parse2.cpp revision 2273:1d1603768966
124269Speter/*
224269Speter * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
324269Speter * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
424269Speter *
524269Speter * This code is free software; you can redistribute it and/or modify it
624269Speter * under the terms of the GNU General Public License version 2 only, as
724269Speter * published by the Free Software Foundation.
824269Speter *
924269Speter * This code is distributed in the hope that it will be useful, but WITHOUT
1024269Speter * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1124269Speter * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
1224269Speter * version 2 for more details (a copy is included in the LICENSE file that
1324269Speter * accompanied this code).
1424269Speter *
1524269Speter * You should have received a copy of the GNU General Public License version
1624269Speter * 2 along with this work; if not, write to the Free Software Foundation,
1724269Speter * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
1824269Speter *
1924269Speter * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
2024269Speter * or visit www.oracle.com if you need additional information or have any
2124269Speter * questions.
2224269Speter *
2324269Speter */
2424269Speter
2524269Speter#include "precompiled.hpp"
2624269Speter#include "ci/ciMethodData.hpp"
2724269Speter#include "classfile/systemDictionary.hpp"
2824269Speter#include "classfile/vmSymbols.hpp"
2924269Speter#include "compiler/compileLog.hpp"
3024269Speter#include "interpreter/linkResolver.hpp"
3124269Speter#include "memory/universe.inline.hpp"
3224269Speter#include "opto/addnode.hpp"
3324269Speter#include "opto/divnode.hpp"
3424269Speter#include "opto/idealGraphPrinter.hpp"
3524269Speter#include "opto/matcher.hpp"
3624269Speter#include "opto/memnode.hpp"
3724269Speter#include "opto/mulnode.hpp"
3824269Speter#include "opto/parse.hpp"
3924269Speter#include "opto/runtime.hpp"
4024269Speter#include "runtime/deoptimization.hpp"
4124269Speter#include "runtime/sharedRuntime.hpp"
4224269Speter
4324269Speterextern int explicit_null_checks_inserted,
4424269Speter           explicit_null_checks_elided;
4524269Speter
4624269Speter//---------------------------------array_load----------------------------------
4724269Spetervoid Parse::array_load(BasicType elem_type) {
4824269Speter  const Type* elem = Type::TOP;
4924269Speter  Node* adr = array_addressing(elem_type, 0, &elem);
5024269Speter  if (stopped())  return;     // guaranteed null or range check
5124269Speter  _sp -= 2;                   // Pop array and index
5224269Speter  const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
5324269Speter  Node* ld = make_load(control(), adr, elem, elem_type, adr_type);
5424269Speter  push(ld);
5524269Speter}
5624269Speter
5724269Speter
5824269Speter//--------------------------------array_store----------------------------------
5924269Spetervoid Parse::array_store(BasicType elem_type) {
6024269Speter  Node* adr = array_addressing(elem_type, 1);
6124269Speter  if (stopped())  return;     // guaranteed null or range check
6224269Speter  Node* val = pop();
6324269Speter  _sp -= 2;                   // Pop array and index
6424269Speter  const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
6524269Speter  store_to_memory(control(), adr, val, elem_type, adr_type);
6624269Speter}
6724269Speter
6824269Speter
6924269Speter//------------------------------array_addressing-------------------------------
7024269Speter// Pull array and index from the stack.  Compute pointer-to-element.
7124269SpeterNode* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
7224269Speter  Node *idx   = peek(0+vals);   // Get from stack without popping
7324269Speter  Node *ary   = peek(1+vals);   // in case of exception
7424269Speter
7524269Speter  // Null check the array base, with correct stack contents
7624269Speter  ary = do_null_check(ary, T_ARRAY);
7724269Speter  // Compile-time detect of null-exception?
7824269Speter  if (stopped())  return top();
7924269Speter
8024269Speter  const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
8124269Speter  const TypeInt*    sizetype = arytype->size();
8224269Speter  const Type*       elemtype = arytype->elem();
8324269Speter
8424269Speter  if (UseUniqueSubclasses && result2 != NULL) {
8524269Speter    const Type* el = elemtype->make_ptr();
8624269Speter    if (el && el->isa_instptr()) {
8724269Speter      const TypeInstPtr* toop = el->is_instptr();
8824269Speter      if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
8924269Speter        // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
9024269Speter        const Type* subklass = Type::get_const_type(toop->klass());
9124269Speter        elemtype = subklass->join(el);
9224269Speter      }
9324269Speter    }
9424269Speter  }
9524269Speter
9624269Speter  // Check for big class initializers with all constant offsets
9724269Speter  // feeding into a known-size array.
9824269Speter  const TypeInt* idxtype = _gvn.type(idx)->is_int();
9924269Speter  // See if the highest idx value is less than the lowest array bound,
10024269Speter  // and if the idx value cannot be negative:
10124269Speter  bool need_range_check = true;
10224269Speter  if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
10324269Speter    need_range_check = false;
10424269Speter    if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
10524269Speter  }
10624269Speter
10724269Speter  if (!arytype->klass()->is_loaded()) {
10824269Speter    // Only fails for some -Xcomp runs
10924269Speter    // The class is unloaded.  We have to run this bytecode in the interpreter.
11024269Speter    uncommon_trap(Deoptimization::Reason_unloaded,
11124269Speter                  Deoptimization::Action_reinterpret,
11224269Speter                  arytype->klass(), "!loaded array");
11324269Speter    return top();
11424269Speter  }
11524269Speter
11624269Speter  // Do the range check
11724269Speter  if (GenerateRangeChecks && need_range_check) {
11824269Speter    Node* tst;
11924269Speter    if (sizetype->_hi <= 0) {
12024269Speter      // The greatest array bound is negative, so we can conclude that we're
12124269Speter      // compiling unreachable code, but the unsigned compare trick used below
12224269Speter      // only works with non-negative lengths.  Instead, hack "tst" to be zero so
12324269Speter      // the uncommon_trap path will always be taken.
12424269Speter      tst = _gvn.intcon(0);
12524269Speter    } else {
12624269Speter      // Range is constant in array-oop, so we can use the original state of mem
12724269Speter      Node* len = load_array_length(ary);
12824269Speter
12924269Speter      // Test length vs index (standard trick using unsigned compare)
13024269Speter      Node* chk = _gvn.transform( new (C, 3) CmpUNode(idx, len) );
13124269Speter      BoolTest::mask btest = BoolTest::lt;
13224269Speter      tst = _gvn.transform( new (C, 2) BoolNode(chk, btest) );
13324269Speter    }
13424269Speter    // Branch to failure if out of bounds
13524269Speter    { BuildCutout unless(this, tst, PROB_MAX);
13624269Speter      if (C->allow_range_check_smearing()) {
13724269Speter        // Do not use builtin_throw, since range checks are sometimes
13824269Speter        // made more stringent by an optimistic transformation.
13924269Speter        // This creates "tentative" range checks at this point,
14024269Speter        // which are not guaranteed to throw exceptions.
14124269Speter        // See IfNode::Ideal, is_range_check, adjust_check.
14224269Speter        uncommon_trap(Deoptimization::Reason_range_check,
14324269Speter                      Deoptimization::Action_make_not_entrant,
14424269Speter                      NULL, "range_check");
14524269Speter      } else {
14624269Speter        // If we have already recompiled with the range-check-widening
14724269Speter        // heroic optimization turned off, then we must really be throwing
14824269Speter        // range check exceptions.
14924269Speter        builtin_throw(Deoptimization::Reason_range_check, idx);
15024269Speter      }
15124269Speter    }
15224269Speter  }
15324269Speter  // Check for always knowing you are throwing a range-check exception
15424269Speter  if (stopped())  return top();
15524269Speter
15624269Speter  Node* ptr = array_element_address(ary, idx, type, sizetype);
15724269Speter
15824269Speter  if (result2 != NULL)  *result2 = elemtype;
15924269Speter
16024269Speter  assert(ptr != top(), "top should go hand-in-hand with stopped");
16124269Speter
16224269Speter  return ptr;
16324269Speter}
16424269Speter
16524269Speter
16624269Speter// returns IfNode
16724269SpeterIfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
16824269Speter  Node   *cmp = _gvn.transform( new (C, 3) CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
16924269Speter  Node   *tst = _gvn.transform( new (C, 2) BoolNode( cmp, mask));
17024269Speter  IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
17124269Speter  return iff;
17224269Speter}
17324269Speter
17424269Speter// return Region node
17524269SpeterNode* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
17624269Speter  Node *region  = new (C, 3) RegionNode(3); // 2 results
17724269Speter  record_for_igvn(region);
17824269Speter  region->init_req(1, iffalse);
17924269Speter  region->init_req(2, iftrue );
18024269Speter  _gvn.set_type(region, Type::CONTROL);
18124269Speter  region = _gvn.transform(region);
18224269Speter  set_control (region);
18324269Speter  return region;
18424269Speter}
18524269Speter
18624269Speter
18724269Speter//------------------------------helper for tableswitch-------------------------
18824269Spetervoid Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
18924269Speter  // True branch, use existing map info
19024269Speter  { PreserveJVMState pjvms(this);
19124269Speter    Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
19224269Speter    set_control( iftrue );
19324269Speter    profile_switch_case(prof_table_index);
19424269Speter    merge_new_path(dest_bci_if_true);
19524269Speter  }
19624269Speter
19724269Speter  // False branch
19824269Speter  Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
19924269Speter  set_control( iffalse );
20024269Speter}
20124269Speter
20224269Spetervoid Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
20324269Speter  // True branch, use existing map info
20424269Speter  { PreserveJVMState pjvms(this);
20524269Speter    Node *iffalse  = _gvn.transform( new (C, 1) IfFalseNode (iff) );
20624269Speter    set_control( iffalse );
20724269Speter    profile_switch_case(prof_table_index);
20824269Speter    merge_new_path(dest_bci_if_true);
20924269Speter  }
21024269Speter
21124269Speter  // False branch
21224269Speter  Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(iff) );
21324269Speter  set_control( iftrue );
21424269Speter}
21524269Speter
21624269Spetervoid Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
21724269Speter  // False branch, use existing map and control()
21824269Speter  profile_switch_case(prof_table_index);
21924269Speter  merge_new_path(dest_bci);
22024269Speter}
22124269Speter
22224269Speter
22324269Speterextern "C" {
22424269Speter  static int jint_cmp(const void *i, const void *j) {
22524269Speter    int a = *(jint *)i;
22624269Speter    int b = *(jint *)j;
22724269Speter    return a > b ? 1 : a < b ? -1 : 0;
22824269Speter  }
22924269Speter}
23024269Speter
23124269Speter
23224269Speter// Default value for methodData switch indexing. Must be a negative value to avoid
23324269Speter// conflict with any legal switch index.
