parse2.cpp revision 6010:abec000618bf
1/*
2 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "ci/ciMethodData.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "compiler/compileLog.hpp"
30#include "interpreter/linkResolver.hpp"
31#include "memory/universe.inline.hpp"
32#include "opto/addnode.hpp"
33#include "opto/divnode.hpp"
34#include "opto/idealGraphPrinter.hpp"
35#include "opto/matcher.hpp"
36#include "opto/memnode.hpp"
37#include "opto/mulnode.hpp"
38#include "opto/parse.hpp"
39#include "opto/runtime.hpp"
40#include "runtime/deoptimization.hpp"
41#include "runtime/sharedRuntime.hpp"
42
43extern int explicit_null_checks_inserted,
44           explicit_null_checks_elided;
45
46//---------------------------------array_load----------------------------------
47void Parse::array_load(BasicType elem_type) {
48  const Type* elem = Type::TOP;
49  Node* adr = array_addressing(elem_type, 0, &elem);
50  if (stopped())  return;     // guaranteed null or range check
51  dec_sp(2);                  // Pop array and index
52  const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
53  Node* ld = make_load(control(), adr, elem, elem_type, adr_type, MemNode::unordered);
54  push(ld);
55}
56
57
58//--------------------------------array_store----------------------------------
59void Parse::array_store(BasicType elem_type) {
60  Node* adr = array_addressing(elem_type, 1);
61  if (stopped())  return;     // guaranteed null or range check
62  Node* val = pop();
63  dec_sp(2);                  // Pop array and index
64  const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
65  store_to_memory(control(), adr, val, elem_type, adr_type, StoreNode::release_if_reference(elem_type));
66}
67
68
69//------------------------------array_addressing-------------------------------
70// Pull array and index from the stack.  Compute pointer-to-element.
71Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
72  Node *idx   = peek(0+vals);   // Get from stack without popping
73  Node *ary   = peek(1+vals);   // in case of exception
74
75  // Null check the array base, with correct stack contents
76  ary = null_check(ary, T_ARRAY);
77  // Compile-time detect of null-exception?
78  if (stopped())  return top();
79
80  const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
81  const TypeInt*    sizetype = arytype->size();
82  const Type*       elemtype = arytype->elem();
83
84  if (UseUniqueSubclasses && result2 != NULL) {
85    const Type* el = elemtype->make_ptr();
86    if (el && el->isa_instptr()) {
87      const TypeInstPtr* toop = el->is_instptr();
88      if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
89        // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
90        const Type* subklass = Type::get_const_type(toop->klass());
91        elemtype = subklass->join(el);
92      }
93    }
94  }
95
96  // Check for big class initializers with all constant offsets
97  // feeding into a known-size array.
98  const TypeInt* idxtype = _gvn.type(idx)->is_int();
99  // See if the highest idx value is less than the lowest array bound,
100  // and if the idx value cannot be negative:
101  bool need_range_check = true;
102  if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
103    need_range_check = false;
104    if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
105  }
106
107  ciKlass * arytype_klass = arytype->klass();
108  if ((arytype_klass != NULL) && (!arytype_klass->is_loaded())) {
109    // Only fails for some -Xcomp runs
110    // The class is unloaded.  We have to run this bytecode in the interpreter.
111    uncommon_trap(Deoptimization::Reason_unloaded,
112                  Deoptimization::Action_reinterpret,
113                  arytype->klass(), "!loaded array");
114    return top();
115  }
116
117  // Do the range check
118  if (GenerateRangeChecks && need_range_check) {
119    Node* tst;
120    if (sizetype->_hi <= 0) {
121      // The greatest array bound is negative, so we can conclude that we're
122      // compiling unreachable code, but the unsigned compare trick used below
123      // only works with non-negative lengths.  Instead, hack "tst" to be zero so
124      // the uncommon_trap path will always be taken.
125      tst = _gvn.intcon(0);
126    } else {
127      // Range is constant in array-oop, so we can use the original state of mem
128      Node* len = load_array_length(ary);
129
130      // Test length vs index (standard trick using unsigned compare)
131      Node* chk = _gvn.transform( new (C) CmpUNode(idx, len) );
132      BoolTest::mask btest = BoolTest::lt;
133      tst = _gvn.transform( new (C) BoolNode(chk, btest) );
134    }
135    // Branch to failure if out of bounds
136    { BuildCutout unless(this, tst, PROB_MAX);
137      if (C->allow_range_check_smearing()) {
138        // Do not use builtin_throw, since range checks are sometimes
139        // made more stringent by an optimistic transformation.
140        // This creates "tentative" range checks at this point,
141        // which are not guaranteed to throw exceptions.
142        // See IfNode::Ideal, is_range_check, adjust_check.
143        uncommon_trap(Deoptimization::Reason_range_check,
144                      Deoptimization::Action_make_not_entrant,
145                      NULL, "range_check");
146      } else {
147        // If we have already recompiled with the range-check-widening
148        // heroic optimization turned off, then we must really be throwing
149        // range check exceptions.
150        builtin_throw(Deoptimization::Reason_range_check, idx);
151      }
152    }
153  }
154  // Check for always knowing you are throwing a range-check exception
155  if (stopped())  return top();
156
157  Node* ptr = array_element_address(ary, idx, type, sizetype);
158
159  if (result2 != NULL)  *result2 = elemtype;
160
161  assert(ptr != top(), "top should go hand-in-hand with stopped");
162
163  return ptr;
164}
165
166
167// returns IfNode
168IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
169  Node   *cmp = _gvn.transform( new (C) CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
170  Node   *tst = _gvn.transform( new (C) BoolNode( cmp, mask));
171  IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
172  return iff;
173}
174
175// return Region node
176Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
177  Node *region  = new (C) RegionNode(3); // 2 results
178  record_for_igvn(region);
179  region->init_req(1, iffalse);
180  region->init_req(2, iftrue );
181  _gvn.set_type(region, Type::CONTROL);
182  region = _gvn.transform(region);
183  set_control (region);
184  return region;
185}
186
187
188//------------------------------helper for tableswitch-------------------------
189void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
190  // True branch, use existing map info
191  { PreserveJVMState pjvms(this);
192    Node *iftrue  = _gvn.transform( new (C) IfTrueNode (iff) );
193    set_control( iftrue );
194    profile_switch_case(prof_table_index);
195    merge_new_path(dest_bci_if_true);
196  }
197
198  // False branch
199  Node *iffalse = _gvn.transform( new (C) IfFalseNode(iff) );
200  set_control( iffalse );
201}
202
203void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
204  // True branch, use existing map info
205  { PreserveJVMState pjvms(this);
206    Node *iffalse  = _gvn.transform( new (C) IfFalseNode (iff) );
207    set_control( iffalse );
208    profile_switch_case(prof_table_index);
209    merge_new_path(dest_bci_if_true);
210  }
211
212  // False branch
213  Node *iftrue = _gvn.transform( new (C) IfTrueNode(iff) );
214  set_control( iftrue );
215}
216
217void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
218  // False branch, use existing map and control()
219  profile_switch_case(prof_table_index);
220  merge_new_path(dest_bci);
221}
222
223
224extern "C" {
225  static int jint_cmp(const void *i, const void *j) {
226    int a = *(jint *)i;
227    int b = *(jint *)j;
228    return a > b ? 1 : a < b ? -1 : 0;
229  }
230}
231
232
233// Default value for methodData switch indexing. Must be a negative value to avoid
234// conflict with any legal switch index.
235#define NullTableIndex -1
236
237class SwitchRange : public StackObj {
238  // a range of integers coupled with a bci destination
239  jint _lo;                     // inclusive lower limit
240  jint _hi;                     // inclusive upper limit
241  int _dest;
242  int _table_index;             // index into method data table
243
244public:
245  jint lo() const              { return _lo;   }
246  jint hi() const              { return _hi;   }
247  int  dest() const            { return _dest; }
248  int  table_index() const     { return _table_index; }
249  bool is_singleton() const    { return _lo == _hi; }
250
251  void setRange(jint lo, jint hi, int dest, int table_index) {
252    assert(lo <= hi, "must be a non-empty range");
253    _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
254  }
255  bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
256    assert(lo <= hi, "must be a non-empty range");
257    if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
258      _hi = hi;
259      return true;
260    }
261    return false;
262  }
263
264  void set (jint value, int dest, int table_index) {
265    setRange(value, value, dest, table_index);
266  }
267  bool adjoin(jint value, int dest, int table_index) {
268    return adjoinRange(value, value, dest, table_index);
269  }
270
271  void print() {
272    if (is_singleton())
273      tty->print(" {%d}=>%d", lo(), dest());
274    else if (lo() == min_jint)
275      tty->print(" {..%d}=>%d", hi(), dest());
276    else if (hi() == max_jint)
277      tty->print(" {%d..}=>%d", lo(), dest());
278    else
279      tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
280  }
281};
282
283
284//-------------------------------do_tableswitch--------------------------------
285void Parse::do_tableswitch() {
286  Node* lookup = pop();
287
288  // Get information about tableswitch
289  int default_dest = iter().get_dest_table(0);
290  int lo_index     = iter().get_int_table(1);
291  int hi_index     = iter().get_int_table(2);
292  int len          = hi_index - lo_index + 1;
293
294  if (len < 1) {
295    // If this is a backward branch, add safepoint
296    maybe_add_safepoint(default_dest);
297    merge(default_dest);
298    return;
299  }
300
301  // generate decision tree, using trichotomy when possible
302  int rnum = len+2;
303  bool makes_backward_branch = false;
304  SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
305  int rp = -1;
306  if (lo_index != min_jint) {
307    ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
308  }
309  for (int j = 0; j < len; j++) {
310    jint match_int = lo_index+j;
311    int  dest      = iter().get_dest_table(j+3);
312    makes_backward_branch |= (dest <= bci());
313    int  table_index = method_data_update() ? j : NullTableIndex;
314    if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
315      ranges[++rp].set(match_int, dest, table_index);
316    }
317  }
318  jint highest = lo_index+(len-1);
319  assert(ranges[rp].hi() == highest, "");
320  if (highest != max_jint
321      && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
322    ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
323  }
324  assert(rp < len+2, "not too many ranges");
325
326  // Safepoint in case if backward branch observed
327  if( makes_backward_branch && UseLoopSafepoints )
328    add_safepoint();
329
330  jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
331}
332
333
334//------------------------------do_lookupswitch--------------------------------
335void Parse::do_lookupswitch() {
336  Node *lookup = pop();         // lookup value
337  // Get information about lookupswitch
338  int default_dest = iter().get_dest_table(0);
339  int len          = iter().get_int_table(1);
340
341  if (len < 1) {    // If this is a backward branch, add safepoint
342    maybe_add_safepoint(default_dest);
343    merge(default_dest);
344    return;
345  }
346
347  // generate decision tree, using trichotomy when possible
348  jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
349  {
350    for( int j = 0; j < len; j++ ) {
351      table[j+j+0] = iter().get_int_table(2+j+j);
352      table[j+j+1] = iter().get_dest_table(2+j+j+1);
353    }
354    qsort( table, len, 2*sizeof(table[0]), jint_cmp );
355  }
356
357  int rnum = len*2+1;
358  bool makes_backward_branch = false;
359  SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
360  int rp = -1;
361  for( int j = 0; j < len; j++ ) {
362    jint match_int   = table[j+j+0];
363    int  dest        = table[j+j+1];
364    int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
365    int  table_index = method_data_update() ? j : NullTableIndex;
366    makes_backward_branch |= (dest <= bci());
367    if( match_int != next_lo ) {
368      ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
369    }
370    if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
371      ranges[++rp].set(match_int, dest, table_index);
372    }
373  }
374  jint highest = table[2*(len-1)];
375  assert(ranges[rp].hi() == highest, "");
376  if( highest != max_jint
377      && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
378    ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
379  }
380  assert(rp < rnum, "not too many ranges");
381
382  // Safepoint in case backward branch observed
383  if( makes_backward_branch && UseLoopSafepoints )
384    add_safepoint();
385
386  jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
387}
388
389//----------------------------create_jump_tables-------------------------------
390bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
391  // Are jumptables enabled
392  if (!UseJumpTables)  return false;
393
394  // Are jumptables supported
395  if (!Matcher::has_match_rule(Op_Jump))  return false;
396
397  // Don't make jump table if profiling
398  if (method_data_update())  return false;
399
400  // Decide if a guard is needed to lop off big ranges at either (or
401  // both) end(s) of the input set. We'll call this the default target
402  // even though we can't be sure that it is the true "default".
