parse3.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_parse3.cpp.incl"
27
28//=============================================================================
29// Helper methods for _get* and _put* bytecodes
30//=============================================================================
31bool Parse::static_field_ok_in_clinit(ciField *field, ciMethod *method) {
32  // Could be the field_holder's <clinit> method, or <clinit> for a subklass.
33  // Better to check now than to Deoptimize as soon as we execute
34  assert( field->is_static(), "Only check if field is static");
35  // is_being_initialized() is too generous.  It allows access to statics
36  // by threads that are not running the <clinit> before the <clinit> finishes.
37  // return field->holder()->is_being_initialized();
38
39  // The following restriction is correct but conservative.
40  // It is also desirable to allow compilation of methods called from <clinit>
41  // but this generated code will need to be made safe for execution by
42  // other threads, or the transition from interpreted to compiled code would
43  // need to be guarded.
44  ciInstanceKlass *field_holder = field->holder();
45
46  bool access_OK = false;
47  if (method->holder()->is_subclass_of(field_holder)) {
48    if (method->is_static()) {
49      if (method->name() == ciSymbol::class_initializer_name()) {
50        // OK to access static fields inside initializer
51        access_OK = true;
52      }
53    } else {
54      if (method->name() == ciSymbol::object_initializer_name()) {
55        // It's also OK to access static fields inside a constructor,
56        // because any thread calling the constructor must first have
57        // synchronized on the class by executing a '_new' bytecode.
58        access_OK = true;
59      }
60    }
61  }
62
63  return access_OK;
64
65}
66
67
68void Parse::do_field_access(bool is_get, bool is_field) {
69  bool will_link;
70  ciField* field = iter().get_field(will_link);
71  assert(will_link, "getfield: typeflow responsibility");
72
73  ciInstanceKlass* field_holder = field->holder();
74
75  if (is_field == field->is_static()) {
76    // Interpreter will throw java_lang_IncompatibleClassChangeError
77    // Check this before allowing <clinit> methods to access static fields
78    uncommon_trap(Deoptimization::Reason_unhandled,
79                  Deoptimization::Action_none);
80    return;
81  }
82
83  if (!is_field && !field_holder->is_initialized()) {
84    if (!static_field_ok_in_clinit(field, method())) {
85      uncommon_trap(Deoptimization::Reason_uninitialized,
86                    Deoptimization::Action_reinterpret,
87                    NULL, "!static_field_ok_in_clinit");
88      return;
89    }
90  }
91
92  assert(field->will_link(method()->holder(), bc()), "getfield: typeflow responsibility");
93
94  // Note:  We do not check for an unloaded field type here any more.
95
96  // Generate code for the object pointer.
97  Node* obj;
98  if (is_field) {
99    int obj_depth = is_get ? 0 : field->type()->size();
100    obj = do_null_check(peek(obj_depth), T_OBJECT);
101    // Compile-time detect of null-exception?
102    if (stopped())  return;
103
104    const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
105    assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
106
107    if (is_get) {
108      --_sp;  // pop receiver before getting
109      do_get_xxx(tjp, obj, field, is_field);
110    } else {
111      do_put_xxx(tjp, obj, field, is_field);
112      --_sp;  // pop receiver after putting
113    }
114  } else {
115    const TypeKlassPtr* tkp = TypeKlassPtr::make(field_holder);
116    obj = _gvn.makecon(tkp);
117    if (is_get) {
118      do_get_xxx(tkp, obj, field, is_field);
119    } else {
120      do_put_xxx(tkp, obj, field, is_field);
121    }
122  }
123}
124
125
126void Parse::do_get_xxx(const TypePtr* obj_type, Node* obj, ciField* field, bool is_field) {
127  // Does this field have a constant value?  If so, just push the value.
128  if (field->is_constant()) {
129    if (field->is_static()) {
130      // final static field
131      if (push_constant(field->constant_value()))
132        return;
133    }
134    else {
135      // final non-static field of a trusted class ({java,sun}.dyn
136      // classes).
137      if (obj->is_Con()) {
138        const TypeOopPtr* oop_ptr = obj->bottom_type()->isa_oopptr();
139        ciObject* constant_oop = oop_ptr->const_oop();
140        ciConstant constant = field->constant_value_of(constant_oop);
141
142        if (push_constant(constant, true))
143          return;
144      }
145    }
146  }
147
148  ciType* field_klass = field->type();
149  bool is_vol = field->is_volatile();
150
151  // Compute address and memory type.
