parse2.cpp revision 3724:8e47bac5643a
1/*
2 * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "ci/ciMethodData.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "compiler/compileLog.hpp"
30#include "interpreter/linkResolver.hpp"
31#include "memory/universe.inline.hpp"
32#include "opto/addnode.hpp"
33#include "opto/divnode.hpp"
34#include "opto/idealGraphPrinter.hpp"
35#include "opto/matcher.hpp"
36#include "opto/memnode.hpp"
37#include "opto/mulnode.hpp"
38#include "opto/parse.hpp"
39#include "opto/runtime.hpp"
40#include "runtime/deoptimization.hpp"
41#include "runtime/sharedRuntime.hpp"
42
43extern int explicit_null_checks_inserted,
44           explicit_null_checks_elided;
45
46//---------------------------------array_load----------------------------------
47void Parse::array_load(BasicType elem_type) {
48  const Type* elem = Type::TOP;
49  Node* adr = array_addressing(elem_type, 0, &elem);
50  if (stopped())  return;     // guaranteed null or range check
51  _sp -= 2;                   // Pop array and index
52  const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
53  Node* ld = make_load(control(), adr, elem, elem_type, adr_type);
54  push(ld);
55}
56
57
58//--------------------------------array_store----------------------------------
59void Parse::array_store(BasicType elem_type) {
60  Node* adr = array_addressing(elem_type, 1);
61  if (stopped())  return;     // guaranteed null or range check
62  Node* val = pop();
63  _sp -= 2;                   // Pop array and index
64  const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
65  store_to_memory(control(), adr, val, elem_type, adr_type);
66}
67
68
69//------------------------------array_addressing-------------------------------
70// Pull array and index from the stack.  Compute pointer-to-element.
71Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
72  Node *idx   = peek(0+vals);   // Get from stack without popping
73  Node *ary   = peek(1+vals);   // in case of exception
74
75  // Null check the array base, with correct stack contents
76  ary = do_null_check(ary, T_ARRAY);
77  // Compile-time detect of null-exception?
78  if (stopped())  return top();
79
80  const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
81  const TypeInt*    sizetype = arytype->size();
82  const Type*       elemtype = arytype->elem();
83
84  if (UseUniqueSubclasses && result2 != NULL) {
85    const Type* el = elemtype->make_ptr();
86    if (el && el->isa_instptr()) {
87      const TypeInstPtr* toop = el->is_instptr();
88      if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
89        // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
90        const Type* subklass = Type::get_const_type(toop->klass());
91        elemtype = subklass->join(el);
92      }
93    }
94  }
95
96  // Check for big class initializers with all constant offsets
97  // feeding into a known-size array.
98  const TypeInt* idxtype = _gvn.type(idx)->is_int();
99  // See if the highest idx value is less than the lowest array bound,
100  // and if the idx value cannot be negative:
101  bool need_range_check = true;
102  if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
103    need_range_check = false;
104    if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
105  }
106
107  if (!arytype->klass()->is_loaded()) {
108    // Only fails for some -Xcomp runs
109    // The class is unloaded.  We have to run this bytecode in the interpreter.
110    uncommon_trap(Deoptimization::Reason_unloaded,
111                  Deoptimization::Action_reinterpret,
112                  arytype->klass(), "!loaded array");
113    return top();
114  }
115
116  // Do the range check
117  if (GenerateRangeChecks && need_range_check) {
118    Node* tst;
119    if (sizetype->_hi <= 0) {
120      // The greatest array bound is negative, so we can conclude that we're
121      // compiling unreachable code, but the unsigned compare trick used below
122      // only works with non-negative lengths.  Instead, hack "tst" to be zero so
123      // the uncommon_trap path will always be taken.
124      tst = _gvn.intcon(0);
125    } else {
126      // Range is constant in array-oop, so we can use the original state of mem
127      Node* len = load_array_length(ary);
128
129      // Test length vs index (standard trick using unsigned compare)
130      Node* chk = _gvn.transform( new (C) CmpUNode(idx, len) );
131      BoolTest::mask btest = BoolTest::lt;
132      tst = _gvn.transform( new (C) BoolNode(chk, btest) );
133    }
134    // Branch to failure if out of bounds
135    { BuildCutout unless(this, tst, PROB_MAX);
136      if (C->allow_range_check_smearing()) {
137        // Do not use builtin_throw, since range checks are sometimes
138        // made more stringent by an optimistic transformation.
139        // This creates "tentative" range checks at this point,
140        // which are not guaranteed to throw exceptions.
141        // See IfNode::Ideal, is_range_check, adjust_check.
142        uncommon_trap(Deoptimization::Reason_range_check,
143                      Deoptimization::Action_make_not_entrant,
144                      NULL, "range_check");
145      } else {
146        // If we have already recompiled with the range-check-widening
147        // heroic optimization turned off, then we must really be throwing
148        // range check exceptions.
149        builtin_throw(Deoptimization::Reason_range_check, idx);
150      }
151    }
152  }
153  // Check for always knowing you are throwing a range-check exception
154  if (stopped())  return top();
155
156  Node* ptr = array_element_address(ary, idx, type, sizetype);
157
158  if (result2 != NULL)  *result2 = elemtype;
159
160  assert(ptr != top(), "top should go hand-in-hand with stopped");
161
162  return ptr;
163}
164
165
166// returns IfNode
167IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
168  Node   *cmp = _gvn.transform( new (C) CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
169  Node   *tst = _gvn.transform( new (C) BoolNode( cmp, mask));
170  IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
171  return iff;
172}
173
174// return Region node
175Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
176  Node *region  = new (C) RegionNode(3); // 2 results
177  record_for_igvn(region);
178  region->init_req(1, iffalse);
179  region->init_req(2, iftrue );
180  _gvn.set_type(region, Type::CONTROL);
181  region = _gvn.transform(region);
182  set_control (region);
183  return region;
184}
185
186
187//------------------------------helper for tableswitch-------------------------
188void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
189  // True branch, use existing map info
190  { PreserveJVMState pjvms(this);
191    Node *iftrue  = _gvn.transform( new (C) IfTrueNode (iff) );
192    set_control( iftrue );
193    profile_switch_case(prof_table_index);
194    merge_new_path(dest_bci_if_true);
195  }
196
197  // False branch
198  Node *iffalse = _gvn.transform( new (C) IfFalseNode(iff) );
199  set_control( iffalse );
200}
201
202void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
203  // True branch, use existing map info
204  { PreserveJVMState pjvms(this);
205    Node *iffalse  = _gvn.transform( new (C) IfFalseNode (iff) );
206    set_control( iffalse );
207    profile_switch_case(prof_table_index);
208    merge_new_path(dest_bci_if_true);
209  }
210
211  // False branch
212  Node *iftrue = _gvn.transform( new (C) IfTrueNode(iff) );
213  set_control( iftrue );
214}
215
216void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
217  // False branch, use existing map and control()
218  profile_switch_case(prof_table_index);
219  merge_new_path(dest_bci);
220}
221
222
223extern "C" {
224  static int jint_cmp(const void *i, const void *j) {
225    int a = *(jint *)i;
226    int b = *(jint *)j;
227    return a > b ? 1 : a < b ? -1 : 0;
228  }
229}
230
231
232// Default value for methodData switch indexing. Must be a negative value to avoid
233// conflict with any legal switch index.
234#define NullTableIndex -1
235
236class SwitchRange : public StackObj {
237  // a range of integers coupled with a bci destination
238  jint _lo;                     // inclusive lower limit
239  jint _hi;                     // inclusive upper limit
240  int _dest;
241  int _table_index;             // index into method data table
242
243public:
244  jint lo() const              { return _lo;   }
245  jint hi() const              { return _hi;   }
246  int  dest() const            { return _dest; }
247  int  table_index() const     { return _table_index; }
248  bool is_singleton() const    { return _lo == _hi; }
249
250  void setRange(jint lo, jint hi, int dest, int table_index) {
251    assert(lo <= hi, "must be a non-empty range");
252    _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
253  }
254  bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
255    assert(lo <= hi, "must be a non-empty range");
256    if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
257      _hi = hi;
258      return true;
259    }
260    return false;
261  }
262
263  void set (jint value, int dest, int table_index) {
264    setRange(value, value, dest, table_index);
265  }
266  bool adjoin(jint value, int dest, int table_index) {
267    return adjoinRange(value, value, dest, table_index);
268  }
269
270  void print(ciEnv* env) {
271    if (is_singleton())
272      tty->print(" {%d}=>%d", lo(), dest());
273    else if (lo() == min_jint)
274      tty->print(" {..%d}=>%d", hi(), dest());
275    else if (hi() == max_jint)
276      tty->print(" {%d..}=>%d", lo(), dest());
277    else
278      tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
279  }
280};
281
282
283//-------------------------------do_tableswitch--------------------------------
284void Parse::do_tableswitch() {
285  Node* lookup = pop();
286
287  // Get information about tableswitch
288  int default_dest = iter().get_dest_table(0);
289  int lo_index     = iter().get_int_table(1);
290  int hi_index     = iter().get_int_table(2);
291  int len          = hi_index - lo_index + 1;
292
293  if (len < 1) {
294    // If this is a backward branch, add safepoint
295    maybe_add_safepoint(default_dest);
296    merge(default_dest);
297    return;
298  }
299
300  // generate decision tree, using trichotomy when possible
301  int rnum = len+2;
302  bool makes_backward_branch = false;
303  SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
304  int rp = -1;
305  if (lo_index != min_jint) {
306    ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
307  }
308  for (int j = 0; j < len; j++) {
309    jint match_int = lo_index+j;
310    int  dest      = iter().get_dest_table(j+3);
311    makes_backward_branch |= (dest <= bci());
312    int  table_index = method_data_update() ? j : NullTableIndex;
313    if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
314      ranges[++rp].set(match_int, dest, table_index);
315    }
316  }
317  jint highest = lo_index+(len-1);
318  assert(ranges[rp].hi() == highest, "");
319  if (highest != max_jint
320      && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
321    ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
322  }
323  assert(rp < len+2, "not too many ranges");
324
325  // Safepoint in case if backward branch observed
326  if( makes_backward_branch && UseLoopSafepoints )
327    add_safepoint();
328
329  jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
330}
331
332
333//------------------------------do_lookupswitch--------------------------------
334void Parse::do_lookupswitch() {
335  Node *lookup = pop();         // lookup value
336  // Get information about lookupswitch
337  int default_dest = iter().get_dest_table(0);
338  int len          = iter().get_int_table(1);
339
340  if (len < 1) {    // If this is a backward branch, add safepoint
341    maybe_add_safepoint(default_dest);
342    merge(default_dest);
343    return;
344  }
345
346  // generate decision tree, using trichotomy when possible
347  jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
348  {
349    for( int j = 0; j < len; j++ ) {
350      table[j+j+0] = iter().get_int_table(2+j+j);
351      table[j+j+1] = iter().get_dest_table(2+j+j+1);
352    }
353    qsort( table, len, 2*sizeof(table[0]), jint_cmp );
354  }
355
356  int rnum = len*2+1;
357  bool makes_backward_branch = false;
358  SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
359  int rp = -1;
360  for( int j = 0; j < len; j++ ) {
361    jint match_int   = table[j+j+0];
362    int  dest        = table[j+j+1];
363    int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
364    int  table_index = method_data_update() ? j : NullTableIndex;
365    makes_backward_branch |= (dest <= bci());
366    if( match_int != next_lo ) {
367      ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
368    }
369    if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
370      ranges[++rp].set(match_int, dest, table_index);
371    }
372  }
373  jint highest = table[2*(len-1)];
374  assert(ranges[rp].hi() == highest, "");
375  if( highest != max_jint
376      && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
377    ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
378  }
379  assert(rp < rnum, "not too many ranges");
380
381  // Safepoint in case backward branch observed
382  if( makes_backward_branch && UseLoopSafepoints )
383    add_safepoint();
384
385  jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
386}
387
388//----------------------------create_jump_tables-------------------------------
389bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
390  // Are jumptables enabled
391  if (!UseJumpTables)  return false;
392
393  // Are jumptables supported
394  if (!Matcher::has_match_rule(Op_Jump))  return false;
395
396  // Don't make jump table if profiling
397  if (method_data_update())  return false;
398
399  // Decide if a guard is needed to lop off big ranges at either (or
400  // both) end(s) of the input set. We'll call this the default target
401  // even though we can't be sure that it is the true "default".
