postaloc.cpp revision 1915:2f644f85485d
1/*
2 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.inline.hpp"
27#include "opto/chaitin.hpp"
28#include "opto/machnode.hpp"
29
30// see if this register kind does not requires two registers
31static bool is_single_register(uint x) {
32#ifdef _LP64
33  return (x != Op_RegD && x != Op_RegL && x != Op_RegP);
34#else
35  return (x != Op_RegD && x != Op_RegL);
36#endif
37}
38
39//---------------------------may_be_copy_of_callee-----------------------------
40// Check to see if we can possibly be a copy of a callee-save value.
41bool PhaseChaitin::may_be_copy_of_callee( Node *def ) const {
42  // Short circuit if there are no callee save registers
43  if (_matcher.number_of_saved_registers() == 0) return false;
44
45  // Expect only a spill-down and reload on exit for callee-save spills.
46  // Chains of copies cannot be deep.
47  // 5008997 - This is wishful thinking. Register allocator seems to
48  // be splitting live ranges for callee save registers to such
49  // an extent that in large methods the chains can be very long
50  // (50+). The conservative answer is to return true if we don't
51  // know as this prevents optimizations from occurring.
52
53  const int limit = 60;
54  int i;
55  for( i=0; i < limit; i++ ) {
56    if( def->is_Proj() && def->in(0)->is_Start() &&
57        _matcher.is_save_on_entry(lrgs(n2lidx(def)).reg()) )
58      return true;              // Direct use of callee-save proj
59    if( def->is_Copy() )        // Copies carry value through
60      def = def->in(def->is_Copy());
61    else if( def->is_Phi() )    // Phis can merge it from any direction
62      def = def->in(1);
63    else
64      break;
65    guarantee(def != NULL, "must not resurrect dead copy");
66  }
67  // If we reached the end and didn't find a callee save proj
68  // then this may be a callee save proj so we return true
69  // as the conservative answer. If we didn't reach then end
70  // we must have discovered that it was not a callee save
71  // else we would have returned.
72  return i == limit;
73}
74
75
76
77//------------------------------yank_if_dead-----------------------------------
78// Removed an edge from 'old'.  Yank if dead.  Return adjustment counts to
79// iterators in the current block.
80int PhaseChaitin::yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
81  int blk_adjust=0;
82  while (old->outcnt() == 0 && old != C->top()) {
83    Block *oldb = _cfg._bbs[old->_idx];
84    oldb->find_remove(old);
85    // Count 1 if deleting an instruction from the current block
86    if( oldb == current_block ) blk_adjust++;
87    _cfg._bbs.map(old->_idx,NULL);
88    OptoReg::Name old_reg = lrgs(n2lidx(old)).reg();
89    if( regnd && (*regnd)[old_reg]==old ) { // Instruction is currently available?
90      value->map(old_reg,NULL);  // Yank from value/regnd maps
91      regnd->map(old_reg,NULL);  // This register's value is now unknown
92    }
93    assert(old->req() <= 2, "can't handle more inputs");
94    Node *tmp = old->req() > 1 ? old->in(1) : NULL;
95    old->disconnect_inputs(NULL);
96    if( !tmp ) break;
97    old = tmp;
98  }
99  return blk_adjust;
100}
101
102//------------------------------use_prior_register-----------------------------
103// Use the prior value instead of the current value, in an effort to make
104// the current value go dead.  Return block iterator adjustment, in case
105// we yank some instructions from this block.
106int PhaseChaitin::use_prior_register( Node *n, uint idx, Node *def, Block *current_block, Node_List &value, Node_List &regnd ) {
107  // No effect?
108  if( def == n->in(idx) ) return 0;
109  // Def is currently dead and can be removed?  Do not resurrect
110  if( def->outcnt() == 0 ) return 0;
111
112  // Not every pair of physical registers are assignment compatible,
113  // e.g. on sparc floating point registers are not assignable to integer
114  // registers.
115  const LRG &def_lrg = lrgs(n2lidx(def));
116  OptoReg::Name def_reg = def_lrg.reg();
117  const RegMask &use_mask = n->in_RegMask(idx);
118  bool can_use = ( RegMask::can_represent(def_reg) ? (use_mask.Member(def_reg) != 0)
119                                                   : (use_mask.is_AllStack() != 0));
120  // Check for a copy to or from a misaligned pair.