403
404  bool needs_guard = false;
405  int default_dest;
406  int64 total_outlier_size = 0;
407  int64 hi_size = ((int64)hi->hi()) - ((int64)hi->lo()) + 1;
408  int64 lo_size = ((int64)lo->hi()) - ((int64)lo->lo()) + 1;
409
410  if (lo->dest() == hi->dest()) {
411    total_outlier_size = hi_size + lo_size;
412    default_dest = lo->dest();
413  } else if (lo_size > hi_size) {
414    total_outlier_size = lo_size;
415    default_dest = lo->dest();
416  } else {
417    total_outlier_size = hi_size;
418    default_dest = hi->dest();
419  }
420
421  // If a guard test will eliminate very sparse end ranges, then
422  // it is worth the cost of an extra jump.
423  if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
424    needs_guard = true;
425    if (default_dest == lo->dest()) lo++;
426    if (default_dest == hi->dest()) hi--;
427  }
428
429  // Find the total number of cases and ranges
430  int64 num_cases = ((int64)hi->hi()) - ((int64)lo->lo()) + 1;
431  int num_range = hi - lo + 1;
432
433  // Don't create table if: too large, too small, or too sparse.
434  if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
435    return false;
436  if (num_cases > (MaxJumpTableSparseness * num_range))
437    return false;
438
439  // Normalize table lookups to zero
440  int lowval = lo->lo();
441  key_val = _gvn.transform( new (C) SubINode(key_val, _gvn.intcon(lowval)) );
442
443  // Generate a guard to protect against input keyvals that aren't
444  // in the switch domain.
445  if (needs_guard) {
446    Node*   size = _gvn.intcon(num_cases);
447    Node*   cmp = _gvn.transform( new (C) CmpUNode(key_val, size) );
448    Node*   tst = _gvn.transform( new (C) BoolNode(cmp, BoolTest::ge) );
449    IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
450    jump_if_true_fork(iff, default_dest, NullTableIndex);
451  }
452
453  // Create an ideal node JumpTable that has projections
454  // of all possible ranges for a switch statement
455  // The key_val input must be converted to a pointer offset and scaled.
456  // Compare Parse::array_addressing above.
457#ifdef _LP64
458  // Clean the 32-bit int into a real 64-bit offset.
459  // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
460  const TypeLong* lkeytype = TypeLong::make(CONST64(0), num_cases-1, Type::WidenMin);
461  key_val       = _gvn.transform( new (C) ConvI2LNode(key_val, lkeytype) );
462#endif
463  // Shift the value by wordsize so we have an index into the table, rather
464  // than a switch value
465  Node *shiftWord = _gvn.MakeConX(wordSize);
466  key_val = _gvn.transform( new (C) MulXNode( key_val, shiftWord));
467
468  // Create the JumpNode
469  Node* jtn = _gvn.transform( new (C) JumpNode(control(), key_val, num_cases) );
470
471  // These are the switch destinations hanging off the jumpnode
472  int i = 0;
473  for (SwitchRange* r = lo; r <= hi; r++) {
474    for (int64 j = r->lo(); j <= r->hi(); j++, i++) {
475      Node* input = _gvn.transform(new (C) JumpProjNode(jtn, i, r->dest(), (int)(j - lowval)));
476      {
477        PreserveJVMState pjvms(this);
478        set_control(input);
479        jump_if_always_fork(r->dest(), r->table_index());
480      }
481    }
482  }
483  assert(i == num_cases, "miscount of cases");
484  stop_and_kill_map();  // no more uses for this JVMS
485  return true;
486}
487
488//----------------------------jump_switch_ranges-------------------------------
489void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
490  Block* switch_block = block();
491
492  if (switch_depth == 0) {
493    // Do special processing for the top-level call.
494    assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
495    assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
496
497    // Decrement pred-numbers for the unique set of nodes.
498#ifdef ASSERT
499    // Ensure that the block's successors are a (duplicate-free) set.
500    int successors_counted = 0;  // block occurrences in [hi..lo]
501    int unique_successors = switch_block->num_successors();
502    for (int i = 0; i < unique_successors; i++) {
503      Block* target = switch_block->successor_at(i);
504
505      // Check that the set of successors is the same in both places.
506      int successors_found = 0;
507      for (SwitchRange* p = lo; p <= hi; p++) {
508        if (p->dest() == target->start())  successors_found++;
509      }
510      assert(successors_found > 0, "successor must be known");
511      successors_counted += successors_found;
512    }
513    assert(successors_counted == (hi-lo)+1, "no unexpected successors");
514#endif
515
516    // Maybe prune the inputs, based on the type of key_val.
517    jint min_val = min_jint;
518    jint max_val = max_jint;
519    const TypeInt* ti = key_val->bottom_type()->isa_int();
520    if (ti != NULL) {
521      min_val = ti->_lo;
522      max_val = ti->_hi;
523      assert(min_val <= max_val, "invalid int type");
524    }
525    while (lo->hi() < min_val)  lo++;
526    if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
527    while (hi->lo() > max_val)  hi--;
528    if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
529  }
530
531#ifndef PRODUCT
532  if (switch_depth == 0) {
533    _max_switch_depth = 0;
534    _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
535  }
536#endif
537
538  assert(lo <= hi, "must be a non-empty set of ranges");
539  if (lo == hi) {
540    jump_if_always_fork(lo->dest(), lo->table_index());
541  } else {
542    assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
543    assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
544
545    if (create_jump_tables(key_val, lo, hi)) return;
546
547    int nr = hi - lo + 1;
548
549    SwitchRange* mid = lo + nr/2;
550    // if there is an easy choice, pivot at a singleton:
551    if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
552
553    assert(lo < mid && mid <= hi, "good pivot choice");
554    assert(nr != 2 || mid == hi,   "should pick higher of 2");
555    assert(nr != 3 || mid == hi-1, "should pick middle of 3");
556
557    Node *test_val = _gvn.intcon(mid->lo());
558
559    if (mid->is_singleton()) {
560      IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
561      jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
562
563      // Special Case:  If there are exactly three ranges, and the high
564      // and low range each go to the same place, omit the "gt" test,
565      // since it will not discriminate anything.
566      bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
567      if (eq_test_only) {
568        assert(mid == hi-1, "");
569      }
570
571      // if there is a higher range, test for it and process it:
572      if (mid < hi && !eq_test_only) {
573        // two comparisons of same values--should enable 1 test for 2 branches
574        // Use BoolTest::le instead of BoolTest::gt
575        IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
576        Node   *iftrue  = _gvn.transform( new (C) IfTrueNode(iff_le) );
577        Node   *iffalse = _gvn.transform( new (C) IfFalseNode(iff_le) );
578        { PreserveJVMState pjvms(this);
579          set_control(iffalse);
580          jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
581        }
582        set_control(iftrue);
583      }
584
585    } else {
586      // mid is a range, not a singleton, so treat mid..hi as a unit
587      IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
588
589      // if there is a higher range, test for it and process it:
590      if (mid == hi) {
591        jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
592      } else {
593        Node *iftrue  = _gvn.transform( new (C) IfTrueNode(iff_ge) );
594        Node *iffalse = _gvn.transform( new (C) IfFalseNode(iff_ge) );
595        { PreserveJVMState pjvms(this);
596          set_control(iftrue);
597          jump_switch_ranges(key_val, mid, hi, switch_depth+1);
598        }
599        set_control(iffalse);
600      }
601    }
602
603    // in any case, process the lower range
604    jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
605  }
606
607  // Decrease pred_count for each successor after all is done.
608  if (switch_depth == 0) {
609    int unique_successors = switch_block->num_successors();
610    for (int i = 0; i < unique_successors; i++) {
611      Block* target = switch_block->successor_at(i);
612      // Throw away the pre-allocated path for each unique successor.