402
403  bool needs_guard = false;
404  int default_dest;
405  int64 total_outlier_size = 0;
406  int64 hi_size = ((int64)hi->hi()) - ((int64)hi->lo()) + 1;
407  int64 lo_size = ((int64)lo->hi()) - ((int64)lo->lo()) + 1;
408
409  if (lo->dest() == hi->dest()) {
410    total_outlier_size = hi_size + lo_size;
411    default_dest = lo->dest();
412  } else if (lo_size > hi_size) {
413    total_outlier_size = lo_size;
414    default_dest = lo->dest();
415  } else {
416    total_outlier_size = hi_size;
417    default_dest = hi->dest();
418  }
419
420  // If a guard test will eliminate very sparse end ranges, then
421  // it is worth the cost of an extra jump.
422  if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
423    needs_guard = true;
424    if (default_dest == lo->dest()) lo++;
425    if (default_dest == hi->dest()) hi--;
426  }
427
428  // Find the total number of cases and ranges
429  int64 num_cases = ((int64)hi->hi()) - ((int64)lo->lo()) + 1;
430  int num_range = hi - lo + 1;
431
432  // Don't create table if: too large, too small, or too sparse.
433  if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
434    return false;
435  if (num_cases > (MaxJumpTableSparseness * num_range))
436    return false;
437
438  // Normalize table lookups to zero
439  int lowval = lo->lo();
440  key_val = _gvn.transform( new (C) SubINode(key_val, _gvn.intcon(lowval)) );
441
442  // Generate a guard to protect against input keyvals that aren't
443  // in the switch domain.
444  if (needs_guard) {
445    Node*   size = _gvn.intcon(num_cases);
446    Node*   cmp = _gvn.transform( new (C) CmpUNode(key_val, size) );
447    Node*   tst = _gvn.transform( new (C) BoolNode(cmp, BoolTest::ge) );
448    IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
449    jump_if_true_fork(iff, default_dest, NullTableIndex);
450  }
451
452  // Create an ideal node JumpTable that has projections
453  // of all possible ranges for a switch statement
454  // The key_val input must be converted to a pointer offset and scaled.
455  // Compare Parse::array_addressing above.
456#ifdef _LP64
457  // Clean the 32-bit int into a real 64-bit offset.
458  // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
459  const TypeLong* lkeytype = TypeLong::make(CONST64(0), num_cases-1, Type::WidenMin);
460  key_val       = _gvn.transform( new (C) ConvI2LNode(key_val, lkeytype) );
461#endif
462  // Shift the value by wordsize so we have an index into the table, rather
463  // than a switch value
464  Node *shiftWord = _gvn.MakeConX(wordSize);
465  key_val = _gvn.transform( new (C) MulXNode( key_val, shiftWord));
466
467  // Create the JumpNode
468  Node* jtn = _gvn.transform( new (C) JumpNode(control(), key_val, num_cases) );
469
470  // These are the switch destinations hanging off the jumpnode
471  int i = 0;
472  for (SwitchRange* r = lo; r <= hi; r++) {
473    for (int j = r->lo(); j <= r->hi(); j++, i++) {
474      Node* input = _gvn.transform(new (C) JumpProjNode(jtn, i, r->dest(), j - lowval));
475      {
476        PreserveJVMState pjvms(this);
477        set_control(input);
478        jump_if_always_fork(r->dest(), r->table_index());
479      }
480    }
481  }
482  assert(i == num_cases, "miscount of cases");
483  stop_and_kill_map();  // no more uses for this JVMS
484  return true;
485}
486
487//----------------------------jump_switch_ranges-------------------------------
488void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
489  Block* switch_block = block();
490
491  if (switch_depth == 0) {
492    // Do special processing for the top-level call.
493    assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
494    assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
495
496    // Decrement pred-numbers for the unique set of nodes.
497#ifdef ASSERT
498    // Ensure that the block's successors are a (duplicate-free) set.
499    int successors_counted = 0;  // block occurrences in [hi..lo]
500    int unique_successors = switch_block->num_successors();
501    for (int i = 0; i < unique_successors; i++) {
502      Block* target = switch_block->successor_at(i);
503
504      // Check that the set of successors is the same in both places.
505      int successors_found = 0;
506      for (SwitchRange* p = lo; p <= hi; p++) {
507        if (p->dest() == target->start())  successors_found++;
508      }
509      assert(successors_found > 0, "successor must be known");
510      successors_counted += successors_found;
511    }
512    assert(successors_counted == (hi-lo)+1, "no unexpected successors");
513#endif
514
515    // Maybe prune the inputs, based on the type of key_val.
516    jint min_val = min_jint;
517    jint max_val = max_jint;
518    const TypeInt* ti = key_val->bottom_type()->isa_int();
519    if (ti != NULL) {
520      min_val = ti->_lo;
521      max_val = ti->_hi;
522      assert(min_val <= max_val, "invalid int type");
523    }
524    while (lo->hi() < min_val)  lo++;
525    if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
526    while (hi->lo() > max_val)  hi--;
527    if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
528  }
529
530#ifndef PRODUCT
531  if (switch_depth == 0) {
532    _max_switch_depth = 0;
533    _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
534  }
535#endif
536
537  assert(lo <= hi, "must be a non-empty set of ranges");
538  if (lo == hi) {
539    jump_if_always_fork(lo->dest(), lo->table_index());
540  } else {
541    assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
542    assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
543
544    if (create_jump_tables(key_val, lo, hi)) return;
545
546    int nr = hi - lo + 1;
547
548    SwitchRange* mid = lo + nr/2;
549    // if there is an easy choice, pivot at a singleton:
550    if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
551
552    assert(lo < mid && mid <= hi, "good pivot choice");
553    assert(nr != 2 || mid == hi,   "should pick higher of 2");
554    assert(nr != 3 || mid == hi-1, "should pick middle of 3");
555
556    Node *test_val = _gvn.intcon(mid->lo());
557
558    if (mid->is_singleton()) {
559      IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
560      jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
561
562      // Special Case:  If there are exactly three ranges, and the high
563      // and low range each go to the same place, omit the "gt" test,
564      // since it will not discriminate anything.
565      bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
566      if (eq_test_only) {
567        assert(mid == hi-1, "");
568      }
569
570      // if there is a higher range, test for it and process it:
571      if (mid < hi && !eq_test_only) {
572        // two comparisons of same values--should enable 1 test for 2 branches
573        // Use BoolTest::le instead of BoolTest::gt
574        IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
575        Node   *iftrue  = _gvn.transform( new (C) IfTrueNode(iff_le) );
576        Node   *iffalse = _gvn.transform( new (C) IfFalseNode(iff_le) );
577        { PreserveJVMState pjvms(this);
578          set_control(iffalse);
579          jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
580        }
581        set_control(iftrue);
582      }
583
584    } else {
585      // mid is a range, not a singleton, so treat mid..hi as a unit
586      IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
587
588      // if there is a higher range, test for it and process it:
589      if (mid == hi) {
590        jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
591      } else {
592        Node *iftrue  = _gvn.transform( new (C) IfTrueNode(iff_ge) );
593        Node *iffalse = _gvn.transform( new (C) IfFalseNode(iff_ge) );
594        { PreserveJVMState pjvms(this);
595          set_control(iftrue);
596          jump_switch_ranges(key_val, mid, hi, switch_depth+1);
597        }
598        set_control(iffalse);
599      }
600    }
601
602    // in any case, process the lower range
603    jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
604  }
605
606  // Decrease pred_count for each successor after all is done.
607  if (switch_depth == 0) {
608    int unique_successors = switch_block->num_successors();
609    for (int i = 0; i < unique_successors; i++) {
610      Block* target = switch_block->successor_at(i);
611      // Throw away the pre-allocated path for each unique successor.
