parse3.cpp revision 3718:b9a9ed0f8eeb
1282785Sgjb/*
2282785Sgjb * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
3282785Sgjb * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4282785Sgjb *
5282785Sgjb * This code is free software; you can redistribute it and/or modify it
6282785Sgjb * under the terms of the GNU General Public License version 2 only, as
7282785Sgjb * published by the Free Software Foundation.
8282798Sgjb *
9282798Sgjb * This code is distributed in the hope that it will be useful, but WITHOUT
10282798Sgjb * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11282798Sgjb * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12282785Sgjb * version 2 for more details (a copy is included in the LICENSE file that
13282785Sgjb * accompanied this code).
14282785Sgjb *
15282785Sgjb * You should have received a copy of the GNU General Public License version
16282785Sgjb * 2 along with this work; if not, write to the Free Software Foundation,
17282787Sgjb * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18282799Sgjb *
19282785Sgjb * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20282785Sgjb * or visit www.oracle.com if you need additional information or have any
21283271Sgjb * questions.
22283271Sgjb *
23283271Sgjb */
24283271Sgjb
25282785Sgjb#include "precompiled.hpp"
26282785Sgjb#include "compiler/compileLog.hpp"
27282785Sgjb#include "interpreter/linkResolver.hpp"
28282785Sgjb#include "memory/universe.inline.hpp"
29282785Sgjb#include "oops/objArrayKlass.hpp"
30282785Sgjb#include "opto/addnode.hpp"
31282785Sgjb#include "opto/memnode.hpp"
32282785Sgjb#include "opto/parse.hpp"
33282785Sgjb#include "opto/rootnode.hpp"
34282785Sgjb#include "opto/runtime.hpp"
35282785Sgjb#include "opto/subnode.hpp"
36283271Sgjb#include "runtime/deoptimization.hpp"
37283271Sgjb#include "runtime/handles.inline.hpp"
38283271Sgjb
39283271Sgjb//=============================================================================
40283271Sgjb// Helper methods for _get* and _put* bytecodes
41282785Sgjb//=============================================================================
42282785Sgjbbool Parse::static_field_ok_in_clinit(ciField *field, ciMethod *method) {
43283271Sgjb  // Could be the field_holder's <clinit> method, or <clinit> for a subklass.
44283271Sgjb  // Better to check now than to Deoptimize as soon as we execute
45283271Sgjb  assert( field->is_static(), "Only check if field is static");
46282785Sgjb  // is_being_initialized() is too generous.  It allows access to statics
47282785Sgjb  // by threads that are not running the <clinit> before the <clinit> finishes.
48282785Sgjb  // return field->holder()->is_being_initialized();
49282785Sgjb
50282785Sgjb  // The following restriction is correct but conservative.
51282785Sgjb  // It is also desirable to allow compilation of methods called from <clinit>
52282785Sgjb  // but this generated code will need to be made safe for execution by
53283271Sgjb  // other threads, or the transition from interpreted to compiled code would
54283271Sgjb  // need to be guarded.
55283271Sgjb  ciInstanceKlass *field_holder = field->holder();
56283271Sgjb
57283271Sgjb  bool access_OK = false;
58283271Sgjb  if (method->holder()->is_subclass_of(field_holder)) {
59283271Sgjb    if (method->is_static()) {
60283271Sgjb      if (method->name() == ciSymbol::class_initializer_name()) {
61283271Sgjb        // OK to access static fields inside initializer
62283271Sgjb        access_OK = true;
63283271Sgjb      }
64283271Sgjb    } else {
65283271Sgjb      if (method->name() == ciSymbol::object_initializer_name()) {
66283271Sgjb        // It's also OK to access static fields inside a constructor,
67282785Sgjb        // because any thread calling the constructor must first have
68282785Sgjb        // synchronized on the class by executing a '_new' bytecode.
