phaseX.hpp revision 1879:f95d63e2154a
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OPTO_PHASEX_HPP
26#define SHARE_VM_OPTO_PHASEX_HPP
27
28#include "libadt/dict.hpp"
29#include "libadt/vectset.hpp"
30#include "memory/resourceArea.hpp"
31#include "opto/memnode.hpp"
32#include "opto/node.hpp"
33#include "opto/phase.hpp"
34#include "opto/type.hpp"
35
36class Compile;
37class ConINode;
38class ConLNode;
39class Node;
40class Type;
41class PhaseTransform;
42class   PhaseGVN;
43class     PhaseIterGVN;
44class       PhaseCCP;
45class   PhasePeephole;
46class   PhaseRegAlloc;
47
48
49//-----------------------------------------------------------------------------
50// Expandable closed hash-table of nodes, initialized to NULL.
51// Note that the constructor just zeros things
52// Storage is reclaimed when the Arena's lifetime is over.
53class NodeHash : public StackObj {
54protected:
55  Arena *_a;                    // Arena to allocate in
56  uint   _max;                  // Size of table (power of 2)
57  uint   _inserts;              // For grow and debug, count of hash_inserts
58  uint   _insert_limit;         // 'grow' when _inserts reaches _insert_limit
59  Node **_table;                // Hash table of Node pointers
60  Node  *_sentinel;             // Replaces deleted entries in hash table
61
62public:
63  NodeHash(uint est_max_size);
64  NodeHash(Arena *arena, uint est_max_size);
65  NodeHash(NodeHash *use_this_state);
66#ifdef ASSERT
67  ~NodeHash();                  // Unlock all nodes upon destruction of table.
68  void operator=(const NodeHash&); // Unlock all nodes upon replacement of table.
69#endif
70  Node  *hash_find(const Node*);// Find an equivalent version in hash table
71  Node  *hash_find_insert(Node*);// If not in table insert else return found node
72  void   hash_insert(Node*);    // Insert into hash table
73  bool   hash_delete(const Node*);// Replace with _sentinel in hash table
74  void   check_grow() {
75    _inserts++;
76    if( _inserts == _insert_limit ) { grow(); }
77    assert( _inserts <= _insert_limit, "hash table overflow");
78    assert( _inserts < _max, "hash table overflow" );
79  }
80  static uint round_up(uint);   // Round up to nearest power of 2
81  void   grow();                // Grow _table to next power of 2 and rehash
82  // Return 75% of _max, rounded up.
83  uint   insert_limit() const { return _max - (_max>>2); }
84
85  void   clear();               // Set all entries to NULL, keep storage.
86  // Size of hash table
87  uint   size()         const { return _max; }
88  // Return Node* at index in table
89  Node  *at(uint table_index) {
90    assert(table_index < _max, "Must be within table");
91    return _table[table_index];
92  }
93
94  void   remove_useless_nodes(VectorSet &useful); // replace with sentinel
95
96  Node  *sentinel() { return _sentinel; }
97
98#ifndef PRODUCT
99  Node  *find_index(uint idx);  // For debugging
100  void   dump();                // For debugging, dump statistics
101#endif
102  uint   _grows;                // For debugging, count of table grow()s
103  uint   _look_probes;          // For debugging, count of hash probes
104  uint   _lookup_hits;          // For debugging, count of hash_finds
105  uint   _lookup_misses;        // For debugging, count of hash_finds
106  uint   _insert_probes;        // For debugging, count of hash probes
107  uint   _delete_probes;        // For debugging, count of hash probes for deletes
108  uint   _delete_hits;          // For debugging, count of hash probes for deletes
109  uint   _delete_misses;        // For debugging, count of hash probes for deletes
110  uint   _total_inserts;        // For debugging, total inserts into hash table
111  uint   _total_insert_probes;  // For debugging, total probes while inserting
112};
113
114
115//-----------------------------------------------------------------------------
116// Map dense integer indices to Types.  Uses classic doubling-array trick.
117// Abstractly provides an infinite array of Type*'s, initialized to NULL.
118// Note that the constructor just zeros things, and since I use Arena
119// allocation I do not need a destructor to reclaim storage.
120// Despite the general name, this class is customized for use by PhaseTransform.