121  can_use = can_use && !use_mask.is_misaligned_Pair() && !def_lrg.mask().is_misaligned_Pair();
122
123  if (!can_use)
124    return 0;
125
126  // Capture the old def in case it goes dead...
127  Node *old = n->in(idx);
128
129  // Save-on-call copies can only be elided if the entire copy chain can go
130  // away, lest we get the same callee-save value alive in 2 locations at
131  // once.  We check for the obvious trivial case here.  Although it can
132  // sometimes be elided with cooperation outside our scope, here we will just
133  // miss the opportunity.  :-(
134  if( may_be_copy_of_callee(def) ) {
135    if( old->outcnt() > 1 ) return 0; // We're the not last user
136    int idx = old->is_Copy();
137    assert( idx, "chain of copies being removed" );
138    Node *old2 = old->in(idx);  // Chain of copies
139    if( old2->outcnt() > 1 ) return 0; // old is not the last user
140    int idx2 = old2->is_Copy();
141    if( !idx2 ) return 0;       // Not a chain of 2 copies
142    if( def != old2->in(idx2) ) return 0; // Chain of exactly 2 copies
143  }
144
145  // Use the new def
146  n->set_req(idx,def);
147  _post_alloc++;
148
149  // Is old def now dead?  We successfully yanked a copy?
150  return yank_if_dead(old,current_block,&value,&regnd);
151}
152
153
154//------------------------------skip_copies------------------------------------
155// Skip through any number of copies (that don't mod oop-i-ness)
156Node *PhaseChaitin::skip_copies( Node *c ) {
157  int idx = c->is_Copy();
158  uint is_oop = lrgs(n2lidx(c))._is_oop;
159  while (idx != 0) {
160    guarantee(c->in(idx) != NULL, "must not resurrect dead copy");
161    if (lrgs(n2lidx(c->in(idx)))._is_oop != is_oop)
162      break;  // casting copy, not the same value
163    c = c->in(idx);
164    idx = c->is_Copy();
165  }
166  return c;
167}
168
169//------------------------------elide_copy-------------------------------------
170// Remove (bypass) copies along Node n, edge k.
171int PhaseChaitin::elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List &regnd, bool can_change_regs ) {
172  int blk_adjust = 0;
173
174  uint nk_idx = n2lidx(n->in(k));
175  OptoReg::Name nk_reg = lrgs(nk_idx ).reg();
176
177  // Remove obvious same-register copies
178  Node *x = n->in(k);
179  int idx;
180  while( (idx=x->is_Copy()) != 0 ) {
181    Node *copy = x->in(idx);
182    guarantee(copy != NULL, "must not resurrect dead copy");
183    if( lrgs(n2lidx(copy)).reg() != nk_reg ) break;
184    blk_adjust += use_prior_register(n,k,copy,current_block,value,regnd);
185    if( n->in(k) != copy ) break; // Failed for some cutout?
186    x = copy;                   // Progress, try again
187  }
188
189  // Phis and 2-address instructions cannot change registers so easily - their
190  // outputs must match their input.
191  if( !can_change_regs )
192    return blk_adjust;          // Only check stupid copies!
193
194  // Loop backedges won't have a value-mapping yet
195  if( &value == NULL ) return blk_adjust;
196
197  // Skip through all copies to the _value_ being used.  Do not change from
198  // int to pointer.  This attempts to jump through a chain of copies, where
199  // intermediate copies might be illegal, i.e., value is stored down to stack
200  // then reloaded BUT survives in a register the whole way.
201  Node *val = skip_copies(n->in(k));
202
203  if (val == x && nk_idx != 0 &&
204      regnd[nk_reg] != NULL && regnd[nk_reg] != x &&
205      n2lidx(x) == n2lidx(regnd[nk_reg])) {
206    // When rematerialzing nodes and stretching lifetimes, the
207    // allocator will reuse the original def for multidef LRG instead
208    // of the current reaching def because it can't know it's safe to
209    // do so.  After allocation completes if they are in the same LRG
210    // then it should use the current reaching def instead.
211    n->set_req(k, regnd[nk_reg]);
212    blk_adjust += yank_if_dead(val, current_block, &value, &regnd);
213    val = skip_copies(n->in(k));
214  }
215
216  if( val == x ) return blk_adjust; // No progress?
217
218  bool single = is_single_register(val->ideal_reg());
219  uint val_idx = n2lidx(val);
220  OptoReg::Name val_reg = lrgs(val_idx).reg();
221
222  // See if it happens to already be in the correct register!