69282785Sgjb        access_OK = true;
70282785Sgjb      }
71282785Sgjb    }
72282785Sgjb  }
73282785Sgjb
74282785Sgjb  return access_OK;
75282785Sgjb
76282785Sgjb}
77282785Sgjb
78282789Sgjb
79282789Sgjbvoid Parse::do_field_access(bool is_get, bool is_field) {
80282789Sgjb  bool will_link;
81282785Sgjb  ciField* field = iter().get_field(will_link);
82282785Sgjb  assert(will_link, "getfield: typeflow responsibility");
83282785Sgjb
84282787Sgjb  ciInstanceKlass* field_holder = field->holder();
85282787Sgjb
86282787Sgjb  if (is_field == field->is_static()) {
87283271Sgjb    // Interpreter will throw java_lang_IncompatibleClassChangeError
88283271Sgjb    // Check this before allowing <clinit> methods to access static fields
89283271Sgjb    uncommon_trap(Deoptimization::Reason_unhandled,
90283271Sgjb                  Deoptimization::Action_none);
91283271Sgjb    return;
92283271Sgjb  }
93282787Sgjb
94282787Sgjb  if (!is_field && !field_holder->is_initialized()) {
95283271Sgjb    if (!static_field_ok_in_clinit(field, method())) {
96283271Sgjb      uncommon_trap(Deoptimization::Reason_uninitialized,
97282792Sgjb                    Deoptimization::Action_reinterpret,
98282787Sgjb                    NULL, "!static_field_ok_in_clinit");
99283271Sgjb      return;
100282793Sgjb    }
101282793Sgjb  }
102282793Sgjb
103282793Sgjb  // Deoptimize on putfield writes to call site target field.
104282791Sgjb  if (!is_get && field->is_call_site_target()) {
105282787Sgjb    uncommon_trap(Deoptimization::Reason_unhandled,
106282787Sgjb                  Deoptimization::Action_reinterpret,
107282785Sgjb                  NULL, "put to call site target field");
108282785Sgjb    return;
109282785Sgjb  }
110283271Sgjb
111283265Sgjb  assert(field->will_link(method()->holder(), bc()), "getfield: typeflow responsibility");
112283271Sgjb
113282785Sgjb  // Note:  We do not check for an unloaded field type here any more.
114282785Sgjb
115283271Sgjb  // Generate code for the object pointer.
116283265Sgjb  Node* obj;
117283265Sgjb  if (is_field) {
118283271Sgjb    int obj_depth = is_get ? 0 : field->type()->size();
119283271Sgjb    obj = do_null_check(peek(obj_depth), T_OBJECT);
120282785Sgjb    // Compile-time detect of null-exception?
121282785Sgjb    if (stopped())  return;
122282785Sgjb
123282785Sgjb#ifdef ASSERT
124282785Sgjb    const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
125283271Sgjb    assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
126282785Sgjb#endif
127283271Sgjb
128283271Sgjb    if (is_get) {
129283271Sgjb      --_sp;  // pop receiver before getting
130283271Sgjb      do_get_xxx(obj, field, is_field);
131283271Sgjb    } else {
132283271Sgjb      do_put_xxx(obj, field, is_field);
133283265Sgjb      --_sp;  // pop receiver after putting
134282796Sgjb    }
135282794Sgjb  } else {
136283265Sgjb    const TypeInstPtr* tip = TypeInstPtr::make(field_holder->java_mirror());
137283271Sgjb    obj = _gvn.makecon(tip);
138282785Sgjb    if (is_get) {
139282785Sgjb      do_get_xxx(obj, field, is_field);
140282785Sgjb    } else {
141283271Sgjb      do_put_xxx(obj, field, is_field);
142283266Sgjb    }
143283271Sgjb  }
144282785Sgjb}
145283266Sgjb
146282785Sgjb
147282787Sgjbvoid Parse::do_get_xxx(Node* obj, ciField* field, bool is_field) {
148282785Sgjb  // Does this field have a constant value?  If so, just push the value.