23424269Speter#define NullTableIndex -1
23524269Speter
23624269Speterclass SwitchRange : public StackObj {
23724269Speter  // a range of integers coupled with a bci destination
23824269Speter  jint _lo;                     // inclusive lower limit
23924269Speter  jint _hi;                     // inclusive upper limit
24024269Speter  int _dest;
24124269Speter  int _table_index;             // index into method data table
24224269Speter
24324269Speterpublic:
24424269Speter  jint lo() const              { return _lo;   }
24524269Speter  jint hi() const              { return _hi;   }
24624269Speter  int  dest() const            { return _dest; }
24724269Speter  int  table_index() const     { return _table_index; }
24824269Speter  bool is_singleton() const    { return _lo == _hi; }
24924269Speter
25024269Speter  void setRange(jint lo, jint hi, int dest, int table_index) {
25124269Speter    assert(lo <= hi, "must be a non-empty range");
25224269Speter    _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
25324269Speter  }
25424269Speter  bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
25524269Speter    assert(lo <= hi, "must be a non-empty range");
25624269Speter    if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
25724269Speter      _hi = hi;
25824269Speter      return true;
25924269Speter    }
26024269Speter    return false;
26124269Speter  }
26224269Speter
26324269Speter  void set (jint value, int dest, int table_index) {
26424269Speter    setRange(value, value, dest, table_index);
26524269Speter  }
26624269Speter  bool adjoin(jint value, int dest, int table_index) {
26724269Speter    return adjoinRange(value, value, dest, table_index);
26824269Speter  }
26924269Speter
27024269Speter  void print(ciEnv* env) {
27124269Speter    if (is_singleton())
27224269Speter      tty->print(" {%d}=>%d", lo(), dest());
27324269Speter    else if (lo() == min_jint)
27424269Speter      tty->print(" {..%d}=>%d", hi(), dest());
27524269Speter    else if (hi() == max_jint)
27624269Speter      tty->print(" {%d..}=>%d", lo(), dest());
27724269Speter    else
27824269Speter      tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
27924269Speter  }
28024269Speter};
28124269Speter
28224269Speter
28324269Speter//-------------------------------do_tableswitch--------------------------------
28424269Spetervoid Parse::do_tableswitch() {
28524269Speter  Node* lookup = pop();
28624269Speter
28724269Speter  // Get information about tableswitch
28824269Speter  int default_dest = iter().get_dest_table(0);
28924269Speter  int lo_index     = iter().get_int_table(1);
29024269Speter  int hi_index     = iter().get_int_table(2);
29124269Speter  int len          = hi_index - lo_index + 1;
29224269Speter
29324269Speter  if (len < 1) {
29424269Speter    // If this is a backward branch, add safepoint
29524269Speter    maybe_add_safepoint(default_dest);
29624269Speter    merge(default_dest);
29724269Speter    return;
29824269Speter  }
29924269Speter
30024269Speter  // generate decision tree, using trichotomy when possible
30124269Speter  int rnum = len+2;
30224269Speter  bool makes_backward_branch = false;
30324269Speter  SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
30424269Speter  int rp = -1;
30524269Speter  if (lo_index != min_jint) {
30624269Speter    ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
30724269Speter  }
30824269Speter  for (int j = 0; j < len; j++) {
30924269Speter    jint match_int = lo_index+j;
31024269Speter    int  dest      = iter().get_dest_table(j+3);
31124269Speter    makes_backward_branch |= (dest <= bci());
31224269Speter    int  table_index = method_data_update() ? j : NullTableIndex;
31324269Speter    if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
31424269Speter      ranges[++rp].set(match_int, dest, table_index);
31524269Speter    }
31624269Speter  }
31724269Speter  jint highest = lo_index+(len-1);
31824269Speter  assert(ranges[rp].hi() == highest, "");
31924269Speter  if (highest != max_jint
32024269Speter      && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
32124269Speter    ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
32224269Speter  }
32324269Speter  assert(rp < len+2, "not too many ranges");
32424269Speter
32524269Speter  // Safepoint in case if backward branch observed
32624269Speter  if( makes_backward_branch && UseLoopSafepoints )
32724269Speter    add_safepoint();
32824269Speter
32924269Speter  jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
33024269Speter}
33124269Speter
33224269Speter
33324269Speter//------------------------------do_lookupswitch--------------------------------
33424269Spetervoid Parse::do_lookupswitch() {
33524269Speter  Node *lookup = pop();         // lookup value
33624269Speter  // Get information about lookupswitch
33724269Speter  int default_dest = iter().get_dest_table(0);
33824269Speter  int len          = iter().get_int_table(1);
33924269Speter
34024269Speter  if (len < 1) {    // If this is a backward branch, add safepoint
34124269Speter    maybe_add_safepoint(default_dest);
34224269Speter    merge(default_dest);
34324269Speter    return;
34424269Speter  }
34524269Speter
34624269Speter  // generate decision tree, using trichotomy when possible
34724269Speter  jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
34824269Speter  {
34924269Speter    for( int j = 0; j < len; j++ ) {
35024269Speter      table[j+j+0] = iter().get_int_table(2+j+j);
35124269Speter      table[j+j+1] = iter().get_dest_table(2+j+j+1);
35224269Speter    }
35324269Speter    qsort( table, len, 2*sizeof(table[0]), jint_cmp );
35424269Speter  }
35524269Speter
35624269Speter  int rnum = len*2+1;
35724269Speter  bool makes_backward_branch = false;
35824269Speter  SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
35924269Speter  int rp = -1;
36024269Speter  for( int j = 0; j < len; j++ ) {
36124269Speter    jint match_int   = table[j+j+0];
36224269Speter    int  dest        = table[j+j+1];
36324269Speter    int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
36424269Speter    int  table_index = method_data_update() ? j : NullTableIndex;
36524269Speter    makes_backward_branch |= (dest <= bci());
36624269Speter    if( match_int != next_lo ) {
36724269Speter      ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
36824269Speter    }
36924269Speter    if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
37024269Speter      ranges[++rp].set(match_int, dest, table_index);
37124269Speter    }
37224269Speter  }
37324269Speter  jint highest = table[2*(len-1)];
37424269Speter  assert(ranges[rp].hi() == highest, "");
37524269Speter  if( highest != max_jint
37624269Speter      && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
37724269Speter    ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
37824269Speter  }
37924269Speter  assert(rp < rnum, "not too many ranges");
38024269Speter
38124269Speter  // Safepoint in case backward branch observed
38224269Speter  if( makes_backward_branch && UseLoopSafepoints )
38324269Speter    add_safepoint();
38424269Speter
38524269Speter  jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
38624269Speter}
38724269Speter
38824269Speter//----------------------------create_jump_tables-------------------------------
38924269Speterbool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
39024269Speter  // Are jumptables enabled
39124269Speter  if (!UseJumpTables)  return false;
39224269Speter
39324269Speter  // Are jumptables supported
39424269Speter  if (!Matcher::has_match_rule(Op_Jump))  return false;
39524269Speter
39624269Speter  // Don't make jump table if profiling
39724269Speter  if (method_data_update())  return false;
39824269Speter
39924269Speter  // Decide if a guard is needed to lop off big ranges at either (or
40024269Speter  // both) end(s) of the input set. We'll call this the default target
40124269Speter  // even though we can't be sure that it is the true "default".
40224269Speter
40324269Speter  bool needs_guard = false;
40424269Speter  int default_dest;
40524269Speter  int64 total_outlier_size = 0;
40624269Speter  int64 hi_size = ((int64)hi->hi()) - ((int64)hi->lo()) + 1;
40724269Speter  int64 lo_size = ((int64)lo->hi()) - ((int64)lo->lo()) + 1;
40824269Speter
40924269Speter  if (lo->dest() == hi->dest()) {
41024269Speter    total_outlier_size = hi_size + lo_size;
41124269Speter    default_dest = lo->dest();
41224269Speter  } else if (lo_size > hi_size) {
41324269Speter    total_outlier_size = lo_size;
41424269Speter    default_dest = lo->dest();
41524269Speter  } else {
41624269Speter    total_outlier_size = hi_size;
41724269Speter    default_dest = hi->dest();
41824269Speter  }
41924269Speter
42024269Speter  // If a guard test will eliminate very sparse end ranges, then
42124269Speter  // it is worth the cost of an extra jump.
42224269Speter  if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
42324269Speter    needs_guard = true;
42424269Speter    if (default_dest == lo->dest()) lo++;
42524269Speter    if (default_dest == hi->dest()) hi--;
42624269Speter  }
42724269Speter
42824269Speter  // Find the total number of cases and ranges
42924269Speter  int64 num_cases = ((int64)hi->hi()) - ((int64)lo->lo()) + 1;
43024269Speter  int num_range = hi - lo + 1;
43124269Speter
43224269Speter  // Don't create table if: too large, too small, or too sparse.
43324269Speter  if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
43424269Speter    return false;
43524269Speter  if (num_cases > (MaxJumpTableSparseness * num_range))
43624269Speter    return false;
43724269Speter
43824269Speter  // Normalize table lookups to zero
43924269Speter  int lowval = lo->lo();
44024269Speter  key_val = _gvn.transform( new (C, 3) SubINode(key_val, _gvn.intcon(lowval)) );
44124269Speter
44224269Speter  // Generate a guard to protect against input keyvals that aren't
44324269Speter  // in the switch domain.
44424269Speter  if (needs_guard) {
44524269Speter    Node*   size = _gvn.intcon(num_cases);
44624269Speter    Node*   cmp = _gvn.transform( new (C, 3) CmpUNode(key_val, size) );
44724269Speter    Node*   tst = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ge) );
44824269Speter    IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
44924269Speter    jump_if_true_fork(iff, default_dest, NullTableIndex);
45024269Speter  }
45124269Speter
45224269Speter  // Create an ideal node JumpTable that has projections
45324269Speter  // of all possible ranges for a switch statement
45424269Speter  // The key_val input must be converted to a pointer offset and scaled.
45524269Speter  // Compare Parse::array_addressing above.
45624269Speter#ifdef _LP64
45724269Speter  // Clean the 32-bit int into a real 64-bit offset.