223  // (either Phi's direct register, or the common case of the name
224  // never-clobbered original-def register)
225  if( value[val_reg] == val &&
226      // Doubles check both halves
227      ( single || value[val_reg-1] == val ) ) {
228    blk_adjust += use_prior_register(n,k,regnd[val_reg],current_block,value,regnd);
229    if( n->in(k) == regnd[val_reg] ) // Success!  Quit trying
230      return blk_adjust;
231  }
232
233  // See if we can skip the copy by changing registers.  Don't change from
234  // using a register to using the stack unless we know we can remove a
235  // copy-load.  Otherwise we might end up making a pile of Intel cisc-spill
236  // ops reading from memory instead of just loading once and using the
237  // register.
238
239  // Also handle duplicate copies here.
240  const Type *t = val->is_Con() ? val->bottom_type() : NULL;
241
242  // Scan all registers to see if this value is around already
243  for( uint reg = 0; reg < (uint)_max_reg; reg++ ) {
244    if (reg == (uint)nk_reg) {
245      // Found ourselves so check if there is only one user of this
246      // copy and keep on searching for a better copy if so.
247      bool ignore_self = true;
248      x = n->in(k);
249      DUIterator_Fast imax, i = x->fast_outs(imax);
250      Node* first = x->fast_out(i); i++;
251      while (i < imax && ignore_self) {
252        Node* use = x->fast_out(i); i++;
253        if (use != first) ignore_self = false;
254      }
255      if (ignore_self) continue;
256    }
257
258    Node *vv = value[reg];
259    if( !single ) {             // Doubles check for aligned-adjacent pair
260      if( (reg&1)==0 ) continue;  // Wrong half of a pair
261      if( vv != value[reg-1] ) continue; // Not a complete pair
262    }
263    if( vv == val ||            // Got a direct hit?
264        (t && vv && vv->bottom_type() == t && vv->is_Mach() &&
265         vv->as_Mach()->rule() == val->as_Mach()->rule()) ) { // Or same constant?
266      assert( !n->is_Phi(), "cannot change registers at a Phi so easily" );
267      if( OptoReg::is_stack(nk_reg) || // CISC-loading from stack OR
268          OptoReg::is_reg(reg) || // turning into a register use OR
269          regnd[reg]->outcnt()==1 ) { // last use of a spill-load turns into a CISC use
270        blk_adjust += use_prior_register(n,k,regnd[reg],current_block,value,regnd);
271        if( n->in(k) == regnd[reg] ) // Success!  Quit trying
272          return blk_adjust;
273      } // End of if not degrading to a stack
274    } // End of if found value in another register
275  } // End of scan all machine registers
276  return blk_adjust;
277}
278
279
280//
281// Check if nreg already contains the constant value val.  Normal copy
282// elimination doesn't doesn't work on constants because multiple
283// nodes can represent the same constant so the type and rule of the
284// MachNode must be checked to ensure equivalence.
285//
286bool PhaseChaitin::eliminate_copy_of_constant(Node* val, Node* n,
287                                              Block *current_block,
288                                              Node_List& value, Node_List& regnd,
289                                              OptoReg::Name nreg, OptoReg::Name nreg2) {
290  if (value[nreg] != val && val->is_Con() &&
291      value[nreg] != NULL && value[nreg]->is_Con() &&
292      (nreg2 == OptoReg::Bad || value[nreg] == value[nreg2]) &&
293      value[nreg]->bottom_type() == val->bottom_type() &&
294      value[nreg]->as_Mach()->rule() == val->as_Mach()->rule()) {
295    // This code assumes that two MachNodes representing constants
296    // which have the same rule and the same bottom type will produce
297    // identical effects into a register.  This seems like it must be
298    // objectively true unless there are hidden inputs to the nodes
299    // but if that were to change this code would need to updated.
300    // Since they are equivalent the second one if redundant and can
301    // be removed.
302    //
303    // n will be replaced with the old value but n might have
304    // kills projections associated with it so remove them now so that
305    // yank_if_dead will be able to eliminate the copy once the uses
306    // have been transferred to the old[value].