613      target->next_path_num();
614    }
615  }
616
617#ifndef PRODUCT
618  _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
619  if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
620    SwitchRange* r;
621    int nsing = 0;
622    for( r = lo; r <= hi; r++ ) {
623      if( r->is_singleton() )  nsing++;
624    }
625    tty->print(">>> ");
626    _method->print_short_name();
627    tty->print_cr(" switch decision tree");
628    tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
629                  hi-lo+1, nsing, _max_switch_depth, _est_switch_depth);
630    if (_max_switch_depth > _est_switch_depth) {
631      tty->print_cr("******** BAD SWITCH DEPTH ********");
632    }
633    tty->print("   ");
634    for( r = lo; r <= hi; r++ ) {
635      r->print();
636    }
637    tty->print_cr("");
638  }
639#endif
640}
641
642void Parse::modf() {
643  Node *f2 = pop();
644  Node *f1 = pop();
645  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
646                              CAST_FROM_FN_PTR(address, SharedRuntime::frem),
647                              "frem", NULL, //no memory effects
648                              f1, f2);
649  Node* res = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 0));
650
651  push(res);
652}
653
654void Parse::modd() {
655  Node *d2 = pop_pair();
656  Node *d1 = pop_pair();
657  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
658                              CAST_FROM_FN_PTR(address, SharedRuntime::drem),
659                              "drem", NULL, //no memory effects
660                              d1, top(), d2, top());
661  Node* res_d   = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 0));
662
663#ifdef ASSERT
664  Node* res_top = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 1));
665  assert(res_top == top(), "second value must be top");
666#endif
667
668  push_pair(res_d);
669}
670
671void Parse::l2f() {
672  Node* f2 = pop();
673  Node* f1 = pop();
674  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
675                              CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
676                              "l2f", NULL, //no memory effects
677                              f1, f2);
678  Node* res = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 0));
679
680  push(res);
681}
682
683void Parse::do_irem() {
684  // Must keep both values on the expression-stack during null-check
685  zero_check_int(peek());
686  // Compile-time detect of null-exception?
687  if (stopped())  return;
688
689  Node* b = pop();
690  Node* a = pop();
691
692  const Type *t = _gvn.type(b);
693  if (t != Type::TOP) {
694    const TypeInt *ti = t->is_int();
695    if (ti->is_con()) {
696      int divisor = ti->get_con();
697      // check for positive power of 2
698      if (divisor > 0 &&
699          (divisor & ~(divisor-1)) == divisor) {
700        // yes !
701        Node *mask = _gvn.intcon((divisor - 1));
702        // Sigh, must handle negative dividends
703        Node *zero = _gvn.intcon(0);
704        IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
705        Node *iff = _gvn.transform( new (C) IfFalseNode(ifff) );
706        Node *ift = _gvn.transform( new (C) IfTrueNode (ifff) );
707        Node *reg = jump_if_join(ift, iff);
708        Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
709        // Negative path; negate/and/negate
710        Node *neg = _gvn.transform( new (C) SubINode(zero, a) );
711        Node *andn= _gvn.transform( new (C) AndINode(neg, mask) );
712        Node *negn= _gvn.transform( new (C) SubINode(zero, andn) );
713        phi->init_req(1, negn);
714        // Fast positive case
715        Node *andx = _gvn.transform( new (C) AndINode(a, mask) );
716        phi->init_req(2, andx);
717        // Push the merge
718        push( _gvn.transform(phi) );
719        return;
720      }
721    }
722  }
723  // Default case
724  push( _gvn.transform( new (C) ModINode(control(),a,b) ) );
725}
726
727// Handle jsr and jsr_w bytecode
728void Parse::do_jsr() {
729  assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
730
731  // Store information about current state, tagged with new _jsr_bci
732  int return_bci = iter().next_bci();
733  int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
734
735  // Update method data
736  profile_taken_branch(jsr_bci);
737
738  // The way we do things now, there is only one successor block
739  // for the jsr, because the target code is cloned by ciTypeFlow.
740  Block* target = successor_for_bci(jsr_bci);
741
742  // What got pushed?
743  const Type* ret_addr = target->peek();
744  assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
745
746  // Effect on jsr on stack
747  push(_gvn.makecon(ret_addr));
748
749  // Flow to the jsr.
750  merge(jsr_bci);
751}
752
753// Handle ret bytecode
754void Parse::do_ret() {
755  // Find to whom we return.
756  assert(block()->num_successors() == 1, "a ret can only go one place now");
757  Block* target = block()->successor_at(0);
758  assert(!target->is_ready(), "our arrival must be expected");
759  profile_ret(target->flow()->start());
760  int pnum = target->next_path_num();
761  merge_common(target, pnum);
762}
763
764//--------------------------dynamic_branch_prediction--------------------------
765// Try to gather dynamic branch prediction behavior.  Return a probability
766// of the branch being taken and set the "cnt" field.  Returns a -1.0
767// if we need to use static prediction for some reason.
768float Parse::dynamic_branch_prediction(float &cnt) {
769  ResourceMark rm;
770
771  cnt  = COUNT_UNKNOWN;
772
773  // Use MethodData information if it is available
774  // FIXME: free the ProfileData structure
775  ciMethodData* methodData = method()->method_data();
776  if (!methodData->is_mature())  return PROB_UNKNOWN;
777  ciProfileData* data = methodData->bci_to_data(bci());
778  if (!data->is_JumpData())  return PROB_UNKNOWN;
779
780  // get taken and not taken values
781  int     taken = data->as_JumpData()->taken();
782  int not_taken = 0;
783  if (data->is_BranchData()) {
784    not_taken = data->as_BranchData()->not_taken();
785  }
786
787  // scale the counts to be commensurate with invocation counts:
788  taken = method()->scale_count(taken);
789  not_taken = method()->scale_count(not_taken);
790
791  // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful.
792  // We also check that individual counters are positive first, overwise the sum can become positive.
793  if (taken < 0 || not_taken < 0 || taken + not_taken < 40) {
794    if (C->log() != NULL) {
795      C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
796    }
797    return PROB_UNKNOWN;
798  }
799
800  // Compute frequency that we arrive here
801  float sum = taken + not_taken;
802  // Adjust, if this block is a cloned private block but the
803  // Jump counts are shared.  Taken the private counts for
804  // just this path instead of the shared counts.
805  if( block()->count() > 0 )
806    sum = block()->count();
807  cnt = sum / FreqCountInvocations;
808
809  // Pin probability to sane limits
810  float prob;
811  if( !taken )
812    prob = (0+PROB_MIN) / 2;
813  else if( !not_taken )
814    prob = (1+PROB_MAX) / 2;
815  else {                         // Compute probability of true path
816    prob = (float)taken / (float)(taken + not_taken);
817    if (prob > PROB_MAX)  prob = PROB_MAX;
818    if (prob < PROB_MIN)   prob = PROB_MIN;
819  }
820
821  assert((cnt > 0.0f) && (prob > 0.0f),
822         "Bad frequency assignment in if");
823
824  if (C->log() != NULL) {
825    const char* prob_str = NULL;
826    if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
827    if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
828    char prob_str_buf[30];
829    if (prob_str == NULL) {
830      sprintf(prob_str_buf, "%g", prob);
831      prob_str = prob_str_buf;
832    }
833    C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'",
834                   iter().get_dest(), taken, not_taken, cnt, prob_str);
835  }
836  return prob;
837}
838
839//-----------------------------branch_prediction-------------------------------
840float Parse::branch_prediction(float& cnt,
841                               BoolTest::mask btest,
842                               int target_bci) {
843  float prob = dynamic_branch_prediction(cnt);
844  // If prob is unknown, switch to static prediction
845  if (prob != PROB_UNKNOWN)  return prob;
846
847  prob = PROB_FAIR;                   // Set default value
848  if (btest == BoolTest::eq)          // Exactly equal test?
849    prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
850  else if (btest == BoolTest::ne)
851    prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
852
853  // If this is a conditional test guarding a backwards branch,
854  // assume its a loop-back edge.  Make it a likely taken branch.
855  if (target_bci < bci()) {
856    if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
857      // Since it's an OSR, we probably have profile data, but since
858      // branch_prediction returned PROB_UNKNOWN, the counts are too small.
859      // Let's make a special check here for completely zero counts.
860      ciMethodData* methodData = method()->method_data();
861      if (!methodData->is_empty()) {
862        ciProfileData* data = methodData->bci_to_data(bci());
863        // Only stop for truly zero counts, which mean an unknown part
864        // of the OSR-ed method, and we want to deopt to gather more stats.
865        // If you have ANY counts, then this loop is simply 'cold' relative
866        // to the OSR loop.
867        if (data->as_BranchData()->taken() +
868            data->as_BranchData()->not_taken() == 0 ) {
869          // This is the only way to return PROB_UNKNOWN:
870          return PROB_UNKNOWN;
871        }
872      }
873    }
874    prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
875  }
876
877  assert(prob != PROB_UNKNOWN, "must have some guess at this point");
878  return prob;
879}
880
881// The magic constants are chosen so as to match the output of
882// branch_prediction() when the profile reports a zero taken count.
883// It is important to distinguish zero counts unambiguously, because
884// some branches (e.g., _213_javac.Assembler.eliminate) validly produce
885// very small but nonzero probabilities, which if confused with zero
886// counts would keep the program recompiling indefinitely.
887bool Parse::seems_never_taken(float prob) {
888  return prob < PROB_MIN;
889}
890
891// True if the comparison seems to be the kind that will not change its
892// statistics from true to false.  See comments in adjust_map_after_if.
893// This question is only asked along paths which are already
894// classifed as untaken (by seems_never_taken), so really,
895// if a path is never taken, its controlling comparison is
896// already acting in a stable fashion.  If the comparison
897// seems stable, we will put an expensive uncommon trap
898// on the untaken path.  To be conservative, and to allow
899// partially executed counted loops to be compiled fully,
900// we will plant uncommon traps only after pointer comparisons.
901bool Parse::seems_stable_comparison(BoolTest::mask btest, Node* cmp) {
902  for (int depth = 4; depth > 0; depth--) {
903    // The following switch can find CmpP here over half the time for
904    // dynamic language code rich with type tests.
905    // Code using counted loops or array manipulations (typical
906    // of benchmarks) will have many (>80%) CmpI instructions.
907    switch (cmp->Opcode()) {
908    case Op_CmpP:
909      // A never-taken null check looks like CmpP/BoolTest::eq.
910      // These certainly should be closed off as uncommon traps.
911      if (btest == BoolTest::eq)
912        return true;
913      // A never-failed type check looks like CmpP/BoolTest::ne.
914      // Let's put traps on those, too, so that we don't have to compile
915      // unused paths with indeterminate dynamic type information.
916      if (ProfileDynamicTypes)
917        return true;
918      return false;
919
920    case Op_CmpI:
921      // A small minority (< 10%) of CmpP are masked as CmpI,
922      // as if by boolean conversion ((p == q? 1: 0) != 0).
923      // Detect that here, even if it hasn't optimized away yet.
924      // Specifically, this covers the 'instanceof' operator.
