parse3.cpp revision 1879:f95d63e2154a
1/*
2 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "compiler/compileLog.hpp"
27#include "interpreter/linkResolver.hpp"
28#include "memory/universe.inline.hpp"
29#include "oops/objArrayKlass.hpp"
30#include "opto/addnode.hpp"
31#include "opto/memnode.hpp"
32#include "opto/parse.hpp"
33#include "opto/rootnode.hpp"
34#include "opto/runtime.hpp"
35#include "opto/subnode.hpp"
36#include "runtime/deoptimization.hpp"
37#include "runtime/handles.inline.hpp"
38
39//=============================================================================
40// Helper methods for _get* and _put* bytecodes
41//=============================================================================
42bool Parse::static_field_ok_in_clinit(ciField *field, ciMethod *method) {
43  // Could be the field_holder's <clinit> method, or <clinit> for a subklass.
44  // Better to check now than to Deoptimize as soon as we execute
45  assert( field->is_static(), "Only check if field is static");
46  // is_being_initialized() is too generous.  It allows access to statics
47  // by threads that are not running the <clinit> before the <clinit> finishes.
48  // return field->holder()->is_being_initialized();
49
50  // The following restriction is correct but conservative.
51  // It is also desirable to allow compilation of methods called from <clinit>
52  // but this generated code will need to be made safe for execution by
53  // other threads, or the transition from interpreted to compiled code would
54  // need to be guarded.
55  ciInstanceKlass *field_holder = field->holder();
56
57  bool access_OK = false;
58  if (method->holder()->is_subclass_of(field_holder)) {
59    if (method->is_static()) {
60      if (method->name() == ciSymbol::class_initializer_name()) {
61        // OK to access static fields inside initializer
62        access_OK = true;
63      }
64    } else {
65      if (method->name() == ciSymbol::object_initializer_name()) {
66        // It's also OK to access static fields inside a constructor,
67        // because any thread calling the constructor must first have
68        // synchronized on the class by executing a '_new' bytecode.
69        access_OK = true;
70      }
71    }
72  }
73
74  return access_OK;
75
76}
77
78
79void Parse::do_field_access(bool is_get, bool is_field) {
80  bool will_link;
81  ciField* field = iter().get_field(will_link);
82  assert(will_link, "getfield: typeflow responsibility");
83
84  ciInstanceKlass* field_holder = field->holder();
85
86  if (is_field == field->is_static()) {
87    // Interpreter will throw java_lang_IncompatibleClassChangeError
88    // Check this before allowing <clinit> methods to access static fields
89    uncommon_trap(Deoptimization::Reason_unhandled,
90                  Deoptimization::Action_none);
91    return;
92  }
93
94  if (!is_field && !field_holder->is_initialized()) {
95    if (!static_field_ok_in_clinit(field, method())) {
96      uncommon_trap(Deoptimization::Reason_uninitialized,
97                    Deoptimization::Action_reinterpret,
98                    NULL, "!static_field_ok_in_clinit");
99      return;
100    }
101  }
102
103  assert(field->will_link(method()->holder(), bc()), "getfield: typeflow responsibility");
104
105  // Note:  We do not check for an unloaded field type here any more.
106
107  // Generate code for the object pointer.
108  Node* obj;
109  if (is_field) {
110    int obj_depth = is_get ? 0 : field->type()->size();
111    obj = do_null_check(peek(obj_depth), T_OBJECT);
112    // Compile-time detect of null-exception?
113    if (stopped())  return;
114
115    const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
116    assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
117
118    if (is_get) {
119      --_sp;  // pop receiver before getting
120      do_get_xxx(tjp, obj, field, is_field);
121    } else {
122      do_put_xxx(tjp, obj, field, is_field);
123      --_sp;  // pop receiver after putting
124    }
125  } else {
126    const TypeKlassPtr* tkp = TypeKlassPtr::make(field_holder);
127    obj = _gvn.makecon(tkp);
128    if (is_get) {
129      do_get_xxx(tkp, obj, field, is_field);
130    } else {
131      do_put_xxx(tkp, obj, field, is_field);
132    }
133  }
134}
135
136
137void Parse::do_get_xxx(const TypePtr* obj_type, Node* obj, ciField* field, bool is_field) {
138  // Does this field have a constant value?  If so, just push the value.
139  if (field->is_constant()) {
140    if (field->is_static()) {
141      // final static field
142      if (push_constant(field->constant_value()))
143        return;
144    }
145    else {
146      // final non-static field of a trusted class ({java,sun}.dyn
147      // classes).