45824269Speter  // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
45924269Speter  const TypeLong* lkeytype = TypeLong::make(CONST64(0), num_cases-1, Type::WidenMin);
46024269Speter  key_val       = _gvn.transform( new (C, 2) ConvI2LNode(key_val, lkeytype) );
46124269Speter#endif
46224269Speter  // Shift the value by wordsize so we have an index into the table, rather
46324269Speter  // than a switch value
46424269Speter  Node *shiftWord = _gvn.MakeConX(wordSize);
46524269Speter  key_val = _gvn.transform( new (C, 3) MulXNode( key_val, shiftWord));
46624269Speter
46724269Speter  // Create the JumpNode
46824269Speter  Node* jtn = _gvn.transform( new (C, 2) JumpNode(control(), key_val, num_cases) );
46924269Speter
47024269Speter  // These are the switch destinations hanging off the jumpnode
47124269Speter  int i = 0;
47224269Speter  for (SwitchRange* r = lo; r <= hi; r++) {
47324269Speter    for (int j = r->lo(); j <= r->hi(); j++, i++) {
47424269Speter      Node* input = _gvn.transform(new (C, 1) JumpProjNode(jtn, i, r->dest(), j - lowval));
47524269Speter      {
47624269Speter        PreserveJVMState pjvms(this);
47724269Speter        set_control(input);
47824269Speter        jump_if_always_fork(r->dest(), r->table_index());
47924269Speter      }
48024269Speter    }
48124269Speter  }
48224269Speter  assert(i == num_cases, "miscount of cases");
48324269Speter  stop_and_kill_map();  // no more uses for this JVMS
48424269Speter  return true;
48524269Speter}
48624269Speter
48724269Speter//----------------------------jump_switch_ranges-------------------------------
48824269Spetervoid Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
48924269Speter  Block* switch_block = block();
49024269Speter
49124269Speter  if (switch_depth == 0) {
49224269Speter    // Do special processing for the top-level call.
49324269Speter    assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
49424269Speter    assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
49524269Speter
49624269Speter    // Decrement pred-numbers for the unique set of nodes.
49724269Speter#ifdef ASSERT
49824269Speter    // Ensure that the block's successors are a (duplicate-free) set.
49924269Speter    int successors_counted = 0;  // block occurrences in [hi..lo]
50024269Speter    int unique_successors = switch_block->num_successors();
50124269Speter    for (int i = 0; i < unique_successors; i++) {
50224269Speter      Block* target = switch_block->successor_at(i);
50324269Speter
50424269Speter      // Check that the set of successors is the same in both places.
50524269Speter      int successors_found = 0;
50624269Speter      for (SwitchRange* p = lo; p <= hi; p++) {
50724269Speter        if (p->dest() == target->start())  successors_found++;
50824269Speter      }
50924269Speter      assert(successors_found > 0, "successor must be known");
51024269Speter      successors_counted += successors_found;
51124269Speter    }
51224269Speter    assert(successors_counted == (hi-lo)+1, "no unexpected successors");
51324269Speter#endif
51424269Speter
51524269Speter    // Maybe prune the inputs, based on the type of key_val.
51624269Speter    jint min_val = min_jint;
51724269Speter    jint max_val = max_jint;
51824269Speter    const TypeInt* ti = key_val->bottom_type()->isa_int();
51924269Speter    if (ti != NULL) {
52024269Speter      min_val = ti->_lo;
52124269Speter      max_val = ti->_hi;
52224269Speter      assert(min_val <= max_val, "invalid int type");
52324269Speter    }
52424269Speter    while (lo->hi() < min_val)  lo++;
52524269Speter    if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
52624269Speter    while (hi->lo() > max_val)  hi--;
52724269Speter    if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
52824269Speter  }
52924269Speter
53024269Speter#ifndef PRODUCT
53124269Speter  if (switch_depth == 0) {
532    _max_switch_depth = 0;
533    _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
534  }
535#endif
536
537  assert(lo <= hi, "must be a non-empty set of ranges");
538  if (lo == hi) {
539    jump_if_always_fork(lo->dest(), lo->table_index());
540  } else {
541    assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
542    assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
543
544    if (create_jump_tables(key_val, lo, hi)) return;
545
546    int nr = hi - lo + 1;
547
548    SwitchRange* mid = lo + nr/2;
549    // if there is an easy choice, pivot at a singleton:
550    if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
551
552    assert(lo < mid && mid <= hi, "good pivot choice");
553    assert(nr != 2 || mid == hi,   "should pick higher of 2");
554    assert(nr != 3 || mid == hi-1, "should pick middle of 3");
555
556    Node *test_val = _gvn.intcon(mid->lo());
557
558    if (mid->is_singleton()) {
559      IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
560      jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
561
562      // Special Case:  If there are exactly three ranges, and the high
563      // and low range each go to the same place, omit the "gt" test,
564      // since it will not discriminate anything.
565      bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
566      if (eq_test_only) {
567        assert(mid == hi-1, "");
568      }
569
570      // if there is a higher range, test for it and process it:
571      if (mid < hi && !eq_test_only) {
572        // two comparisons of same values--should enable 1 test for 2 branches
573        // Use BoolTest::le instead of BoolTest::gt
574        IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
575        Node   *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_le) );
576        Node   *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_le) );
577        { PreserveJVMState pjvms(this);
578          set_control(iffalse);
579          jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
580        }
581        set_control(iftrue);
582      }
583
584    } else {
585      // mid is a range, not a singleton, so treat mid..hi as a unit
586      IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
587
588      // if there is a higher range, test for it and process it:
589      if (mid == hi) {
590        jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
591      } else {
592        Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_ge) );
593        Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_ge) );
594        { PreserveJVMState pjvms(this);
595          set_control(iftrue);
596          jump_switch_ranges(key_val, mid, hi, switch_depth+1);
597        }
598        set_control(iffalse);
599      }
600    }
601
602    // in any case, process the lower range
603    jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
604  }
605
606  // Decrease pred_count for each successor after all is done.
607  if (switch_depth == 0) {
608    int unique_successors = switch_block->num_successors();
609    for (int i = 0; i < unique_successors; i++) {
610      Block* target = switch_block->successor_at(i);
611      // Throw away the pre-allocated path for each unique successor.
612      target->next_path_num();
613    }
614  }
615
616#ifndef PRODUCT
617  _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
618  if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
619    SwitchRange* r;
620    int nsing = 0;
621    for( r = lo; r <= hi; r++ ) {
622      if( r->is_singleton() )  nsing++;
623    }
624    tty->print(">>> ");
625    _method->print_short_name();
626    tty->print_cr(" switch decision tree");
627    tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
628                  hi-lo+1, nsing, _max_switch_depth, _est_switch_depth);
629    if (_max_switch_depth > _est_switch_depth) {
630      tty->print_cr("******** BAD SWITCH DEPTH ********");
631    }
632    tty->print("   ");
633    for( r = lo; r <= hi; r++ ) {
634      r->print(env());
635    }
636    tty->print_cr("");
637  }
638#endif
639}
640
641void Parse::modf() {
642  Node *f2 = pop();
643  Node *f1 = pop();
644  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
645                              CAST_FROM_FN_PTR(address, SharedRuntime::frem),
646                              "frem", NULL, //no memory effects
647                              f1, f2);
648  Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
649
650  push(res);
651}
652
653void Parse::modd() {
654  Node *d2 = pop_pair();
655  Node *d1 = pop_pair();
656  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
657                              CAST_FROM_FN_PTR(address, SharedRuntime::drem),
658                              "drem", NULL, //no memory effects
659                              d1, top(), d2, top());
660  Node* res_d   = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
661
662#ifdef ASSERT
663  Node* res_top = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 1));
664  assert(res_top == top(), "second value must be top");
665#endif
666
667  push_pair(res_d);
668}
669
670void Parse::l2f() {
671  Node* f2 = pop();
672  Node* f1 = pop();
673  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
674                              CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
675                              "l2f", NULL, //no memory effects
676                              f1, f2);
677  Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
678
679  push(res);
680}
681
682void Parse::do_irem() {
683  // Must keep both values on the expression-stack during null-check
684  do_null_check(peek(), T_INT);
685  // Compile-time detect of null-exception?
686  if (stopped())  return;
687
688  Node* b = pop();
689  Node* a = pop();
690
691  const Type *t = _gvn.type(b);
692  if (t != Type::TOP) {
693    const TypeInt *ti = t->is_int();
694    if (ti->is_con()) {
695      int divisor = ti->get_con();
696      // check for positive power of 2
697      if (divisor > 0 &&
698          (divisor & ~(divisor-1)) == divisor) {
699        // yes !
700        Node *mask = _gvn.intcon((divisor - 1));
701        // Sigh, must handle negative dividends
702        Node *zero = _gvn.intcon(0);
703        IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
704        Node *iff = _gvn.transform( new (C, 1) IfFalseNode(ifff) );
705        Node *ift = _gvn.transform( new (C, 1) IfTrueNode (ifff) );
706        Node *reg = jump_if_join(ift, iff);
707        Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
708        // Negative path; negate/and/negate
709        Node *neg = _gvn.transform( new (C, 3) SubINode(zero, a) );
710        Node *andn= _gvn.transform( new (C, 3) AndINode(neg, mask) );
711        Node *negn= _gvn.transform( new (C, 3) SubINode(zero, andn) );
712        phi->init_req(1, negn);
713        // Fast positive case
714        Node *andx = _gvn.transform( new (C, 3) AndINode(a, mask) );
715        phi->init_req(2, andx);
716        // Push the merge
717        push( _gvn.transform(phi) );
718        return;
719      }
720    }
721  }
722  // Default case
723  push( _gvn.transform( new (C, 3) ModINode(control(),a,b) ) );
724}
725
726// Handle jsr and jsr_w bytecode
727void Parse::do_jsr() {
728  assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
729
730  // Store information about current state, tagged with new _jsr_bci
731  int return_bci = iter().next_bci();
732  int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
733
734  // Update method data
735  profile_taken_branch(jsr_bci);
736
737  // The way we do things now, there is only one successor block
738  // for the jsr, because the target code is cloned by ciTypeFlow.
739  Block* target = successor_for_bci(jsr_bci);
740
741  // What got pushed?
742  const Type* ret_addr = target->peek();
743  assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
744
745  // Effect on jsr on stack
746  push(_gvn.makecon(ret_addr));
747
748  // Flow to the jsr.
749  merge(jsr_bci);
750}
751
752// Handle ret bytecode
753void Parse::do_ret() {
754  // Find to whom we return.
755#if 0 // %%%% MAKE THIS WORK
756  Node* con = local();
757  const TypePtr* tp = con->bottom_type()->isa_ptr();
758  assert(tp && tp->singleton(), "");
759  int return_bci = (int) tp->get_con();
760  merge(return_bci);
761#else
762  assert(block()->num_successors() == 1, "a ret can only go one place now");
763  Block* target = block()->successor_at(0);
764  assert(!target->is_ready(), "our arrival must be expected");
765  profile_ret(target->flow()->start());
766  int pnum = target->next_path_num();
767  merge_common(target, pnum);
768#endif
769}
770
771//--------------------------dynamic_branch_prediction--------------------------
772// Try to gather dynamic branch prediction behavior.  Return a probability
773// of the branch being taken and set the "cnt" field.  Returns a -1.0
774// if we need to use static prediction for some reason.