307    for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
308      Node* use = n->fast_out(i);
309      if (use->is_Proj() && use->outcnt() == 0) {
310        // Kill projections have no users and one input
311        use->set_req(0, C->top());
312        yank_if_dead(use, current_block, &value, &regnd);
313        --i; --imax;
314      }
315    }
316    _post_alloc++;
317    return true;
318  }
319  return false;
320}
321
322
323//------------------------------post_allocate_copy_removal---------------------
324// Post-Allocation peephole copy removal.  We do this in 1 pass over the
325// basic blocks.  We maintain a mapping of registers to Nodes (an  array of
326// Nodes indexed by machine register or stack slot number).  NULL means that a
327// register is not mapped to any Node.  We can (want to have!) have several
328// registers map to the same Node.  We walk forward over the instructions
329// updating the mapping as we go.  At merge points we force a NULL if we have
330// to merge 2 different Nodes into the same register.  Phi functions will give
331// us a new Node if there is a proper value merging.  Since the blocks are
332// arranged in some RPO, we will visit all parent blocks before visiting any
333// successor blocks (except at loops).
334//
335// If we find a Copy we look to see if the Copy's source register is a stack
336// slot and that value has already been loaded into some machine register; if
337// so we use machine register directly.  This turns a Load into a reg-reg
338// Move.  We also look for reloads of identical constants.
339//
340// When we see a use from a reg-reg Copy, we will attempt to use the copy's
341// source directly and make the copy go dead.
342void PhaseChaitin::post_allocate_copy_removal() {
343  NOT_PRODUCT( Compile::TracePhase t3("postAllocCopyRemoval", &_t_postAllocCopyRemoval, TimeCompiler); )
344  ResourceMark rm;
345
346  // Need a mapping from basic block Node_Lists.  We need a Node_List to
347  // map from register number to value-producing Node.
348  Node_List **blk2value = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
349  memset( blk2value, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
350  // Need a mapping from basic block Node_Lists.  We need a Node_List to
351  // map from register number to register-defining Node.
352  Node_List **blk2regnd = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
353  memset( blk2regnd, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
354
355  // We keep unused Node_Lists on a free_list to avoid wasting
356  // memory.
357  GrowableArray<Node_List*> free_list = GrowableArray<Node_List*>(16);
358
359  // For all blocks
360  for( uint i = 0; i < _cfg._num_blocks; i++ ) {
361    uint j;
362    Block *b = _cfg._blocks[i];
363
364    // Count of Phis in block
365    uint phi_dex;
366    for( phi_dex = 1; phi_dex < b->_nodes.size(); phi_dex++ ) {
367      Node *phi = b->_nodes[phi_dex];
368      if( !phi->is_Phi() )
369        break;
370    }
371
372    // If any predecessor has not been visited, we do not know the state
373    // of registers at the start.  Check for this, while updating copies
374    // along Phi input edges
375    bool missing_some_inputs = false;
376    Block *freed = NULL;
377    for( j = 1; j < b->num_preds(); j++ ) {
378      Block *pb = _cfg._bbs[b->pred(j)->_idx];
379      // Remove copies along phi edges
380      for( uint k=1; k<phi_dex; k++ )
381        elide_copy( b->_nodes[k], j, b, *blk2value[pb->_pre_order], *blk2regnd[pb->_pre_order], false );
382      if( blk2value[pb->_pre_order] ) { // Have a mapping on this edge?
383        // See if this predecessor's mappings have been used by everybody
384        // who wants them.  If so, free 'em.
385        uint k;
386        for( k=0; k<pb->_num_succs; k++ ) {
387          Block *pbsucc = pb->_succs[k];
388          if( !blk2value[pbsucc->_pre_order] && pbsucc != b )
389            break;              // Found a future user
390        }
391        if( k >= pb->_num_succs ) { // No more uses, free!
392          freed = pb;           // Record last block freed
393          free_list.push(blk2value[pb->_pre_order]);
394          free_list.push(blk2regnd[pb->_pre_order]);
395        }
396      } else {                  // This block has unvisited (loopback) inputs
397        missing_some_inputs = true;
398      }
399    }
400
401
402    // Extract Node_List mappings.  If 'freed' is non-zero, we just popped
403    // 'freed's blocks off the list
404    Node_List &regnd = *(free_list.is_empty() ? new Node_List() : free_list.pop());
405    Node_List &value = *(free_list.is_empty() ? new Node_List() : free_list.pop());
406    assert( !freed || blk2value[freed->_pre_order] == &value, "" );
407    value.map(_max_reg,NULL);
408    regnd.map(_max_reg,NULL);
409    // Set mappings as OUR mappings
410    blk2value[b->_pre_order] = &value;
411    blk2regnd[b->_pre_order] = &regnd;
412
413    // Initialize value & regnd for this block
414    if( missing_some_inputs ) {
415      // Some predecessor has not yet been visited; zap map to empty
416      for( uint k = 0; k < (uint)_max_reg; k++ ) {
417        value.map(k,NULL);
418        regnd.map(k,NULL);
419      }
420    } else {
421      if( !freed ) {            // Didn't get a freebie prior block
422        // Must clone some data
423        freed = _cfg._bbs[b->pred(1)->_idx];
424        Node_List &f_value = *blk2value[freed->_pre_order];
425        Node_List &f_regnd = *blk2regnd[freed->_pre_order];
426        for( uint k = 0; k < (uint)_max_reg; k++ ) {
427          value.map(k,f_value[k]);
428          regnd.map(k,f_regnd[k]);
429        }
430      }
431      // Merge all inputs together, setting to NULL any conflicts.
