phaseX.hpp revision 5776:de6a9e811145
127865Swosch/*
227865Swosch * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
327865Swosch * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
427865Swosch *
527865Swosch * This code is free software; you can redistribute it and/or modify it
627865Swosch * under the terms of the GNU General Public License version 2 only, as
727865Swosch * published by the Free Software Foundation.
827865Swosch *
927865Swosch * This code is distributed in the hope that it will be useful, but WITHOUT
1027865Swosch * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1127865Swosch * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
1227865Swosch * version 2 for more details (a copy is included in the LICENSE file that
1327865Swosch * accompanied this code).
1427865Swosch *
1527865Swosch * You should have received a copy of the GNU General Public License version
1627865Swosch * 2 along with this work; if not, write to the Free Software Foundation,
1727865Swosch * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
1827865Swosch *
1927865Swosch * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
2027865Swosch * or visit www.oracle.com if you need additional information or have any
2127865Swosch * questions.
2227865Swosch *
2327865Swosch */
2427865Swosch
2527865Swosch#ifndef SHARE_VM_OPTO_PHASEX_HPP
2627865Swosch#define SHARE_VM_OPTO_PHASEX_HPP
2727865Swosch
2827865Swosch#include "libadt/dict.hpp"
2927865Swosch#include "libadt/vectset.hpp"
3027865Swosch#include "memory/resourceArea.hpp"
3127865Swosch#include "opto/memnode.hpp"
3227865Swosch#include "opto/node.hpp"
3327865Swosch#include "opto/phase.hpp"
3427865Swosch#include "opto/type.hpp"
3527865Swosch
3627865Swoschclass Compile;
3727865Swoschclass ConINode;
3827865Swoschclass ConLNode;
3927865Swoschclass Node;
4027865Swoschclass Type;
4127865Swoschclass PhaseTransform;
4227865Swoschclass   PhaseGVN;
4327865Swoschclass     PhaseIterGVN;
44class       PhaseCCP;
45class   PhasePeephole;
46class   PhaseRegAlloc;
47
48
49//-----------------------------------------------------------------------------
50// Expandable closed hash-table of nodes, initialized to NULL.
51// Note that the constructor just zeros things
52// Storage is reclaimed when the Arena's lifetime is over.
53class NodeHash : public StackObj {
54protected:
55  Arena *_a;                    // Arena to allocate in
56  uint   _max;                  // Size of table (power of 2)
57  uint   _inserts;              // For grow and debug, count of hash_inserts
58  uint   _insert_limit;         // 'grow' when _inserts reaches _insert_limit
59  Node **_table;                // Hash table of Node pointers
60  Node  *_sentinel;             // Replaces deleted entries in hash table
61
62public:
63  NodeHash(uint est_max_size);
64  NodeHash(Arena *arena, uint est_max_size);
65  NodeHash(NodeHash *use_this_state);
66#ifdef ASSERT
67  ~NodeHash();                  // Unlock all nodes upon destruction of table.
68  void operator=(const NodeHash&); // Unlock all nodes upon replacement of table.
69#endif
70  Node  *hash_find(const Node*);// Find an equivalent version in hash table
71  Node  *hash_find_insert(Node*);// If not in table insert else return found node
72  void   hash_insert(Node*);    // Insert into hash table
73  bool   hash_delete(const Node*);// Replace with _sentinel in hash table
74  void   check_grow() {
75    _inserts++;
76    if( _inserts == _insert_limit ) { grow(); }
77    assert( _inserts <= _insert_limit, "hash table overflow");
78    assert( _inserts < _max, "hash table overflow" );
79  }
80  static uint round_up(uint);   // Round up to nearest power of 2
81  void   grow();                // Grow _table to next power of 2 and rehash
82  // Return 75% of _max, rounded up.
83  uint   insert_limit() const { return _max - (_max>>2); }
84
85  void   clear();               // Set all entries to NULL, keep storage.