925      if (btest == BoolTest::ne || btest == BoolTest::eq) {
926        if (_gvn.type(cmp->in(2))->singleton() &&
927            cmp->in(1)->is_Phi()) {
928          PhiNode* phi = cmp->in(1)->as_Phi();
929          int true_path = phi->is_diamond_phi();
930          if (true_path > 0 &&
931              _gvn.type(phi->in(1))->singleton() &&
932              _gvn.type(phi->in(2))->singleton()) {
933            // phi->region->if_proj->ifnode->bool->cmp
934            BoolNode* bol = phi->in(0)->in(1)->in(0)->in(1)->as_Bool();
935            btest = bol->_test._test;
936            cmp = bol->in(1);
937            continue;
938          }
939        }
940      }
941      return false;
942    }
943  }
944  return false;
945}
946
947//-------------------------------repush_if_args--------------------------------
948// Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
949inline int Parse::repush_if_args() {
950#ifndef PRODUCT
951  if (PrintOpto && WizardMode) {
952    tty->print("defending against excessive implicit null exceptions on %s @%d in ",
953               Bytecodes::name(iter().cur_bc()), iter().cur_bci());
954    method()->print_name(); tty->cr();
955  }
956#endif
957  int bc_depth = - Bytecodes::depth(iter().cur_bc());
958  assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
959  DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
960  assert(argument(0) != NULL, "must exist");
961  assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
962  inc_sp(bc_depth);
963  return bc_depth;
964}
965
966//----------------------------------do_ifnull----------------------------------
967void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
968  int target_bci = iter().get_dest();
969
970  Block* branch_block = successor_for_bci(target_bci);
971  Block* next_block   = successor_for_bci(iter().next_bci());
972
973  float cnt;
974  float prob = branch_prediction(cnt, btest, target_bci);
975  if (prob == PROB_UNKNOWN) {
976    // (An earlier version of do_ifnull omitted this trap for OSR methods.)
977#ifndef PRODUCT
978    if (PrintOpto && Verbose)
979      tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
980#endif
981    repush_if_args(); // to gather stats on loop
982    // We need to mark this branch as taken so that if we recompile we will
983    // see that it is possible. In the tiered system the interpreter doesn't
984    // do profiling and by the time we get to the lower tier from the interpreter
985    // the path may be cold again. Make sure it doesn't look untaken
986    profile_taken_branch(target_bci, !ProfileInterpreter);
987    uncommon_trap(Deoptimization::Reason_unreached,
988                  Deoptimization::Action_reinterpret,
989                  NULL, "cold");
990    if (C->eliminate_boxing()) {
991      // Mark the successor blocks as parsed
992      branch_block->next_path_num();
993      next_block->next_path_num();
994    }
995    return;
996  }
997
998  explicit_null_checks_inserted++;
999
1000  // Generate real control flow
1001  Node   *tst = _gvn.transform( new (C) BoolNode( c, btest ) );
1002
1003  // Sanity check the probability value
1004  assert(prob > 0.0f,"Bad probability in Parser");
1005 // Need xform to put node in hash table
1006  IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
1007  assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1008  // True branch
1009  { PreserveJVMState pjvms(this);
1010    Node* iftrue  = _gvn.transform( new (C) IfTrueNode (iff) );
1011    set_control(iftrue);
1012
1013    if (stopped()) {            // Path is dead?
1014      explicit_null_checks_elided++;
1015      if (C->eliminate_boxing()) {
1016        // Mark the successor block as parsed
1017        branch_block->next_path_num();
1018      }
1019    } else {                    // Path is live.
1020      // Update method data
1021      profile_taken_branch(target_bci);
1022      adjust_map_after_if(btest, c, prob, branch_block, next_block);
1023      if (!stopped()) {
1024        merge(target_bci);
1025      }
1026    }
1027  }
1028
1029  // False branch
1030  Node* iffalse = _gvn.transform( new (C) IfFalseNode(iff) );
1031  set_control(iffalse);
1032
1033  if (stopped()) {              // Path is dead?
1034    explicit_null_checks_elided++;
1035    if (C->eliminate_boxing()) {
1036      // Mark the successor block as parsed
1037      next_block->next_path_num();
1038    }
1039  } else  {                     // Path is live.
1040    // Update method data
1041    profile_not_taken_branch();
1042    adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
1043                        next_block, branch_block);
1044  }
1045}
1046
1047//------------------------------------do_if------------------------------------
1048void Parse::do_if(BoolTest::mask btest, Node* c) {
1049  int target_bci = iter().get_dest();
1050
1051  Block* branch_block = successor_for_bci(target_bci);
1052  Block* next_block   = successor_for_bci(iter().next_bci());
1053
1054  float cnt;
1055  float prob = branch_prediction(cnt, btest, target_bci);
1056  float untaken_prob = 1.0 - prob;
1057
1058  if (prob == PROB_UNKNOWN) {
1059#ifndef PRODUCT
1060    if (PrintOpto && Verbose)
1061      tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
1062#endif
1063    repush_if_args(); // to gather stats on loop
1064    // We need to mark this branch as taken so that if we recompile we will
1065    // see that it is possible. In the tiered system the interpreter doesn't
1066    // do profiling and by the time we get to the lower tier from the interpreter
1067    // the path may be cold again. Make sure it doesn't look untaken
1068    profile_taken_branch(target_bci, !ProfileInterpreter);
1069    uncommon_trap(Deoptimization::Reason_unreached,
1070                  Deoptimization::Action_reinterpret,
1071                  NULL, "cold");
1072    if (C->eliminate_boxing()) {
1073      // Mark the successor blocks as parsed
1074      branch_block->next_path_num();
1075      next_block->next_path_num();
1076    }
1077    return;
1078  }
1079
1080  // Sanity check the probability value
1081  assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
1082
1083  bool taken_if_true = true;
1084  // Convert BoolTest to canonical form:
1085  if (!BoolTest(btest).is_canonical()) {
1086    btest         = BoolTest(btest).negate();
1087    taken_if_true = false;
1088    // prob is NOT updated here; it remains the probability of the taken
1089    // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
1090  }
1091  assert(btest != BoolTest::eq, "!= is the only canonical exact test");
1092
1093  Node* tst0 = new (C) BoolNode(c, btest);
1094  Node* tst = _gvn.transform(tst0);
1095  BoolTest::mask taken_btest   = BoolTest::illegal;
1096  BoolTest::mask untaken_btest = BoolTest::illegal;
1097
1098  if (tst->is_Bool()) {
1099    // Refresh c from the transformed bool node, since it may be
1100    // simpler than the original c.  Also re-canonicalize btest.
1101    // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
1102    // That can arise from statements like: if (x instanceof C) ...
1103    if (tst != tst0) {
1104      // Canonicalize one more time since transform can change it.
1105      btest = tst->as_Bool()->_test._test;
1106      if (!BoolTest(btest).is_canonical()) {
1107        // Reverse edges one more time...
1108        tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
1109        btest = tst->as_Bool()->_test._test;
1110        assert(BoolTest(btest).is_canonical(), "sanity");
1111        taken_if_true = !taken_if_true;
1112      }
1113      c = tst->in(1);
1114    }
1115    BoolTest::mask neg_btest = BoolTest(btest).negate();
1116    taken_btest   = taken_if_true ?     btest : neg_btest;
1117    untaken_btest = taken_if_true ? neg_btest :     btest;
1118  }
1119
1120  // Generate real control flow
1121  float true_prob = (taken_if_true ? prob : untaken_prob);
1122  IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1123  assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1124  Node* taken_branch   = new (C) IfTrueNode(iff);
1125  Node* untaken_branch = new (C) IfFalseNode(iff);
1126  if (!taken_if_true) {  // Finish conversion to canonical form
1127    Node* tmp      = taken_branch;
1128    taken_branch   = untaken_branch;
1129    untaken_branch = tmp;
1130  }
1131
1132  // Branch is taken:
1133  { PreserveJVMState pjvms(this);
1134    taken_branch = _gvn.transform(taken_branch);
1135    set_control(taken_branch);
1136
1137    if (stopped()) {
1138      if (C->eliminate_boxing()) {
1139        // Mark the successor block as parsed
1140        branch_block->next_path_num();
1141      }
1142    } else {
1143      // Update method data
1144      profile_taken_branch(target_bci);
1145      adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
1146      if (!stopped()) {
1147        merge(target_bci);
1148      }
1149    }
1150  }
1151
1152  untaken_branch = _gvn.transform(untaken_branch);
1153  set_control(untaken_branch);
1154
1155  // Branch not taken.
1156  if (stopped()) {
1157    if (C->eliminate_boxing()) {
1158      // Mark the successor block as parsed
1159      next_block->next_path_num();
1160    }
1161  } else {
1162    // Update method data
1163    profile_not_taken_branch();
1164    adjust_map_after_if(untaken_btest, c, untaken_prob,
1165                        next_block, branch_block);
1166  }
1167}
1168
1169//----------------------------adjust_map_after_if------------------------------
1170// Adjust the JVM state to reflect the result of taking this path.
1171// Basically, it means inspecting the CmpNode controlling this
1172// branch, seeing how it constrains a tested value, and then
1173// deciding if it's worth our while to encode this constraint
1174// as graph nodes in the current abstract interpretation map.
1175void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
1176                                Block* path, Block* other_path) {
1177  if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
1178    return;                             // nothing to do
1179
1180  bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
1181
1182  if (seems_never_taken(prob) && seems_stable_comparison(btest, c)) {
1183    // If this might possibly turn into an implicit null check,
1184    // and the null has never yet been seen, we need to generate
1185    // an uncommon trap, so as to recompile instead of suffering
1186    // with very slow branches.  (We'll get the slow branches if
1187    // the program ever changes phase and starts seeing nulls here.)
1188    //
1189    // We do not inspect for a null constant, since a node may
1190    // optimize to 'null' later on.
1191    //
1192    // Null checks, and other tests which expect inequality,
1193    // show btest == BoolTest::eq along the non-taken branch.
1194    // On the other hand, type tests, must-be-null tests,
1195    // and other tests which expect pointer equality,
1196    // show btest == BoolTest::ne along the non-taken branch.
1197    // We prune both types of branches if they look unused.
1198    repush_if_args();
1199    // We need to mark this branch as taken so that if we recompile we will
1200    // see that it is possible. In the tiered system the interpreter doesn't
1201    // do profiling and by the time we get to the lower tier from the interpreter
1202    // the path may be cold again. Make sure it doesn't look untaken
1203    if (is_fallthrough) {
1204      profile_not_taken_branch(!ProfileInterpreter);
1205    } else {
1206      profile_taken_branch(iter().get_dest(), !ProfileInterpreter);
1207    }
1208    uncommon_trap(Deoptimization::Reason_unreached,
1209                  Deoptimization::Action_reinterpret,
1210                  NULL,
1211                  (is_fallthrough ? "taken always" : "taken never"));
1212    return;
1213  }
1214
1215  Node* val = c->in(1);
1216  Node* con = c->in(2);
1217  const Type* tcon = _gvn.type(con);
1218  const Type* tval = _gvn.type(val);
1219  bool have_con = tcon->singleton();
1220  if (tval->singleton()) {
1221    if (!have_con) {
1222      // Swap, so constant is in con.