612      target->next_path_num();
613    }
614  }
615
616#ifndef PRODUCT
617  _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
618  if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
619    SwitchRange* r;
620    int nsing = 0;
621    for( r = lo; r <= hi; r++ ) {
622      if( r->is_singleton() )  nsing++;
623    }
624    tty->print(">>> ");
625    _method->print_short_name();
626    tty->print_cr(" switch decision tree");
627    tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
628                  hi-lo+1, nsing, _max_switch_depth, _est_switch_depth);
629    if (_max_switch_depth > _est_switch_depth) {
630      tty->print_cr("******** BAD SWITCH DEPTH ********");
631    }
632    tty->print("   ");
633    for( r = lo; r <= hi; r++ ) {
634      r->print(env());
635    }
636    tty->print_cr("");
637  }
638#endif
639}
640
641void Parse::modf() {
642  Node *f2 = pop();
643  Node *f1 = pop();
644  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
645                              CAST_FROM_FN_PTR(address, SharedRuntime::frem),
646                              "frem", NULL, //no memory effects
647                              f1, f2);
648  Node* res = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 0));
649
650  push(res);
651}
652
653void Parse::modd() {
654  Node *d2 = pop_pair();
655  Node *d1 = pop_pair();
656  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
657                              CAST_FROM_FN_PTR(address, SharedRuntime::drem),
658                              "drem", NULL, //no memory effects
659                              d1, top(), d2, top());
660  Node* res_d   = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 0));
661
662#ifdef ASSERT
663  Node* res_top = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 1));
664  assert(res_top == top(), "second value must be top");
665#endif
666
667  push_pair(res_d);
668}
669
670void Parse::l2f() {
671  Node* f2 = pop();
672  Node* f1 = pop();
673  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
674                              CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
675                              "l2f", NULL, //no memory effects
676                              f1, f2);
677  Node* res = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 0));
678
679  push(res);
680}
681
682void Parse::do_irem() {
683  // Must keep both values on the expression-stack during null-check
684  do_null_check(peek(), T_INT);
685  // Compile-time detect of null-exception?
686  if (stopped())  return;
687
688  Node* b = pop();
689  Node* a = pop();
690
691  const Type *t = _gvn.type(b);
692  if (t != Type::TOP) {
693    const TypeInt *ti = t->is_int();
694    if (ti->is_con()) {
695      int divisor = ti->get_con();
696      // check for positive power of 2
697      if (divisor > 0 &&
698          (divisor & ~(divisor-1)) == divisor) {
699        // yes !
700        Node *mask = _gvn.intcon((divisor - 1));
701        // Sigh, must handle negative dividends
702        Node *zero = _gvn.intcon(0);
703        IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
704        Node *iff = _gvn.transform( new (C) IfFalseNode(ifff) );
705        Node *ift = _gvn.transform( new (C) IfTrueNode (ifff) );
706        Node *reg = jump_if_join(ift, iff);
707        Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
708        // Negative path; negate/and/negate
709        Node *neg = _gvn.transform( new (C) SubINode(zero, a) );
710        Node *andn= _gvn.transform( new (C) AndINode(neg, mask) );
711        Node *negn= _gvn.transform( new (C) SubINode(zero, andn) );
712        phi->init_req(1, negn);
713        // Fast positive case
714        Node *andx = _gvn.transform( new (C) AndINode(a, mask) );
715        phi->init_req(2, andx);
716        // Push the merge
717        push( _gvn.transform(phi) );
718        return;
719      }
720    }
721  }
722  // Default case
723  push( _gvn.transform( new (C) ModINode(control(),a,b) ) );
724}
725
726// Handle jsr and jsr_w bytecode
727void Parse::do_jsr() {
728  assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
729
730  // Store information about current state, tagged with new _jsr_bci
731  int return_bci = iter().next_bci();
732  int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
733
734  // Update method data
735  profile_taken_branch(jsr_bci);
736
737  // The way we do things now, there is only one successor block
738  // for the jsr, because the target code is cloned by ciTypeFlow.
739  Block* target = successor_for_bci(jsr_bci);
740
741  // What got pushed?
742  const Type* ret_addr = target->peek();
743  assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
744
745  // Effect on jsr on stack
746  push(_gvn.makecon(ret_addr));
747
748  // Flow to the jsr.
749  merge(jsr_bci);
750}
751
752// Handle ret bytecode
753void Parse::do_ret() {
754  // Find to whom we return.
755  assert(block()->num_successors() == 1, "a ret can only go one place now");
756  Block* target = block()->successor_at(0);
757  assert(!target->is_ready(), "our arrival must be expected");
758  profile_ret(target->flow()->start());
759  int pnum = target->next_path_num();
760  merge_common(target, pnum);
761}
762
763//--------------------------dynamic_branch_prediction--------------------------
764// Try to gather dynamic branch prediction behavior.  Return a probability
765// of the branch being taken and set the "cnt" field.  Returns a -1.0
766// if we need to use static prediction for some reason.
767float Parse::dynamic_branch_prediction(float &cnt) {
768  ResourceMark rm;
769
770  cnt  = COUNT_UNKNOWN;
771
772  // Use MethodData information if it is available
773  // FIXME: free the ProfileData structure
774  ciMethodData* methodData = method()->method_data();
775  if (!methodData->is_mature())  return PROB_UNKNOWN;
776  ciProfileData* data = methodData->bci_to_data(bci());
777  if (!data->is_JumpData())  return PROB_UNKNOWN;
778
779  // get taken and not taken values
780  int     taken = data->as_JumpData()->taken();
781  int not_taken = 0;
782  if (data->is_BranchData()) {
783    not_taken = data->as_BranchData()->not_taken();
784  }
785
786  // scale the counts to be commensurate with invocation counts:
787  taken = method()->scale_count(taken);
788  not_taken = method()->scale_count(not_taken);
789
790  // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful.
791  // We also check that individual counters are positive first, overwise the sum can become positive.
792  if (taken < 0 || not_taken < 0 || taken + not_taken < 40) {
793    if (C->log() != NULL) {
794      C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
795    }
796    return PROB_UNKNOWN;
797  }
798
799  // Compute frequency that we arrive here
800  float sum = taken + not_taken;
801  // Adjust, if this block is a cloned private block but the
802  // Jump counts are shared.  Taken the private counts for
803  // just this path instead of the shared counts.
804  if( block()->count() > 0 )
805    sum = block()->count();
806  cnt = sum / FreqCountInvocations;
807
808  // Pin probability to sane limits
809  float prob;
810  if( !taken )
811    prob = (0+PROB_MIN) / 2;
812  else if( !not_taken )
813    prob = (1+PROB_MAX) / 2;
814  else {                         // Compute probability of true path
815    prob = (float)taken / (float)(taken + not_taken);
816    if (prob > PROB_MAX)  prob = PROB_MAX;
817    if (prob < PROB_MIN)   prob = PROB_MIN;
818  }
819
820  assert((cnt > 0.0f) && (prob > 0.0f),
821         "Bad frequency assignment in if");
822
823  if (C->log() != NULL) {
824    const char* prob_str = NULL;
825    if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
826    if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
827    char prob_str_buf[30];
828    if (prob_str == NULL) {
829      sprintf(prob_str_buf, "%g", prob);
830      prob_str = prob_str_buf;
831    }
832    C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'",
833                   iter().get_dest(), taken, not_taken, cnt, prob_str);
834  }
835  return prob;
836}
837
838//-----------------------------branch_prediction-------------------------------
839float Parse::branch_prediction(float& cnt,
840                               BoolTest::mask btest,
841                               int target_bci) {
842  float prob = dynamic_branch_prediction(cnt);
843  // If prob is unknown, switch to static prediction
844  if (prob != PROB_UNKNOWN)  return prob;
845
846  prob = PROB_FAIR;                   // Set default value
847  if (btest == BoolTest::eq)          // Exactly equal test?
848    prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
849  else if (btest == BoolTest::ne)
850    prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
851
852  // If this is a conditional test guarding a backwards branch,
853  // assume its a loop-back edge.  Make it a likely taken branch.
854  if (target_bci < bci()) {
855    if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
856      // Since it's an OSR, we probably have profile data, but since
857      // branch_prediction returned PROB_UNKNOWN, the counts are too small.
858      // Let's make a special check here for completely zero counts.
859      ciMethodData* methodData = method()->method_data();
860      if (!methodData->is_empty()) {
861        ciProfileData* data = methodData->bci_to_data(bci());
862        // Only stop for truly zero counts, which mean an unknown part
863        // of the OSR-ed method, and we want to deopt to gather more stats.
864        // If you have ANY counts, then this loop is simply 'cold' relative
865        // to the OSR loop.
866        if (data->as_BranchData()->taken() +
867            data->as_BranchData()->not_taken() == 0 ) {
868          // This is the only way to return PROB_UNKNOWN:
869          return PROB_UNKNOWN;
870        }
871      }
872    }
873    prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
874  }
875
876  assert(prob != PROB_UNKNOWN, "must have some guess at this point");
877  return prob;
878}
879
880// The magic constants are chosen so as to match the output of
881// branch_prediction() when the profile reports a zero taken count.
882// It is important to distinguish zero counts unambiguously, because
883// some branches (e.g., _213_javac.Assembler.eliminate) validly produce
884// very small but nonzero probabilities, which if confused with zero
885// counts would keep the program recompiling indefinitely.
886bool Parse::seems_never_taken(float prob) {
887  return prob < PROB_MIN;
888}
889
890// True if the comparison seems to be the kind that will not change its
891// statistics from true to false.  See comments in adjust_map_after_if.
892// This question is only asked along paths which are already
893// classifed as untaken (by seems_never_taken), so really,
894// if a path is never taken, its controlling comparison is
895// already acting in a stable fashion.  If the comparison
896// seems stable, we will put an expensive uncommon trap
897// on the untaken path.  To be conservative, and to allow
898// partially executed counted loops to be compiled fully,
899// we will plant uncommon traps only after pointer comparisons.
900bool Parse::seems_stable_comparison(BoolTest::mask btest, Node* cmp) {
901  for (int depth = 4; depth > 0; depth--) {
902    // The following switch can find CmpP here over half the time for
903    // dynamic language code rich with type tests.
904    // Code using counted loops or array manipulations (typical
905    // of benchmarks) will have many (>80%) CmpI instructions.
906    switch (cmp->Opcode()) {
907    case Op_CmpP:
908      // A never-taken null check looks like CmpP/BoolTest::eq.
909      // These certainly should be closed off as uncommon traps.
910      if (btest == BoolTest::eq)
911        return true;
912      // A never-failed type check looks like CmpP/BoolTest::ne.
913      // Let's put traps on those, too, so that we don't have to compile
914      // unused paths with indeterminate dynamic type information.