775float Parse::dynamic_branch_prediction(float &cnt) {
776  ResourceMark rm;
777
778  cnt  = COUNT_UNKNOWN;
779
780  // Use MethodData information if it is available
781  // FIXME: free the ProfileData structure
782  ciMethodData* methodData = method()->method_data();
783  if (!methodData->is_mature())  return PROB_UNKNOWN;
784  ciProfileData* data = methodData->bci_to_data(bci());
785  if (!data->is_JumpData())  return PROB_UNKNOWN;
786
787  // get taken and not taken values
788  int     taken = data->as_JumpData()->taken();
789  int not_taken = 0;
790  if (data->is_BranchData()) {
791    not_taken = data->as_BranchData()->not_taken();
792  }
793
794  // scale the counts to be commensurate with invocation counts:
795  taken = method()->scale_count(taken);
796  not_taken = method()->scale_count(not_taken);
797
798  // Give up if too few counts to be meaningful
799  if (taken + not_taken < 40) {
800    if (C->log() != NULL) {
801      C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
802    }
803    return PROB_UNKNOWN;
804  }
805
806  // Compute frequency that we arrive here
807  int sum = taken + not_taken;
808  // Adjust, if this block is a cloned private block but the
809  // Jump counts are shared.  Taken the private counts for
810  // just this path instead of the shared counts.
811  if( block()->count() > 0 )
812    sum = block()->count();
813  cnt = (float)sum / (float)FreqCountInvocations;
814
815  // Pin probability to sane limits
816  float prob;
817  if( !taken )
818    prob = (0+PROB_MIN) / 2;
819  else if( !not_taken )
820    prob = (1+PROB_MAX) / 2;
821  else {                         // Compute probability of true path
822    prob = (float)taken / (float)(taken + not_taken);
823    if (prob > PROB_MAX)  prob = PROB_MAX;
824    if (prob < PROB_MIN)   prob = PROB_MIN;
825  }
826
827  assert((cnt > 0.0f) && (prob > 0.0f),
828         "Bad frequency assignment in if");
829
830  if (C->log() != NULL) {
831    const char* prob_str = NULL;
832    if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
833    if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
834    char prob_str_buf[30];
835    if (prob_str == NULL) {
836      sprintf(prob_str_buf, "%g", prob);
837      prob_str = prob_str_buf;
838    }
839    C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'",
840                   iter().get_dest(), taken, not_taken, cnt, prob_str);
841  }
842  return prob;
843}
844
845//-----------------------------branch_prediction-------------------------------
846float Parse::branch_prediction(float& cnt,
847                               BoolTest::mask btest,
848                               int target_bci) {
849  float prob = dynamic_branch_prediction(cnt);
850  // If prob is unknown, switch to static prediction
851  if (prob != PROB_UNKNOWN)  return prob;
852
853  prob = PROB_FAIR;                   // Set default value
854  if (btest == BoolTest::eq)          // Exactly equal test?
855    prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
856  else if (btest == BoolTest::ne)
857    prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
858
859  // If this is a conditional test guarding a backwards branch,
860  // assume its a loop-back edge.  Make it a likely taken branch.
861  if (target_bci < bci()) {
862    if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
863      // Since it's an OSR, we probably have profile data, but since
864      // branch_prediction returned PROB_UNKNOWN, the counts are too small.
865      // Let's make a special check here for completely zero counts.
866      ciMethodData* methodData = method()->method_data();
867      if (!methodData->is_empty()) {
868        ciProfileData* data = methodData->bci_to_data(bci());
869        // Only stop for truly zero counts, which mean an unknown part
870        // of the OSR-ed method, and we want to deopt to gather more stats.
871        // If you have ANY counts, then this loop is simply 'cold' relative
872        // to the OSR loop.
873        if (data->as_BranchData()->taken() +
874            data->as_BranchData()->not_taken() == 0 ) {
875          // This is the only way to return PROB_UNKNOWN:
876          return PROB_UNKNOWN;
877        }
878      }
879    }
880    prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
881  }
882
883  assert(prob != PROB_UNKNOWN, "must have some guess at this point");
884  return prob;
885}
886
887// The magic constants are chosen so as to match the output of
888// branch_prediction() when the profile reports a zero taken count.
889// It is important to distinguish zero counts unambiguously, because
890// some branches (e.g., _213_javac.Assembler.eliminate) validly produce
891// very small but nonzero probabilities, which if confused with zero
892// counts would keep the program recompiling indefinitely.
893bool Parse::seems_never_taken(float prob) {
894  return prob < PROB_MIN;
895}
896
897// True if the comparison seems to be the kind that will not change its
898// statistics from true to false.  See comments in adjust_map_after_if.
899// This question is only asked along paths which are already
900// classifed as untaken (by seems_never_taken), so really,
901// if a path is never taken, its controlling comparison is
902// already acting in a stable fashion.  If the comparison
903// seems stable, we will put an expensive uncommon trap
904// on the untaken path.  To be conservative, and to allow
905// partially executed counted loops to be compiled fully,
906// we will plant uncommon traps only after pointer comparisons.
907bool Parse::seems_stable_comparison(BoolTest::mask btest, Node* cmp) {
908  for (int depth = 4; depth > 0; depth--) {
909    // The following switch can find CmpP here over half the time for
910    // dynamic language code rich with type tests.
911    // Code using counted loops or array manipulations (typical
912    // of benchmarks) will have many (>80%) CmpI instructions.
913    switch (cmp->Opcode()) {
914    case Op_CmpP:
915      // A never-taken null check looks like CmpP/BoolTest::eq.
916      // These certainly should be closed off as uncommon traps.
917      if (btest == BoolTest::eq)
918        return true;
919      // A never-failed type check looks like CmpP/BoolTest::ne.
920      // Let's put traps on those, too, so that we don't have to compile
921      // unused paths with indeterminate dynamic type information.
922      if (ProfileDynamicTypes)
923        return true;
924      return false;
925
926    case Op_CmpI:
927      // A small minority (< 10%) of CmpP are masked as CmpI,
928      // as if by boolean conversion ((p == q? 1: 0) != 0).
929      // Detect that here, even if it hasn't optimized away yet.
930      // Specifically, this covers the 'instanceof' operator.
931      if (btest == BoolTest::ne || btest == BoolTest::eq) {
932        if (_gvn.type(cmp->in(2))->singleton() &&
933            cmp->in(1)->is_Phi()) {
934          PhiNode* phi = cmp->in(1)->as_Phi();
935          int true_path = phi->is_diamond_phi();
936          if (true_path > 0 &&
937              _gvn.type(phi->in(1))->singleton() &&
938              _gvn.type(phi->in(2))->singleton()) {
939            // phi->region->if_proj->ifnode->bool->cmp
940            BoolNode* bol = phi->in(0)->in(1)->in(0)->in(1)->as_Bool();
941            btest = bol->_test._test;
942            cmp = bol->in(1);
943            continue;
944          }
945        }
946      }
947      return false;
948    }
949  }
950  return false;
951}
952
953//-------------------------------repush_if_args--------------------------------
954// Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
955inline int Parse::repush_if_args() {
956#ifndef PRODUCT
957  if (PrintOpto && WizardMode) {
958    tty->print("defending against excessive implicit null exceptions on %s @%d in ",
959               Bytecodes::name(iter().cur_bc()), iter().cur_bci());
960    method()->print_name(); tty->cr();
961  }
962#endif
963  int bc_depth = - Bytecodes::depth(iter().cur_bc());
964  assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
965  DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
966  assert(argument(0) != NULL, "must exist");
967  assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
968  _sp += bc_depth;
969  return bc_depth;
970}
971
972//----------------------------------do_ifnull----------------------------------
973void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
974  int target_bci = iter().get_dest();
975
976  Block* branch_block = successor_for_bci(target_bci);
977  Block* next_block   = successor_for_bci(iter().next_bci());
978
979  float cnt;
980  float prob = branch_prediction(cnt, btest, target_bci);
981  if (prob == PROB_UNKNOWN) {
982    // (An earlier version of do_ifnull omitted this trap for OSR methods.)
983#ifndef PRODUCT
984    if (PrintOpto && Verbose)
985      tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
986#endif
987    repush_if_args(); // to gather stats on loop
988    // We need to mark this branch as taken so that if we recompile we will
989    // see that it is possible. In the tiered system the interpreter doesn't
990    // do profiling and by the time we get to the lower tier from the interpreter
991    // the path may be cold again. Make sure it doesn't look untaken
992    profile_taken_branch(target_bci, !ProfileInterpreter);
993    uncommon_trap(Deoptimization::Reason_unreached,
994                  Deoptimization::Action_reinterpret,
995                  NULL, "cold");
996    if (EliminateAutoBox) {
997      // Mark the successor blocks as parsed
998      branch_block->next_path_num();
999      next_block->next_path_num();
1000    }
1001    return;
1002  }
1003
1004  explicit_null_checks_inserted++;
1005
1006  // Generate real control flow
1007  Node   *tst = _gvn.transform( new (C, 2) BoolNode( c, btest ) );
1008
1009  // Sanity check the probability value
1010  assert(prob > 0.0f,"Bad probability in Parser");
1011 // Need xform to put node in hash table
1012  IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
1013  assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1014  // True branch
1015  { PreserveJVMState pjvms(this);
1016    Node* iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
1017    set_control(iftrue);
1018
1019    if (stopped()) {            // Path is dead?
1020      explicit_null_checks_elided++;
1021      if (EliminateAutoBox) {
1022        // Mark the successor block as parsed
1023        branch_block->next_path_num();
1024      }
1025    } else {                    // Path is live.
1026      // Update method data
1027      profile_taken_branch(target_bci);
1028      adjust_map_after_if(btest, c, prob, branch_block, next_block);
1029      if (!stopped()) {
1030        merge(target_bci);
1031      }
1032    }
1033  }
1034
1035  // False branch
1036  Node* iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
1037  set_control(iffalse);
1038
1039  if (stopped()) {              // Path is dead?
1040    explicit_null_checks_elided++;
1041    if (EliminateAutoBox) {
1042      // Mark the successor block as parsed
1043      next_block->next_path_num();
1044    }
1045  } else  {                     // Path is live.
