputs together, setting to NULL any conflicts.
416      for( j = 1; j < b->num_preds(); j++ ) {
417        Block *pb = _cfg._bbs[b->pred(j)->_idx];
418        if( pb == freed ) continue; // Did self already via freelist
419        Node_List &p_regnd = *blk2regnd[pb->_pre_order];
420        for( uint k = 0; k < (uint)_max_reg; k++ ) {
421          if( regnd[k] != p_regnd[k] ) { // Conflict on reaching defs?
422            value.map(k,NULL); // Then no value handy
423            regnd.map(k,NULL);
424          }
425        }
426      }
427    }
428
429    // For all Phi's
430    for( j = 1; j < phi_dex; j++ ) {
431      uint k;
432      Node *phi = b->_nodes[j];
433      uint pidx = n2lidx(phi);
434      OptoReg::Name preg = lrgs(n2lidx(phi)).reg();
435
436      // Remove copies remaining on edges.  Check for junk phi.
437      Node *u = NULL;
438      for( k=1; k<phi->req(); k++ ) {
439        Node *x = phi->in(k);
440        if( phi != x && u != x ) // Found a different input
441          u = u ? NodeSentinel : x; // Capture unique input, or NodeSentinel for 2nd input
442      }
443      if( u != NodeSentinel ) {    // Junk Phi.  Remove
444        b->_nodes.remove(j--); phi_dex--;
445        _cfg._bbs.map(phi->_idx,NULL);
446        phi->replace_by(u);
447        phi->disconnect_inputs(NULL);
448        continue;
449      }
450      // Note that if value[pidx] exists, then we merged no new values here
451      // and the phi is useless.  This can happen even with the above phi
452      // removal for complex flows.  I cannot keep the better known value here
453      // because locally the phi appears to define a new merged value.  If I
454      // keep the better value then a copy of the phi, being unable to use the
455      // global flow analysis, can't "peek through" the phi to the original
456      // reaching value and so will act like it's defining a new value.  This
457      // can lead to situations where some uses are from the old and some from
458      // the new values.  Not illegal by itself but throws the over-strong
459      // assert in scheduling.
460      if( pidx ) {
461        value.map(preg,phi);
462        regnd.map(preg,phi);
463        OptoReg::Name preg_lo = OptoReg::add(preg,-1);
464        if( !is_single_register(phi->ideal_reg()) ) {
465          value.map(preg_lo,phi);
466          regnd.map(preg_lo,phi);
467        }
468      }
469    }
470
471    // For all remaining instructions
472    for( j = phi_dex; j < b->_nodes.size(); j++ ) {
473      Node *n = b->_nodes[j];
474
475      if( n->outcnt() == 0 &&   // Dead?
476          n != C->top() &&      // (ignore TOP, it has no du info)
477          !n->is_Proj() ) {     // fat-proj kills
478        j -= yank_if_dead(n,b,&value,&regnd);
479        continue;
480      }
481
482      // Improve reaching-def info.  Occasionally post-alloc's liveness gives
483      // up (at loop backedges, because we aren't doing a full flow pass).
484      // The presence of a live use essentially asserts that the use's def is
485      // alive and well at the use (or else the allocator fubar'd).  Take
486      // advantage of this info to set a reaching def for the use-reg.