915      if (ProfileDynamicTypes)
916        return true;
917      return false;
918
919    case Op_CmpI:
920      // A small minority (< 10%) of CmpP are masked as CmpI,
921      // as if by boolean conversion ((p == q? 1: 0) != 0).
922      // Detect that here, even if it hasn't optimized away yet.
923      // Specifically, this covers the 'instanceof' operator.
924      if (btest == BoolTest::ne || btest == BoolTest::eq) {
925        if (_gvn.type(cmp->in(2))->singleton() &&
926            cmp->in(1)->is_Phi()) {
927          PhiNode* phi = cmp->in(1)->as_Phi();
928          int true_path = phi->is_diamond_phi();
929          if (true_path > 0 &&
930              _gvn.type(phi->in(1))->singleton() &&
931              _gvn.type(phi->in(2))->singleton()) {
932            // phi->region->if_proj->ifnode->bool->cmp
933            BoolNode* bol = phi->in(0)->in(1)->in(0)->in(1)->as_Bool();
934            btest = bol->_test._test;
935            cmp = bol->in(1);
936            continue;
937          }
938        }
939      }
940      return false;
941    }
942  }
943  return false;
944}
945
946//-------------------------------repush_if_args--------------------------------
947// Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
948inline int Parse::repush_if_args() {
949#ifndef PRODUCT
950  if (PrintOpto && WizardMode) {
951    tty->print("defending against excessive implicit null exceptions on %s @%d in ",
952               Bytecodes::name(iter().cur_bc()), iter().cur_bci());
953    method()->print_name(); tty->cr();
954  }
955#endif
956  int bc_depth = - Bytecodes::depth(iter().cur_bc());
957  assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
958  DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
959  assert(argument(0) != NULL, "must exist");
960  assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
961  _sp += bc_depth;
962  return bc_depth;
963}
964
965//----------------------------------do_ifnull----------------------------------
966void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
967  int target_bci = iter().get_dest();
968
969  Block* branch_block = successor_for_bci(target_bci);
970  Block* next_block   = successor_for_bci(iter().next_bci());
971
972  float cnt;
973  float prob = branch_prediction(cnt, btest, target_bci);
974  if (prob == PROB_UNKNOWN) {
975    // (An earlier version of do_ifnull omitted this trap for OSR methods.)
976#ifndef PRODUCT
977    if (PrintOpto && Verbose)
978      tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
979#endif
980    repush_if_args(); // to gather stats on loop
981    // We need to mark this branch as taken so that if we recompile we will
982    // see that it is possible. In the tiered system the interpreter doesn't
983    // do profiling and by the time we get to the lower tier from the interpreter
984    // the path may be cold again. Make sure it doesn't look untaken
985    profile_taken_branch(target_bci, !ProfileInterpreter);
986    uncommon_trap(Deoptimization::Reason_unreached,
987                  Deoptimization::Action_reinterpret,
988                  NULL, "cold");
989    if (EliminateAutoBox) {
990      // Mark the successor blocks as parsed
991      branch_block->next_path_num();
992      next_block->next_path_num();
993    }
994    return;
995  }
996
997  explicit_null_checks_inserted++;
998
999  // Generate real control flow
1000  Node   *tst = _gvn.transform( new (C) BoolNode( c, btest ) );
1001
1002  // Sanity check the probability value
1003  assert(prob > 0.0f,"Bad probability in Parser");
1004 // Need xform to put node in hash table
1005  IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
1006  assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1007  // True branch
1008  { PreserveJVMState pjvms(this);
1009    Node* iftrue  = _gvn.transform( new (C) IfTrueNode (iff) );
1010    set_control(iftrue);
1011
1012    if (stopped()) {            // Path is dead?
1013      explicit_null_checks_elided++;
1014      if (EliminateAutoBox) {
1015        // Mark the successor block as parsed
1016        branch_block->next_path_num();
1017      }
1018    } else {                    // Path is live.
1019      // Update method data
1020      profile_taken_branch(target_bci);
1021      adjust_map_after_if(btest, c, prob, branch_block, next_block);
1022      if (!stopped()) {
1023        merge(target_bci);
1024      }
1025    }
1026  }
1027
1028  // False branch
1029  Node* iffalse = _gvn.transform( new (C) IfFalseNode(iff) );
1030  set_control(iffalse);
1031
1032  if (stopped()) {              // Path is dead?
1033    explicit_null_checks_elided++;
1034    if (EliminateAutoBox) {
1035      // Mark the successor block as parsed
1036      next_block->next_path_num();
1037    }
1038  } else  {                     // Path is live.
1039    // Update method data
1040    profile_not_taken_branch();
1041    adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
1042                        next_block, branch_block);
1043  }
1044}
1045
1046//------------------------------------do_if------------------------------------
1047void Parse::do_if(BoolTest::mask btest, Node* c) {
1048  int target_bci = iter().get_dest();
1049
1050  Block* branch_block = successor_for_bci(target_bci);
1051  Block* next_block   = successor_for_bci(iter().next_bci());
1052
1053  float cnt;
1054  float prob = branch_prediction(cnt, btest, target_bci);
1055  float untaken_prob = 1.0 - prob;
1056
1057  if (prob == PROB_UNKNOWN) {
1058#ifndef PRODUCT
1059    if (PrintOpto && Verbose)
1060      tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
1061#endif
1062    repush_if_args(); // to gather stats on loop
1063    // We need to mark this branch as taken so that if we recompile we will
1064    // see that it is possible. In the tiered system the interpreter doesn't
1065    // do profiling and by the time we get to the lower tier from the interpreter
1066    // the path may be cold again. Make sure it doesn't look untaken
1067    profile_taken_branch(target_bci, !ProfileInterpreter);
1068    uncommon_trap(Deoptimization::Reason_unreached,
1069                  Deoptimization::Action_reinterpret,
1070                  NULL, "cold");
1071    if (EliminateAutoBox) {
1072      // Mark the successor blocks as parsed
1073      branch_block->next_path_num();
1074      next_block->next_path_num();
1075    }
1076    return;
1077  }
1078
1079  // Sanity check the probability value
1080  assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
1081
1082  bool taken_if_true = true;
1083  // Convert BoolTest to canonical form:
1084  if (!BoolTest(btest).is_canonical()) {
1085    btest         = BoolTest(btest).negate();
1086    taken_if_true = false;
1087    // prob is NOT updated here; it remains the probability of the taken
1088    // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
1089  }
1090  assert(btest != BoolTest::eq, "!= is the only canonical exact test");
1091
1092  Node* tst0 = new (C) BoolNode(c, btest);
1093  Node* tst = _gvn.transform(tst0);
1094  BoolTest::mask taken_btest   = BoolTest::illegal;
1095  BoolTest::mask untaken_btest = BoolTest::illegal;
1096
1097  if (tst->is_Bool()) {
1098    // Refresh c from the transformed bool node, since it may be
1099    // simpler than the original c.  Also re-canonicalize btest.
1100    // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
1101    // That can arise from statements like: if (x instanceof C) ...
1102    if (tst != tst0) {
1103      // Canonicalize one more time since transform can change it.
1104      btest = tst->as_Bool()->_test._test;
1105      if (!BoolTest(btest).is_canonical()) {
1106        // Reverse edges one more time...
1107        tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
1108        btest = tst->as_Bool()->_test._test;
1109        assert(BoolTest(btest).is_canonical(), "sanity");
1110        taken_if_true = !taken_if_true;
1111      }
1112      c = tst->in(1);
1113    }
1114    BoolTest::mask neg_btest = BoolTest(btest).negate();
1115    taken_btest   = taken_if_true ?     btest : neg_btest;
1116    untaken_btest = taken_if_true ? neg_btest :     btest;
1117  }
1118
1119  // Generate real control flow
1120  float true_prob = (taken_if_true ? prob : untaken_prob);
1121  IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1122  assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1123  Node* taken_branch   = new (C) IfTrueNode(iff);
1124  Node* untaken_branch = new (C) IfFalseNode(iff);
1125  if (!taken_if_true) {  // Finish conversion to canonical form
1126    Node* tmp      = taken_branch;
1127    taken_branch   = untaken_branch;
1128    untaken_branch = tmp;
1129  }
1130
1131  // Branch is taken:
1132  { PreserveJVMState pjvms(this);
1133    taken_branch = _gvn.transform(taken_branch);
1134    set_control(taken_branch);
1135
1136    if (stopped()) {
1137      if (EliminateAutoBox) {
1138        // Mark the successor block as parsed
1139        branch_block->next_path_num();
1140      }
1141    } else {
1142      // Update method data
1143      profile_taken_branch(target_bci);
1144      adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
1145      if (!stopped()) {
1146        merge(target_bci);
1147      }
1148    }
1149  }
1150
1151  untaken_branch = _gvn.transform(untaken_branch);
1152  set_control(untaken_branch);
1153
1154  // Branch not taken.
1155  if (stopped()) {
1156    if (EliminateAutoBox) {
1157      // Mark the successor block as parsed
1158      next_block->next_path_num();
1159    }
1160  } else {
1161    // Update method data
1162    profile_not_taken_branch();
1163    adjust_map_after_if(untaken_btest, c, untaken_prob,
1164                        next_block, branch_block);
1165  }
1166}
1167
1168//----------------------------adjust_map_after_if------------------------------
1169// Adjust the JVM state to reflect the result of taking this path.
1170// Basically, it means inspecting the CmpNode controlling this
1171// branch, seeing how it constrains a tested value, and then
1172// deciding if it's worth our while to encode this constraint
1173// as graph nodes in the current abstract interpretation map.
1174void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
1175                                Block* path, Block* other_path) {
1176  if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
1177    return;                             // nothing to do
1178
1179  bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
1180
1181  if (seems_never_taken(prob) && seems_stable_comparison(btest, c)) {
1182    // If this might possibly turn into an implicit null check,
1183    // and the null has never yet been seen, we need to generate
1184    // an uncommon trap, so as to recompile instead of suffering
1185    // with very slow branches.  (We'll get the slow branches if
1186    // the program ever changes phase and starts seeing nulls here.)
1187    //
1188    // We do not inspect for a null constant, since a node may
1189    // optimize to 'null' later on.
1190    //
1191    // Null checks, and other tests which expect inequality,
1192    // show btest == BoolTest::eq along the non-taken branch.