149282787Sgjb  if (field->is_constant()) {
150282785Sgjb    // final field
151282785Sgjb    if (field->is_static()) {
152282785Sgjb      // final static field
153282785Sgjb      if (push_constant(field->constant_value()))
154282785Sgjb        return;
155282785Sgjb    }
156282785Sgjb    else {
157282785Sgjb      // final non-static field
158282785Sgjb      // Treat final non-static fields of trusted classes (classes in
159282785Sgjb      // java.lang.invoke and sun.invoke packages and subpackages) as
160282785Sgjb      // compile time constants.
161282785Sgjb      if (obj->is_Con()) {
162282785Sgjb        const TypeOopPtr* oop_ptr = obj->bottom_type()->isa_oopptr();
163282785Sgjb        ciObject* constant_oop = oop_ptr->const_oop();
164282785Sgjb        ciConstant constant = field->constant_value_of(constant_oop);
165282785Sgjb        if (push_constant(constant, true))
166282785Sgjb          return;
167282785Sgjb      }
168282785Sgjb    }
169282785Sgjb  }
170282785Sgjb
171282785Sgjb  ciType* field_klass = field->type();
172282785Sgjb  bool is_vol = field->is_volatile();
173282785Sgjb
174282785Sgjb  // Compute address and memory type.
175282785Sgjb  int offset = field->offset_in_bytes();
176282785Sgjb  const TypePtr* adr_type = C->alias_type(field)->adr_type();
177282785Sgjb  Node *adr = basic_plus_adr(obj, obj, offset);
178282785Sgjb  BasicType bt = field->layout_type();
179282785Sgjb
180282785Sgjb  // Build the resultant type of the load
181282785Sgjb  const Type *type;
182282785Sgjb
183282785Sgjb  bool must_assert_null = false;
184282785Sgjb
185282785Sgjb  if( bt == T_OBJECT ) {
186282785Sgjb    if (!field->type()->is_loaded()) {
187282789Sgjb      type = TypeInstPtr::BOTTOM;
188282785Sgjb      must_assert_null = true;
189    } else if (field->is_constant() && field->is_static()) {
190      // This can happen if the constant oop is non-perm.
191      ciObject* con = field->constant_value().as_object();
192      // Do not "join" in the previous type; it doesn't add value,
193      // and may yield a vacuous result if the field is of interface type.
194      type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
195      assert(type != NULL, "field singleton type must be consistent");
196    } else {
197      type = TypeOopPtr::make_from_klass(field_klass->as_klass());
198    }
199  } else {
200    type = Type::get_const_basic_type(bt);
201  }
202  // Build the load.
203  Node* ld = make_load(NULL, adr, type, bt, adr_type, is_vol);
204
205  // Adjust Java stack
206  if (type2size[bt] == 1)
207    push(ld);
208  else
209    push_pair(ld);
210
211  if (must_assert_null) {
212    // Do not take a trap here.  It's possible that the program
213    // will never load the field's class, and will happily see
214    // null values in this field forever.  Don't stumble into a
215    // trap for such a program, or we might get a long series
216    // of useless recompilations.  (Or, we might load a class
217    // which should not be loaded.)  If we ever see a non-null
218    // value, we will then trap and recompile.  (The trap will
219    // not need to mention the class index, since the class will
220    // already have been loaded if we ever see a non-null value.)
221    // uncommon_trap(iter().get_field_signature_index());
222#ifndef PRODUCT
223    if (PrintOpto && (Verbose || WizardMode)) {
224      method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
225    }
226#endif
227    if (C->log() != NULL) {
228      C->log()->elem("assert_null reason='field' klass='%d'",
229                     C->log()->identify(field->type()));
230    }
231    // If there is going to be a trap, put it at the next bytecode:
232    set_bci(iter().next_bci());
233    do_null_assert(peek(), T_OBJECT);
234    set_bci(iter().cur_bci()); // put it back
235  }
236
237  // If reference is volatile, prevent following memory ops from
238  // floating up past the volatile read.  Also prevents commoning
239  // another volatile read.