1046    // Update method data
1047    profile_not_taken_branch();
1048    adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
1049                        next_block, branch_block);
1050  }
1051}
1052
1053//------------------------------------do_if------------------------------------
1054void Parse::do_if(BoolTest::mask btest, Node* c) {
1055  int target_bci = iter().get_dest();
1056
1057  Block* branch_block = successor_for_bci(target_bci);
1058  Block* next_block   = successor_for_bci(iter().next_bci());
1059
1060  float cnt;
1061  float prob = branch_prediction(cnt, btest, target_bci);
1062  float untaken_prob = 1.0 - prob;
1063
1064  if (prob == PROB_UNKNOWN) {
1065#ifndef PRODUCT
1066    if (PrintOpto && Verbose)
1067      tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
1068#endif
1069    repush_if_args(); // to gather stats on loop
1070    // We need to mark this branch as taken so that if we recompile we will
1071    // see that it is possible. In the tiered system the interpreter doesn't
1072    // do profiling and by the time we get to the lower tier from the interpreter
1073    // the path may be cold again. Make sure it doesn't look untaken
1074    profile_taken_branch(target_bci, !ProfileInterpreter);
1075    uncommon_trap(Deoptimization::Reason_unreached,
1076                  Deoptimization::Action_reinterpret,
1077                  NULL, "cold");
1078    if (EliminateAutoBox) {
1079      // Mark the successor blocks as parsed
1080      branch_block->next_path_num();
1081      next_block->next_path_num();
1082    }
1083    return;
1084  }
1085
1086  // Sanity check the probability value
1087  assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
1088
1089  bool taken_if_true = true;
1090  // Convert BoolTest to canonical form:
1091  if (!BoolTest(btest).is_canonical()) {
1092    btest         = BoolTest(btest).negate();
1093    taken_if_true = false;
1094    // prob is NOT updated here; it remains the probability of the taken
1095    // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
1096  }
1097  assert(btest != BoolTest::eq, "!= is the only canonical exact test");
1098
1099  Node* tst0 = new (C, 2) BoolNode(c, btest);
1100  Node* tst = _gvn.transform(tst0);
1101  BoolTest::mask taken_btest   = BoolTest::illegal;
1102  BoolTest::mask untaken_btest = BoolTest::illegal;
1103
1104  if (tst->is_Bool()) {
1105    // Refresh c from the transformed bool node, since it may be
1106    // simpler than the original c.  Also re-canonicalize btest.
1107    // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
1108    // That can arise from statements like: if (x instanceof C) ...
1109    if (tst != tst0) {
1110      // Canonicalize one more time since transform can change it.
1111      btest = tst->as_Bool()->_test._test;
1112      if (!BoolTest(btest).is_canonical()) {
1113        // Reverse edges one more time...
1114        tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
1115        btest = tst->as_Bool()->_test._test;
1116        assert(BoolTest(btest).is_canonical(), "sanity");
1117        taken_if_true = !taken_if_true;
1118      }
1119      c = tst->in(1);
1120    }
1121    BoolTest::mask neg_btest = BoolTest(btest).negate();
1122    taken_btest   = taken_if_true ?     btest : neg_btest;
1123    untaken_btest = taken_if_true ? neg_btest :     btest;
1124  }
1125
1126  // Generate real control flow
1127  float true_prob = (taken_if_true ? prob : untaken_prob);
1128  IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1129  assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1130  Node* taken_branch   = new (C, 1) IfTrueNode(iff);
1131  Node* untaken_branch = new (C, 1) IfFalseNode(iff);
1132  if (!taken_if_true) {  // Finish conversion to canonical form
1133    Node* tmp      = taken_branch;
1134    taken_branch   = untaken_branch;
1135    untaken_branch = tmp;
1136  }
1137
1138  // Branch is taken:
1139  { PreserveJVMState pjvms(this);
1140    taken_branch = _gvn.transform(taken_branch);
1141    set_control(taken_branch);
1142
1143    if (stopped()) {
1144      if (EliminateAutoBox) {
1145        // Mark the successor block as parsed
1146        branch_block->next_path_num();
1147      }
1148    } else {
1149      // Update method data
1150      profile_taken_branch(target_bci);
1151      adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
1152      if (!stopped()) {
1153        merge(target_bci);
1154      }
1155    }
1156  }
1157
1158  untaken_branch = _gvn.transform(untaken_branch);
1159  set_control(untaken_branch);
1160
1161  // Branch not taken.
1162  if (stopped()) {
1163    if (EliminateAutoBox) {
1164      // Mark the successor block as parsed
1165      next_block->next_path_num();
1166    }
1167  } else {
1168    // Update method data
1169    profile_not_taken_branch();
1170    adjust_map_after_if(untaken_btest, c, untaken_prob,
1171                        next_block, branch_block);
1172  }
1173}
1174
1175//----------------------------adjust_map_after_if------------------------------
1176// Adjust the JVM state to reflect the result of taking this path.
1177// Basically, it means inspecting the CmpNode controlling this
1178// branch, seeing how it constrains a tested value, and then
1179// deciding if it's worth our while to encode this constraint
1180// as graph nodes in the current abstract interpretation map.
1181void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
1182                                Block* path, Block* other_path) {
1183  if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
1184    return;                             // nothing to do
1185
1186  bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
1187
1188  if (seems_never_taken(prob) && seems_stable_comparison(btest, c)) {
1189    // If this might possibly turn into an implicit null check,
1190    // and the null has never yet been seen, we need to generate
1191    // an uncommon trap, so as to recompile instead of suffering
1192    // with very slow branches.  (We'll get the slow branches if
1193    // the program ever changes phase and starts seeing nulls here.)
1194    //
1195    // We do not inspect for a null constant, since a node may
1196    // optimize to 'null' later on.
1197    //
1198    // Null checks, and other tests which expect inequality,
1199    // show btest == BoolTest::eq along the non-taken branch.
1200    // On the other hand, type tests, must-be-null tests,
1201    // and other tests which expect pointer equality,
1202    // show btest == BoolTest::ne along the non-taken branch.
1203    // We prune both types of branches if they look unused.
1204    repush_if_args();
1205    // We need to mark this branch as taken so that if we recompile we will
1206    // see that it is possible. In the tiered system the interpreter doesn't
1207    // do profiling and by the time we get to the lower tier from the interpreter
1208    // the path may be cold again. Make sure it doesn't look untaken
1209    if (is_fallthrough) {
1210      profile_not_taken_branch(!ProfileInterpreter);
1211    } else {
1212      profile_taken_branch(iter().get_dest(), !ProfileInterpreter);
1213    }
1214    uncommon_trap(Deoptimization::Reason_unreached,
1215                  Deoptimization::Action_reinterpret,
1216                  NULL,
1217                  (is_fallthrough ? "taken always" : "taken never"));
1218    return;
1219  }
1220
1221  Node* val = c->in(1);
1222  Node* con = c->in(2);
1223  const Type* tcon = _gvn.type(con);
1224  const Type* tval = _gvn.type(val);
1225  bool have_con = tcon->singleton();
1226  if (tval->singleton()) {
1227    if (!have_con) {
1228      // Swap, so constant is in con.
1229      con  = val;
1230      tcon = tval;
1231      val  = c->in(2);
1232      tval = _gvn.type(val);
1233      btest = BoolTest(btest).commute();
1234      have_con = true;
1235    } else {
1236      // Do we have two constants?  Then leave well enough alone.
1237      have_con = false;
1238    }
1239  }
1240  if (!have_con)                        // remaining adjustments need a con
1241    return;
1242
1243
1244  int val_in_map = map()->find_edge(val);
1245  if (val_in_map < 0)  return;          // replace_in_map would be useless
1246  {
1247    JVMState* jvms = this->jvms();
1248    if (!(jvms->is_loc(val_in_map) ||
1249          jvms->is_stk(val_in_map)))
1250      return;                           // again, it would be useless
1251  }
1252
1253  // Check for a comparison to a constant, and "know" that the compared
1254  // value is constrained on this path.
1255  assert(tcon->singleton(), "");
1256  ConstraintCastNode* ccast = NULL;
1257  Node* cast = NULL;
1258
1259  switch (btest) {
1260  case BoolTest::eq:                    // Constant test?
1261    {
1262      const Type* tboth = tcon->join(tval);
1263      if (tboth == tval)  break;        // Nothing to gain.
1264      if (tcon->isa_int()) {
1265        ccast = new (C, 2) CastIINode(val, tboth);
1266      } else if (tcon == TypePtr::NULL_PTR) {
1267        // Cast to null, but keep the pointer identity temporarily live.
1268        ccast = new (C, 2) CastPPNode(val, tboth);
1269      } else {
1270        const TypeF* tf = tcon->isa_float_constant();
1271        const TypeD* td = tcon->isa_double_constant();
1272        // Exclude tests vs float/double 0 as these could be
1273        // either +0 or -0.  Just because you are equal to +0
1274        // doesn't mean you ARE +0!
1275        if ((!tf || tf->_f != 0.0) &&
1276            (!td || td->_d != 0.0))
1277          cast = con;                   // Replace non-constant val by con.
1278      }
1279    }
1280    break;
1281
1282  case BoolTest::ne:
1283    if (tcon == TypePtr::NULL_PTR) {
1284      cast = cast_not_null(val, false);
1285    }
1286    break;
1287
1288  default:
1289    // (At this point we could record int range types with CastII.)
1290    break;
1291  }
1292
1293  if (ccast != NULL) {
1294    const Type* tcc = ccast->as_Type()->type();
1295    assert(tcc != tval && tcc->higher_equal(tval), "must improve");
1296    // Delay transform() call to allow recovery of pre-cast value
1297    // at the control merge.
1298    ccast->set_req(0, control());
1299    _gvn.set_type_bottom(ccast);
1300    record_for_igvn(ccast);
1301    cast = ccast;
1302  }
1303
1304  if (cast != NULL) {                   // Here's the payoff.
1305    replace_in_map(val, cast);
1306  }
1307}
1308
1309
1310//------------------------------do_one_bytecode--------------------------------
1311// Parse this bytecode, and alter the Parsers JVM->Node mapping
1312void Parse::do_one_bytecode() {
1313  Node *a, *b, *c, *d;          // Handy temps
1314  BoolTest::mask btest;
1315  int i;
1316
1317  assert(!has_exceptions(), "bytecode entry state must be clear of throws");
1318
1319  if (C->check_node_count(NodeLimitFudgeFactor * 5,
1320                          "out of nodes parsing method")) {
1321    return;
1322  }
1323
1324#ifdef ASSERT
1325  // for setting breakpoints
1326  if (TraceOptoParse) {
1327    tty->print(" @");
1328    dump_bci(bci());
1329  }
1330#endif
1331
1332  switch (bc()) {
1333  case Bytecodes::_nop:
1334    // do nothing
1335    break;
1336  case Bytecodes::_lconst_0:
1337    push_pair(longcon(0));
1338    break;
1339
1340  case Bytecodes::_lconst_1:
1341    push_pair(longcon(1));
1342    break;
1343
1344  case Bytecodes::_fconst_0:
1345    push(zerocon(T_FLOAT));
1346    break;
1347
1348  case Bytecodes::_fconst_1:
1349    push(makecon(TypeF::ONE));
1350    break;
1351
1352  case Bytecodes::_fconst_2:
1353    push(makecon(TypeF::make(2.0f)));
1354    break;
1355
1356  case Bytecodes::_dconst_0:
1357    push_pair(zerocon(T_DOUBLE));
1358    break;
1359
1360  case Bytecodes::_dconst_1:
1361    push_pair(makecon(TypeD::ONE));
1362    break;
1363
1364  case Bytecodes::_iconst_m1:push(intcon(-1)); break;
1365  case Bytecodes::_iconst_0: push(intcon( 0)); break;
1366  case Bytecodes::_iconst_1: push(intcon( 1)); break;
1367  case Bytecodes::_iconst_2: push(intcon( 2)); break;
1368  case Bytecodes::_iconst_3: push(intcon( 3)); break;
1369  case Bytecodes::_iconst_4: push(intcon( 4)); break;
1370  case Bytecodes::_iconst_5: push(intcon( 5)); break;
1371  case Bytecodes::_bipush:   push(intcon(iter().get_constant_u1())); break;
1372  case Bytecodes::_sipush:   push(intcon(iter().get_constant_u2())); break;
1373  case Bytecodes::_aconst_null: push(null());  break;
1374  case Bytecodes::_ldc:
1375  case Bytecodes::_ldc_w:
1376  case Bytecodes::_ldc2_w:
1377    // If the constant is unresolved, run this BC once in the interpreter.