1193    // On the other hand, type tests, must-be-null tests,
1194    // and other tests which expect pointer equality,
1195    // show btest == BoolTest::ne along the non-taken branch.
1196    // We prune both types of branches if they look unused.
1197    repush_if_args();
1198    // We need to mark this branch as taken so that if we recompile we will
1199    // see that it is possible. In the tiered system the interpreter doesn't
1200    // do profiling and by the time we get to the lower tier from the interpreter
1201    // the path may be cold again. Make sure it doesn't look untaken
1202    if (is_fallthrough) {
1203      profile_not_taken_branch(!ProfileInterpreter);
1204    } else {
1205      profile_taken_branch(iter().get_dest(), !ProfileInterpreter);
1206    }
1207    uncommon_trap(Deoptimization::Reason_unreached,
1208                  Deoptimization::Action_reinterpret,
1209                  NULL,
1210                  (is_fallthrough ? "taken always" : "taken never"));
1211    return;
1212  }
1213
1214  Node* val = c->in(1);
1215  Node* con = c->in(2);
1216  const Type* tcon = _gvn.type(con);
1217  const Type* tval = _gvn.type(val);
1218  bool have_con = tcon->singleton();
1219  if (tval->singleton()) {
1220    if (!have_con) {
1221      // Swap, so constant is in con.
1222      con  = val;
1223      tcon = tval;
1224      val  = c->in(2);
1225      tval = _gvn.type(val);
1226      btest = BoolTest(btest).commute();
1227      have_con = true;
1228    } else {
1229      // Do we have two constants?  Then leave well enough alone.
1230      have_con = false;
1231    }
1232  }
1233  if (!have_con)                        // remaining adjustments need a con
1234    return;
1235
1236  sharpen_type_after_if(btest, con, tcon, val, tval);
1237}
1238
1239
1240static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) {
1241  Node* ldk;
1242  if (n->is_DecodeNKlass()) {
1243    if (n->in(1)->Opcode() != Op_LoadNKlass) {
1244      return NULL;
1245    } else {
1246      ldk = n->in(1);
1247    }
1248  } else if (n->Opcode() != Op_LoadKlass) {
1249    return NULL;
1250  } else {
1251    ldk = n;
1252  }
1253  assert(ldk != NULL && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node");
1254
1255  Node* adr = ldk->in(MemNode::Address);
1256  intptr_t off = 0;
1257  Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off);
1258  if (obj == NULL || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass?
1259    return NULL;
1260  const TypePtr* tp = gvn->type(obj)->is_ptr();
1261  if (tp == NULL || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr?
1262    return NULL;
1263
1264  return obj;
1265}
1266
1267void Parse::sharpen_type_after_if(BoolTest::mask btest,
1268                                  Node* con, const Type* tcon,
1269                                  Node* val, const Type* tval) {
1270  // Look for opportunities to sharpen the type of a node
1271  // whose klass is compared with a constant klass.
1272  if (btest == BoolTest::eq && tcon->isa_klassptr()) {
1273    Node* obj = extract_obj_from_klass_load(&_gvn, val);
1274    const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type();
1275    if (obj != NULL && (con_type->isa_instptr() || con_type->isa_aryptr())) {
1276       // Found:
1277       //   Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
1278       // or the narrowOop equivalent.
1279       const Type* obj_type = _gvn.type(obj);
1280       const TypeOopPtr* tboth = obj_type->join(con_type)->isa_oopptr();
1281       if (tboth != NULL && tboth->klass_is_exact() && tboth != obj_type &&
1282           tboth->higher_equal(obj_type)) {
1283          // obj has to be of the exact type Foo if the CmpP succeeds.
1284          int obj_in_map = map()->find_edge(obj);
1285          JVMState* jvms = this->jvms();
1286          if (obj_in_map >= 0 &&
1287              (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
1288            TypeNode* ccast = new (C) CheckCastPPNode(control(), obj, tboth);
1289            const Type* tcc = ccast->as_Type()->type();
1290            assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
1291            // Delay transform() call to allow recovery of pre-cast value
1292            // at the control merge.
1293            _gvn.set_type_bottom(ccast);
1294            record_for_igvn(ccast);
1295            // Here's the payoff.
1296            replace_in_map(obj, ccast);
1297          }
1298       }
1299    }
1300  }
1301
1302  int val_in_map = map()->find_edge(val);
1303  if (val_in_map < 0)  return;          // replace_in_map would be useless
1304  {
1305    JVMState* jvms = this->jvms();
1306    if (!(jvms->is_loc(val_in_map) ||
1307          jvms->is_stk(val_in_map)))
1308      return;                           // again, it would be useless
1309  }
1310
1311  // Check for a comparison to a constant, and "know" that the compared
1312  // value is constrained on this path.
1313  assert(tcon->singleton(), "");
1314  ConstraintCastNode* ccast = NULL;
1315  Node* cast = NULL;
1316
1317  switch (btest) {
1318  case BoolTest::eq:                    // Constant test?
1319    {
1320      const Type* tboth = tcon->join(tval);
1321      if (tboth == tval)  break;        // Nothing to gain.
1322      if (tcon->isa_int()) {
1323        ccast = new (C) CastIINode(val, tboth);
1324      } else if (tcon == TypePtr::NULL_PTR) {
1325        // Cast to null, but keep the pointer identity temporarily live.
1326        ccast = new (C) CastPPNode(val, tboth);
1327      } else {
1328        const TypeF* tf = tcon->isa_float_constant();
1329        const TypeD* td = tcon->isa_double_constant();
1330        // Exclude tests vs float/double 0 as these could be
1331        // either +0 or -0.  Just because you are equal to +0
1332        // doesn't mean you ARE +0!
1333        // Note, following code also replaces Long and Oop values.
1334        if ((!tf || tf->_f != 0.0) &&
1335            (!td || td->_d != 0.0))
1336          cast = con;                   // Replace non-constant val by con.
1337      }
1338    }
1339    break;
1340
1341  case BoolTest::ne:
1342    if (tcon == TypePtr::NULL_PTR) {
1343      cast = cast_not_null(val, false);
1344    }
1345    break;
1346
1347  default:
1348    // (At this point we could record int range types with CastII.)
1349    break;
1350  }
1351
1352  if (ccast != NULL) {
1353    const Type* tcc = ccast->as_Type()->type();
1354    assert(tcc != tval && tcc->higher_equal(tval), "must improve");
1355    // Delay transform() call to allow recovery of pre-cast value
1356    // at the control merge.
1357    ccast->set_req(0, control());
1358    _gvn.set_type_bottom(ccast);
1359    record_for_igvn(ccast);
1360    cast = ccast;
1361  }
1362
1363  if (cast != NULL) {                   // Here's the payoff.
1364    replace_in_map(val, cast);
1365  }
1366}
1367
1368
1369//------------------------------do_one_bytecode--------------------------------
1370// Parse this bytecode, and alter the Parsers JVM->Node mapping
1371void Parse::do_one_bytecode() {
1372  Node *a, *b, *c, *d;          // Handy temps
1373  BoolTest::mask btest;
1374  int i;
1375
1376  assert(!has_exceptions(), "bytecode entry state must be clear of throws");
1377
1378  if (C->check_node_count(NodeLimitFudgeFactor * 5,
1379                          "out of nodes parsing method")) {
1380    return;
1381  }
1382
1383#ifdef ASSERT
1384  // for setting breakpoints
1385  if (TraceOptoParse) {
1386    tty->print(" @");
1387    dump_bci(bci());
1388  }
1389#endif
1390
1391  switch (bc()) {
1392  case Bytecodes::_nop:
1393    // do nothing
1394    break;
1395  case Bytecodes::_lconst_0:
1396    push_pair(longcon(0));
1397    break;
1398
1399  case Bytecodes::_lconst_1:
1400    push_pair(longcon(1));
1401    break;
1402
1403  case Bytecodes::_fconst_0:
1404    push(zerocon(T_FLOAT));
1405    break;
1406
1407  case Bytecodes::_fconst_1:
1408    push(makecon(TypeF::ONE));
1409    break;
1410
1411  case Bytecodes::_fconst_2:
1412    push(makecon(TypeF::make(2.0f)));
1413    break;
1414
1415  case Bytecodes::_dconst_0:
1416    push_pair(zerocon(T_DOUBLE));
1417    break;
1418
1419  case Bytecodes::_dconst_1:
1420    push_pair(makecon(TypeD::ONE));
1421    break;
1422
1423  case Bytecodes::_iconst_m1:push(intcon(-1)); break;
1424  case Bytecodes::_iconst_0: push(intcon( 0)); break;
1425  case Bytecodes::_iconst_1: push(intcon( 1)); break;
1426  case Bytecodes::_iconst_2: push(intcon( 2)); break;
1427  case Bytecodes::_iconst_3: push(intcon( 3)); break;
1428  case Bytecodes::_iconst_4: push(intcon( 4)); break;
1429  case Bytecodes::_iconst_5: push(intcon( 5)); break;
1430  case Bytecodes::_bipush:   push(intcon(iter().get_constant_u1())); break;
1431  case Bytecodes::_sipush:   push(intcon(iter().get_constant_u2())); break;
1432  case Bytecodes::_aconst_null: push(null());  break;
1433  case Bytecodes::_ldc:
1434  case Bytecodes::_ldc_w:
1435  case Bytecodes::_ldc2_w:
1436    // If the constant is unresolved, run this BC once in the interpreter.