240  if (field->is_volatile()) {
241    // Memory barrier includes bogus read of value to force load BEFORE membar
242    insert_mem_bar(Op_MemBarAcquire, ld);
243  }
244}
245
246void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) {
247  bool is_vol = field->is_volatile();
248  // If reference is volatile, prevent following memory ops from
249  // floating down past the volatile write.  Also prevents commoning
250  // another volatile read.
251  if (is_vol)  insert_mem_bar(Op_MemBarRelease);
252
253  // Compute address and memory type.
254  int offset = field->offset_in_bytes();
255  const TypePtr* adr_type = C->alias_type(field)->adr_type();
256  Node* adr = basic_plus_adr(obj, obj, offset);
257  BasicType bt = field->layout_type();
258  // Value to be stored
259  Node* val = type2size[bt] == 1 ? pop() : pop_pair();
260  // Round doubles before storing
261  if (bt == T_DOUBLE)  val = dstore_rounding(val);
262
263  // Store the value.
264  Node* store;
265  if (bt == T_OBJECT) {
266    const TypeOopPtr* field_type;
267    if (!field->type()->is_loaded()) {
268      field_type = TypeInstPtr::BOTTOM;
269    } else {
270      field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
271    }
272    store = store_oop_to_object( control(), obj, adr, adr_type, val, field_type, bt);
273  } else {
274    store = store_to_memory( control(), adr, val, bt, adr_type, is_vol );
275  }
276
277  // If reference is volatile, prevent following volatiles ops from
278  // floating up before the volatile write.
279  if (is_vol) {
280    // First place the specific membar for THIS volatile index. This first
281    // membar is dependent on the store, keeping any other membars generated
282    // below from floating up past the store.
283    int adr_idx = C->get_alias_index(adr_type);
284    insert_mem_bar_volatile(Op_MemBarVolatile, adr_idx, store);
285
286    // Now place a membar for AliasIdxBot for the unknown yet-to-be-parsed
287    // volatile alias indices. Skip this if the membar is redundant.
288    if (adr_idx != Compile::AliasIdxBot) {
289      insert_mem_bar_volatile(Op_MemBarVolatile, Compile::AliasIdxBot, store);
290    }
291
292    // Finally, place alias-index-specific membars for each volatile index
293    // that isn't the adr_idx membar. Typically there's only 1 or 2.
294    for( int i = Compile::AliasIdxRaw; i < C->num_alias_types(); i++ ) {
295      if (i != adr_idx && C->alias_type(i)->is_volatile()) {
296        insert_mem_bar_volatile(Op_MemBarVolatile, i, store);
297      }
298    }
299  }
300
301  // If the field is final, the rules of Java say we are in <init> or <clinit>.
302  // Note the presence of writes to final non-static fields, so that we
303  // can insert a memory barrier later on to keep the writes from floating
304  // out of the constructor.
305  if (is_field && field->is_final()) {
306    set_wrote_final(true);
307  }
308}
309
310
311bool Parse::push_constant(ciConstant constant, bool require_constant) {
312  switch (constant.basic_type()) {
313  case T_BOOLEAN:  push( intcon(constant.as_boolean()) ); break;
314  case T_INT:      push( intcon(constant.as_int())     ); break;
315  case T_CHAR:     push( intcon(constant.as_char())    ); break;
316  case T_BYTE:     push( intcon(constant.as_byte())    ); break;
317  case T_SHORT:    push( intcon(constant.as_short())   ); break;
318  case T_FLOAT:    push( makecon(TypeF::make(constant.as_float())) );  break;
319  case T_DOUBLE:   push_pair( makecon(TypeD::make(constant.as_double())) );  break;
320  case T_LONG:     push_pair( longcon(constant.as_long()) ); break;
321  case T_ARRAY:
322  case T_OBJECT: {
323    // cases:
324    //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
325    //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
326    // An oop is not scavengable if it is in the perm gen.