1378    {
1379      ciConstant constant = iter().get_constant();
1380      if (constant.basic_type() == T_OBJECT &&
1381          !constant.as_object()->is_loaded()) {
1382        int index = iter().get_constant_pool_index();
1383        constantTag tag = iter().get_constant_pool_tag(index);
1384        uncommon_trap(Deoptimization::make_trap_request
1385                      (Deoptimization::Reason_unloaded,
1386                       Deoptimization::Action_reinterpret,
1387                       index),
1388                      NULL, tag.internal_name());
1389        break;
1390      }
1391      assert(constant.basic_type() != T_OBJECT || !constant.as_object()->is_klass(),
1392             "must be java_mirror of klass");
1393      bool pushed = push_constant(constant, true);
1394      guarantee(pushed, "must be possible to push this constant");
1395    }
1396
1397    break;
1398
1399  case Bytecodes::_aload_0:
1400    push( local(0) );
1401    break;
1402  case Bytecodes::_aload_1:
1403    push( local(1) );
1404    break;
1405  case Bytecodes::_aload_2:
1406    push( local(2) );
1407    break;
1408  case Bytecodes::_aload_3:
1409    push( local(3) );
1410    break;
1411  case Bytecodes::_aload:
1412    push( local(iter().get_index()) );
1413    break;
1414
1415  case Bytecodes::_fload_0:
1416  case Bytecodes::_iload_0:
1417    push( local(0) );
1418    break;
1419  case Bytecodes::_fload_1:
1420  case Bytecodes::_iload_1:
1421    push( local(1) );
1422    break;
1423  case Bytecodes::_fload_2:
1424  case Bytecodes::_iload_2:
1425    push( local(2) );
1426    break;
1427  case Bytecodes::_fload_3:
1428  case Bytecodes::_iload_3:
1429    push( local(3) );
1430    break;
1431  case Bytecodes::_fload:
1432  case Bytecodes::_iload:
1433    push( local(iter().get_index()) );
1434    break;
1435  case Bytecodes::_lload_0:
1436    push_pair_local( 0 );
1437    break;
1438  case Bytecodes::_lload_1:
1439    push_pair_local( 1 );
1440    break;
1441  case Bytecodes::_lload_2:
1442    push_pair_local( 2 );
1443    break;
1444  case Bytecodes::_lload_3:
1445    push_pair_local( 3 );
1446    break;
1447  case Bytecodes::_lload:
1448    push_pair_local( iter().get_index() );
1449    break;
1450
1451  case Bytecodes::_dload_0:
1452    push_pair_local(0);
1453    break;
1454  case Bytecodes::_dload_1:
1455    push_pair_local(1);
1456    break;
1457  case Bytecodes::_dload_2:
1458    push_pair_local(2);
1459    break;
1460  case Bytecodes::_dload_3:
1461    push_pair_local(3);
1462    break;
1463  case Bytecodes::_dload:
1464    push_pair_local(iter().get_index());
1465    break;
1466  case Bytecodes::_fstore_0:
1467  case Bytecodes::_istore_0:
1468  case Bytecodes::_astore_0:
1469    set_local( 0, pop() );
1470    break;
1471  case Bytecodes::_fstore_1:
1472  case Bytecodes::_istore_1:
1473  case Bytecodes::_astore_1:
1474    set_local( 1, pop() );
1475    break;
1476  case Bytecodes::_fstore_2:
1477  case Bytecodes::_istore_2:
1478  case Bytecodes::_astore_2:
1479    set_local( 2, pop() );
1480    break;
1481  case Bytecodes::_fstore_3:
1482  case Bytecodes::_istore_3:
1483  case Bytecodes::_astore_3:
1484    set_local( 3, pop() );
1485    break;
1486  case Bytecodes::_fstore:
1487  case Bytecodes::_istore:
1488  case Bytecodes::_astore:
1489    set_local( iter().get_index(), pop() );
1490    break;
1491  // long stores
1492  case Bytecodes::_lstore_0:
1493    set_pair_local( 0, pop_pair() );
1494    break;
1495  case Bytecodes::_lstore_1:
1496    set_pair_local( 1, pop_pair() );
1497    break;
1498  case Bytecodes::_lstore_2:
1499    set_pair_local( 2, pop_pair() );
1500    break;
1501  case Bytecodes::_lstore_3:
1502    set_pair_local( 3, pop_pair() );
1503    break;
1504  case Bytecodes::_lstore:
1505    set_pair_local( iter().get_index(), pop_pair() );
1506    break;
1507
1508  // double stores
1509  case Bytecodes::_dstore_0:
1510    set_pair_local( 0, dstore_rounding(pop_pair()) );
1511    break;
1512  case Bytecodes::_dstore_1:
1513    set_pair_local( 1, dstore_rounding(pop_pair()) );
1514    break;
1515  case Bytecodes::_dstore_2:
1516    set_pair_local( 2, dstore_rounding(pop_pair()) );
1517    break;
1518  case Bytecodes::_dstore_3:
1519    set_pair_local( 3, dstore_rounding(pop_pair()) );
1520    break;
1521  case Bytecodes::_dstore:
1522    set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
1523    break;
1524
1525  case Bytecodes::_pop:  _sp -= 1;   break;
1526  case Bytecodes::_pop2: _sp -= 2;   break;
1527  case Bytecodes::_swap:
1528    a = pop();
1529    b = pop();
1530    push(a);
1531    push(b);
1532    break;
1533  case Bytecodes::_dup:
1534    a = pop();
1535    push(a);
1536    push(a);
1537    break;
1538  case Bytecodes::_dup_x1:
1539    a = pop();
1540    b = pop();
1541    push( a );
1542    push( b );
1543    push( a );
1544    break;
1545  case Bytecodes::_dup_x2:
1546    a = pop();
1547    b = pop();
1548    c = pop();
1549    push( a );
1550    push( c );
1551    push( b );
1552    push( a );
1553    break;
1554  case Bytecodes::_dup2:
1555    a = pop();
1556    b = pop();
1557    push( b );
1558    push( a );
1559    push( b );
1560    push( a );
1561    break;
1562
1563  case Bytecodes::_dup2_x1:
1564    // before: .. c, b, a
1565    // after:  .. b, a, c, b, a
1566    // not tested
1567    a = pop();
1568    b = pop();
1569    c = pop();
1570    push( b );
1571    push( a );
1572    push( c );
1573    push( b );
1574    push( a );
1575    break;
1576  case Bytecodes::_dup2_x2:
1577    // before: .. d, c, b, a
1578    // after:  .. b, a, d, c, b, a
1579    // not tested
1580    a = pop();
1581    b = pop();
1582    c = pop();
1583    d = pop();
1584    push( b );
1585    push( a );
1586    push( d );
1587    push( c );
1588    push( b );
1589    push( a );
1590    break;
1591
1592  case Bytecodes::_arraylength: {
1593    // Must do null-check with value on expression stack
1594    Node *ary = do_null_check(peek(), T_ARRAY);
1595    // Compile-time detect of null-exception?
1596    if (stopped())  return;
1597    a = pop();
1598    push(load_array_length(a));
1599    break;
1600  }
1601
1602  case Bytecodes::_baload: array_load(T_BYTE);   break;
1603  case Bytecodes::_caload: array_load(T_CHAR);   break;
1604  case Bytecodes::_iaload: array_load(T_INT);    break;
1605  case Bytecodes::_saload: array_load(T_SHORT);  break;
1606  case Bytecodes::_faload: array_load(T_FLOAT);  break;
1607  case Bytecodes::_aaload: array_load(T_OBJECT); break;
1608  case Bytecodes::_laload: {
1609    a = array_addressing(T_LONG, 0);
1610    if (stopped())  return;     // guaranteed null or range check
1611    _sp -= 2;                   // Pop array and index
1612    push_pair( make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS));
1613    break;
1614  }
1615  case Bytecodes::_daload: {
1616    a = array_addressing(T_DOUBLE, 0);
1617    if (stopped())  return;     // guaranteed null or range check
1618    _sp -= 2;                   // Pop array and index
1619    push_pair( make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES));
1620    break;
1621  }
1622  case Bytecodes::_bastore: array_store(T_BYTE);  break;
1623  case Bytecodes::_castore: array_store(T_CHAR);  break;
1624  case Bytecodes::_iastore: array_store(T_INT);   break;
1625  case Bytecodes::_sastore: array_store(T_SHORT); break;
1626  case Bytecodes::_fastore: array_store(T_FLOAT); break;
1627  case Bytecodes::_aastore: {
1628    d = array_addressing(T_OBJECT, 1);
1629    if (stopped())  return;     // guaranteed null or range check
1630    array_store_check();
1631    c = pop();                  // Oop to store
1632    b = pop();                  // index (already used)
1633    a = pop();                  // the array itself
1634    const TypeOopPtr* elemtype  = _gvn.type(a)->is_aryptr()->elem()->make_oopptr();
1635    const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
1636    Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT);
1637    break;
1638  }
1639  case Bytecodes::_lastore: {
1640    a = array_addressing(T_LONG, 2);
1641    if (stopped())  return;     // guaranteed null or range check
1642    c = pop_pair();
1643    _sp -= 2;                   // Pop array and index
1644    store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS);
1645    break;
1646  }
1647  case Bytecodes::_dastore: {
1648    a = array_addressing(T_DOUBLE, 2);
1649    if (stopped())  return;     // guaranteed null or range check
1650    c = pop_pair();
1651    _sp -= 2;                   // Pop array and index
1652    c = dstore_rounding(c);
1653    store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES);
1654    break;
1655  }
1656  case Bytecodes::_getfield:
1657    do_getfield();
1658    break;
1659
1660  case Bytecodes::_getstatic:
1661    do_getstatic();
1662    break;
1663
1664  case Bytecodes::_putfield:
1665    do_putfield();
1666    break;
1667
1668  case Bytecodes::_putstatic:
1669    do_putstatic();
1670    break;
1671
1672  case Bytecodes::_irem:
1673    do_irem();
1674    break;
1675  case Bytecodes::_idiv:
1676    // Must keep both values on the expression-stack during null-check
1677    do_null_check(peek(), T_INT);
1678    // Compile-time detect of null-exception?