1437    {
1438      ciConstant constant = iter().get_constant();
1439      if (constant.basic_type() == T_OBJECT &&
1440          !constant.as_object()->is_loaded()) {
1441        int index = iter().get_constant_pool_index();
1442        constantTag tag = iter().get_constant_pool_tag(index);
1443        uncommon_trap(Deoptimization::make_trap_request
1444                      (Deoptimization::Reason_unloaded,
1445                       Deoptimization::Action_reinterpret,
1446                       index),
1447                      NULL, tag.internal_name());
1448        break;
1449      }
1450      assert(constant.basic_type() != T_OBJECT || constant.as_object()->is_instance(),
1451             "must be java_mirror of klass");
1452      bool pushed = push_constant(constant, true);
1453      guarantee(pushed, "must be possible to push this constant");
1454    }
1455
1456    break;
1457
1458  case Bytecodes::_aload_0:
1459    push( local(0) );
1460    break;
1461  case Bytecodes::_aload_1:
1462    push( local(1) );
1463    break;
1464  case Bytecodes::_aload_2:
1465    push( local(2) );
1466    break;
1467  case Bytecodes::_aload_3:
1468    push( local(3) );
1469    break;
1470  case Bytecodes::_aload:
1471    push( local(iter().get_index()) );
1472    break;
1473
1474  case Bytecodes::_fload_0:
1475  case Bytecodes::_iload_0:
1476    push( local(0) );
1477    break;
1478  case Bytecodes::_fload_1:
1479  case Bytecodes::_iload_1:
1480    push( local(1) );
1481    break;
1482  case Bytecodes::_fload_2:
1483  case Bytecodes::_iload_2:
1484    push( local(2) );
1485    break;
1486  case Bytecodes::_fload_3:
1487  case Bytecodes::_iload_3:
1488    push( local(3) );
1489    break;
1490  case Bytecodes::_fload:
1491  case Bytecodes::_iload:
1492    push( local(iter().get_index()) );
1493    break;
1494  case Bytecodes::_lload_0:
1495    push_pair_local( 0 );
1496    break;
1497  case Bytecodes::_lload_1:
1498    push_pair_local( 1 );
1499    break;
1500  case Bytecodes::_lload_2:
1501    push_pair_local( 2 );
1502    break;
1503  case Bytecodes::_lload_3:
1504    push_pair_local( 3 );
1505    break;
1506  case Bytecodes::_lload:
1507    push_pair_local( iter().get_index() );
1508    break;
1509
1510  case Bytecodes::_dload_0:
1511    push_pair_local(0);
1512    break;
1513  case Bytecodes::_dload_1:
1514    push_pair_local(1);
1515    break;
1516  case Bytecodes::_dload_2:
1517    push_pair_local(2);
1518    break;
1519  case Bytecodes::_dload_3:
1520    push_pair_local(3);
1521    break;
1522  case Bytecodes::_dload:
1523    push_pair_local(iter().get_index());
1524    break;
1525  case Bytecodes::_fstore_0:
1526  case Bytecodes::_istore_0:
1527  case Bytecodes::_astore_0:
1528    set_local( 0, pop() );
1529    break;
1530  case Bytecodes::_fstore_1:
1531  case Bytecodes::_istore_1:
1532  case Bytecodes::_astore_1:
1533    set_local( 1, pop() );
1534    break;
1535  case Bytecodes::_fstore_2:
1536  case Bytecodes::_istore_2:
1537  case Bytecodes::_astore_2:
1538    set_local( 2, pop() );
1539    break;
1540  case Bytecodes::_fstore_3:
1541  case Bytecodes::_istore_3:
1542  case Bytecodes::_astore_3:
1543    set_local( 3, pop() );
1544    break;
1545  case Bytecodes::_fstore:
1546  case Bytecodes::_istore:
1547  case Bytecodes::_astore:
1548    set_local( iter().get_index(), pop() );
1549    break;
1550  // long stores
1551  case Bytecodes::_lstore_0:
1552    set_pair_local( 0, pop_pair() );
1553    break;
1554  case Bytecodes::_lstore_1:
1555    set_pair_local( 1, pop_pair() );
1556    break;
1557  case Bytecodes::_lstore_2:
1558    set_pair_local( 2, pop_pair() );
1559    break;
1560  case Bytecodes::_lstore_3:
1561    set_pair_local( 3, pop_pair() );
1562    break;
1563  case Bytecodes::_lstore:
1564    set_pair_local( iter().get_index(), pop_pair() );
1565    break;
1566
1567  // double stores
1568  case Bytecodes::_dstore_0:
1569    set_pair_local( 0, dstore_rounding(pop_pair()) );
1570    break;
1571  case Bytecodes::_dstore_1:
1572    set_pair_local( 1, dstore_rounding(pop_pair()) );
1573    break;
1574  case Bytecodes::_dstore_2:
1575    set_pair_local( 2, dstore_rounding(pop_pair()) );
1576    break;
1577  case Bytecodes::_dstore_3:
1578    set_pair_local( 3, dstore_rounding(pop_pair()) );
1579    break;
1580  case Bytecodes::_dstore:
1581    set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
1582    break;
1583
1584  case Bytecodes::_pop:  _sp -= 1;   break;
1585  case Bytecodes::_pop2: _sp -= 2;   break;
1586  case Bytecodes::_swap:
1587    a = pop();
1588    b = pop();
1589    push(a);
1590    push(b);
1591    break;
1592  case Bytecodes::_dup:
1593    a = pop();
1594    push(a);
1595    push(a);
1596    break;
1597  case Bytecodes::_dup_x1:
1598    a = pop();
1599    b = pop();
1600    push( a );
1601    push( b );
1602    push( a );
1603    break;
1604  case Bytecodes::_dup_x2:
1605    a = pop();
1606    b = pop();
1607    c = pop();
1608    push( a );
1609    push( c );
1610    push( b );
1611    push( a );
1612    break;
1613  case Bytecodes::_dup2:
1614    a = pop();
1615    b = pop();
1616    push( b );
1617    push( a );
1618    push( b );
1619    push( a );
1620    break;
1621
1622  case Bytecodes::_dup2_x1:
1623    // before: .. c, b, a
1624    // after:  .. b, a, c, b, a
1625    // not tested
1626    a = pop();
1627    b = pop();
1628    c = pop();
1629    push( b );
1630    push( a );
1631    push( c );
1632    push( b );
1633    push( a );
1634    break;
1635  case Bytecodes::_dup2_x2:
1636    // before: .. d, c, b, a
1637    // after:  .. b, a, d, c, b, a
1638    // not tested
1639    a = pop();
1640    b = pop();
1641    c = pop();
1642    d = pop();
1643    push( b );
1644    push( a );
1645    push( d );
1646    push( c );
1647    push( b );
1648    push( a );
1649    break;
1650
1651  case Bytecodes::_arraylength: {
1652    // Must do null-check with value on expression stack
1653    Node *ary = do_null_check(peek(), T_ARRAY);
1654    // Compile-time detect of null-exception?
1655    if (stopped())  return;
1656    a = pop();
1657    push(load_array_length(a));
1658    break;
1659  }
1660
1661  case Bytecodes::_baload: array_load(T_BYTE);   break;
1662  case Bytecodes::_caload: array_load(T_CHAR);   break;
1663  case Bytecodes::_iaload: array_load(T_INT);    break;
1664  case Bytecodes::_saload: array_load(T_SHORT);  break;
1665  case Bytecodes::_faload: array_load(T_FLOAT);  break;
1666  case Bytecodes::_aaload: array_load(T_OBJECT); break;
1667  case Bytecodes::_laload: {
1668    a = array_addressing(T_LONG, 0);
1669    if (stopped())  return;     // guaranteed null or range check
1670    _sp -= 2;                   // Pop array and index
1671    push_pair( make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS));
1672    break;
1673  }
1674  case Bytecodes::_daload: {
1675    a = array_addressing(T_DOUBLE, 0);
1676    if (stopped())  return;     // guaranteed null or range check
1677    _sp -= 2;                   // Pop array and index
1678    push_pair( make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES));
1679    break;
1680  }
1681  case Bytecodes::_bastore: array_store(T_BYTE);  break;
1682  case Bytecodes::_castore: array_store(T_CHAR);  break;
1683  case Bytecodes::_iastore: array_store(T_INT);   break;
1684  case Bytecodes::_sastore: array_store(T_SHORT); break;
1685  case Bytecodes::_fastore: array_store(T_FLOAT); break;
1686  case Bytecodes::_aastore: {
1687    d = array_addressing(T_OBJECT, 1);
1688    if (stopped())  return;     // guaranteed null or range check
1689    array_store_check();
1690    c = pop();                  // Oop to store
1691    b = pop();                  // index (already used)
1692    a = pop();                  // the array itself
1693    const TypeOopPtr* elemtype  = _gvn.type(a)->is_aryptr()->elem()->make_oopptr();
1694    const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
1695    Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT);
1696    break;
1697  }
1698  case Bytecodes::_lastore: {
1699    a = array_addressing(T_LONG, 2);
1700    if (stopped())  return;     // guaranteed null or range check
1701    c = pop_pair();
1702    _sp -= 2;                   // Pop array and index
1703    store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS);
1704    break;
1705  }
1706  case Bytecodes::_dastore: {
1707    a = array_addressing(T_DOUBLE, 2);
1708    if (stopped())  return;     // guaranteed null or range check
1709    c = pop_pair();
1710    _sp -= 2;                   // Pop array and index
1711    c = dstore_rounding(c);
1712    store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES);
1713    break;
1714  }
1715  case Bytecodes::_getfield:
1716    do_getfield();
1717    break;
1718
1719  case Bytecodes::_getstatic:
1720    do_getstatic();
1721    break;
1722
1723  case Bytecodes::_putfield:
1724    do_putfield();
1725    break;
1726
1727  case Bytecodes::_putstatic:
1728    do_putstatic();
1729    break;
1730
1731  case Bytecodes::_irem:
1732    do_irem();
1733    break;
1734  case Bytecodes::_idiv:
1735    // Must keep both values on the expression-stack during null-check
1736    do_null_check(peek(), T_INT);
1737    // Compile-time detect of null-exception?