432      for( j = 1; j < b->num_preds(); j++ ) {
433        Block *pb = _cfg._bbs[b->pred(j)->_idx];
434        if( pb == freed ) continue; // Did self already via freelist
435        Node_List &p_regnd = *blk2regnd[pb->_pre_order];
436        for( uint k = 0; k < (uint)_max_reg; k++ ) {
437          if( regnd[k] != p_regnd[k] ) { // Conflict on reaching defs?
438            value.map(k,NULL); // Then no value handy
439            regnd.map(k,NULL);
440          }
441        }
442      }
443    }
444
445    // For all Phi's
446    for( j = 1; j < phi_dex; j++ ) {
447      uint k;
448      Node *phi = b->_nodes[j];
449      uint pidx = n2lidx(phi);
450      OptoReg::Name preg = lrgs(n2lidx(phi)).reg();
451
452      // Remove copies remaining on edges.  Check for junk phi.
453      Node *u = NULL;
454      for( k=1; k<phi->req(); k++ ) {
455        Node *x = phi->in(k);
456        if( phi != x && u != x ) // Found a different input
457          u = u ? NodeSentinel : x; // Capture unique input, or NodeSentinel for 2nd input
458      }
459      if( u != NodeSentinel ) {    // Junk Phi.  Remove
460        b->_nodes.remove(j--); phi_dex--;
461        _cfg._bbs.map(phi->_idx,NULL);
462        phi->replace_by(u);
463        phi->disconnect_inputs(NULL);
464        continue;
465      }
466      // Note that if value[pidx] exists, then we merged no new values here
467      // and the phi is useless.  This can happen even with the above phi
468      // removal for complex flows.  I cannot keep the better known value here
469      // because locally the phi appears to define a new merged value.  If I
470      // keep the better value then a copy of the phi, being unable to use the
471      // global flow analysis, can't "peek through" the phi to the original
472      // reaching value and so will act like it's defining a new value.  This
473      // can lead to situations where some uses are from the old and some from
474      // the new values.  Not illegal by itself but throws the over-strong
475      // assert in scheduling.
476      if( pidx ) {
477        value.map(preg,phi);
478        regnd.map(preg,phi);
479        OptoReg::Name preg_lo = OptoReg::add(preg,-1);
480        if( !is_single_register(phi->ideal_reg()) ) {
481          value.map(preg_lo,phi);
482          regnd.map(preg_lo,phi);
483        }
484      }
485    }
486
487    // For all remaining instructions
488    for( j = phi_dex; j < b->_nodes.size(); j++ ) {
489      Node *n = b->_nodes[j];
490
491      if( n->outcnt() == 0 &&   // Dead?
492          n != C->top() &&      // (ignore TOP, it has no du info)
493          !n->is_Proj() ) {     // fat-proj kills
494        j -= yank_if_dead(n,b,&value,&regnd);
495        continue;
496      }
497
498      // Improve reaching-def info.  Occasionally post-alloc's liveness gives
499      // up (at loop backedges, because we aren't doing a full flow pass).
500      // The presence of a live use essentially asserts that the use's def is
501      // alive and well at the use (or else the allocator fubar'd).  Take
502      // advantage of this info to set a reaching def for the use-reg.