121class Type_Array : public StackObj {
122  Arena *_a;                    // Arena to allocate in
123  uint   _max;
124  const Type **_types;
125  void grow( uint i );          // Grow array node to fit
126  const Type *operator[] ( uint i ) const // Lookup, or NULL for not mapped
127  { return (i<_max) ? _types[i] : (Type*)NULL; }
128  friend class PhaseTransform;
129public:
130  Type_Array(Arena *a) : _a(a), _max(0), _types(0) {}
131  Type_Array(Type_Array *ta) : _a(ta->_a), _max(ta->_max), _types(ta->_types) { }
132  const Type *fast_lookup(uint i) const{assert(i<_max,"oob");return _types[i];}
133  // Extend the mapping: index i maps to Type *n.
134  void map( uint i, const Type *n ) { if( i>=_max ) grow(i); _types[i] = n; }
135  uint Size() const { return _max; }
136#ifndef PRODUCT
137  void dump() const;
138#endif
139};
140
141
142//------------------------------PhaseRemoveUseless-----------------------------
143// Remove useless nodes from GVN hash-table, worklist, and graph
144class PhaseRemoveUseless : public Phase {
145protected:
146  Unique_Node_List _useful;   // Nodes reachable from root
147                              // list is allocated from current resource area
148public:
149  PhaseRemoveUseless( PhaseGVN *gvn, Unique_Node_List *worklist );
150
151  Unique_Node_List *get_useful() { return &_useful; }
152};
153
154
155//------------------------------PhaseTransform---------------------------------
156// Phases that analyze, then transform.  Constructing the Phase object does any
157// global or slow analysis.  The results are cached later for a fast
158// transformation pass.  When the Phase object is deleted the cached analysis
159// results are deleted.
160class PhaseTransform : public Phase {
161protected:
162  Arena*     _arena;
163  Node_Array _nodes;           // Map old node indices to new nodes.
164  Type_Array _types;           // Map old node indices to Types.
165
166  // ConNode caches:
167  enum { _icon_min = -1 * HeapWordSize,
168         _icon_max = 16 * HeapWordSize,
169         _lcon_min = _icon_min,
170         _lcon_max = _icon_max,
171         _zcon_max = (uint)T_CONFLICT
172  };
173  ConINode* _icons[_icon_max - _icon_min + 1];   // cached jint constant nodes
174  ConLNode* _lcons[_lcon_max - _lcon_min + 1];   // cached jlong constant nodes
175  ConNode*  _zcons[_zcon_max + 1];               // cached is_zero_type nodes
176  void init_con_caches();
177
178  // Support both int and long caches because either might be an intptr_t,
179  // so they show up frequently in address computations.
180
181public:
182  PhaseTransform( PhaseNumber pnum );
183  PhaseTransform( Arena *arena, PhaseNumber pnum );
184  PhaseTransform( PhaseTransform *phase, PhaseNumber pnum );
185
186  Arena*      arena()   { return _arena; }
187  Type_Array& types()   { return _types; }
188  // _nodes is used in varying ways by subclasses, which define local accessors
189
190public:
191  // Get a previously recorded type for the node n.
192  // This type must already have been recorded.
193  // If you want the type of a very new (untransformed) node,
194  // you must use type_or_null, and test the result for NULL.
195  const Type* type(const Node* n) const {
196    const Type* t = _types.fast_lookup(n->_idx);
197    assert(t != NULL, "must set before get");
198    return t;
199  }
200  // Get a previously recorded type for the node n,
201  // or else return NULL if there is none.
202  const Type* type_or_null(const Node* n) const {
203    return _types.fast_lookup(n->_idx);
204  }
205  // Record a type for a node.
206  void    set_type(const Node* n, const Type *t) {
207    assert(t != NULL, "type must not be null");
208    _types.map(n->_idx, t);
209  }
210  // Record an initial type for a node, the node's bottom type.
211  void    set_type_bottom(const Node* n) {
212    // Use this for initialization when bottom_type() (or better) is not handy.
213    // Usually the initialization shoudl be to n->Value(this) instead,
214    // or a hand-optimized value like Type::MEMORY or Type::CONTROL.
215    assert(_types[n->_idx] == NULL, "must set the initial type just once");
216    _types.map(n->_idx, n->bottom_type());
217  }
218  // Make sure the types array is big enough to record a size for the node n.
219  // (In product builds, we never want to do range checks on the types array!)
220  void ensure_type_or_null(const Node* n) {
221    if (n->_idx >= _types.Size())
222      _types.map(n->_idx, NULL);   // Grow the types array as needed.
223  }
224
225  // Utility functions:
226  const TypeInt*  find_int_type( Node* n);
227  const TypeLong* find_long_type(Node* n);
228  jint  find_int_con( Node* n, jint  value_if_unknown) {
229    const TypeInt* t = find_int_type(n);
230    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
231  }
232  jlong find_long_con(Node* n, jlong value_if_unknown) {
233    const TypeLong* t = find_long_type(n);
234    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
235  }
236
237  // Make an idealized constant, i.e., one of ConINode, ConPNode, ConFNode, etc.