86  // Size of hash table
87  uint   size()         const { return _max; }
88  // Return Node* at index in table
89  Node  *at(uint table_index) {
90    assert(table_index < _max, "Must be within table");
91    return _table[table_index];
92  }
93
94  void   remove_useless_nodes(VectorSet &useful); // replace with sentinel
95  void replace_with(NodeHash* nh);
96
97  Node  *sentinel() { return _sentinel; }
98
99#ifndef PRODUCT
100  Node  *find_index(uint idx);  // For debugging
101  void   dump();                // For debugging, dump statistics
102#endif
103  uint   _grows;                // For debugging, count of table grow()s
104  uint   _look_probes;          // For debugging, count of hash probes
105  uint   _lookup_hits;          // For debugging, count of hash_finds
106  uint   _lookup_misses;        // For debugging, count of hash_finds
107  uint   _insert_probes;        // For debugging, count of hash probes
108  uint   _delete_probes;        // For debugging, count of hash probes for deletes
109  uint   _delete_hits;          // For debugging, count of hash probes for deletes
110  uint   _delete_misses;        // For debugging, count of hash probes for deletes
111  uint   _total_inserts;        // For debugging, total inserts into hash table
112  uint   _total_insert_probes;  // For debugging, total probes while inserting
113};
114
115
116//-----------------------------------------------------------------------------
117// Map dense integer indices to Types.  Uses classic doubling-array trick.
118// Abstractly provides an infinite array of Type*'s, initialized to NULL.
119// Note that the constructor just zeros things, and since I use Arena
120// allocation I do not need a destructor to reclaim storage.
121// Despite the general name, this class is customized for use by PhaseTransform.
122class Type_Array : public StackObj {
123  Arena *_a;                    // Arena to allocate in
124  uint   _max;
125  const Type **_types;
126  void grow( uint i );          // Grow array node to fit
127  const Type *operator[] ( uint i ) const // Lookup, or NULL for not mapped
128  { return (i<_max) ? _types[i] : (Type*)NULL; }
129  friend class PhaseTransform;
130public:
131  Type_Array(Arena *a) : _a(a), _max(0), _types(0) {}
132  Type_Array(Type_Array *ta) : _a(ta->_a), _max(ta->_max), _types(ta->_types) { }
133  const Type *fast_lookup(uint i) const{assert(i<_max,"oob");return _types[i];}
134  // Extend the mapping: index i maps to Type *n.
135  void map( uint i, const Type *n ) { if( i>=_max ) grow(i); _types[i] = n; }
136  uint Size() const { return _max; }
137#ifndef PRODUCT
138  void dump() const;
139#endif
140};
141
142
143//------------------------------PhaseRemoveUseless-----------------------------
144// Remove useless nodes from GVN hash-table, worklist, and graph
145class PhaseRemoveUseless : public Phase {
146protected:
147  Unique_Node_List _useful;   // Nodes reachable from root
148                              // list is allocated from current resource area
149public:
150  PhaseRemoveUseless( PhaseGVN *gvn, Unique_Node_List *worklist );
151
152  Unique_Node_List *get_useful() { return &_useful; }
153};
154
155
156//------------------------------PhaseTransform---------------------------------
157// Phases that analyze, then transform.  Constructing the Phase object does any
158// global or slow analysis.  The results are cached later for a fast
159// transformation pass.  When the Phase object is deleted the cached analysis
160// results are deleted.
161class PhaseTransform : public Phase {
162protected:
163  Arena*     _arena;
164  Node_Array _nodes;           // Map old node indices to new nodes.
165  Type_Array _types;           // Map old node indices to Types.
166
167  // ConNode caches:
168  enum { _icon_min = -1 * HeapWordSize,
169         _icon_max = 16 * HeapWordSize,
170         _lcon_min = _icon_min,
171         _lcon_max = _icon_max,
172         _zcon_max = (uint)T_CONFLICT
173  };
174  ConINode* _icons[_icon_max - _icon_min + 1];   // cached jint constant nodes
175  ConLNode* _lcons[_lcon_max - _lcon_min + 1];   // cached jlong constant nodes
176  ConNode*  _zcons[_zcon_max + 1];               // cached is_zero_type nodes
177  void init_con_caches();
178
179  // Support both int and long caches because either might be an intptr_t,
180  // so they show up frequently in address computations.