327    ciObject* oop_constant = constant.as_object();
328    if (oop_constant->is_null_object()) {
329      push( zerocon(T_OBJECT) );
330      break;
331    } else if (require_constant || oop_constant->should_be_constant()) {
332      push( makecon(TypeOopPtr::make_from_constant(oop_constant, require_constant)) );
333      break;
334    } else {
335      // we cannot inline the oop, but we can use it later to narrow a type
336      return false;
337    }
338  }
339  case T_ILLEGAL: {
340    // Invalid ciConstant returned due to OutOfMemoryError in the CI
341    assert(C->env()->failing(), "otherwise should not see this");
342    // These always occur because of object types; we are going to
343    // bail out anyway, so make the stack depths match up
344    push( zerocon(T_OBJECT) );
345    return false;
346  }
347  default:
348    ShouldNotReachHere();
349    return false;
350  }
351
352  // success
353  return true;
354}
355
356
357
358//=============================================================================
359void Parse::do_anewarray() {
360  bool will_link;
361  ciKlass* klass = iter().get_klass(will_link);
362
363  // Uncommon Trap when class that array contains is not loaded
364  // we need the loaded class for the rest of graph; do not
365  // initialize the container class (see Java spec)!!!
366  assert(will_link, "anewarray: typeflow responsibility");
367
368  ciObjArrayKlass* array_klass = ciObjArrayKlass::make(klass);
369  // Check that array_klass object is loaded
370  if (!array_klass->is_loaded()) {
371    // Generate uncommon_trap for unloaded array_class
372    uncommon_trap(Deoptimization::Reason_unloaded,
373                  Deoptimization::Action_reinterpret,
374                  array_klass);
375    return;
376  }
377
378  kill_dead_locals();
379
380  const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass);
381  Node* count_val = pop();
382  Node* obj = new_array(makecon(array_klass_type), count_val, 1);
383  push(obj);
384}
385
386
387void Parse::do_newarray(BasicType elem_type) {
388  kill_dead_locals();
389
390  Node*   count_val = pop();
391  const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
392  Node*   obj = new_array(makecon(array_klass), count_val, 1);
393  // Push resultant oop onto stack
394  push(obj);
395}
396
397// Expand simple expressions like new int[3][5] and new Object[2][nonConLen].
398// Also handle the degenerate 1-dimensional case of anewarray.
399Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) {
400  Node* length = lengths[0];
401  assert(length != NULL, "");
402  Node* array = new_array(makecon(TypeKlassPtr::make(array_klass)), length, nargs);
403  if (ndimensions > 1) {
404    jint length_con = find_int_con(length, -1);
405    guarantee(length_con >= 0, "non-constant multianewarray");
406    ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass();
407    const TypePtr* adr_type = TypeAryPtr::OOPS;
408    const TypeOopPtr*    elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
409    const intptr_t header   = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
410    for (jint i = 0; i < length_con; i++) {
411      Node*    elem   = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs);
412      intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop);
413      Node*    eaddr  = basic_plus_adr(array, offset);
414      store_oop_to_array(control(), array, eaddr, adr_type, elem, elemtype, T_OBJECT);
415    }
416  }
417  return array;
418}
419
420void Parse::do_multianewarray() {
421  int ndimensions = iter().get_dimensions();
422
423  // the m-dimensional array
424  bool will_link;
425  ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
426  assert(will_link, "multianewarray: typeflow responsibility");
427
428  // Note:  Array classes are always initialized; no is_initialized check.
429
430  kill_dead_locals();
431
432  // get the lengths from the stack (first dimension is on top)
433  Node** length = NEW_RESOURCE_ARRAY(Node*, ndimensions + 1);
434  length[ndimensions] = NULL;  // terminating null for make_runtime_call
435  int j;
436  for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop();
437
438  // The original expression was of this form: new T[length0][length1]...
439  // It is often the case that the lengths are small (except the last).
440  // If that happens, use the fast 1-d creator a constant number of times.