1223      con  = val;
1224      tcon = tval;
1225      val  = c->in(2);
1226      tval = _gvn.type(val);
1227      btest = BoolTest(btest).commute();
1228      have_con = true;
1229    } else {
1230      // Do we have two constants?  Then leave well enough alone.
1231      have_con = false;
1232    }
1233  }
1234  if (!have_con)                        // remaining adjustments need a con
1235    return;
1236
1237  sharpen_type_after_if(btest, con, tcon, val, tval);
1238}
1239
1240
1241static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) {
1242  Node* ldk;
1243  if (n->is_DecodeNKlass()) {
1244    if (n->in(1)->Opcode() != Op_LoadNKlass) {
1245      return NULL;
1246    } else {
1247      ldk = n->in(1);
1248    }
1249  } else if (n->Opcode() != Op_LoadKlass) {
1250    return NULL;
1251  } else {
1252    ldk = n;
1253  }
1254  assert(ldk != NULL && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node");
1255
1256  Node* adr = ldk->in(MemNode::Address);
1257  intptr_t off = 0;
1258  Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off);
1259  if (obj == NULL || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass?
1260    return NULL;
1261  const TypePtr* tp = gvn->type(obj)->is_ptr();
1262  if (tp == NULL || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr?
1263    return NULL;
1264
1265  return obj;
1266}
1267
1268void Parse::sharpen_type_after_if(BoolTest::mask btest,
1269                                  Node* con, const Type* tcon,
1270                                  Node* val, const Type* tval) {
1271  // Look for opportunities to sharpen the type of a node
1272  // whose klass is compared with a constant klass.
1273  if (btest == BoolTest::eq && tcon->isa_klassptr()) {
1274    Node* obj = extract_obj_from_klass_load(&_gvn, val);
1275    const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type();
1276    if (obj != NULL && (con_type->isa_instptr() || con_type->isa_aryptr())) {
1277       // Found:
1278       //   Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
1279       // or the narrowOop equivalent.
1280       const Type* obj_type = _gvn.type(obj);
1281       const TypeOopPtr* tboth = obj_type->join(con_type)->isa_oopptr();
1282       if (tboth != NULL && tboth->klass_is_exact() && tboth != obj_type &&
1283           tboth->higher_equal(obj_type)) {
1284          // obj has to be of the exact type Foo if the CmpP succeeds.
1285          int obj_in_map = map()->find_edge(obj);
1286          JVMState* jvms = this->jvms();
1287          if (obj_in_map >= 0 &&
1288              (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
1289            TypeNode* ccast = new (C) CheckCastPPNode(control(), obj, tboth);
1290            const Type* tcc = ccast->as_Type()->type();
1291            assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
1292            // Delay transform() call to allow recovery of pre-cast value
1293            // at the control merge.
1294            _gvn.set_type_bottom(ccast);
1295            record_for_igvn(ccast);
1296            // Here's the payoff.
1297            replace_in_map(obj, ccast);
1298          }
1299       }
1300    }
1301  }
1302
1303  int val_in_map = map()->find_edge(val);
1304  if (val_in_map < 0)  return;          // replace_in_map would be useless
1305  {
1306    JVMState* jvms = this->jvms();
1307    if (!(jvms->is_loc(val_in_map) ||
1308          jvms->is_stk(val_in_map)))
1309      return;                           // again, it would be useless
1310  }
1311
1312  // Check for a comparison to a constant, and "know" that the compared
1313  // value is constrained on this path.
1314  assert(tcon->singleton(), "");
1315  ConstraintCastNode* ccast = NULL;
1316  Node* cast = NULL;
1317
1318  switch (btest) {
1319  case BoolTest::eq:                    // Constant test?
1320    {
1321      const Type* tboth = tcon->join(tval);
1322      if (tboth == tval)  break;        // Nothing to gain.
1323      if (tcon->isa_int()) {
1324        ccast = new (C) CastIINode(val, tboth);
1325      } else if (tcon == TypePtr::NULL_PTR) {
1326        // Cast to null, but keep the pointer identity temporarily live.
1327        ccast = new (C) CastPPNode(val, tboth);
1328      } else {
1329        const TypeF* tf = tcon->isa_float_constant();
1330        const TypeD* td = tcon->isa_double_constant();
1331        // Exclude tests vs float/double 0 as these could be
1332        // either +0 or -0.  Just because you are equal to +0
1333        // doesn't mean you ARE +0!
1334        // Note, following code also replaces Long and Oop values.
1335        if ((!tf || tf->_f != 0.0) &&
1336            (!td || td->_d != 0.0))
1337          cast = con;                   // Replace non-constant val by con.
1338      }
1339    }
1340    break;
1341
1342  case BoolTest::ne:
1343    if (tcon == TypePtr::NULL_PTR) {
1344      cast = cast_not_null(val, false);
1345    }
1346    break;
1347
1348  default:
1349    // (At this point we could record int range types with CastII.)
1350    break;
1351  }
1352
1353  if (ccast != NULL) {
1354    const Type* tcc = ccast->as_Type()->type();
1355    assert(tcc != tval && tcc->higher_equal(tval), "must improve");
1356    // Delay transform() call to allow recovery of pre-cast value
1357    // at the control merge.
1358    ccast->set_req(0, control());
1359    _gvn.set_type_bottom(ccast);
1360    record_for_igvn(ccast);
1361    cast = ccast;
1362  }
1363
1364  if (cast != NULL) {                   // Here's the payoff.
1365    replace_in_map(val, cast);
1366  }
1367}
1368
1369/**
1370 * Use speculative type to optimize CmpP node: if comparison is
1371 * against the low level class, cast the object to the speculative
1372 * type if any. CmpP should then go away.
1373 *
1374 * @param c  expected CmpP node
1375 * @return   result of CmpP on object casted to speculative type
1376 *
1377 */
1378Node* Parse::optimize_cmp_with_klass(Node* c) {
1379  // If this is transformed by the _gvn to a comparison with the low
1380  // level klass then we may be able to use speculation
1381  if (c->Opcode() == Op_CmpP &&
1382      (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
1383      c->in(2)->is_Con()) {
1384    Node* load_klass = NULL;
1385    Node* decode = NULL;
1386    if (c->in(1)->Opcode() == Op_DecodeNKlass) {
1387      decode = c->in(1);
1388      load_klass = c->in(1)->in(1);
1389    } else {
1390      load_klass = c->in(1);
1391    }
1392    if (load_klass->in(2)->is_AddP()) {
1393      Node* addp = load_klass->in(2);
1394      Node* obj = addp->in(AddPNode::Address);
1395      const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
1396      if (obj_type->speculative_type() != NULL) {
1397        ciKlass* k = obj_type->speculative_type();
1398        inc_sp(2);
1399        obj = maybe_cast_profiled_obj(obj, k);
1400        dec_sp(2);
1401        // Make the CmpP use the casted obj
1402        addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
1403        load_klass = load_klass->clone();
1404        load_klass->set_req(2, addp);
1405        load_klass = _gvn.transform(load_klass);
1406        if (decode != NULL) {
1407          decode = decode->clone();
1408          decode->set_req(1, load_klass);
1409          load_klass = _gvn.transform(decode);
1410        }
1411        c = c->clone();
1412        c->set_req(1, load_klass);
1413        c = _gvn.transform(c);
1414      }
1415    }
1416  }
1417  return c;
1418}
1419
1420//------------------------------do_one_bytecode--------------------------------
1421// Parse this bytecode, and alter the Parsers JVM->Node mapping
1422void Parse::do_one_bytecode() {
1423  Node *a, *b, *c, *d;          // Handy temps
1424  BoolTest::mask btest;
1425  int i;
1426
1427  assert(!has_exceptions(), "bytecode entry state must be clear of throws");
1428
1429  if (C->check_node_count(NodeLimitFudgeFactor * 5,
1430                          "out of nodes parsing method")) {
1431    return;
1432  }
1433
1434#ifdef ASSERT
1435  // for setting breakpoints
1436  if (TraceOptoParse) {
1437    tty->print(" @");
1438    dump_bci(bci());
1439    tty->cr();
1440  }
1441#endif
1442
1443  switch (bc()) {
1444  case Bytecodes::_nop:
1445    // do nothing
1446    break;
1447  case Bytecodes::_lconst_0:
1448    push_pair(longcon(0));
1449    break;
1450
1451  case Bytecodes::_lconst_1:
1452    push_pair(longcon(1));
1453    break;
1454
1455  case Bytecodes::_fconst_0:
1456    push(zerocon(T_FLOAT));
1457    break;
1458
1459  case Bytecodes::_fconst_1:
1460    push(makecon(TypeF::ONE));
1461    break;
1462
1463  case Bytecodes::_fconst_2:
1464    push(makecon(TypeF::make(2.0f)));
1465    break;
1466
1467  case Bytecodes::_dconst_0:
1468    push_pair(zerocon(T_DOUBLE));
1469    break;
1470
1471  case Bytecodes::_dconst_1:
1472    push_pair(makecon(TypeD::ONE));
1473    break;
1474
1475  case Bytecodes::_iconst_m1:push(intcon(-1)); break;
1476  case Bytecodes::_iconst_0: push(intcon( 0)); break;
1477  case Bytecodes::_iconst_1: push(intcon( 1)); break;
1478  case Bytecodes::_iconst_2: push(intcon( 2)); break;
1479  case Bytecodes::_iconst_3: push(intcon( 3)); break;
1480  case Bytecodes::_iconst_4: push(intcon( 4)); break;
1481  case Bytecodes::_iconst_5: push(intcon( 5)); break;
1482  case Bytecodes::_bipush:   push(intcon(iter().get_constant_u1())); break;
1483  case Bytecodes::_sipush:   push(intcon(iter().get_constant_u2())); break;
1484  case Bytecodes::_aconst_null: push(null());  break;
1485  case Bytecodes::_ldc:
1486  case Bytecodes::_ldc_w:
1487  case Bytecodes::_ldc2_w:
1488    // If the constant is unresolved, run this BC once in the interpreter.