181
182public:
183  PhaseTransform( PhaseNumber pnum );
184  PhaseTransform( Arena *arena, PhaseNumber pnum );
185  PhaseTransform( PhaseTransform *phase, PhaseNumber pnum );
186
187  Arena*      arena()   { return _arena; }
188  Type_Array& types()   { return _types; }
189  // _nodes is used in varying ways by subclasses, which define local accessors
190
191public:
192  // Get a previously recorded type for the node n.
193  // This type must already have been recorded.
194  // If you want the type of a very new (untransformed) node,
195  // you must use type_or_null, and test the result for NULL.
196  const Type* type(const Node* n) const {
197    assert(n != NULL, "must not be null");
198    const Type* t = _types.fast_lookup(n->_idx);
199    assert(t != NULL, "must set before get");
200    return t;
201  }
202  // Get a previously recorded type for the node n,
203  // or else return NULL if there is none.
204  const Type* type_or_null(const Node* n) const {
205    return _types.fast_lookup(n->_idx);
206  }
207  // Record a type for a node.
208  void    set_type(const Node* n, const Type *t) {
209    assert(t != NULL, "type must not be null");
210    _types.map(n->_idx, t);
211  }
212  // Record an initial type for a node, the node's bottom type.
213  void    set_type_bottom(const Node* n) {
214    // Use this for initialization when bottom_type() (or better) is not handy.
215    // Usually the initialization shoudl be to n->Value(this) instead,
216    // or a hand-optimized value like Type::MEMORY or Type::CONTROL.
217    assert(_types[n->_idx] == NULL, "must set the initial type just once");
218    _types.map(n->_idx, n->bottom_type());
219  }
220  // Make sure the types array is big enough to record a size for the node n.
221  // (In product builds, we never want to do range checks on the types array!)
222  void ensure_type_or_null(const Node* n) {
223    if (n->_idx >= _types.Size())
224      _types.map(n->_idx, NULL);   // Grow the types array as needed.
225  }
226
227  // Utility functions:
228  const TypeInt*  find_int_type( Node* n);
229  const TypeLong* find_long_type(Node* n);
230  jint  find_int_con( Node* n, jint  value_if_unknown) {
231    const TypeInt* t = find_int_type(n);
232    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
233  }
234  jlong find_long_con(Node* n, jlong value_if_unknown) {
235    const TypeLong* t = find_long_type(n);
236    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
237  }
238
239  // Make an idealized constant, i.e., one of ConINode, ConPNode, ConFNode, etc.
240  // Same as transform(ConNode::make(t)).
241  ConNode* makecon(const Type* t);
242  virtual ConNode* uncached_makecon(const Type* t)  // override in PhaseValues
243  { ShouldNotCallThis(); return NULL; }
244
245  // Fast int or long constant.  Same as TypeInt::make(i) or TypeLong::make(l).
246  ConINode* intcon(jint i);
247  ConLNode* longcon(jlong l);
248
249  // Fast zero or null constant.  Same as makecon(Type::get_zero_type(bt)).
250  ConNode* zerocon(BasicType bt);
251
252  // Return a node which computes the same function as this node, but
253  // in a faster or cheaper fashion.
254  virtual Node *transform( Node *n ) = 0;
255
256  // Return whether two Nodes are equivalent.
257  // Must not be recursive, since the recursive version is built from this.
258  // For pessimistic optimizations this is simply pointer equivalence.
259  bool eqv(const Node* n1, const Node* n2) const { return n1 == n2; }
260
261  // For pessimistic passes, the return type must monotonically narrow.
262  // For optimistic  passes, the return type must monotonically widen.
263  // It is possible to get into a "death march" in either type of pass,
264  // where the types are continually moving but it will take 2**31 or
265  // more steps to converge.  This doesn't happen on most normal loops.
266  //
267  // Here is an example of a deadly loop for an optimistic pass, along
268  // with a partial trace of inferred types:
269  //    x = phi(0,x'); L: x' = x+1; if (x' >= 0) goto L;
270  //    0                 1                join([0..max], 1)
271  //    [0..1]            [1..2]           join([0..max], [1..2])
272  //    [0..2]            [1..3]           join([0..max], [1..3])
273  //      ... ... ...