1738    if (stopped())  return;
1739    b = pop();
1740    a = pop();
1741    push( _gvn.transform( new (C) DivINode(control(),a,b) ) );
1742    break;
1743  case Bytecodes::_imul:
1744    b = pop(); a = pop();
1745    push( _gvn.transform( new (C) MulINode(a,b) ) );
1746    break;
1747  case Bytecodes::_iadd:
1748    b = pop(); a = pop();
1749    push( _gvn.transform( new (C) AddINode(a,b) ) );
1750    break;
1751  case Bytecodes::_ineg:
1752    a = pop();
1753    push( _gvn.transform( new (C) SubINode(_gvn.intcon(0),a)) );
1754    break;
1755  case Bytecodes::_isub:
1756    b = pop(); a = pop();
1757    push( _gvn.transform( new (C) SubINode(a,b) ) );
1758    break;
1759  case Bytecodes::_iand:
1760    b = pop(); a = pop();
1761    push( _gvn.transform( new (C) AndINode(a,b) ) );
1762    break;
1763  case Bytecodes::_ior:
1764    b = pop(); a = pop();
1765    push( _gvn.transform( new (C) OrINode(a,b) ) );
1766    break;
1767  case Bytecodes::_ixor:
1768    b = pop(); a = pop();
1769    push( _gvn.transform( new (C) XorINode(a,b) ) );
1770    break;
1771  case Bytecodes::_ishl:
1772    b = pop(); a = pop();
1773    push( _gvn.transform( new (C) LShiftINode(a,b) ) );
1774    break;
1775  case Bytecodes::_ishr:
1776    b = pop(); a = pop();
1777    push( _gvn.transform( new (C) RShiftINode(a,b) ) );
1778    break;
1779  case Bytecodes::_iushr:
1780    b = pop(); a = pop();
1781    push( _gvn.transform( new (C) URShiftINode(a,b) ) );
1782    break;
1783
1784  case Bytecodes::_fneg:
1785    a = pop();
1786    b = _gvn.transform(new (C) NegFNode (a));
1787    push(b);
1788    break;
1789
1790  case Bytecodes::_fsub:
1791    b = pop();
1792    a = pop();
1793    c = _gvn.transform( new (C) SubFNode(a,b) );
1794    d = precision_rounding(c);
1795    push( d );
1796    break;
1797
1798  case Bytecodes::_fadd:
1799    b = pop();
1800    a = pop();
1801    c = _gvn.transform( new (C) AddFNode(a,b) );
1802    d = precision_rounding(c);
1803    push( d );
1804    break;
1805
1806  case Bytecodes::_fmul:
1807    b = pop();
1808    a = pop();
1809    c = _gvn.transform( new (C) MulFNode(a,b) );
1810    d = precision_rounding(c);
1811    push( d );
1812    break;
1813
1814  case Bytecodes::_fdiv:
1815    b = pop();
1816    a = pop();
1817    c = _gvn.transform( new (C) DivFNode(0,a,b) );
1818    d = precision_rounding(c);
1819    push( d );
1820    break;
1821
1822  case Bytecodes::_frem:
1823    if (Matcher::has_match_rule(Op_ModF)) {
1824      // Generate a ModF node.
1825      b = pop();
1826      a = pop();
1827      c = _gvn.transform( new (C) ModFNode(0,a,b) );
1828      d = precision_rounding(c);
1829      push( d );
1830    }
1831    else {
1832      // Generate a call.
1833      modf();
1834    }
1835    break;
1836
1837  case Bytecodes::_fcmpl:
1838    b = pop();
1839    a = pop();
1840    c = _gvn.transform( new (C) CmpF3Node( a, b));
1841    push(c);
1842    break;
1843  case Bytecodes::_fcmpg:
1844    b = pop();
1845    a = pop();
1846
1847    // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
1848    // which negates the result sign except for unordered.  Flip the unordered
1849    // as well by using CmpF3 which implements unordered-lesser instead of
1850    // unordered-greater semantics.  Finally, commute the result bits.  Result
1851    // is same as using a CmpF3Greater except we did it with CmpF3 alone.
1852    c = _gvn.transform( new (C) CmpF3Node( b, a));
1853    c = _gvn.transform( new (C) SubINode(_gvn.intcon(0),c) );
1854    push(c);
1855    break;
1856
1857  case Bytecodes::_f2i:
1858    a = pop();
1859    push(_gvn.transform(new (C) ConvF2INode(a)));
1860    break;
1861
1862  case Bytecodes::_d2i:
1863    a = pop_pair();
1864    b = _gvn.transform(new (C) ConvD2INode(a));
1865    push( b );
1866    break;
1867
1868  case Bytecodes::_f2d:
1869    a = pop();
1870    b = _gvn.transform( new (C) ConvF2DNode(a));
1871    push_pair( b );
1872    break;
1873
1874  case Bytecodes::_d2f:
1875    a = pop_pair();
1876    b = _gvn.transform( new (C) ConvD2FNode(a));
1877    // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
1878    //b = _gvn.transform(new (C) RoundFloatNode(0, b) );
1879    push( b );
1880    break;
1881
1882  case Bytecodes::_l2f:
1883    if (Matcher::convL2FSupported()) {
1884      a = pop_pair();
1885      b = _gvn.transform( new (C) ConvL2FNode(a));
1886      // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
1887      // Rather than storing the result into an FP register then pushing
1888      // out to memory to round, the machine instruction that implements
1889      // ConvL2D is responsible for rounding.
1890      // c = precision_rounding(b);
1891      c = _gvn.transform(b);
1892      push(c);
1893    } else {
1894      l2f();
1895    }
1896    break;
1897
1898  case Bytecodes::_l2d:
1899    a = pop_pair();
1900    b = _gvn.transform( new (C) ConvL2DNode(a));
1901    // For i486.ad, rounding is always necessary (see _l2f above).
1902    // c = dprecision_rounding(b);
1903    c = _gvn.transform(b);
1904    push_pair(c);
1905    break;
1906
1907  case Bytecodes::_f2l:
1908    a = pop();
1909    b = _gvn.transform( new (C) ConvF2LNode(a));
1910    push_pair(b);
1911    break;
1912
1913  case Bytecodes::_d2l:
1914    a = pop_pair();
1915    b = _gvn.transform( new (C) ConvD2LNode(a));
1916    push_pair(b);
1917    break;
1918
1919  case Bytecodes::_dsub:
1920    b = pop_pair();
1921    a = pop_pair();
1922    c = _gvn.transform( new (C) SubDNode(a,b) );
1923    d = dprecision_rounding(c);
1924    push_pair( d );
1925    break;
1926
1927  case Bytecodes::_dadd:
1928    b = pop_pair();
1929    a = pop_pair();
1930    c = _gvn.transform( new (C) AddDNode(a,b) );
1931    d = dprecision_rounding(c);
1932    push_pair( d );
1933    break;
1934
1935  case Bytecodes::_dmul:
1936    b = pop_pair();
1937    a = pop_pair();
1938    c = _gvn.transform( new (C) MulDNode(a,b) );
1939    d = dprecision_rounding(c);
1940    push_pair( d );
1941    break;
1942
1943  case Bytecodes::_ddiv:
1944    b = pop_pair();
1945    a = pop_pair();
1946    c = _gvn.transform( new (C) DivDNode(0,a,b) );
1947    d = dprecision_rounding(c);
1948    push_pair( d );
1949    break;
1950
1951  case Bytecodes::_dneg:
1952    a = pop_pair();
1953    b = _gvn.transform(new (C) NegDNode (a));
1954    push_pair(b);
1955    break;
1956
1957  case Bytecodes::_drem:
1958    if (Matcher::has_match_rule(Op_ModD)) {
1959      // Generate a ModD node.
1960      b = pop_pair();
1961      a = pop_pair();
1962      // a % b
1963
1964      c = _gvn.transform( new (C) ModDNode(0,a,b) );
1965      d = dprecision_rounding(c);
1966      push_pair( d );
1967    }
1968    else {
1969      // Generate a call.
1970      modd();
1971    }
1972    break;
1973
1974  case Bytecodes::_dcmpl:
1975    b = pop_pair();
1976    a = pop_pair();
1977    c = _gvn.transform( new (C) CmpD3Node( a, b));
1978    push(c);
1979    break;
1980
1981  case Bytecodes::_dcmpg:
1982    b = pop_pair();
1983    a = pop_pair();
1984    // Same as dcmpl but need to flip the unordered case.
1985    // Commute the inputs, which negates the result sign except for unordered.
1986    // Flip the unordered as well by using CmpD3 which implements
1987    // unordered-lesser instead of unordered-greater semantics.
1988    // Finally, negate the result bits.  Result is same as using a
1989    // CmpD3Greater except we did it with CmpD3 alone.
1990    c = _gvn.transform( new (C) CmpD3Node( b, a));
1991    c = _gvn.transform( new (C) SubINode(_gvn.intcon(0),c) );
1992    push(c);
1993    break;
1994
1995
1996    // Note for longs -> lo word is on TOS, hi word is on TOS - 1
1997  case Bytecodes::_land:
1998    b = pop_pair();
1999    a = pop_pair();
2000    c = _gvn.transform( new (C) AndLNode(a,b) );
2001    push_pair(c);
2002    break;
2003  case Bytecodes::_lor:
2004    b = pop_pair();
2005    a = pop_pair();
2006    c = _gvn.transform( new (C) OrLNode(a,b) );
2007    push_pair(c);
2008    break;
2009  case Bytecodes::_lxor:
2010    b = pop_pair();
2011    a = pop_pair();
2012    c = _gvn.transform( new (C) XorLNode(a,b) );
2013    push_pair(c);
2014    break;
2015
2016  case Bytecodes::_lshl:
2017    b = pop();                  // the shift count
2018    a = pop_pair();             // value to be shifted
2019    c = _gvn.transform( new (C) LShiftLNode(a,b) );
2020    push_pair(c);
2021    break;
2022  case Bytecodes::_lshr:
2023    b = pop();                  // the shift count
2024    a = pop_pair();             // value to be shifted
2025    c = _gvn.transform( new (C) RShiftLNode(a,b) );
2026    push_pair(c);
2027    break;
2028  case Bytecodes::_lushr:
2029    b = pop();                  // the shift count
2030    a = pop_pair();             // value to be shifted
2031    c = _gvn.transform( new (C) URShiftLNode(a,b) );
2032    push_pair(c);
2033    break;
2034  case Bytecodes::_lmul:
2035    b = pop_pair();
2036    a = pop_pair();
2037    c = _gvn.transform( new (C) MulLNode(a,b) );
2038    push_pair(c);
2039    break;
2040
2041  case Bytecodes::_lrem:
2042    // Must keep both values on the expression-stack during null-check
2043    assert(peek(0) == top(), "long word order");
2044    do_null_check(peek(1), T_LONG);
2045    // Compile-time detect of null-exception?
2046    if (stopped())  return;
2047    b = pop_pair();
2048    a = pop_pair();
2049    c = _gvn.transform( new (C) ModLNode(control(),a,b) );
2050    push_pair(c);
2051    break;
2052
2053  case Bytecodes::_ldiv:
2054    // Must keep both values on the expression-stack during null-check
2055    assert(peek(0) == top(), "long word order");
2056    do_null_check(peek(1), T_LONG);
2057    // Compile-time detect of null-exception?