148      if (obj->is_Con()) {
149        const TypeOopPtr* oop_ptr = obj->bottom_type()->isa_oopptr();
150        ciObject* constant_oop = oop_ptr->const_oop();
151        ciConstant constant = field->constant_value_of(constant_oop);
152
153        if (push_constant(constant, true))
154          return;
155      }
156    }
157  }
158
159  ciType* field_klass = field->type();
160  bool is_vol = field->is_volatile();
161
162  // Compute address and memory type.
163  int offset = field->offset_in_bytes();
164  const TypePtr* adr_type = C->alias_type(field)->adr_type();
165  Node *adr = basic_plus_adr(obj, obj, offset);
166  BasicType bt = field->layout_type();
167
168  // Build the resultant type of the load
169  const Type *type;
170
171  bool must_assert_null = false;
172
173  if( bt == T_OBJECT ) {
174    if (!field->type()->is_loaded()) {
175      type = TypeInstPtr::BOTTOM;
176      must_assert_null = true;
177    } else if (field->is_constant() && field->is_static()) {
178      // This can happen if the constant oop is non-perm.
179      ciObject* con = field->constant_value().as_object();
180      // Do not "join" in the previous type; it doesn't add value,
181      // and may yield a vacuous result if the field is of interface type.
182      type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
183      assert(type != NULL, "field singleton type must be consistent");
184    } else {
185      type = TypeOopPtr::make_from_klass(field_klass->as_klass());
186    }
187  } else {
188    type = Type::get_const_basic_type(bt);
189  }
190  // Build the load.
191  Node* ld = make_load(NULL, adr, type, bt, adr_type, is_vol);
192
193  // Adjust Java stack
194  if (type2size[bt] == 1)
195    push(ld);
196  else
197    push_pair(ld);
198
199  if (must_assert_null) {
200    // Do not take a trap here.  It's possible that the program
201    // will never load the field's class, and will happily see
202    // null values in this field forever.  Don't stumble into a
203    // trap for such a program, or we might get a long series
204    // of useless recompilations.  (Or, we might load a class
205    // which should not be loaded.)  If we ever see a non-null
206    // value, we will then trap and recompile.  (The trap will
207    // not need to mention the class index, since the class will
208    // already have been loaded if we ever see a non-null value.)
209    // uncommon_trap(iter().get_field_signature_index());
210#ifndef PRODUCT
211    if (PrintOpto && (Verbose || WizardMode)) {
212      method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
213    }
214#endif
215    if (C->log() != NULL) {
216      C->log()->elem("assert_null reason='field' klass='%d'",
217                     C->log()->identify(field->type()));
218    }
219    // If there is going to be a trap, put it at the next bytecode:
220    set_bci(iter().next_bci());
221    do_null_assert(peek(), T_OBJECT);
222    set_bci(iter().cur_bci()); // put it back
223  }
224
225  // If reference is volatile, prevent following memory ops from
226  // floating up past the volatile read.  Also prevents commoning
227  // another volatile read.
228  if (field->is_volatile()) {
229    // Memory barrier includes bogus read of value to force load BEFORE membar
230    insert_mem_bar(Op_MemBarAcquire, ld);
231  }
232}
233
234void Parse::do_put_xxx(const TypePtr* obj_type, Node* obj, ciField* field, bool is_field) {
235  bool is_vol = field->is_volatile();
236  // If reference is volatile, prevent following memory ops from
237  // floating down past the volatile write.  Also prevents commoning
238  // another volatile read.
239  if (is_vol)  insert_mem_bar(Op_MemBarRelease);
240
241  // Compute address and memory type.
242  int offset = field->offset_in_bytes();
243  const TypePtr* adr_type = C->alias_type(field)->adr_type();
244  Node* adr = basic_plus_adr(obj, obj, offset);
245  BasicType bt = field->layout_type();
246  // Value to be stored
247  Node* val = type2size[bt] == 1 ? pop() : pop_pair();
248  // Round doubles before storing
249  if (bt == T_DOUBLE)  val = dstore_rounding(val);
250
251  // Store the value.
252  Node* store;
253  if (bt == T_OBJECT) {
254    const TypeOopPtr* field_type;
255    if (!field->type()->is_loaded()) {
256      field_type = TypeInstPtr::BOTTOM;
257    } else {
258      field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
259    }
260    store = store_oop_to_object( control(), obj, adr, adr_type, val, field_type, bt);
261  } else {
262    store = store_to_memory( control(), adr, val, bt, adr_type, is_vol );
263  }
264
265  // If reference is volatile, prevent following volatiles ops from
266  // floating up before the volatile write.
267  if (is_vol) {
268    // First place the specific membar for THIS volatile index. This first
269    // membar is dependent on the store, keeping any other membars generated
270    // below from floating up past the store.