274  //    [0..max]          [min]u[1..max]   join([0..max], [min..max])
275  //    [0..max] ==> fixpoint
276  // We would have proven, the hard way, that the iteration space is all
277  // non-negative ints, with the loop terminating due to 32-bit overflow.
278  //
279  // Here is the corresponding example for a pessimistic pass:
280  //    x = phi(0,x'); L: x' = x-1; if (x' >= 0) goto L;
281  //    int               int              join([0..max], int)
282  //    [0..max]          [-1..max-1]      join([0..max], [-1..max-1])
283  //    [0..max-1]        [-1..max-2]      join([0..max], [-1..max-2])
284  //      ... ... ...
285  //    [0..1]            [-1..0]          join([0..max], [-1..0])
286  //    0                 -1               join([0..max], -1)
287  //    0 == fixpoint
288  // We would have proven, the hard way, that the iteration space is {0}.
289  // (Usually, other optimizations will make the "if (x >= 0)" fold up
290  // before we get into trouble.  But not always.)
291  //
292  // It's a pleasant thing to observe that the pessimistic pass
293  // will make short work of the optimistic pass's deadly loop,
294  // and vice versa.  That is a good example of the complementary
295  // purposes of the CCP (optimistic) vs. GVN (pessimistic) phases.
296  //
297  // In any case, only widen or narrow a few times before going to the
298  // correct flavor of top or bottom.
299  //
300  // This call only needs to be made once as the data flows around any
301  // given cycle.  We do it at Phis, and nowhere else.
302  // The types presented are the new type of a phi (computed by PhiNode::Value)
303  // and the previously computed type, last time the phi was visited.
304  //
305  // The third argument is upper limit for the saturated value,
306  // if the phase wishes to widen the new_type.
307  // If the phase is narrowing, the old type provides a lower limit.
308  // Caller guarantees that old_type and new_type are no higher than limit_type.
309  virtual const Type* saturate(const Type* new_type, const Type* old_type,
310                               const Type* limit_type) const
311  { ShouldNotCallThis(); return NULL; }
312
313#ifndef PRODUCT
314  void dump_old2new_map() const;
315  void dump_new( uint new_lidx ) const;
316  void dump_types() const;
317  void dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl = true);
318  void dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited);
319
320  uint   _count_progress;       // For profiling, count transforms that make progress
321  void   set_progress()        { ++_count_progress; assert( allow_progress(),"No progress allowed during verification"); }
322  void   clear_progress()      { _count_progress = 0; }
323  uint   made_progress() const { return _count_progress; }
324
325  uint   _count_transforms;     // For profiling, count transforms performed
326  void   set_transforms()      { ++_count_transforms; }
327  void   clear_transforms()    { _count_transforms = 0; }
328  uint   made_transforms() const{ return _count_transforms; }
329
330  bool   _allow_progress;      // progress not allowed during verification pass
331  void   set_allow_progress(bool allow) { _allow_progress = allow; }
332  bool   allow_progress()               { return _allow_progress; }
333#endif
334};
335
336//------------------------------PhaseValues------------------------------------
337// Phase infrastructure to support values
338class PhaseValues : public PhaseTransform {
339protected:
340  NodeHash  _table;             // Hash table for value-numbering
341
342public:
343  PhaseValues( Arena *arena, uint est_max_size );
344  PhaseValues( PhaseValues *pt );
345  PhaseValues( PhaseValues *ptv, const char *dummy );
346  NOT_PRODUCT( ~PhaseValues(); )
347  virtual PhaseIterGVN *is_IterGVN() { return 0; }
348
349  // Some Ideal and other transforms delete --> modify --> insert values
350  bool   hash_delete(Node *n)     { return _table.hash_delete(n); }
351  void   hash_insert(Node *n)     { _table.hash_insert(n); }
352  Node  *hash_find_insert(Node *n){ return _table.hash_find_insert(n); }
353  Node  *hash_find(const Node *n) { return _table.hash_find(n); }
354
355  // Used after parsing to eliminate values that are no longer in program
356  void   remove_useless_nodes(VectorSet &useful) {
357    _table.remove_useless_nodes(useful);
358    // this may invalidate cached cons so reset the cache
359    init_con_caches();
360  }
361
362  virtual ConNode* uncached_makecon(const Type* t);  // override from PhaseTransform
363
364  virtual const Type* saturate(const Type* new_type, const Type* old_type,
365                               const Type* limit_type) const
366  { return new_type; }
367
368#ifndef PRODUCT
369  uint   _count_new_values;     // For profiling, count new values produced
370  void    inc_new_values()        { ++_count_new_values; }
371  void    clear_new_values()      { _count_new_values = 0; }
372  uint    made_new_values() const { return _count_new_values; }
373#endif
374};
375
376
377//------------------------------PhaseGVN---------------------------------------
378// Phase for performing local, pessimistic GVN-style optimizations.