1679    if (stopped())  return;
1680    b = pop();
1681    a = pop();
1682    push( _gvn.transform( new (C, 3) DivINode(control(),a,b) ) );
1683    break;
1684  case Bytecodes::_imul:
1685    b = pop(); a = pop();
1686    push( _gvn.transform( new (C, 3) MulINode(a,b) ) );
1687    break;
1688  case Bytecodes::_iadd:
1689    b = pop(); a = pop();
1690    push( _gvn.transform( new (C, 3) AddINode(a,b) ) );
1691    break;
1692  case Bytecodes::_ineg:
1693    a = pop();
1694    push( _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),a)) );
1695    break;
1696  case Bytecodes::_isub:
1697    b = pop(); a = pop();
1698    push( _gvn.transform( new (C, 3) SubINode(a,b) ) );
1699    break;
1700  case Bytecodes::_iand:
1701    b = pop(); a = pop();
1702    push( _gvn.transform( new (C, 3) AndINode(a,b) ) );
1703    break;
1704  case Bytecodes::_ior:
1705    b = pop(); a = pop();
1706    push( _gvn.transform( new (C, 3) OrINode(a,b) ) );
1707    break;
1708  case Bytecodes::_ixor:
1709    b = pop(); a = pop();
1710    push( _gvn.transform( new (C, 3) XorINode(a,b) ) );
1711    break;
1712  case Bytecodes::_ishl:
1713    b = pop(); a = pop();
1714    push( _gvn.transform( new (C, 3) LShiftINode(a,b) ) );
1715    break;
1716  case Bytecodes::_ishr:
1717    b = pop(); a = pop();
1718    push( _gvn.transform( new (C, 3) RShiftINode(a,b) ) );
1719    break;
1720  case Bytecodes::_iushr:
1721    b = pop(); a = pop();
1722    push( _gvn.transform( new (C, 3) URShiftINode(a,b) ) );
1723    break;
1724
1725  case Bytecodes::_fneg:
1726    a = pop();
1727    b = _gvn.transform(new (C, 2) NegFNode (a));
1728    push(b);
1729    break;
1730
1731  case Bytecodes::_fsub:
1732    b = pop();
1733    a = pop();
1734    c = _gvn.transform( new (C, 3) SubFNode(a,b) );
1735    d = precision_rounding(c);
1736    push( d );
1737    break;
1738
1739  case Bytecodes::_fadd:
1740    b = pop();
1741    a = pop();
1742    c = _gvn.transform( new (C, 3) AddFNode(a,b) );
1743    d = precision_rounding(c);
1744    push( d );
1745    break;
1746
1747  case Bytecodes::_fmul:
1748    b = pop();
1749    a = pop();
1750    c = _gvn.transform( new (C, 3) MulFNode(a,b) );
1751    d = precision_rounding(c);
1752    push( d );
1753    break;
1754
1755  case Bytecodes::_fdiv:
1756    b = pop();
1757    a = pop();
1758    c = _gvn.transform( new (C, 3) DivFNode(0,a,b) );
1759    d = precision_rounding(c);
1760    push( d );
1761    break;
1762
1763  case Bytecodes::_frem:
1764    if (Matcher::has_match_rule(Op_ModF)) {
1765      // Generate a ModF node.
1766      b = pop();
1767      a = pop();
1768      c = _gvn.transform( new (C, 3) ModFNode(0,a,b) );
1769      d = precision_rounding(c);
1770      push( d );
1771    }
1772    else {
1773      // Generate a call.
1774      modf();
1775    }
1776    break;
1777
1778  case Bytecodes::_fcmpl:
1779    b = pop();
1780    a = pop();
1781    c = _gvn.transform( new (C, 3) CmpF3Node( a, b));
1782    push(c);
1783    break;
1784  case Bytecodes::_fcmpg:
1785    b = pop();
1786    a = pop();
1787
1788    // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
1789    // which negates the result sign except for unordered.  Flip the unordered
1790    // as well by using CmpF3 which implements unordered-lesser instead of
1791    // unordered-greater semantics.  Finally, commute the result bits.  Result
1792    // is same as using a CmpF3Greater except we did it with CmpF3 alone.
1793    c = _gvn.transform( new (C, 3) CmpF3Node( b, a));
1794    c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
1795    push(c);
1796    break;
1797
1798  case Bytecodes::_f2i:
1799    a = pop();
1800    push(_gvn.transform(new (C, 2) ConvF2INode(a)));
1801    break;
1802
1803  case Bytecodes::_d2i:
1804    a = pop_pair();
1805    b = _gvn.transform(new (C, 2) ConvD2INode(a));
1806    push( b );
1807    break;
1808
1809  case Bytecodes::_f2d:
1810    a = pop();
1811    b = _gvn.transform( new (C, 2) ConvF2DNode(a));
1812    push_pair( b );
1813    break;
1814
1815  case Bytecodes::_d2f:
1816    a = pop_pair();
1817    b = _gvn.transform( new (C, 2) ConvD2FNode(a));
1818    // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
1819    //b = _gvn.transform(new (C, 2) RoundFloatNode(0, b) );
1820    push( b );
1821    break;
1822
1823  case Bytecodes::_l2f:
1824    if (Matcher::convL2FSupported()) {
1825      a = pop_pair();
1826      b = _gvn.transform( new (C, 2) ConvL2FNode(a));
1827      // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
1828      // Rather than storing the result into an FP register then pushing
1829      // out to memory to round, the machine instruction that implements
1830      // ConvL2D is responsible for rounding.
1831      // c = precision_rounding(b);
1832      c = _gvn.transform(b);
1833      push(c);
1834    } else {
1835      l2f();
1836    }
1837    break;
1838
1839  case Bytecodes::_l2d:
1840    a = pop_pair();
1841    b = _gvn.transform( new (C, 2) ConvL2DNode(a));
1842    // For i486.ad, rounding is always necessary (see _l2f above).
1843    // c = dprecision_rounding(b);
1844    c = _gvn.transform(b);
1845    push_pair(c);
1846    break;
1847
1848  case Bytecodes::_f2l:
1849    a = pop();
1850    b = _gvn.transform( new (C, 2) ConvF2LNode(a));
1851    push_pair(b);
1852    break;
1853
1854  case Bytecodes::_d2l:
1855    a = pop_pair();
1856    b = _gvn.transform( new (C, 2) ConvD2LNode(a));
1857    push_pair(b);
1858    break;
1859
1860  case Bytecodes::_dsub:
1861    b = pop_pair();
1862    a = pop_pair();
1863    c = _gvn.transform( new (C, 3) SubDNode(a,b) );
1864    d = dprecision_rounding(c);
1865    push_pair( d );
1866    break;
1867
1868  case Bytecodes::_dadd:
1869    b = pop_pair();
1870    a = pop_pair();
1871    c = _gvn.transform( new (C, 3) AddDNode(a,b) );
1872    d = dprecision_rounding(c);
1873    push_pair( d );
1874    break;
1875
1876  case Bytecodes::_dmul:
1877    b = pop_pair();
1878    a = pop_pair();
1879    c = _gvn.transform( new (C, 3) MulDNode(a,b) );
1880    d = dprecision_rounding(c);
1881    push_pair( d );
1882    break;
1883
1884  case Bytecodes::_ddiv:
1885    b = pop_pair();
1886    a = pop_pair();
1887    c = _gvn.transform( new (C, 3) DivDNode(0,a,b) );
1888    d = dprecision_rounding(c);
1889    push_pair( d );
1890    break;
1891
1892  case Bytecodes::_dneg:
1893    a = pop_pair();
1894    b = _gvn.transform(new (C, 2) NegDNode (a));
1895    push_pair(b);
1896    break;
1897
1898  case Bytecodes::_drem:
1899    if (Matcher::has_match_rule(Op_ModD)) {
1900      // Generate a ModD node.
1901      b = pop_pair();
1902      a = pop_pair();
1903      // a % b
1904
1905      c = _gvn.transform( new (C, 3) ModDNode(0,a,b) );
1906      d = dprecision_rounding(c);
1907      push_pair( d );
1908    }
1909    else {
1910      // Generate a call.
1911      modd();
1912    }
1913    break;
1914
1915  case Bytecodes::_dcmpl:
1916    b = pop_pair();
1917    a = pop_pair();
1918    c = _gvn.transform( new (C, 3) CmpD3Node( a, b));
1919    push(c);
1920    break;
1921
1922  case Bytecodes::_dcmpg:
1923    b = pop_pair();
1924    a = pop_pair();
1925    // Same as dcmpl but need to flip the unordered case.
1926    // Commute the inputs, which negates the result sign except for unordered.
1927    // Flip the unordered as well by using CmpD3 which implements
1928    // unordered-lesser instead of unordered-greater semantics.
1929    // Finally, negate the result bits.  Result is same as using a
1930    // CmpD3Greater except we did it with CmpD3 alone.
1931    c = _gvn.transform( new (C, 3) CmpD3Node( b, a));
1932    c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
1933    push(c);
1934    break;
1935
1936
1937    // Note for longs -> lo word is on TOS, hi word is on TOS - 1
1938  case Bytecodes::_land:
1939    b = pop_pair();
1940    a = pop_pair();
1941    c = _gvn.transform( new (C, 3) AndLNode(a,b) );
1942    push_pair(c);
1943    break;
1944  case Bytecodes::_lor:
1945    b = pop_pair();
1946    a = pop_pair();
1947    c = _gvn.transform( new (C, 3) OrLNode(a,b) );
1948    push_pair(c);
1949    break;
1950  case Bytecodes::_lxor:
1951    b = pop_pair();
1952    a = pop_pair();
1953    c = _gvn.transform( new (C, 3) XorLNode(a,b) );
1954    push_pair(c);
1955    break;
1956
1957  case Bytecodes::_lshl:
1958    b = pop();                  // the shift count
1959    a = pop_pair();             // value to be shifted
1960    c = _gvn.transform( new (C, 3) LShiftLNode(a,b) );
1961    push_pair(c);
1962    break;
1963  case Bytecodes::_lshr:
1964    b = pop();                  // the shift count
1965    a = pop_pair();             // value to be shifted
1966    c = _gvn.transform( new (C, 3) RShiftLNode(a,b) );
1967    push_pair(c);
1968    break;
1969  case Bytecodes::_lushr:
1970    b = pop();                  // the shift count
1971    a = pop_pair();             // value to be shifted
1972    c = _gvn.transform( new (C, 3) URShiftLNode(a,b) );
1973    push_pair(c);
1974    break;
1975  case Bytecodes::_lmul:
1976    b = pop_pair();
1977    a = pop_pair();
1978    c = _gvn.transform( new (C, 3) MulLNode(a,b) );
1979    push_pair(c);
1980    break;
1981
1982  case Bytecodes::_lrem:
1983    // Must keep both values on the expression-stack during null-check
1984    assert(peek(0) == top(), "long word order");
1985    do_null_check(peek(1), T_LONG);
1986    // Compile-time detect of null-exception?