238  // Same as transform(ConNode::make(t)).
239  ConNode* makecon(const Type* t);
240  virtual ConNode* uncached_makecon(const Type* t)  // override in PhaseValues
241  { ShouldNotCallThis(); return NULL; }
242
243  // Fast int or long constant.  Same as TypeInt::make(i) or TypeLong::make(l).
244  ConINode* intcon(jint i);
245  ConLNode* longcon(jlong l);
246
247  // Fast zero or null constant.  Same as makecon(Type::get_zero_type(bt)).
248  ConNode* zerocon(BasicType bt);
249
250  // Return a node which computes the same function as this node, but
251  // in a faster or cheaper fashion.
252  virtual Node *transform( Node *n ) = 0;
253
254  // Return whether two Nodes are equivalent.
255  // Must not be recursive, since the recursive version is built from this.
256  // For pessimistic optimizations this is simply pointer equivalence.
257  bool eqv(const Node* n1, const Node* n2) const { return n1 == n2; }
258
259  // Return whether two Nodes are equivalent, after stripping casting.
260  bool eqv_uncast(const Node* n1, const Node* n2) const {
261    return eqv(n1->uncast(), n2->uncast());
262  }
263
264  // For pessimistic passes, the return type must monotonically narrow.
265  // For optimistic  passes, the return type must monotonically widen.
266  // It is possible to get into a "death march" in either type of pass,
267  // where the types are continually moving but it will take 2**31 or
268  // more steps to converge.  This doesn't happen on most normal loops.
269  //
270  // Here is an example of a deadly loop for an optimistic pass, along
271  // with a partial trace of inferred types:
272  //    x = phi(0,x'); L: x' = x+1; if (x' >= 0) goto L;
273  //    0                 1                join([0..max], 1)
274  //    [0..1]            [1..2]           join([0..max], [1..2])
275  //    [0..2]            [1..3]           join([0..max], [1..3])
276  //      ... ... ...
277  //    [0..max]          [min]u[1..max]   join([0..max], [min..max])
278  //    [0..max] ==> fixpoint
279  // We would have proven, the hard way, that the iteration space is all
280  // non-negative ints, with the loop terminating due to 32-bit overflow.
281  //
282  // Here is the corresponding example for a pessimistic pass:
283  //    x = phi(0,x'); L: x' = x-1; if (x' >= 0) goto L;
284  //    int               int              join([0..max], int)
285  //    [0..max]          [-1..max-1]      join([0..max], [-1..max-1])
286  //    [0..max-1]        [-1..max-2]      join([0..max], [-1..max-2])
287  //      ... ... ...
288  //    [0..1]            [-1..0]          join([0..max], [-1..0])
289  //    0                 -1               join([0..max], -1)
290  //    0 == fixpoint
291  // We would have proven, the hard way, that the iteration space is {0}.
292  // (Usually, other optimizations will make the "if (x >= 0)" fold up
293  // before we get into trouble.  But not always.)
294  //
295  // It's a pleasant thing to observe that the pessimistic pass
296  // will make short work of the optimistic pass's deadly loop,
297  // and vice versa.  That is a good example of the complementary
298  // purposes of the CCP (optimistic) vs. GVN (pessimistic) phases.
299  //
300  // In any case, only widen or narrow a few times before going to the
301  // correct flavor of top or bottom.
302  //
303  // This call only needs to be made once as the data flows around any
304  // given cycle.  We do it at Phis, and nowhere else.
305  // The types presented are the new type of a phi (computed by PhiNode::Value)
306  // and the previously computed type, last time the phi was visited.
307  //
308  // The third argument is upper limit for the saturated value,
309  // if the phase wishes to widen the new_type.
310  // If the phase is narrowing, the old type provides a lower limit.
311  // Caller guarantees that old_type and new_type are no higher than limit_type.