152  int offset = field->offset_in_bytes();
153  const TypePtr* adr_type = C->alias_type(field)->adr_type();
154  Node *adr = basic_plus_adr(obj, obj, offset);
155  BasicType bt = field->layout_type();
156
157  // Build the resultant type of the load
158  const Type *type;
159
160  bool must_assert_null = false;
161
162  if( bt == T_OBJECT ) {
163    if (!field->type()->is_loaded()) {
164      type = TypeInstPtr::BOTTOM;
165      must_assert_null = true;
166    } else if (field->is_constant() && field->is_static()) {
167      // This can happen if the constant oop is non-perm.
168      ciObject* con = field->constant_value().as_object();
169      // Do not "join" in the previous type; it doesn't add value,
170      // and may yield a vacuous result if the field is of interface type.
171      type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
172      assert(type != NULL, "field singleton type must be consistent");
173    } else {
174      type = TypeOopPtr::make_from_klass(field_klass->as_klass());
175    }
176  } else {
177    type = Type::get_const_basic_type(bt);
178  }
179  // Build the load.
180  Node* ld = make_load(NULL, adr, type, bt, adr_type, is_vol);
181
182  // Adjust Java stack
183  if (type2size[bt] == 1)
184    push(ld);
185  else
186    push_pair(ld);
187
188  if (must_assert_null) {
189    // Do not take a trap here.  It's possible that the program
190    // will never load the field's class, and will happily see
191    // null values in this field forever.  Don't stumble into a
192    // trap for such a program, or we might get a long series
193    // of useless recompilations.  (Or, we might load a class
194    // which should not be loaded.)  If we ever see a non-null
195    // value, we will then trap and recompile.  (The trap will
196    // not need to mention the class index, since the class will
197    // already have been loaded if we ever see a non-null value.)
198    // uncommon_trap(iter().get_field_signature_index());
199#ifndef PRODUCT
200    if (PrintOpto && (Verbose || WizardMode)) {
201      method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
202    }
203#endif
204    if (C->log() != NULL) {
205      C->log()->elem("assert_null reason='field' klass='%d'",
206                     C->log()->identify(field->type()));
207    }
208    // If there is going to be a trap, put it at the next bytecode:
209    set_bci(iter().next_bci());
210    do_null_assert(peek(), T_OBJECT);
211    set_bci(iter().cur_bci()); // put it back
212  }
213
214  // If reference is volatile, prevent following memory ops from
215  // floating up past the volatile read.  Also prevents commoning
216  // another volatile read.
217  if (field->is_volatile()) {
218    // Memory barrier includes bogus read of value to force load BEFORE membar
219    insert_mem_bar(Op_MemBarAcquire, ld);
220  }
221}
222
223void Parse::do_put_xxx(const TypePtr* obj_type, Node* obj, ciField* field, bool is_field) {
224  bool is_vol = field->is_volatile();
225  // If reference is volatile, prevent following memory ops from
226  // floating down past the volatile write.  Also prevents commoning
227  // another volatile read.
228  if (is_vol)  insert_mem_bar(Op_MemBarRelease);
229
230  // Compute address and memory type.
231  int offset = field->offset_in_bytes();
232  const TypePtr* adr_type = C->alias_type(field)->adr_type();
233  Node* adr = basic_plus_adr(obj, obj, offset);
234  BasicType bt = field->layout_type();
235  // Value to be stored
236  Node* val = type2size[bt] == 1 ? pop() : pop_pair();
237  // Round doubles before storing
238  if (bt == T_DOUBLE)  val = dstore_rounding(val);
239
240  // Store the value.
241  Node* store;
242  if (bt == T_OBJECT) {
243    const TypeOopPtr* field_type;
244    if (!field->type()->is_loaded()) {
245      field_type = TypeInstPtr::BOTTOM;
246    } else {
247      field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
248    }
249    store = store_oop_to_object( control(), obj, adr, adr_type, val, field_type, bt);
250  } else {
251    store = store_to_memory( control(), adr, val, bt, adr_type, is_vol );
252  }
253
254  // If reference is volatile, prevent following volatiles ops from
255  // floating up before the volatile write.
256  if (is_vol) {
257    // First place the specific membar for THIS volatile index. This first
258    // membar is dependent on the store, keeping any other membars generated
259    // below from floating up past the store.
260    int adr_idx = C->get_alias_index(adr_type);
261    insert_mem_bar_volatile(Op_MemBarVolatile, adr_idx, store);
262
263    // Now place a membar for AliasIdxBot for the unknown yet-to-be-parsed
264    // volatile alias indices. Skip this if the membar is redundant.