503      uint k;
504      for( k = 1; k < n->req(); k++ ) {
505        Node *def = n->in(k);   // n->in(k) is a USE; def is the DEF for this USE
506        guarantee(def != NULL, "no disconnected nodes at this point");
507        uint useidx = n2lidx(def); // useidx is the live range index for this USE
508
509        if( useidx ) {
510          OptoReg::Name ureg = lrgs(useidx).reg();
511          if( !value[ureg] ) {
512            int idx;            // Skip occasional useless copy
513            while( (idx=def->is_Copy()) != 0 &&
514                   def->in(idx) != NULL &&  // NULL should not happen
515                   ureg == lrgs(n2lidx(def->in(idx))).reg() )
516              def = def->in(idx);
517            Node *valdef = skip_copies(def); // tighten up val through non-useless copies
518            value.map(ureg,valdef); // record improved reaching-def info
519            regnd.map(ureg,   def);
520            // Record other half of doubles
521            OptoReg::Name ureg_lo = OptoReg::add(ureg,-1);
522            if( !is_single_register(def->ideal_reg()) &&
523                ( !RegMask::can_represent(ureg_lo) ||
524                  lrgs(useidx).mask().Member(ureg_lo) ) && // Nearly always adjacent
525                !value[ureg_lo] ) {
526              value.map(ureg_lo,valdef); // record improved reaching-def info
527              regnd.map(ureg_lo,   def);
528            }
529          }
530        }
531      }
532
533      const uint two_adr = n->is_Mach() ? n->as_Mach()->two_adr() : 0;
534
535      // Remove copies along input edges
536      for( k = 1; k < n->req(); k++ )
537        j -= elide_copy( n, k, b, value, regnd, two_adr!=k );
538
539      // Unallocated Nodes define no registers
540      uint lidx = n2lidx(n);
541      if( !lidx ) continue;
542
543      // Update the register defined by this instruction
544      OptoReg::Name nreg = lrgs(lidx).reg();
545      // Skip through all copies to the _value_ being defined.
546      // Do not change from int to pointer
547      Node *val = skip_copies(n);
548
549      // Clear out a dead definition before starting so that the
550      // elimination code doesn't have to guard against it.  The
551      // definition could in fact be a kill projection with a count of
552      // 0 which is safe but since those are uninteresting for copy
553      // elimination just delete them as well.
554      if (regnd[nreg] != NULL && regnd[nreg]->outcnt() == 0) {
555        regnd.map(nreg, NULL);
556        value.map(nreg, NULL);
557      }
558
559      uint n_ideal_reg = n->ideal_reg();
560      if( is_single_register(n_ideal_reg) ) {
561        // If Node 'n' does not change the value mapped by the register,
562        // then 'n' is a useless copy.  Do not update the register->node
563        // mapping so 'n' will go dead.
564        if( value[nreg] != val ) {
565          if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, OptoReg::Bad)) {
566            j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
567          } else {
568            // Update the mapping: record new Node defined by the register
569            regnd.map(nreg,n);
570            // Update mapping for defined *value*, which is the defined
571            // Node after skipping all copies.
572            value.map(nreg,val);
573          }
574        } else if( !may_be_copy_of_callee(n) ) {
575          assert( n->is_Copy(), "" );
576          j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
577        }
578      } else {
579        // If the value occupies a register pair, record same info
580        // in both registers.
581        OptoReg::Name nreg_lo = OptoReg::add(nreg,-1);
582        if( RegMask::can_represent(nreg_lo) &&     // Either a spill slot, or
583            !lrgs(lidx).mask().Member(nreg_lo) ) { // Nearly always adjacent
584          // Sparc occasionally has non-adjacent pairs.
585          // Find the actual other value
586          RegMask tmp = lrgs(lidx).mask();
587          tmp.Remove(nreg);
588          nreg_lo = tmp.find_first_elem();
589        }
590        if( value[nreg] != val || value[nreg_lo] != val ) {
591          if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, nreg_lo)) {
592            j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
593          } else {
594            regnd.map(nreg   , n );
595            regnd.map(nreg_lo, n );
596            value.map(nreg   ,val);
597            value.map(nreg_lo,val);
598          }
599        } else if( !may_be_copy_of_callee(n) ) {
600          assert( n->is_Copy(), "" );
601          j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
602        }
603      }
604
605      // Fat projections kill many registers
606      if( n_ideal_reg == MachProjNode::fat_proj ) {
607        RegMask rm = n->out_RegMask();
608        // wow, what an expensive iterator...
609        nreg = rm.find_first_elem();
610        while( OptoReg::is_valid(nreg)) {
611          rm.Remove(nreg);
612          value.map(nreg,n);
613          regnd.map(nreg,n);
614          nreg = rm.find_first_elem();
615        }
616      }
617
618    } // End of for all instructions in the block
619
620  } // End for all blocks
621}
622