487      uint k;
488      for( k = 1; k < n->req(); k++ ) {
489        Node *def = n->in(k);   // n->in(k) is a USE; def is the DEF for this USE
490        guarantee(def != NULL, "no disconnected nodes at this point");
491        uint useidx = n2lidx(def); // useidx is the live range index for this USE
492
493        if( useidx ) {
494          OptoReg::Name ureg = lrgs(useidx).reg();
495          if( !value[ureg] ) {
496            int idx;            // Skip occasional useless copy
497            while( (idx=def->is_Copy()) != 0 &&
498                   def->in(idx) != NULL &&  // NULL should not happen
499                   ureg == lrgs(n2lidx(def->in(idx))).reg() )
500              def = def->in(idx);
501            Node *valdef = skip_copies(def); // tighten up val through non-useless copies
502            value.map(ureg,valdef); // record improved reaching-def info
503            regnd.map(ureg,   def);
504            // Record other half of doubles
505            OptoReg::Name ureg_lo = OptoReg::add(ureg,-1);
506            if( !is_single_register(def->ideal_reg()) &&
507                ( !RegMask::can_represent(ureg_lo) ||
508                  lrgs(useidx).mask().Member(ureg_lo) ) && // Nearly always adjacent
509                !value[ureg_lo] ) {
510              value.map(ureg_lo,valdef); // record improved reaching-def info
511              regnd.map(ureg_lo,   def);
512            }
513          }
514        }
515      }
516
517      const uint two_adr = n->is_Mach() ? n->as_Mach()->two_adr() : 0;
518
519      // Remove copies along input edges
520      for( k = 1; k < n->req(); k++ )
521        j -= elide_copy( n, k, b, value, regnd, two_adr!=k );
522
523      // Unallocated Nodes define no registers
524      uint lidx = n2lidx(n);
525      if( !lidx ) continue;
526
527      // Update the register defined by this instruction
528      OptoReg::Name nreg = lrgs(lidx).reg();
529      // Skip through all copies to the _value_ being defined.
530      // Do not change from int to pointer
531      Node *val = skip_copies(n);
532
533      uint n_ideal_reg = n->ideal_reg();
534      if( is_single_register(n_ideal_reg) ) {
535        // If Node 'n' does not change the value mapped by the register,
536        // then 'n' is a useless copy.  Do not update the register->node
537        // mapping so 'n' will go dead.
538        if( value[nreg] != val ) {
539          if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, OptoReg::Bad)) {
540            n->replace_by(regnd[nreg]);
541            j -= yank_if_dead(n,b,&value,&regnd);
542          } else {
543            // Update the mapping: record new Node defined by the register
544            regnd.map(nreg,n);
545            // Update mapping for defined *value*, which is the defined
546            // Node after skipping all copies.
547            value.map(nreg,val);
548          }
549        } else if( !may_be_copy_of_callee(n) && regnd[nreg]->outcnt() != 0 ) {
550          assert( n->is_Copy(), "" );
551          n->replace_by(regnd[nreg]);
552          j -= yank_if_dead(n,b,&value,&regnd);
553        }
554      } else {
555        // If the value occupies a register pair, record same info
556        // in both registers.
557        OptoReg::Name nreg_lo = OptoReg::add(nreg,-1);
558        if( RegMask::can_represent(nreg_lo) &&     // Either a spill slot, or
559            !lrgs(lidx).mask().Member(nreg_lo) ) { // Nearly always adjacent
560          // Sparc occasionally has non-adjacent pairs.
561          // Find the actual other value
562          RegMask tmp = lrgs(lidx).mask();
563          tmp.Remove(nreg);
564          nreg_lo = tmp.find_first_elem();
565        }
566        if( value[nreg] != val || value[nreg_lo] != val ) {
567          if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, nreg_lo)) {
568            n->replace_by(regnd[nreg]);
569            j -= yank_if_dead(n,b,&value,&regnd);
570          } else {
571            regnd.map(nreg   , n );
572            regnd.map(nreg_lo, n );
573            value.map(nreg   ,val);
574            value.map(nreg_lo,val);
575          }
576        } else if( !may_be_copy_of_callee(n) && regnd[nreg]->outcnt() != 0 ) {
577          assert( n->is_Copy(), "" );
578          n->replace_by(regnd[nreg]);
579          j -= yank_if_dead(n,b,&value,&regnd);
580        }
581      }
582
583      // Fat projections kill many registers
584      if( n_ideal_reg == MachProjNode::fat_proj ) {
585        RegMask rm = n->out_RegMask();
586        // wow, what an expensive iterator...
587        nreg = rm.find_first_elem();
588        while( OptoReg::is_valid(nreg)) {
589          rm.Remove(nreg);
590          value.map(nreg,n);
591          regnd.map(nreg,n);
592          nreg = rm.find_first_elem();
593        }
594      }
595
596    } // End of for all instructions in the block
597
598  } // End for all blocks
599}
600