1489    {
1490      ciConstant constant = iter().get_constant();
1491      if (constant.basic_type() == T_OBJECT &&
1492          !constant.as_object()->is_loaded()) {
1493        int index = iter().get_constant_pool_index();
1494        constantTag tag = iter().get_constant_pool_tag(index);
1495        uncommon_trap(Deoptimization::make_trap_request
1496                      (Deoptimization::Reason_unloaded,
1497                       Deoptimization::Action_reinterpret,
1498                       index),
1499                      NULL, tag.internal_name());
1500        break;
1501      }
1502      assert(constant.basic_type() != T_OBJECT || constant.as_object()->is_instance(),
1503             "must be java_mirror of klass");
1504      bool pushed = push_constant(constant, true);
1505      guarantee(pushed, "must be possible to push this constant");
1506    }
1507
1508    break;
1509
1510  case Bytecodes::_aload_0:
1511    push( local(0) );
1512    break;
1513  case Bytecodes::_aload_1:
1514    push( local(1) );
1515    break;
1516  case Bytecodes::_aload_2:
1517    push( local(2) );
1518    break;
1519  case Bytecodes::_aload_3:
1520    push( local(3) );
1521    break;
1522  case Bytecodes::_aload:
1523    push( local(iter().get_index()) );
1524    break;
1525
1526  case Bytecodes::_fload_0:
1527  case Bytecodes::_iload_0:
1528    push( local(0) );
1529    break;
1530  case Bytecodes::_fload_1:
1531  case Bytecodes::_iload_1:
1532    push( local(1) );
1533    break;
1534  case Bytecodes::_fload_2:
1535  case Bytecodes::_iload_2:
1536    push( local(2) );
1537    break;
1538  case Bytecodes::_fload_3:
1539  case Bytecodes::_iload_3:
1540    push( local(3) );
1541    break;
1542  case Bytecodes::_fload:
1543  case Bytecodes::_iload:
1544    push( local(iter().get_index()) );
1545    break;
1546  case Bytecodes::_lload_0:
1547    push_pair_local( 0 );
1548    break;
1549  case Bytecodes::_lload_1:
1550    push_pair_local( 1 );
1551    break;
1552  case Bytecodes::_lload_2:
1553    push_pair_local( 2 );
1554    break;
1555  case Bytecodes::_lload_3:
1556    push_pair_local( 3 );
1557    break;
1558  case Bytecodes::_lload:
1559    push_pair_local( iter().get_index() );
1560    break;
1561
1562  case Bytecodes::_dload_0:
1563    push_pair_local(0);
1564    break;
1565  case Bytecodes::_dload_1:
1566    push_pair_local(1);
1567    break;
1568  case Bytecodes::_dload_2:
1569    push_pair_local(2);
1570    break;
1571  case Bytecodes::_dload_3:
1572    push_pair_local(3);
1573    break;
1574  case Bytecodes::_dload:
1575    push_pair_local(iter().get_index());
1576    break;
1577  case Bytecodes::_fstore_0:
1578  case Bytecodes::_istore_0:
1579  case Bytecodes::_astore_0:
1580    set_local( 0, pop() );
1581    break;
1582  case Bytecodes::_fstore_1:
1583  case Bytecodes::_istore_1:
1584  case Bytecodes::_astore_1:
1585    set_local( 1, pop() );
1586    break;
1587  case Bytecodes::_fstore_2:
1588  case Bytecodes::_istore_2:
1589  case Bytecodes::_astore_2:
1590    set_local( 2, pop() );
1591    break;
1592  case Bytecodes::_fstore_3:
1593  case Bytecodes::_istore_3:
1594  case Bytecodes::_astore_3:
1595    set_local( 3, pop() );
1596    break;
1597  case Bytecodes::_fstore:
1598  case Bytecodes::_istore:
1599  case Bytecodes::_astore:
1600    set_local( iter().get_index(), pop() );
1601    break;
1602  // long stores
1603  case Bytecodes::_lstore_0:
1604    set_pair_local( 0, pop_pair() );
1605    break;
1606  case Bytecodes::_lstore_1:
1607    set_pair_local( 1, pop_pair() );
1608    break;
1609  case Bytecodes::_lstore_2:
1610    set_pair_local( 2, pop_pair() );
1611    break;
1612  case Bytecodes::_lstore_3:
1613    set_pair_local( 3, pop_pair() );
1614    break;
1615  case Bytecodes::_lstore:
1616    set_pair_local( iter().get_index(), pop_pair() );
1617    break;
1618
1619  // double stores
1620  case Bytecodes::_dstore_0:
1621    set_pair_local( 0, dstore_rounding(pop_pair()) );
1622    break;
1623  case Bytecodes::_dstore_1:
1624    set_pair_local( 1, dstore_rounding(pop_pair()) );
1625    break;
1626  case Bytecodes::_dstore_2:
1627    set_pair_local( 2, dstore_rounding(pop_pair()) );
1628    break;
1629  case Bytecodes::_dstore_3:
1630    set_pair_local( 3, dstore_rounding(pop_pair()) );
1631    break;
1632  case Bytecodes::_dstore:
1633    set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
1634    break;
1635
1636  case Bytecodes::_pop:  dec_sp(1);   break;
1637  case Bytecodes::_pop2: dec_sp(2);   break;
1638  case Bytecodes::_swap:
1639    a = pop();
1640    b = pop();
1641    push(a);
1642    push(b);
1643    break;
1644  case Bytecodes::_dup:
1645    a = pop();
1646    push(a);
1647    push(a);
1648    break;
1649  case Bytecodes::_dup_x1:
1650    a = pop();
1651    b = pop();
1652    push( a );
1653    push( b );
1654    push( a );
1655    break;
1656  case Bytecodes::_dup_x2:
1657    a = pop();
1658    b = pop();
1659    c = pop();
1660    push( a );
1661    push( c );
1662    push( b );
1663    push( a );
1664    break;
1665  case Bytecodes::_dup2:
1666    a = pop();
1667    b = pop();
1668    push( b );
1669    push( a );
1670    push( b );
1671    push( a );
1672    break;
1673
1674  case Bytecodes::_dup2_x1:
1675    // before: .. c, b, a
1676    // after:  .. b, a, c, b, a
1677    // not tested
1678    a = pop();
1679    b = pop();
1680    c = pop();
1681    push( b );
1682    push( a );
1683    push( c );
1684    push( b );
1685    push( a );
1686    break;
1687  case Bytecodes::_dup2_x2:
1688    // before: .. d, c, b, a
1689    // after:  .. b, a, d, c, b, a
1690    // not tested
1691    a = pop();
1692    b = pop();
1693    c = pop();
1694    d = pop();
1695    push( b );
1696    push( a );
1697    push( d );
1698    push( c );
1699    push( b );
1700    push( a );
1701    break;
1702
1703  case Bytecodes::_arraylength: {
1704    // Must do null-check with value on expression stack
1705    Node *ary = null_check(peek(), T_ARRAY);
1706    // Compile-time detect of null-exception?
1707    if (stopped())  return;
1708    a = pop();
1709    push(load_array_length(a));
1710    break;
1711  }
1712
1713  case Bytecodes::_baload: array_load(T_BYTE);   break;
1714  case Bytecodes::_caload: array_load(T_CHAR);   break;
1715  case Bytecodes::_iaload: array_load(T_INT);    break;
1716  case Bytecodes::_saload: array_load(T_SHORT);  break;
1717  case Bytecodes::_faload: array_load(T_FLOAT);  break;
1718  case Bytecodes::_aaload: array_load(T_OBJECT); break;
1719  case Bytecodes::_laload: {
1720    a = array_addressing(T_LONG, 0);
1721    if (stopped())  return;     // guaranteed null or range check
1722    dec_sp(2);                  // Pop array and index
1723    push_pair(make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS, MemNode::unordered));
1724    break;
1725  }
1726  case Bytecodes::_daload: {
1727    a = array_addressing(T_DOUBLE, 0);
1728    if (stopped())  return;     // guaranteed null or range check
1729    dec_sp(2);                  // Pop array and index
1730    push_pair(make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES, MemNode::unordered));
1731    break;
1732  }
1733  case Bytecodes::_bastore: array_store(T_BYTE);  break;
1734  case Bytecodes::_castore: array_store(T_CHAR);  break;
1735  case Bytecodes::_iastore: array_store(T_INT);   break;
1736  case Bytecodes::_sastore: array_store(T_SHORT); break;
1737  case Bytecodes::_fastore: array_store(T_FLOAT); break;
1738  case Bytecodes::_aastore: {
1739    d = array_addressing(T_OBJECT, 1);
1740    if (stopped())  return;     // guaranteed null or range check
1741    array_store_check();
1742    c = pop();                  // Oop to store
1743    b = pop();                  // index (already used)
1744    a = pop();                  // the array itself
1745    const TypeOopPtr* elemtype  = _gvn.type(a)->is_aryptr()->elem()->make_oopptr();
1746    const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
1747    Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT, MemNode::release);
1748    break;
1749  }
1750  case Bytecodes::_lastore: {
1751    a = array_addressing(T_LONG, 2);
1752    if (stopped())  return;     // guaranteed null or range check
1753    c = pop_pair();
1754    dec_sp(2);                  // Pop array and index
1755    store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS, MemNode::unordered);
1756    break;
1757  }
1758  case Bytecodes::_dastore: {
1759    a = array_addressing(T_DOUBLE, 2);
1760    if (stopped())  return;     // guaranteed null or range check
1761    c = pop_pair();
1762    dec_sp(2);                  // Pop array and index
1763    c = dstore_rounding(c);
1764    store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES, MemNode::unordered);
1765    break;
1766  }
1767  case Bytecodes::_getfield:
1768    do_getfield();
1769    break;
1770
1771  case Bytecodes::_getstatic:
1772    do_getstatic();
1773    break;
1774
1775  case Bytecodes::_putfield:
1776    do_putfield();
1777    break;
1778
1779  case Bytecodes::_putstatic:
1780    do_putstatic();
1781    break;
1782
1783  case Bytecodes::_irem:
1784    do_irem();
1785    break;
1786  case Bytecodes::_idiv:
1787    // Must keep both values on the expression-stack during null-check
1788    zero_check_int(peek());
1789    // Compile-time detect of null-exception?