2058    if (stopped())  return;
2059    b = pop_pair();
2060    a = pop_pair();
2061    c = _gvn.transform( new (C) DivLNode(control(),a,b) );
2062    push_pair(c);
2063    break;
2064
2065  case Bytecodes::_ladd:
2066    b = pop_pair();
2067    a = pop_pair();
2068    c = _gvn.transform( new (C) AddLNode(a,b) );
2069    push_pair(c);
2070    break;
2071  case Bytecodes::_lsub:
2072    b = pop_pair();
2073    a = pop_pair();
2074    c = _gvn.transform( new (C) SubLNode(a,b) );
2075    push_pair(c);
2076    break;
2077  case Bytecodes::_lcmp:
2078    // Safepoints are now inserted _before_ branches.  The long-compare
2079    // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
2080    // slew of control flow.  These are usually followed by a CmpI vs zero and
2081    // a branch; this pattern then optimizes to the obvious long-compare and
2082    // branch.  However, if the branch is backwards there's a Safepoint
2083    // inserted.  The inserted Safepoint captures the JVM state at the
2084    // pre-branch point, i.e. it captures the 3-way value.  Thus if a
2085    // long-compare is used to control a loop the debug info will force
2086    // computation of the 3-way value, even though the generated code uses a
2087    // long-compare and branch.  We try to rectify the situation by inserting
2088    // a SafePoint here and have it dominate and kill the safepoint added at a
2089    // following backwards branch.  At this point the JVM state merely holds 2
2090    // longs but not the 3-way value.
2091    if( UseLoopSafepoints ) {
2092      switch( iter().next_bc() ) {
2093      case Bytecodes::_ifgt:
2094      case Bytecodes::_iflt:
2095      case Bytecodes::_ifge:
2096      case Bytecodes::_ifle:
2097      case Bytecodes::_ifne:
2098      case Bytecodes::_ifeq:
2099        // If this is a backwards branch in the bytecodes, add Safepoint
2100        maybe_add_safepoint(iter().next_get_dest());
2101      }
2102    }
2103    b = pop_pair();
2104    a = pop_pair();
2105    c = _gvn.transform( new (C) CmpL3Node( a, b ));
2106    push(c);
2107    break;
2108
2109  case Bytecodes::_lneg:
2110    a = pop_pair();
2111    b = _gvn.transform( new (C) SubLNode(longcon(0),a));
2112    push_pair(b);
2113    break;
2114  case Bytecodes::_l2i:
2115    a = pop_pair();
2116    push( _gvn.transform( new (C) ConvL2INode(a)));
2117    break;
2118  case Bytecodes::_i2l:
2119    a = pop();
2120    b = _gvn.transform( new (C) ConvI2LNode(a));
2121    push_pair(b);
2122    break;
2123  case Bytecodes::_i2b:
2124    // Sign extend
2125    a = pop();
2126    a = _gvn.transform( new (C) LShiftINode(a,_gvn.intcon(24)) );
2127    a = _gvn.transform( new (C) RShiftINode(a,_gvn.intcon(24)) );
2128    push( a );
2129    break;
2130  case Bytecodes::_i2s:
2131    a = pop();
2132    a = _gvn.transform( new (C) LShiftINode(a,_gvn.intcon(16)) );
2133    a = _gvn.transform( new (C) RShiftINode(a,_gvn.intcon(16)) );
2134    push( a );
2135    break;
2136  case Bytecodes::_i2c:
2137    a = pop();
2138    push( _gvn.transform( new (C) AndINode(a,_gvn.intcon(0xFFFF)) ) );
2139    break;
2140
2141  case Bytecodes::_i2f:
2142    a = pop();
2143    b = _gvn.transform( new (C) ConvI2FNode(a) ) ;
2144    c = precision_rounding(b);
2145    push (b);
2146    break;
2147
2148  case Bytecodes::_i2d:
2149    a = pop();
2150    b = _gvn.transform( new (C) ConvI2DNode(a));
2151    push_pair(b);
2152    break;
2153
2154  case Bytecodes::_iinc:        // Increment local
2155    i = iter().get_index();     // Get local index
2156    set_local( i, _gvn.transform( new (C) AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
2157    break;
2158
2159  // Exit points of synchronized methods must have an unlock node
2160  case Bytecodes::_return:
2161    return_current(NULL);
2162    break;
2163
2164  case Bytecodes::_ireturn:
2165  case Bytecodes::_areturn:
2166  case Bytecodes::_freturn:
2167    return_current(pop());
2168    break;
2169  case Bytecodes::_lreturn:
2170    return_current(pop_pair());
2171    break;
2172  case Bytecodes::_dreturn:
2173    return_current(pop_pair());
2174    break;
2175
2176  case Bytecodes::_athrow:
2177    // null exception oop throws NULL pointer exception
2178    do_null_check(peek(), T_OBJECT);
2179    if (stopped())  return;
2180    // Hook the thrown exception directly to subsequent handlers.
2181    if (BailoutToInterpreterForThrows) {
2182      // Keep method interpreted from now on.
2183      uncommon_trap(Deoptimization::Reason_unhandled,
2184                    Deoptimization::Action_make_not_compilable);
2185      return;
2186    }
2187    if (env()->jvmti_can_post_on_exceptions()) {
2188      // check if we must post exception events, take uncommon trap if so (with must_throw = false)
2189      uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
2190    }
2191    // Here if either can_post_on_exceptions or should_post_on_exceptions is false
2192    add_exception_state(make_exception_state(peek()));
2193    break;
2194
2195  case Bytecodes::_goto:   // fall through
2196  case Bytecodes::_goto_w: {
2197    int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
2198
2199    // If this is a backwards branch in the bytecodes, add Safepoint
2200    maybe_add_safepoint(target_bci);
2201
2202    // Update method data
2203    profile_taken_branch(target_bci);
2204
2205    // Merge the current control into the target basic block
2206    merge(target_bci);
2207
2208    // See if we can get some profile data and hand it off to the next block
2209    Block *target_block = block()->successor_for_bci(target_bci);
2210    if (target_block->pred_count() != 1)  break;
2211    ciMethodData* methodData = method()->method_data();
2212    if (!methodData->is_mature())  break;
2213    ciProfileData* data = methodData->bci_to_data(bci());
2214    assert( data->is_JumpData(), "" );
2215    int taken = ((ciJumpData*)data)->taken();
2216    taken = method()->scale_count(taken);
2217    target_block->set_count(taken);
2218    break;
2219  }
2220
2221  case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
2222  case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
2223  handle_if_null:
2224    // If this is a backwards branch in the bytecodes, add Safepoint
2225    maybe_add_safepoint(iter().get_dest());
2226    a = null();
2227    b = pop();
2228    c = _gvn.transform( new (C) CmpPNode(b, a) );
2229    do_ifnull(btest, c);
2230    break;
2231
2232  case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
2233  case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
2234  handle_if_acmp:
2235    // If this is a backwards branch in the bytecodes, add Safepoint
2236    maybe_add_safepoint(iter().get_dest());
2237    a = pop();
2238    b = pop();
2239    c = _gvn.transform( new (C) CmpPNode(b, a) );
2240    do_if(btest, c);
2241    break;
2242
2243  case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
2244  case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
2245  case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
2246  case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
2247  case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
2248  case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
2249  handle_ifxx:
2250    // If this is a backwards branch in the bytecodes, add Safepoint
2251    maybe_add_safepoint(iter().get_dest());
2252    a = _gvn.intcon(0);
2253    b = pop();
2254    c = _gvn.transform( new (C) CmpINode(b, a) );
2255    do_if(btest, c);
2256    break;
2257
2258  case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
2259  case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
2260  case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
2261  case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
2262  case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
2263  case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
2264  handle_if_icmp:
2265    // If this is a backwards branch in the bytecodes, add Safepoint
2266    maybe_add_safepoint(iter().get_dest());
2267    a = pop();
2268    b = pop();
2269    c = _gvn.transform( new (C) CmpINode( b, a ) );
2270    do_if(btest, c);
2271    break;
2272
2273  case Bytecodes::_tableswitch:
2274    do_tableswitch();
2275    break;
2276
2277  case Bytecodes::_lookupswitch:
2278    do_lookupswitch();
2279    break;
2280
2281  case Bytecodes::_invokestatic:
2282  case Bytecodes::_invokedynamic:
2283  case Bytecodes::_invokespecial:
2284  case Bytecodes::_invokevirtual:
2285  case Bytecodes::_invokeinterface:
2286    do_call();
2287    break;
2288  case Bytecodes::_checkcast:
2289    do_checkcast();
2290    break;
2291  case Bytecodes::_instanceof:
2292    do_instanceof();
2293    break;
2294  case Bytecodes::_anewarray:
2295    do_anewarray();
2296    break;
2297  case Bytecodes::_newarray:
2298    do_newarray((BasicType)iter().get_index());
2299    break;
2300  case Bytecodes::_multianewarray:
2301    do_multianewarray();
2302    break;
2303  case Bytecodes::_new:
2304    do_new();
2305    break;
2306
2307  case Bytecodes::_jsr:
2308  case Bytecodes::_jsr_w:
2309    do_jsr();
2310    break;
2311
2312  case Bytecodes::_ret:
2313    do_ret();
2314    break;
2315
2316
2317  case Bytecodes::_monitorenter:
2318    do_monitor_enter();
2319    break;
2320
2321  case Bytecodes::_monitorexit:
2322    do_monitor_exit();
2323    break;
2324
2325  case Bytecodes::_breakpoint:
2326    // Breakpoint set concurrently to compile
2327    // %%% use an uncommon trap?
2328    C->record_failure("breakpoint in method");
2329    return;
2330
2331  default:
2332#ifndef PRODUCT
2333    map()->dump(99);
2334#endif
2335    tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
2336    ShouldNotReachHere();
2337  }
2338
2339#ifndef PRODUCT
2340  IdealGraphPrinter *printer = IdealGraphPrinter::printer();
2341  if(printer) {
2342    char buffer[256];
2343    sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
2344    bool old = printer->traverse_outs();
2345    printer->set_traverse_outs(true);
2346    printer->print_method(C, buffer, 4);
2347    printer->set_traverse_outs(old);
2348  }
2349#endif
2350}
2351