312  virtual const Type* saturate(const Type* new_type, const Type* old_type,
313                               const Type* limit_type) const
314  { ShouldNotCallThis(); return NULL; }
315
316#ifndef PRODUCT
317  void dump_old2new_map() const;
318  void dump_new( uint new_lidx ) const;
319  void dump_types() const;
320  void dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl = true);
321  void dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited);
322
323  uint   _count_progress;       // For profiling, count transforms that make progress
324  void   set_progress()        { ++_count_progress; assert( allow_progress(),"No progress allowed during verification"); }
325  void   clear_progress()      { _count_progress = 0; }
326  uint   made_progress() const { return _count_progress; }
327
328  uint   _count_transforms;     // For profiling, count transforms performed
329  void   set_transforms()      { ++_count_transforms; }
330  void   clear_transforms()    { _count_transforms = 0; }
331  uint   made_transforms() const{ return _count_transforms; }
332
333  bool   _allow_progress;      // progress not allowed during verification pass
334  void   set_allow_progress(bool allow) { _allow_progress = allow; }
335  bool   allow_progress()               { return _allow_progress; }
336#endif
337};
338
339//------------------------------PhaseValues------------------------------------
340// Phase infrastructure to support values
341class PhaseValues : public PhaseTransform {
342protected:
343  NodeHash  _table;             // Hash table for value-numbering
344
345public:
346  PhaseValues( Arena *arena, uint est_max_size );
347  PhaseValues( PhaseValues *pt );
348  PhaseValues( PhaseValues *ptv, const char *dummy );
349  NOT_PRODUCT( ~PhaseValues(); )
350  virtual PhaseIterGVN *is_IterGVN() { return 0; }
351
352  // Some Ideal and other transforms delete --> modify --> insert values
353  bool   hash_delete(Node *n)     { return _table.hash_delete(n); }
354  void   hash_insert(Node *n)     { _table.hash_insert(n); }
355  Node  *hash_find_insert(Node *n){ return _table.hash_find_insert(n); }
356  Node  *hash_find(const Node *n) { return _table.hash_find(n); }
357
358  // Used after parsing to eliminate values that are no longer in program
359  void   remove_useless_nodes(VectorSet &useful) {
360    _table.remove_useless_nodes(useful);
361    // this may invalidate cached cons so reset the cache
362    init_con_caches();
363  }
364
365  virtual ConNode* uncached_makecon(const Type* t);  // override from PhaseTransform
366
367  virtual const Type* saturate(const Type* new_type, const Type* old_type,
368                               const Type* limit_type) const
369  { return new_type; }
370
371#ifndef PRODUCT
372  uint   _count_new_values;     // For profiling, count new values produced
373  void    inc_new_values()        { ++_count_new_values; }
374  void    clear_new_values()      { _count_new_values = 0; }
375  uint    made_new_values() const { return _count_new_values; }
376#endif
377};
378
379
380//------------------------------PhaseGVN---------------------------------------
381// Phase for performing local, pessimistic GVN-style optimizations.
382class PhaseGVN : public PhaseValues {
383public:
384  PhaseGVN( Arena *arena, uint est_max_size ) : PhaseValues( arena, est_max_size ) {}
385  PhaseGVN( PhaseGVN *gvn ) : PhaseValues( gvn ) {}
386  PhaseGVN( PhaseGVN *gvn, const char *dummy ) : PhaseValues( gvn, dummy ) {}
387
388  // Return a node which computes the same function as this node, but
389  // in a faster or cheaper fashion.
390  Node  *transform( Node *n );
391  Node  *transform_no_reclaim( Node *n );
392
393  // Check for a simple dead loop when a data node references itself.
394  DEBUG_ONLY(void dead_loop_check(Node *n);)
395};
396
397//------------------------------PhaseIterGVN-----------------------------------
398// Phase for iteratively performing local, pessimistic GVN-style optimizations.
399// and ideal transformations on the graph.
400class PhaseIterGVN : public PhaseGVN {
401 private:
402  bool _delay_transform;  // When true simply register the node when calling transform
403                          // instead of actually optimizing it
404
405  // Idealize old Node 'n' with respect to its inputs and its value
406  virtual Node *transform_old( Node *a_node );
407
408  // Subsume users of node 'old' into node 'nn'
409  void subsume_node( Node *old, Node *nn );
410
411protected:
412
413  // Idealize new Node 'n' with respect to its inputs and its value
414  virtual Node *transform( Node *a_node );
415
416  // Warm up hash table, type table and initial worklist
417  void init_worklist( Node *a_root );
418
419  virtual const Type* saturate(const Type* new_type, const Type* old_type,
420                               const Type* limit_type) const;
421  // Usually returns new_type.  Returns old_type if new_type is only a slight
422  // improvement, such that it would take many (>>10) steps to reach 2**32.
423
424public:
425  PhaseIterGVN( PhaseIterGVN *igvn ); // Used by CCP constructor
426  PhaseIterGVN( PhaseGVN *gvn ); // Used after Parser
427  PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ); // Used after +VerifyOpto
428
429  virtual PhaseIterGVN *is_IterGVN() { return this; }
430
431  Unique_Node_List _worklist;       // Iterative worklist
432
433  // Given def-use info and an initial worklist, apply Node::Ideal,
434  // Node::Value, Node::Identity, hash-based value numbering, Node::Ideal_DU
435  // and dominator info to a fixed point.