1790    if (stopped())  return;
1791    b = pop();
1792    a = pop();
1793    push( _gvn.transform( new (C) DivINode(control(),a,b) ) );
1794    break;
1795  case Bytecodes::_imul:
1796    b = pop(); a = pop();
1797    push( _gvn.transform( new (C) MulINode(a,b) ) );
1798    break;
1799  case Bytecodes::_iadd:
1800    b = pop(); a = pop();
1801    push( _gvn.transform( new (C) AddINode(a,b) ) );
1802    break;
1803  case Bytecodes::_ineg:
1804    a = pop();
1805    push( _gvn.transform( new (C) SubINode(_gvn.intcon(0),a)) );
1806    break;
1807  case Bytecodes::_isub:
1808    b = pop(); a = pop();
1809    push( _gvn.transform( new (C) SubINode(a,b) ) );
1810    break;
1811  case Bytecodes::_iand:
1812    b = pop(); a = pop();
1813    push( _gvn.transform( new (C) AndINode(a,b) ) );
1814    break;
1815  case Bytecodes::_ior:
1816    b = pop(); a = pop();
1817    push( _gvn.transform( new (C) OrINode(a,b) ) );
1818    break;
1819  case Bytecodes::_ixor:
1820    b = pop(); a = pop();
1821    push( _gvn.transform( new (C) XorINode(a,b) ) );
1822    break;
1823  case Bytecodes::_ishl:
1824    b = pop(); a = pop();
1825    push( _gvn.transform( new (C) LShiftINode(a,b) ) );
1826    break;
1827  case Bytecodes::_ishr:
1828    b = pop(); a = pop();
1829    push( _gvn.transform( new (C) RShiftINode(a,b) ) );
1830    break;
1831  case Bytecodes::_iushr:
1832    b = pop(); a = pop();
1833    push( _gvn.transform( new (C) URShiftINode(a,b) ) );
1834    break;
1835
1836  case Bytecodes::_fneg:
1837    a = pop();
1838    b = _gvn.transform(new (C) NegFNode (a));
1839    push(b);
1840    break;
1841
1842  case Bytecodes::_fsub:
1843    b = pop();
1844    a = pop();
1845    c = _gvn.transform( new (C) SubFNode(a,b) );
1846    d = precision_rounding(c);
1847    push( d );
1848    break;
1849
1850  case Bytecodes::_fadd:
1851    b = pop();
1852    a = pop();
1853    c = _gvn.transform( new (C) AddFNode(a,b) );
1854    d = precision_rounding(c);
1855    push( d );
1856    break;
1857
1858  case Bytecodes::_fmul:
1859    b = pop();
1860    a = pop();
1861    c = _gvn.transform( new (C) MulFNode(a,b) );
1862    d = precision_rounding(c);
1863    push( d );
1864    break;
1865
1866  case Bytecodes::_fdiv:
1867    b = pop();
1868    a = pop();
1869    c = _gvn.transform( new (C) DivFNode(0,a,b) );
1870    d = precision_rounding(c);
1871    push( d );
1872    break;
1873
1874  case Bytecodes::_frem:
1875    if (Matcher::has_match_rule(Op_ModF)) {
1876      // Generate a ModF node.
1877      b = pop();
1878      a = pop();
1879      c = _gvn.transform( new (C) ModFNode(0,a,b) );
1880      d = precision_rounding(c);
1881      push( d );
1882    }
1883    else {
1884      // Generate a call.
1885      modf();
1886    }
1887    break;
1888
1889  case Bytecodes::_fcmpl:
1890    b = pop();
1891    a = pop();
1892    c = _gvn.transform( new (C) CmpF3Node( a, b));
1893    push(c);
1894    break;
1895  case Bytecodes::_fcmpg:
1896    b = pop();
1897    a = pop();
1898
1899    // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
1900    // which negates the result sign except for unordered.  Flip the unordered
1901    // as well by using CmpF3 which implements unordered-lesser instead of
1902    // unordered-greater semantics.  Finally, commute the result bits.  Result
1903    // is same as using a CmpF3Greater except we did it with CmpF3 alone.
1904    c = _gvn.transform( new (C) CmpF3Node( b, a));
1905    c = _gvn.transform( new (C) SubINode(_gvn.intcon(0),c) );
1906    push(c);
1907    break;
1908
1909  case Bytecodes::_f2i:
1910    a = pop();
1911    push(_gvn.transform(new (C) ConvF2INode(a)));
1912    break;
1913
1914  case Bytecodes::_d2i:
1915    a = pop_pair();
1916    b = _gvn.transform(new (C) ConvD2INode(a));
1917    push( b );
1918    break;
1919
1920  case Bytecodes::_f2d:
1921    a = pop();
1922    b = _gvn.transform( new (C) ConvF2DNode(a));
1923    push_pair( b );
1924    break;
1925
1926  case Bytecodes::_d2f:
1927    a = pop_pair();
1928    b = _gvn.transform( new (C) ConvD2FNode(a));
1929    // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
1930    //b = _gvn.transform(new (C) RoundFloatNode(0, b) );
1931    push( b );
1932    break;
1933
1934  case Bytecodes::_l2f:
1935    if (Matcher::convL2FSupported()) {
1936      a = pop_pair();
1937      b = _gvn.transform( new (C) ConvL2FNode(a));
1938      // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
1939      // Rather than storing the result into an FP register then pushing
1940      // out to memory to round, the machine instruction that implements
1941      // ConvL2D is responsible for rounding.
1942      // c = precision_rounding(b);
1943      c = _gvn.transform(b);
1944      push(c);
1945    } else {
1946      l2f();
1947    }
1948    break;
1949
1950  case Bytecodes::_l2d:
1951    a = pop_pair();
1952    b = _gvn.transform( new (C) ConvL2DNode(a));
1953    // For i486.ad, rounding is always necessary (see _l2f above).
1954    // c = dprecision_rounding(b);
1955    c = _gvn.transform(b);
1956    push_pair(c);
1957    break;
1958
1959  case Bytecodes::_f2l:
1960    a = pop();
1961    b = _gvn.transform( new (C) ConvF2LNode(a));
1962    push_pair(b);
1963    break;
1964
1965  case Bytecodes::_d2l:
1966    a = pop_pair();
1967    b = _gvn.transform( new (C) ConvD2LNode(a));
1968    push_pair(b);
1969    break;
1970
1971  case Bytecodes::_dsub:
1972    b = pop_pair();
1973    a = pop_pair();
1974    c = _gvn.transform( new (C) SubDNode(a,b) );
1975    d = dprecision_rounding(c);
1976    push_pair( d );
1977    break;
1978
1979  case Bytecodes::_dadd:
1980    b = pop_pair();
1981    a = pop_pair();
1982    c = _gvn.transform( new (C) AddDNode(a,b) );
1983    d = dprecision_rounding(c);
1984    push_pair( d );
1985    break;
1986
1987  case Bytecodes::_dmul:
1988    b = pop_pair();
1989    a = pop_pair();
1990    c = _gvn.transform( new (C) MulDNode(a,b) );
1991    d = dprecision_rounding(c);
1992    push_pair( d );
1993    break;
1994
1995  case Bytecodes::_ddiv:
1996    b = pop_pair();
1997    a = pop_pair();
1998    c = _gvn.transform( new (C) DivDNode(0,a,b) );
1999    d = dprecision_rounding(c);
2000    push_pair( d );
2001    break;
2002
2003  case Bytecodes::_dneg:
2004    a = pop_pair();
2005    b = _gvn.transform(new (C) NegDNode (a));
2006    push_pair(b);
2007    break;
2008
2009  case Bytecodes::_drem:
2010    if (Matcher::has_match_rule(Op_ModD)) {
2011      // Generate a ModD node.
2012      b = pop_pair();
2013      a = pop_pair();
2014      // a % b
2015
2016      c = _gvn.transform( new (C) ModDNode(0,a,b) );
2017      d = dprecision_rounding(c);
2018      push_pair( d );
2019    }
2020    else {
2021      // Generate a call.
2022      modd();
2023    }
2024    break;
2025
2026  case Bytecodes::_dcmpl:
2027    b = pop_pair();
2028    a = pop_pair();
2029    c = _gvn.transform( new (C) CmpD3Node( a, b));
2030    push(c);
2031    break;
2032
2033  case Bytecodes::_dcmpg:
2034    b = pop_pair();
2035    a = pop_pair();
2036    // Same as dcmpl but need to flip the unordered case.
2037    // Commute the inputs, which negates the result sign except for unordered.
2038    // Flip the unordered as well by using CmpD3 which implements
2039    // unordered-lesser instead of unordered-greater semantics.
2040    // Finally, negate the result bits.  Result is same as using a
2041    // CmpD3Greater except we did it with CmpD3 alone.
2042    c = _gvn.transform( new (C) CmpD3Node( b, a));
2043    c = _gvn.transform( new (C) SubINode(_gvn.intcon(0),c) );
2044    push(c);
2045    break;
2046
2047
2048    // Note for longs -> lo word is on TOS, hi word is on TOS - 1
2049  case Bytecodes::_land:
2050    b = pop_pair();
2051    a = pop_pair();
2052    c = _gvn.transform( new (C) AndLNode(a,b) );
2053    push_pair(c);
2054    break;
2055  case Bytecodes::_lor:
2056    b = pop_pair();
2057    a = pop_pair();
2058    c = _gvn.transform( new (C) OrLNode(a,b) );
2059    push_pair(c);
2060    break;
2061  case Bytecodes::_lxor:
2062    b = pop_pair();
2063    a = pop_pair();
2064    c = _gvn.transform( new (C) XorLNode(a,b) );
2065    push_pair(c);
2066    break;
2067
2068  case Bytecodes::_lshl:
2069    b = pop();                  // the shift count
2070    a = pop_pair();             // value to be shifted
2071    c = _gvn.transform( new (C) LShiftLNode(a,b) );
2072    push_pair(c);
2073    break;
2074  case Bytecodes::_lshr:
2075    b = pop();                  // the shift count
2076    a = pop_pair();             // value to be shifted
2077    c = _gvn.transform( new (C) RShiftLNode(a,b) );
2078    push_pair(c);
2079    break;
2080  case Bytecodes::_lushr:
2081    b = pop();                  // the shift count
2082    a = pop_pair();             // value to be shifted
2083    c = _gvn.transform( new (C) URShiftLNode(a,b) );
2084    push_pair(c);
2085    break;
2086  case Bytecodes::_lmul:
2087    b = pop_pair();
2088    a = pop_pair();
2089    c = _gvn.transform( new (C) MulLNode(a,b) );
2090    push_pair(c);
2091    break;
2092
2093  case Bytecodes::_lrem:
2094    // Must keep both values on the expression-stack during null-check
2095    assert(peek(0) == top(), "long word order");
2096    zero_check_long(peek(1));
2097    // Compile-time detect of null-exception?