441  const jint expand_limit = MIN2((juint)MultiArrayExpandLimit, (juint)100);
442  jint expand_count = 1;        // count of allocations in the expansion
443  jint expand_fanout = 1;       // running total fanout
444  for (j = 0; j < ndimensions-1; j++) {
445    jint dim_con = find_int_con(length[j], -1);
446    expand_fanout *= dim_con;
447    expand_count  += expand_fanout; // count the level-J sub-arrays
448    if (dim_con <= 0
449        || dim_con > expand_limit
450        || expand_count > expand_limit) {
451      expand_count = 0;
452      break;
453    }
454  }
455
456  // Can use multianewarray instead of [a]newarray if only one dimension,
457  // or if all non-final dimensions are small constants.
458  if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) {
459    Node* obj = NULL;
460    // Set the original stack and the reexecute bit for the interpreter
461    // to reexecute the multianewarray bytecode if deoptimization happens.
462    // Do it unconditionally even for one dimension multianewarray.
463    // Note: the reexecute bit will be set in GraphKit::add_safepoint_edges()
464    // when AllocateArray node for newarray is created.
465    { PreserveReexecuteState preexecs(this);
466      _sp += ndimensions;
467      // Pass 0 as nargs since uncommon trap code does not need to restore stack.
468      obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0);
469    } //original reexecute and sp are set back here
470    push(obj);
471    return;
472  }
473
474  address fun = NULL;
475  switch (ndimensions) {
476  case 1: ShouldNotReachHere(); break;
477  case 2: fun = OptoRuntime::multianewarray2_Java(); break;
478  case 3: fun = OptoRuntime::multianewarray3_Java(); break;
479  case 4: fun = OptoRuntime::multianewarray4_Java(); break;
480  case 5: fun = OptoRuntime::multianewarray5_Java(); break;
481  };
482  Node* c = NULL;
483
484  if (fun != NULL) {
485    c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
486                          OptoRuntime::multianewarray_Type(ndimensions),
487                          fun, NULL, TypeRawPtr::BOTTOM,
488                          makecon(TypeKlassPtr::make(array_klass)),
489                          length[0], length[1], length[2],
490                          length[3], length[4]);
491  } else {
492    // Create a java array for dimension sizes
493    Node* dims = NULL;
494    { PreserveReexecuteState preexecs(this);
495      _sp += ndimensions;
496      Node* dims_array_klass = makecon(TypeKlassPtr::make(ciArrayKlass::make(ciType::make(T_INT))));
497      dims = new_array(dims_array_klass, intcon(ndimensions), 0);
498
499      // Fill-in it with values
500      for (j = 0; j < ndimensions; j++) {
501        Node *dims_elem = array_element_address(dims, intcon(j), T_INT);
502        store_to_memory(control(), dims_elem, length[j], T_INT, TypeAryPtr::INTS);
503      }
504    }
505
506    c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
507                          OptoRuntime::multianewarrayN_Type(),
508                          OptoRuntime::multianewarrayN_Java(), NULL, TypeRawPtr::BOTTOM,
509                          makecon(TypeKlassPtr::make(array_klass)),
510                          dims);
511  }
512
513  Node* res = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms));
514
515  const Type* type = TypeOopPtr::make_from_klass_raw(array_klass);
516
517  // Improve the type:  We know it's not null, exact, and of a given length.
518  type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull);
519  type = type->is_aryptr()->cast_to_exactness(true);
520
521  const TypeInt* ltype = _gvn.find_int_type(length[0]);
522  if (ltype != NULL)
523    type = type->is_aryptr()->cast_to_size(ltype);
524
525    // We cannot sharpen the nested sub-arrays, since the top level is mutable.
526
527  Node* cast = _gvn.transform( new (C) CheckCastPPNode(control(), res, type) );
528  push(cast);
529
530  // Possible improvements:
531  // - Make a fast path for small multi-arrays.  (W/ implicit init. loops.)
532  // - Issue CastII against length[*] values, to TypeInt::POS.
533}
534