265    if (adr_idx != Compile::AliasIdxBot) {
266      insert_mem_bar_volatile(Op_MemBarVolatile, Compile::AliasIdxBot, store);
267    }
268
269    // Finally, place alias-index-specific membars for each volatile index
270    // that isn't the adr_idx membar. Typically there's only 1 or 2.
271    for( int i = Compile::AliasIdxRaw; i < C->num_alias_types(); i++ ) {
272      if (i != adr_idx && C->alias_type(i)->is_volatile()) {
273        insert_mem_bar_volatile(Op_MemBarVolatile, i, store);
274      }
275    }
276  }
277
278  // If the field is final, the rules of Java say we are in <init> or <clinit>.
279  // Note the presence of writes to final non-static fields, so that we
280  // can insert a memory barrier later on to keep the writes from floating
281  // out of the constructor.
282  if (is_field && field->is_final()) {
283    set_wrote_final(true);
284  }
285}
286
287
288bool Parse::push_constant(ciConstant constant, bool require_constant) {
289  switch (constant.basic_type()) {
290  case T_BOOLEAN:  push( intcon(constant.as_boolean()) ); break;
291  case T_INT:      push( intcon(constant.as_int())     ); break;
292  case T_CHAR:     push( intcon(constant.as_char())    ); break;
293  case T_BYTE:     push( intcon(constant.as_byte())    ); break;
294  case T_SHORT:    push( intcon(constant.as_short())   ); break;
295  case T_FLOAT:    push( makecon(TypeF::make(constant.as_float())) );  break;
296  case T_DOUBLE:   push_pair( makecon(TypeD::make(constant.as_double())) );  break;
297  case T_LONG:     push_pair( longcon(constant.as_long()) ); break;
298  case T_ARRAY:
299  case T_OBJECT: {
300    // cases:
301    //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
302    //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
303    // An oop is not scavengable if it is in the perm gen.
304    ciObject* oop_constant = constant.as_object();
305    if (oop_constant->is_null_object()) {
306      push( zerocon(T_OBJECT) );
307      break;
308    } else if (require_constant || oop_constant->should_be_constant()) {
309      push( makecon(TypeOopPtr::make_from_constant(oop_constant, require_constant)) );
310      break;
311    } else {
312      // we cannot inline the oop, but we can use it later to narrow a type
313      return false;
314    }
315  }
316  case T_ILLEGAL: {
317    // Invalid ciConstant returned due to OutOfMemoryError in the CI
318    assert(C->env()->failing(), "otherwise should not see this");
319    // These always occur because of object types; we are going to
320    // bail out anyway, so make the stack depths match up
321    push( zerocon(T_OBJECT) );
322    return false;
323  }
324  default:
325    ShouldNotReachHere();
326    return false;
327  }
328
329  // success
330  return true;
331}
332
333
334
335//=============================================================================
336void Parse::do_anewarray() {
337  bool will_link;
338  ciKlass* klass = iter().get_klass(will_link);
339
340  // Uncommon Trap when class that array contains is not loaded
341  // we need the loaded class for the rest of graph; do not
342  // initialize the container class (see Java spec)!!!
343  assert(will_link, "anewarray: typeflow responsibility");
344
345  ciObjArrayKlass* array_klass = ciObjArrayKlass::make(klass);
346  // Check that array_klass object is loaded
347  if (!array_klass->is_loaded()) {
348    // Generate uncommon_trap for unloaded array_class
349    uncommon_trap(Deoptimization::Reason_unloaded,
350                  Deoptimization::Action_reinterpret,
351                  array_klass);
352    return;
353  }
354
355  kill_dead_locals();
356
357  const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass);
358  Node* count_val = pop();
359  Node* obj = new_array(makecon(array_klass_type), count_val, 1);
360  push(obj);
361}
362
363
364void Parse::do_newarray(BasicType elem_type) {
365  kill_dead_locals();
366
367  Node*   count_val = pop();
368  const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
369  Node*   obj = new_array(makecon(array_klass), count_val, 1);
370  // Push resultant oop onto stack
371  push(obj);
372}
373
374// Expand simple expressions like new int[3][5] and new Object[2][nonConLen].
375// Also handle the degenerate 1-dimensional case of anewarray.
376Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) {
377  Node* length = lengths[0];
378  assert(length != NULL, "");
379  Node* array = new_array(makecon(TypeKlassPtr::make(array_klass)), length, nargs);
380  if (ndimensions > 1) {
381    jint length_con = find_int_con(length, -1);
382    guarantee(length_con >= 0, "non-constant multianewarray");
383    ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass();
384    const TypePtr* adr_type = TypeAryPtr::OOPS;
385    const TypeOopPtr*    elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
386    const intptr_t header   = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
387    for (jint i = 0; i < length_con; i++) {
388      Node*    elem   = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs);
389      intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop);
390      Node*    eaddr  = basic_plus_adr(array, offset);
391      store_oop_to_array(control(), array, eaddr, adr_type, elem, elemtype, T_OBJECT);
392    }
393  }
394  return array;
395}
396
397void Parse::do_multianewarray() {
398  int ndimensions = iter().get_dimensions();
399
400  // the m-dimensional array
401  bool will_link;
402  ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
403  assert(will_link, "multianewarray: typeflow responsibility");
404
405  // Note:  Array classes are always initialized; no is_initialized check.
406
407  enum { MAX_DIMENSION = 5 };
408  if (ndimensions > MAX_DIMENSION || ndimensions <= 0) {
409    uncommon_trap(Deoptimization::Reason_unhandled,
410                  Deoptimization::Action_none);
411    return;
412  }
413
414  kill_dead_locals();
415
416  // get the lengths from the stack (first dimension is on top)
417  Node* length[MAX_DIMENSION+1];
418  length[ndimensions] = NULL;  // terminating null for make_runtime_call
419  int j;
420  for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop();
421
422  // The original expression was of this form: new T[length0][length1]...
423  // It is often the case that the lengths are small (except the last).
424  // If that happens, use the fast 1-d creator a constant number of times.
425  const jint expand_limit = MIN2((juint)MultiArrayExpandLimit, (juint)100);
426  jint expand_count = 1;        // count of allocations in the expansion
427  jint expand_fanout = 1;       // running total fanout
428  for (j = 0; j < ndimensions-1; j++) {
429    jint dim_con = find_int_con(length[j], -1);
430    expand_fanout *= dim_con;
431    expand_count  += expand_fanout; // count the level-J sub-arrays
432    if (dim_con <= 0
433        || dim_con > expand_limit
434        || expand_count > expand_limit) {
435      expand_count = 0;
436      break;
437    }
438  }
439
440  // Can use multianewarray instead of [a]newarray if only one dimension,
441  // or if all non-final dimensions are small constants.
442  if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) {
443    Node* obj = NULL;
444    // Set the original stack and the reexecute bit for the interpreter
445    // to reexecute the multianewarray bytecode if deoptimization happens.
446    // Do it unconditionally even for one dimension multianewarray.
447    // Note: the reexecute bit will be set in GraphKit::add_safepoint_edges()
448    // when AllocateArray node for newarray is created.
449    { PreserveReexecuteState preexecs(this);
450      _sp += ndimensions;
451      // Pass 0 as nargs since uncommon trap code does not need to restore stack.
452      obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0);
453    } //original reexecute and sp are set back here
454    push(obj);
455    return;
456  }
457
458  address fun = NULL;
459  switch (ndimensions) {
460  //case 1: Actually, there is no case 1.  It's handled by new_array.
461  case 2: fun = OptoRuntime::multianewarray2_Java(); break;
462  case 3: fun = OptoRuntime::multianewarray3_Java(); break;
463  case 4: fun = OptoRuntime::multianewarray4_Java(); break;
464  case 5: fun = OptoRuntime::multianewarray5_Java(); break;
465  default: ShouldNotReachHere();
466  };
467
468  Node* c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
469                              OptoRuntime::multianewarray_Type(ndimensions),
470                              fun, NULL, TypeRawPtr::BOTTOM,
471                              makecon(TypeKlassPtr::make(array_klass)),
472                              length[0], length[1], length[2],
473                              length[3], length[4]);
474  Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms));
475
476  const Type* type = TypeOopPtr::make_from_klass_raw(array_klass);
477
478  // Improve the type:  We know it's not null, exact, and of a given length.
479  type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull);
480  type = type->is_aryptr()->cast_to_exactness(true);
481
482  const TypeInt* ltype = _gvn.find_int_type(length[0]);
483  if (ltype != NULL)
484    type = type->is_aryptr()->cast_to_size(ltype);
485
486  // We cannot sharpen the nested sub-arrays, since the top level is mutable.
487
488  Node* cast = _gvn.transform( new (C, 2) CheckCastPPNode(control(), res, type) );
489  push(cast);
490
491  // Possible improvements:
492  // - Make a fast path for small multi-arrays.  (W/ implicit init. loops.)
493  // - Issue CastII against length[*] values, to TypeInt::POS.
494}
495