436  void optimize();
437
438  // Register a new node with the iter GVN pass without transforming it.
439  // Used when we need to restructure a Region/Phi area and all the Regions
440  // and Phis need to complete this one big transform before any other
441  // transforms can be triggered on the region.
442  // Optional 'orig' is an earlier version of this node.
443  // It is significant only for debugging and profiling.
444  Node* register_new_node_with_optimizer(Node* n, Node* orig = NULL);
445
446  // Kill a globally dead Node.   It is allowed to have uses which are
447  // assumed dead and left 'in limbo'.
448  void remove_globally_dead_node( Node *dead );
449
450  // Kill all inputs to a dead node, recursively making more dead nodes.
451  // The Node must be dead locally, i.e., have no uses.
452  void remove_dead_node( Node *dead ) {
453    assert(dead->outcnt() == 0 && !dead->is_top(), "node must be dead");
454    remove_globally_dead_node(dead);
455  }
456
457  // Add users of 'n' to worklist
458  void add_users_to_worklist0( Node *n );
459  void add_users_to_worklist ( Node *n );
460
461  // Replace old node with new one.
462  void replace_node( Node *old, Node *nn ) {
463    add_users_to_worklist(old);
464    hash_delete(old); // Yank from hash before hacking edges
465    subsume_node(old, nn);
466  }
467
468  bool delay_transform() const { return _delay_transform; }
469
470  void set_delay_transform(bool delay) {
471    _delay_transform = delay;
472  }
473
474#ifndef PRODUCT
475protected:
476  // Sub-quadratic implementation of VerifyIterativeGVN.
477  unsigned long _verify_counter;
478  unsigned long _verify_full_passes;
479  enum { _verify_window_size = 30 };
480  Node* _verify_window[_verify_window_size];
481  void verify_step(Node* n);
482#endif
483};
484
485//------------------------------PhaseCCP---------------------------------------
486// Phase for performing global Conditional Constant Propagation.
487// Should be replaced with combined CCP & GVN someday.
488class PhaseCCP : public PhaseIterGVN {
489  // Non-recursive.  Use analysis to transform single Node.
490  virtual Node *transform_once( Node *n );
491
492public:
493  PhaseCCP( PhaseIterGVN *igvn ); // Compute conditional constants
494  NOT_PRODUCT( ~PhaseCCP(); )
495
496  // Worklist algorithm identifies constants
497  void analyze();
498  // Recursive traversal of program.  Used analysis to modify program.
499  virtual Node *transform( Node *n );
500  // Do any transformation after analysis
501  void          do_transform();
502
503  virtual const Type* saturate(const Type* new_type, const Type* old_type,
504                               const Type* limit_type) const;
505  // Returns new_type->widen(old_type), which increments the widen bits until
506  // giving up with TypeInt::INT or TypeLong::LONG.
507  // Result is clipped to limit_type if necessary.
508
509#ifndef PRODUCT
510  static uint _total_invokes;    // For profiling, count invocations
511  void    inc_invokes()          { ++PhaseCCP::_total_invokes; }
512
513  static uint _total_constants;  // For profiling, count constants found
514  uint   _count_constants;
515  void    clear_constants()      { _count_constants = 0; }
516  void    inc_constants()        { ++_count_constants; }
517  uint    count_constants() const { return _count_constants; }
518
519  static void print_statistics();
520#endif
521};
522
523
524//------------------------------PhasePeephole----------------------------------
525// Phase for performing peephole optimizations on register allocated basic blocks.
526class PhasePeephole : public PhaseTransform {
527  PhaseRegAlloc *_regalloc;
528  PhaseCFG     &_cfg;
529  // Recursive traversal of program.  Pure function is unused in this phase
530  virtual Node *transform( Node *n );
531
532public:
533  PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg );
534  NOT_PRODUCT( ~PhasePeephole(); )
535
536  // Do any transformation after analysis
537  void          do_transform();
538
539#ifndef PRODUCT
540  static uint _total_peepholes;  // For profiling, count peephole rules applied
541  uint   _count_peepholes;
542  void    clear_peepholes()      { _count_peepholes = 0; }
543  void    inc_peepholes()        { ++_count_peepholes; }
544  uint    count_peepholes() const { return _count_peepholes; }
545
546  static void print_statistics();
547#endif
548};
549
550#endif // SHARE_VM_OPTO_PHASEX_HPP
551