379class PhaseGVN : public PhaseValues {
380public:
381  PhaseGVN( Arena *arena, uint est_max_size ) : PhaseValues( arena, est_max_size ) {}
382  PhaseGVN( PhaseGVN *gvn ) : PhaseValues( gvn ) {}
383  PhaseGVN( PhaseGVN *gvn, const char *dummy ) : PhaseValues( gvn, dummy ) {}
384
385  // Return a node which computes the same function as this node, but
386  // in a faster or cheaper fashion.
387  Node  *transform( Node *n );
388  Node  *transform_no_reclaim( Node *n );
389
390  void replace_with(PhaseGVN* gvn) {
391    _table.replace_with(&gvn->_table);
392    _types = gvn->_types;
393  }
394
395  // Check for a simple dead loop when a data node references itself.
396  DEBUG_ONLY(void dead_loop_check(Node *n);)
397};
398
399//------------------------------PhaseIterGVN-----------------------------------
400// Phase for iteratively performing local, pessimistic GVN-style optimizations.
401// and ideal transformations on the graph.
402class PhaseIterGVN : public PhaseGVN {
403 private:
404  bool _delay_transform;  // When true simply register the node when calling transform
405                          // instead of actually optimizing it
406
407  // Idealize old Node 'n' with respect to its inputs and its value
408  virtual Node *transform_old( Node *a_node );
409
410  // Subsume users of node 'old' into node 'nn'
411  void subsume_node( Node *old, Node *nn );
412
413  Node_Stack _stack;      // Stack used to avoid recursion
414
415protected:
416
417  // Idealize new Node 'n' with respect to its inputs and its value
418  virtual Node *transform( Node *a_node );
419
420  // Warm up hash table, type table and initial worklist
421  void init_worklist( Node *a_root );
422
423  virtual const Type* saturate(const Type* new_type, const Type* old_type,
424                               const Type* limit_type) const;
425  // Usually returns new_type.  Returns old_type if new_type is only a slight
426  // improvement, such that it would take many (>>10) steps to reach 2**32.
427
428public:
429  PhaseIterGVN( PhaseIterGVN *igvn ); // Used by CCP constructor
430  PhaseIterGVN( PhaseGVN *gvn ); // Used after Parser
431  PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ); // Used after +VerifyOpto
432
433  virtual PhaseIterGVN *is_IterGVN() { return this; }
434
435  Unique_Node_List _worklist;       // Iterative worklist
436
437  // Given def-use info and an initial worklist, apply Node::Ideal,
438  // Node::Value, Node::Identity, hash-based value numbering, Node::Ideal_DU
439  // and dominator info to a fixed point.
440  void optimize();
441
442  // Register a new node with the iter GVN pass without transforming it.
443  // Used when we need to restructure a Region/Phi area and all the Regions
444  // and Phis need to complete this one big transform before any other
445  // transforms can be triggered on the region.
446  // Optional 'orig' is an earlier version of this node.
447  // It is significant only for debugging and profiling.
448  Node* register_new_node_with_optimizer(Node* n, Node* orig = NULL);
449
450  // Kill a globally dead Node.  All uses are also globally dead and are
451  // aggressively trimmed.
452  void remove_globally_dead_node( Node *dead );
453
454  // Kill all inputs to a dead node, recursively making more dead nodes.
455  // The Node must be dead locally, i.e., have no uses.
456  void remove_dead_node( Node *dead ) {
457    assert(dead->outcnt() == 0 && !dead->is_top(), "node must be dead");
458    remove_globally_dead_node(dead);
459  }
460
461  // Add users of 'n' to worklist
462  void add_users_to_worklist0( Node *n );
463  void add_users_to_worklist ( Node *n );
464
465  // Replace old node with new one.