271    int adr_idx = C->get_alias_index(adr_type);
272    insert_mem_bar_volatile(Op_MemBarVolatile, adr_idx, store);
273
274    // Now place a membar for AliasIdxBot for the unknown yet-to-be-parsed
275    // volatile alias indices. Skip this if the membar is redundant.
276    if (adr_idx != Compile::AliasIdxBot) {
277      insert_mem_bar_volatile(Op_MemBarVolatile, Compile::AliasIdxBot, store);
278    }
279
280    // Finally, place alias-index-specific membars for each volatile index
281    // that isn't the adr_idx membar. Typically there's only 1 or 2.
282    for( int i = Compile::AliasIdxRaw; i < C->num_alias_types(); i++ ) {
283      if (i != adr_idx && C->alias_type(i)->is_volatile()) {
284        insert_mem_bar_volatile(Op_MemBarVolatile, i, store);
285      }
286    }
287  }
288
289  // If the field is final, the rules of Java say we are in <init> or <clinit>.
290  // Note the presence of writes to final non-static fields, so that we
291  // can insert a memory barrier later on to keep the writes from floating
292  // out of the constructor.
293  if (is_field && field->is_final()) {
294    set_wrote_final(true);
295  }
296}
297
298
299bool Parse::push_constant(ciConstant constant, bool require_constant) {
300  switch (constant.basic_type()) {
301  case T_BOOLEAN:  push( intcon(constant.as_boolean()) ); break;
302  case T_INT:      push( intcon(constant.as_int())     ); break;
303  case T_CHAR:     push( intcon(constant.as_char())    ); break;
304  case T_BYTE:     push( intcon(constant.as_byte())    ); break;
305  case T_SHORT:    push( intcon(constant.as_short())   ); break;
306  case T_FLOAT:    push( makecon(TypeF::make(constant.as_float())) );  break;
307  case T_DOUBLE:   push_pair( makecon(TypeD::make(constant.as_double())) );  break;
308  case T_LONG:     push_pair( longcon(constant.as_long()) ); break;
309  case T_ARRAY:
310  case T_OBJECT: {
311    // cases:
312    //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
313    //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
314    // An oop is not scavengable if it is in the perm gen.
315    ciObject* oop_constant = constant.as_object();
316    if (oop_constant->is_null_object()) {
317      push( zerocon(T_OBJECT) );
318      break;
319    } else if (require_constant || oop_constant->should_be_constant()) {
320      push( makecon(TypeOopPtr::make_from_constant(oop_constant, require_constant)) );
321      break;
322    } else {
323      // we cannot inline the oop, but we can use it later to narrow a type
324      return false;
325    }
326  }
327  case T_ILLEGAL: {
328    // Invalid ciConstant returned due to OutOfMemoryError in the CI
329    assert(C->env()->failing(), "otherwise should not see this");
330    // These always occur because of object types; we are going to
331    // bail out anyway, so make the stack depths match up
332    push( zerocon(T_OBJECT) );
333    return false;
334  }
335  default:
336    ShouldNotReachHere();
337    return false;
338  }
339
340  // success
341  return true;
342}
343
344
345
346//=============================================================================
347void Parse::do_anewarray() {
348  bool will_link;
349  ciKlass* klass = iter().get_klass(will_link);
350
351  // Uncommon Trap when class that array contains is not loaded
352  // we need the loaded class for the rest of graph; do not
353  // initialize the container class (see Java spec)!!!
354  assert(will_link, "anewarray: typeflow responsibility");
355
356  ciObjArrayKlass* array_klass = ciObjArrayKlass::make(klass);
357  // Check that array_klass object is loaded
358  if (!array_klass->is_loaded()) {
359    // Generate uncommon_trap for unloaded array_class
360    uncommon_trap(Deoptimization::Reason_unloaded,
361                  Deoptimization::Action_reinterpret,
362                  array_klass);
363    return;
364  }
365
366  kill_dead_locals();
367
368  const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass);
369  Node* count_val = pop();
370  Node* obj = new_array(makecon(array_klass_type), count_val, 1);
371  push(obj);
372}
373
374
375void Parse::do_newarray(BasicType elem_type) {
376  kill_dead_locals();
377
378  Node*   count_val = pop();
379  const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
380  Node*   obj = new_array(makecon(array_klass), count_val, 1);
381  // Push resultant oop onto stack
382  push(obj);
383}
384
385// Expand simple expressions like new int[3][5] and new Object[2][nonConLen].
386// Also handle the degenerate 1-dimensional case of anewarray.
387Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) {
388  Node* length = lengths[0];
389  assert(length != NULL, "");
390  Node* array = new_array(makecon(TypeKlassPtr::make(array_klass)), length, nargs);
391  if (ndimensions > 1) {
392    jint length_con = find_int_con(length, -1);
393    guarantee(length_con >= 0, "non-constant multianewarray");
394    ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass();
395    const TypePtr* adr_type = TypeAryPtr::OOPS;
396    const TypeOopPtr*    elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
397    const intptr_t header   = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
398    for (jint i = 0; i < length_con; i++) {
399      Node*    elem   = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs);
400      intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop);
401      Node*    eaddr  = basic_plus_adr(array, offset);
402      store_oop_to_array(control(), array, eaddr, adr_type, elem, elemtype, T_OBJECT);
403    }
404  }
405  return array;
406}
407
408void Parse::do_multianewarray() {
409  int ndimensions = iter().get_dimensions();
410
411  // the m-dimensional array
412  bool will_link;
413  ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
414  assert(will_link, "multianewarray: typeflow responsibility");
415
416  // Note:  Array classes are always initialized; no is_initialized check.
417
418  enum { MAX_DIMENSION = 5 };
419  if (ndimensions > MAX_DIMENSION || ndimensions <= 0) {
420    uncommon_trap(Deoptimization::Reason_unhandled,
421                  Deoptimization::Action_none);
422    return;
423  }
424
425  kill_dead_locals();
426
427  // get the lengths from the stack (first dimension is on top)
428  Node* length[MAX_DIMENSION+1];
429  length[ndimensions] = NULL;  // terminating null for make_runtime_call
430  int j;
431  for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop();
432
433  // The original expression was of this form: new T[length0][length1]...
434  // It is often the case that the lengths are small (except the last).
435  // If that happens, use the fast 1-d creator a constant number of times.
436  const jint expand_limit = MIN2((juint)MultiArrayExpandLimit, (juint)100);
437  jint expand_count = 1;        // count of allocations in the expansion
438  jint expand_fanout = 1;       // running total fanout
439  for (j = 0; j < ndimensions-1; j++) {
440    jint dim_con = find_int_con(length[j], -1);
441    expand_fanout *= dim_con;
442    expand_count  += expand_fanout; // count the level-J sub-arrays
443    if (dim_con <= 0
444        || dim_con > expand_limit
445        || expand_count > expand_limit) {
446      expand_count = 0;
447      break;
448    }
449  }
450
451  // Can use multianewarray instead of [a]newarray if only one dimension,
452  // or if all non-final dimensions are small constants.
453  if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) {
454    Node* obj = NULL;
455    // Set the original stack and the reexecute bit for the interpreter
456    // to reexecute the multianewarray bytecode if deoptimization happens.
457    // Do it unconditionally even for one dimension multianewarray.
458    // Note: the reexecute bit will be set in GraphKit::add_safepoint_edges()
459    // when AllocateArray node for newarray is created.
460    { PreserveReexecuteState preexecs(this);
461      _sp += ndimensions;
462      // Pass 0 as nargs since uncommon trap code does not need to restore stack.
463      obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0);
464    } //original reexecute and sp are set back here
465    push(obj);
466    return;
467  }
468
469  address fun = NULL;
470  switch (ndimensions) {
471  //case 1: Actually, there is no case 1.  It's handled by new_array.
472  case 2: fun = OptoRuntime::multianewarray2_Java(); break;
473  case 3: fun = OptoRuntime::multianewarray3_Java(); break;
474  case 4: fun = OptoRuntime::multianewarray4_Java(); break;
475  case 5: fun = OptoRuntime::multianewarray5_Java(); break;
476  default: ShouldNotReachHere();
477  };
478
479  Node* c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
480                              OptoRuntime::multianewarray_Type(ndimensions),
481                              fun, NULL, TypeRawPtr::BOTTOM,
482                              makecon(TypeKlassPtr::make(array_klass)),
483                              length[0], length[1], length[2],
484                              length[3], length[4]);
485  Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms));
486
487  const Type* type = TypeOopPtr::make_from_klass_raw(array_klass);
488
489  // Improve the type:  We know it's not null, exact, and of a given length.
490  type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull);
491  type = type->is_aryptr()->cast_to_exactness(true);
492
493  const TypeInt* ltype = _gvn.find_int_type(length[0]);
494  if (ltype != NULL)
495    type = type->is_aryptr()->cast_to_size(ltype);
496
497  // We cannot sharpen the nested sub-arrays, since the top level is mutable.
498
499  Node* cast = _gvn.transform( new (C, 2) CheckCastPPNode(control(), res, type) );
500  push(cast);
501
502  // Possible improvements:
503  // - Make a fast path for small multi-arrays.  (W/ implicit init. loops.)
504  // - Issue CastII against length[*] values, to TypeInt::POS.
505}
506