1987    if (stopped())  return;
1988    b = pop_pair();
1989    a = pop_pair();
1990    c = _gvn.transform( new (C, 3) ModLNode(control(),a,b) );
1991    push_pair(c);
1992    break;
1993
1994  case Bytecodes::_ldiv:
1995    // Must keep both values on the expression-stack during null-check
1996    assert(peek(0) == top(), "long word order");
1997    do_null_check(peek(1), T_LONG);
1998    // Compile-time detect of null-exception?
1999    if (stopped())  return;
2000    b = pop_pair();
2001    a = pop_pair();
2002    c = _gvn.transform( new (C, 3) DivLNode(control(),a,b) );
2003    push_pair(c);
2004    break;
2005
2006  case Bytecodes::_ladd:
2007    b = pop_pair();
2008    a = pop_pair();
2009    c = _gvn.transform( new (C, 3) AddLNode(a,b) );
2010    push_pair(c);
2011    break;
2012  case Bytecodes::_lsub:
2013    b = pop_pair();
2014    a = pop_pair();
2015    c = _gvn.transform( new (C, 3) SubLNode(a,b) );
2016    push_pair(c);
2017    break;
2018  case Bytecodes::_lcmp:
2019    // Safepoints are now inserted _before_ branches.  The long-compare
2020    // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
2021    // slew of control flow.  These are usually followed by a CmpI vs zero and
2022    // a branch; this pattern then optimizes to the obvious long-compare and
2023    // branch.  However, if the branch is backwards there's a Safepoint
2024    // inserted.  The inserted Safepoint captures the JVM state at the
2025    // pre-branch point, i.e. it captures the 3-way value.  Thus if a
2026    // long-compare is used to control a loop the debug info will force
2027    // computation of the 3-way value, even though the generated code uses a
2028    // long-compare and branch.  We try to rectify the situation by inserting
2029    // a SafePoint here and have it dominate and kill the safepoint added at a
2030    // following backwards branch.  At this point the JVM state merely holds 2
2031    // longs but not the 3-way value.
2032    if( UseLoopSafepoints ) {
2033      switch( iter().next_bc() ) {
2034      case Bytecodes::_ifgt:
2035      case Bytecodes::_iflt:
2036      case Bytecodes::_ifge:
2037      case Bytecodes::_ifle:
2038      case Bytecodes::_ifne:
2039      case Bytecodes::_ifeq:
2040        // If this is a backwards branch in the bytecodes, add Safepoint
2041        maybe_add_safepoint(iter().next_get_dest());
2042      }
2043    }
2044    b = pop_pair();
2045    a = pop_pair();
2046    c = _gvn.transform( new (C, 3) CmpL3Node( a, b ));
2047    push(c);
2048    break;
2049
2050  case Bytecodes::_lneg:
2051    a = pop_pair();
2052    b = _gvn.transform( new (C, 3) SubLNode(longcon(0),a));
2053    push_pair(b);
2054    break;
2055  case Bytecodes::_l2i:
2056    a = pop_pair();
2057    push( _gvn.transform( new (C, 2) ConvL2INode(a)));
2058    break;
2059  case Bytecodes::_i2l:
2060    a = pop();
2061    b = _gvn.transform( new (C, 2) ConvI2LNode(a));
2062    push_pair(b);
2063    break;
2064  case Bytecodes::_i2b:
2065    // Sign extend
2066    a = pop();
2067    a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(24)) );
2068    a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(24)) );
2069    push( a );
2070    break;
2071  case Bytecodes::_i2s:
2072    a = pop();
2073    a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(16)) );
2074    a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(16)) );
2075    push( a );
2076    break;
2077  case Bytecodes::_i2c:
2078    a = pop();
2079    push( _gvn.transform( new (C, 3) AndINode(a,_gvn.intcon(0xFFFF)) ) );
2080    break;
2081
2082  case Bytecodes::_i2f:
2083    a = pop();
2084    b = _gvn.transform( new (C, 2) ConvI2FNode(a) ) ;
2085    c = precision_rounding(b);
2086    push (b);
2087    break;
2088
2089  case Bytecodes::_i2d:
2090    a = pop();
2091    b = _gvn.transform( new (C, 2) ConvI2DNode(a));
2092    push_pair(b);
2093    break;
2094
2095  case Bytecodes::_iinc:        // Increment local
2096    i = iter().get_index();     // Get local index
2097    set_local( i, _gvn.transform( new (C, 3) AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
2098    break;
2099
2100  // Exit points of synchronized methods must have an unlock node
2101  case Bytecodes::_return:
2102    return_current(NULL);
2103    break;
2104
2105  case Bytecodes::_ireturn:
2106  case Bytecodes::_areturn:
2107  case Bytecodes::_freturn:
2108    return_current(pop());
2109    break;
2110  case Bytecodes::_lreturn:
2111    return_current(pop_pair());
2112    break;
2113  case Bytecodes::_dreturn:
2114    return_current(pop_pair());
2115    break;
2116
2117  case Bytecodes::_athrow:
2118    // null exception oop throws NULL pointer exception
2119    do_null_check(peek(), T_OBJECT);
2120    if (stopped())  return;
2121    // Hook the thrown exception directly to subsequent handlers.
2122    if (BailoutToInterpreterForThrows) {
2123      // Keep method interpreted from now on.
2124      uncommon_trap(Deoptimization::Reason_unhandled,
2125                    Deoptimization::Action_make_not_compilable);
2126      return;
2127    }
2128    if (env()->jvmti_can_post_on_exceptions()) {
2129      // check if we must post exception events, take uncommon trap if so (with must_throw = false)
2130      uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
2131    }
2132    // Here if either can_post_on_exceptions or should_post_on_exceptions is false
2133    add_exception_state(make_exception_state(peek()));
2134    break;
2135
2136  case Bytecodes::_goto:   // fall through
2137  case Bytecodes::_goto_w: {
2138    int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
2139
2140    // If this is a backwards branch in the bytecodes, add Safepoint
2141    maybe_add_safepoint(target_bci);
2142
2143    // Update method data
2144    profile_taken_branch(target_bci);
2145
2146    // Merge the current control into the target basic block
2147    merge(target_bci);
2148
2149    // See if we can get some profile data and hand it off to the next block
2150    Block *target_block = block()->successor_for_bci(target_bci);
2151    if (target_block->pred_count() != 1)  break;
2152    ciMethodData* methodData = method()->method_data();
2153    if (!methodData->is_mature())  break;
2154    ciProfileData* data = methodData->bci_to_data(bci());
2155    assert( data->is_JumpData(), "" );
2156    int taken = ((ciJumpData*)data)->taken();
2157    taken = method()->scale_count(taken);
2158    target_block->set_count(taken);
2159    break;
2160  }
2161
2162  case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
2163  case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
2164  handle_if_null:
2165    // If this is a backwards branch in the bytecodes, add Safepoint
2166    maybe_add_safepoint(iter().get_dest());
2167    a = null();
2168    b = pop();
2169    c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
2170    do_ifnull(btest, c);
2171    break;
2172
2173  case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
2174  case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
2175  handle_if_acmp:
2176    // If this is a backwards branch in the bytecodes, add Safepoint
2177    maybe_add_safepoint(iter().get_dest());
2178    a = pop();
2179    b = pop();
2180    c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
2181    do_if(btest, c);
2182    break;
2183
2184  case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
2185  case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
2186  case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
2187  case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
2188  case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
2189  case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
2190  handle_ifxx:
2191    // If this is a backwards branch in the bytecodes, add Safepoint
2192    maybe_add_safepoint(iter().get_dest());
2193    a = _gvn.intcon(0);
2194    b = pop();
2195    c = _gvn.transform( new (C, 3) CmpINode(b, a) );
2196    do_if(btest, c);
2197    break;
2198
2199  case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
2200  case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
2201  case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
2202  case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
2203  case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
2204  case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
2205  handle_if_icmp:
2206    // If this is a backwards branch in the bytecodes, add Safepoint
2207    maybe_add_safepoint(iter().get_dest());
2208    a = pop();
2209    b = pop();
2210    c = _gvn.transform( new (C, 3) CmpINode( b, a ) );
2211    do_if(btest, c);
2212    break;
2213
2214  case Bytecodes::_tableswitch:
2215    do_tableswitch();
2216    break;
2217
2218  case Bytecodes::_lookupswitch:
2219    do_lookupswitch();
2220    break;
2221
2222  case Bytecodes::_invokestatic:
2223  case Bytecodes::_invokedynamic:
2224  case Bytecodes::_invokespecial:
2225  case Bytecodes::_invokevirtual:
2226  case Bytecodes::_invokeinterface:
2227    do_call();
2228    break;
2229  case Bytecodes::_checkcast:
2230    do_checkcast();
2231    break;
2232  case Bytecodes::_instanceof:
2233    do_instanceof();
2234    break;
2235  case Bytecodes::_anewarray:
2236    do_anewarray();
2237    break;
2238  case Bytecodes::_newarray:
2239    do_newarray((BasicType)iter().get_index());
2240    break;
2241  case Bytecodes::_multianewarray:
2242    do_multianewarray();
2243    break;
2244  case Bytecodes::_new:
2245    do_new();
2246    break;
2247
2248  case Bytecodes::_jsr:
2249  case Bytecodes::_jsr_w:
2250    do_jsr();
2251    break;
2252
2253  case Bytecodes::_ret:
2254    do_ret();
2255    break;
2256
2257
2258  case Bytecodes::_monitorenter:
2259    do_monitor_enter();
2260    break;
2261
2262  case Bytecodes::_monitorexit:
2263    do_monitor_exit();
2264    break;
2265
2266  case Bytecodes::_breakpoint:
2267    // Breakpoint set concurrently to compile
2268    // %%% use an uncommon trap?
2269    C->record_failure("breakpoint in method");
2270    return;
2271
2272  default:
2273#ifndef PRODUCT
2274    map()->dump(99);
2275#endif
2276    tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
2277    ShouldNotReachHere();
2278  }
2279
2280#ifndef PRODUCT
2281  IdealGraphPrinter *printer = IdealGraphPrinter::printer();
2282  if(printer) {
2283    char buffer[256];
2284    sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
2285    bool old = printer->traverse_outs();
2286    printer->set_traverse_outs(true);
2287    printer->print_method(C, buffer, 4);
2288    printer->set_traverse_outs(old);
2289  }
2290#endif
2291}
2292