466  void replace_node( Node *old, Node *nn ) {
467    add_users_to_worklist(old);
468    hash_delete(old); // Yank from hash before hacking edges
469    subsume_node(old, nn);
470  }
471
472  // Delayed node rehash: remove a node from the hash table and rehash it during
473  // next optimizing pass
474  void rehash_node_delayed(Node* n) {
475    hash_delete(n);
476    _worklist.push(n);
477  }
478
479  // Replace ith edge of "n" with "in"
480  void replace_input_of(Node* n, int i, Node* in) {
481    rehash_node_delayed(n);
482    n->set_req(i, in);
483  }
484
485  // Delete ith edge of "n"
486  void delete_input_of(Node* n, int i) {
487    rehash_node_delayed(n);
488    n->del_req(i);
489  }
490
491  bool delay_transform() const { return _delay_transform; }
492
493  void set_delay_transform(bool delay) {
494    _delay_transform = delay;
495  }
496
497  // Clone loop predicates. Defined in loopTransform.cpp.
498  Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
499  // Create a new if below new_entry for the predicate to be cloned
500  ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
501                                        Deoptimization::DeoptReason reason);
502
503  void remove_speculative_types();
504
505#ifndef PRODUCT
506protected:
507  // Sub-quadratic implementation of VerifyIterativeGVN.
508  julong _verify_counter;
509  julong _verify_full_passes;
510  enum { _verify_window_size = 30 };
511  Node* _verify_window[_verify_window_size];
512  void verify_step(Node* n);
513#endif
514};
515
516//------------------------------PhaseCCP---------------------------------------
517// Phase for performing global Conditional Constant Propagation.
518// Should be replaced with combined CCP & GVN someday.
519class PhaseCCP : public PhaseIterGVN {
520  // Non-recursive.  Use analysis to transform single Node.
521  virtual Node *transform_once( Node *n );
522
523public:
524  PhaseCCP( PhaseIterGVN *igvn ); // Compute conditional constants
525  NOT_PRODUCT( ~PhaseCCP(); )
526
527  // Worklist algorithm identifies constants
528  void analyze();
529  // Recursive traversal of program.  Used analysis to modify program.
530  virtual Node *transform( Node *n );
531  // Do any transformation after analysis
532  void          do_transform();
533
534  virtual const Type* saturate(const Type* new_type, const Type* old_type,
535                               const Type* limit_type) const;
536  // Returns new_type->widen(old_type), which increments the widen bits until
537  // giving up with TypeInt::INT or TypeLong::LONG.
538  // Result is clipped to limit_type if necessary.
539
540#ifndef PRODUCT
541  static uint _total_invokes;    // For profiling, count invocations
542  void    inc_invokes()          { ++PhaseCCP::_total_invokes; }
543
544  static uint _total_constants;  // For profiling, count constants found
545  uint   _count_constants;
546  void    clear_constants()      { _count_constants = 0; }
547  void    inc_constants()        { ++_count_constants; }
548  uint    count_constants() const { return _count_constants; }
549
550  static void print_statistics();
551#endif
552};
553
554
555//------------------------------PhasePeephole----------------------------------
556// Phase for performing peephole optimizations on register allocated basic blocks.
557class PhasePeephole : public PhaseTransform {
558  PhaseRegAlloc *_regalloc;
559  PhaseCFG     &_cfg;
560  // Recursive traversal of program.  Pure function is unused in this phase
561  virtual Node *transform( Node *n );
562
563public:
564  PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg );
565  NOT_PRODUCT( ~PhasePeephole(); )
566
567  // Do any transformation after analysis
568  void          do_transform();
569
570#ifndef PRODUCT
571  static uint _total_peepholes;  // For profiling, count peephole rules applied
572  uint   _count_peepholes;
573  void    clear_peepholes()      { _count_peepholes = 0; }
574  void    inc_peepholes()        { ++_count_peepholes; }
575  uint    count_peepholes() const { return _count_peepholes; }
576
577  static void print_statistics();
578#endif
579};
580
581#endif // SHARE_VM_OPTO_PHASEX_HPP
582