2098    if (stopped())  return;
2099    b = pop_pair();
2100    a = pop_pair();
2101    c = _gvn.transform( new (C) ModLNode(control(),a,b) );
2102    push_pair(c);
2103    break;
2104
2105  case Bytecodes::_ldiv:
2106    // Must keep both values on the expression-stack during null-check
2107    assert(peek(0) == top(), "long word order");
2108    zero_check_long(peek(1));
2109    // Compile-time detect of null-exception?
2110    if (stopped())  return;
2111    b = pop_pair();
2112    a = pop_pair();
2113    c = _gvn.transform( new (C) DivLNode(control(),a,b) );
2114    push_pair(c);
2115    break;
2116
2117  case Bytecodes::_ladd:
2118    b = pop_pair();
2119    a = pop_pair();
2120    c = _gvn.transform( new (C) AddLNode(a,b) );
2121    push_pair(c);
2122    break;
2123  case Bytecodes::_lsub:
2124    b = pop_pair();
2125    a = pop_pair();
2126    c = _gvn.transform( new (C) SubLNode(a,b) );
2127    push_pair(c);
2128    break;
2129  case Bytecodes::_lcmp:
2130    // Safepoints are now inserted _before_ branches.  The long-compare
2131    // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
2132    // slew of control flow.  These are usually followed by a CmpI vs zero and
2133    // a branch; this pattern then optimizes to the obvious long-compare and
2134    // branch.  However, if the branch is backwards there's a Safepoint
2135    // inserted.  The inserted Safepoint captures the JVM state at the
2136    // pre-branch point, i.e. it captures the 3-way value.  Thus if a
2137    // long-compare is used to control a loop the debug info will force
2138    // computation of the 3-way value, even though the generated code uses a
2139    // long-compare and branch.  We try to rectify the situation by inserting
2140    // a SafePoint here and have it dominate and kill the safepoint added at a
2141    // following backwards branch.  At this point the JVM state merely holds 2
2142    // longs but not the 3-way value.
2143    if( UseLoopSafepoints ) {
2144      switch( iter().next_bc() ) {
2145      case Bytecodes::_ifgt:
2146      case Bytecodes::_iflt:
2147      case Bytecodes::_ifge:
2148      case Bytecodes::_ifle:
2149      case Bytecodes::_ifne:
2150      case Bytecodes::_ifeq:
2151        // If this is a backwards branch in the bytecodes, add Safepoint
2152        maybe_add_safepoint(iter().next_get_dest());
2153      }
2154    }
2155    b = pop_pair();
2156    a = pop_pair();
2157    c = _gvn.transform( new (C) CmpL3Node( a, b ));
2158    push(c);
2159    break;
2160
2161  case Bytecodes::_lneg:
2162    a = pop_pair();
2163    b = _gvn.transform( new (C) SubLNode(longcon(0),a));
2164    push_pair(b);
2165    break;
2166  case Bytecodes::_l2i:
2167    a = pop_pair();
2168    push( _gvn.transform( new (C) ConvL2INode(a)));
2169    break;
2170  case Bytecodes::_i2l:
2171    a = pop();
2172    b = _gvn.transform( new (C) ConvI2LNode(a));
2173    push_pair(b);
2174    break;
2175  case Bytecodes::_i2b:
2176    // Sign extend
2177    a = pop();
2178    a = _gvn.transform( new (C) LShiftINode(a,_gvn.intcon(24)) );
2179    a = _gvn.transform( new (C) RShiftINode(a,_gvn.intcon(24)) );
2180    push( a );
2181    break;
2182  case Bytecodes::_i2s:
2183    a = pop();
2184    a = _gvn.transform( new (C) LShiftINode(a,_gvn.intcon(16)) );
2185    a = _gvn.transform( new (C) RShiftINode(a,_gvn.intcon(16)) );
2186    push( a );
2187    break;
2188  case Bytecodes::_i2c:
2189    a = pop();
2190    push( _gvn.transform( new (C) AndINode(a,_gvn.intcon(0xFFFF)) ) );
2191    break;
2192
2193  case Bytecodes::_i2f:
2194    a = pop();
2195    b = _gvn.transform( new (C) ConvI2FNode(a) ) ;
2196    c = precision_rounding(b);
2197    push (b);
2198    break;
2199
2200  case Bytecodes::_i2d:
2201    a = pop();
2202    b = _gvn.transform( new (C) ConvI2DNode(a));
2203    push_pair(b);
2204    break;
2205
2206  case Bytecodes::_iinc:        // Increment local
2207    i = iter().get_index();     // Get local index
2208    set_local( i, _gvn.transform( new (C) AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
2209    break;
2210
2211  // Exit points of synchronized methods must have an unlock node
2212  case Bytecodes::_return:
2213    return_current(NULL);
2214    break;
2215
2216  case Bytecodes::_ireturn:
2217  case Bytecodes::_areturn:
2218  case Bytecodes::_freturn:
2219    return_current(pop());
2220    break;
2221  case Bytecodes::_lreturn:
2222    return_current(pop_pair());
2223    break;
2224  case Bytecodes::_dreturn:
2225    return_current(pop_pair());
2226    break;
2227
2228  case Bytecodes::_athrow:
2229    // null exception oop throws NULL pointer exception
2230    null_check(peek());
2231    if (stopped())  return;
2232    // Hook the thrown exception directly to subsequent handlers.
2233    if (BailoutToInterpreterForThrows) {
2234      // Keep method interpreted from now on.
2235      uncommon_trap(Deoptimization::Reason_unhandled,
2236                    Deoptimization::Action_make_not_compilable);
2237      return;
2238    }
2239    if (env()->jvmti_can_post_on_exceptions()) {
2240      // check if we must post exception events, take uncommon trap if so (with must_throw = false)
2241      uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
2242    }
2243    // Here if either can_post_on_exceptions or should_post_on_exceptions is false
2244    add_exception_state(make_exception_state(peek()));
2245    break;
2246
2247  case Bytecodes::_goto:   // fall through
2248  case Bytecodes::_goto_w: {
2249    int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
2250
2251    // If this is a backwards branch in the bytecodes, add Safepoint
2252    maybe_add_safepoint(target_bci);
2253
2254    // Update method data
2255    profile_taken_branch(target_bci);
2256
2257    // Merge the current control into the target basic block
2258    merge(target_bci);
2259
2260    // See if we can get some profile data and hand it off to the next block
2261    Block *target_block = block()->successor_for_bci(target_bci);
2262    if (target_block->pred_count() != 1)  break;
2263    ciMethodData* methodData = method()->method_data();
2264    if (!methodData->is_mature())  break;
2265    ciProfileData* data = methodData->bci_to_data(bci());
2266    assert( data->is_JumpData(), "" );
2267    int taken = ((ciJumpData*)data)->taken();
2268    taken = method()->scale_count(taken);
2269    target_block->set_count(taken);
2270    break;
2271  }
2272
2273  case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
2274  case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
2275  handle_if_null:
2276    // If this is a backwards branch in the bytecodes, add Safepoint
2277    maybe_add_safepoint(iter().get_dest());
2278    a = null();
2279    b = pop();
2280    c = _gvn.transform( new (C) CmpPNode(b, a) );
2281    do_ifnull(btest, c);
2282    break;
2283
2284  case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
2285  case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
2286  handle_if_acmp:
2287    // If this is a backwards branch in the bytecodes, add Safepoint
2288    maybe_add_safepoint(iter().get_dest());
2289    a = pop();
2290    b = pop();
2291    c = _gvn.transform( new (C) CmpPNode(b, a) );
2292    c = optimize_cmp_with_klass(c);
2293    do_if(btest, c);
2294    break;
2295
2296  case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
2297  case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
2298  case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
2299  case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
2300  case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
2301  case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
2302  handle_ifxx:
2303    // If this is a backwards branch in the bytecodes, add Safepoint
2304    maybe_add_safepoint(iter().get_dest());
2305    a = _gvn.intcon(0);
2306    b = pop();
2307    c = _gvn.transform( new (C) CmpINode(b, a) );
2308    do_if(btest, c);
2309    break;
2310
2311  case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
2312  case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
2313  case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
2314  case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
2315  case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
2316  case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
2317  handle_if_icmp:
2318    // If this is a backwards branch in the bytecodes, add Safepoint
2319    maybe_add_safepoint(iter().get_dest());
2320    a = pop();
2321    b = pop();
2322    c = _gvn.transform( new (C) CmpINode( b, a ) );
2323    do_if(btest, c);
2324    break;
2325
2326  case Bytecodes::_tableswitch:
2327    do_tableswitch();
2328    break;
2329
2330  case Bytecodes::_lookupswitch:
2331    do_lookupswitch();
2332    break;
2333
2334  case Bytecodes::_invokestatic:
2335  case Bytecodes::_invokedynamic:
2336  case Bytecodes::_invokespecial:
2337  case Bytecodes::_invokevirtual:
2338  case Bytecodes::_invokeinterface:
2339    do_call();
2340    break;
2341  case Bytecodes::_checkcast:
2342    do_checkcast();
2343    break;
2344  case Bytecodes::_instanceof:
2345    do_instanceof();
2346    break;
2347  case Bytecodes::_anewarray:
2348    do_anewarray();
2349    break;
2350  case Bytecodes::_newarray:
2351    do_newarray((BasicType)iter().get_index());
2352    break;
2353  case Bytecodes::_multianewarray:
2354    do_multianewarray();
2355    break;
2356  case Bytecodes::_new:
2357    do_new();
2358    break;
2359
2360  case Bytecodes::_jsr:
2361  case Bytecodes::_jsr_w:
2362    do_jsr();
2363    break;
2364
2365  case Bytecodes::_ret:
2366    do_ret();
2367    break;
2368
2369
2370  case Bytecodes::_monitorenter:
2371    do_monitor_enter();
2372    break;
2373
2374  case Bytecodes::_monitorexit:
2375    do_monitor_exit();
2376    break;
2377
2378  case Bytecodes::_breakpoint:
2379    // Breakpoint set concurrently to compile
2380    // %%% use an uncommon trap?
2381    C->record_failure("breakpoint in method");
2382    return;
2383
2384  default:
2385#ifndef PRODUCT
2386    map()->dump(99);
2387#endif
2388    tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
2389    ShouldNotReachHere();
2390  }
2391
2392#ifndef PRODUCT
2393  IdealGraphPrinter *printer = IdealGraphPrinter::printer();
2394  if(printer) {
2395    char buffer[256];
2396    sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
2397    bool old = printer->traverse_outs();
2398    printer->set_traverse_outs(true);
2399    printer->print_method(C, buffer, 4);
2400    printer->set_traverse_outs(old);
2401  }
2402#endif
2403}
2404