parse2.cpp revision 0:a61af66fc99e
1/*
2 * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_parse2.cpp.incl"
27
28extern int explicit_null_checks_inserted,
29           explicit_null_checks_elided;
30
31//---------------------------------array_load----------------------------------
32void Parse::array_load(BasicType elem_type) {
33  const Type* elem = Type::TOP;
34  Node* adr = array_addressing(elem_type, 0, &elem);
35  if (stopped())  return;     // guarenteed null or range check
36  _sp -= 2;                   // Pop array and index
37  const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
38  Node* ld = make_load(control(), adr, elem, elem_type, adr_type);
39  push(ld);
40}
41
42
43//--------------------------------array_store----------------------------------
44void Parse::array_store(BasicType elem_type) {
45  Node* adr = array_addressing(elem_type, 1);
46  if (stopped())  return;     // guarenteed null or range check
47  Node* val = pop();
48  _sp -= 2;                   // Pop array and index
49  const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
50  store_to_memory(control(), adr, val, elem_type, adr_type);
51}
52
53
54//------------------------------array_addressing-------------------------------
55// Pull array and index from the stack.  Compute pointer-to-element.
56Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
57  Node *idx   = peek(0+vals);   // Get from stack without popping
58  Node *ary   = peek(1+vals);   // in case of exception
59
60  // Null check the array base, with correct stack contents
61  ary = do_null_check(ary, T_ARRAY);
62  // Compile-time detect of null-exception?
63  if (stopped())  return top();
64
65  const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
66  const TypeInt*    sizetype = arytype->size();
67  const Type*       elemtype = arytype->elem();
68
69  if (UseUniqueSubclasses && result2 != NULL) {
70    const TypeInstPtr* toop = elemtype->isa_instptr();
71    if (toop) {
72      if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
73        // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
74        const Type* subklass = Type::get_const_type(toop->klass());
75        elemtype = subklass->join(elemtype);
76      }
77    }
78  }
79
80  // Check for big class initializers with all constant offsets
81  // feeding into a known-size array.
82  const TypeInt* idxtype = _gvn.type(idx)->is_int();
83  // See if the highest idx value is less than the lowest array bound,
84  // and if the idx value cannot be negative:
85  bool need_range_check = true;
86  if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
87    need_range_check = false;
88    if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
89  }
90
91  if (!arytype->klass()->is_loaded()) {
92    // Only fails for some -Xcomp runs
93    // The class is unloaded.  We have to run this bytecode in the interpreter.
94    uncommon_trap(Deoptimization::Reason_unloaded,
95                  Deoptimization::Action_reinterpret,
96                  arytype->klass(), "!loaded array");
97    return top();
98  }
99
100  // Do the range check
101  if (GenerateRangeChecks && need_range_check) {
102    // Range is constant in array-oop, so we can use the original state of mem
103    Node* len = load_array_length(ary);
104    // Test length vs index (standard trick using unsigned compare)
105    Node* chk = _gvn.transform( new (C, 3) CmpUNode(idx, len) );
106    BoolTest::mask btest = BoolTest::lt;
107    Node* tst = _gvn.transform( new (C, 2) BoolNode(chk, btest) );
108    // Branch to failure if out of bounds
109    { BuildCutout unless(this, tst, PROB_MAX);
110      if (C->allow_range_check_smearing()) {
111        // Do not use builtin_throw, since range checks are sometimes
112        // made more stringent by an optimistic transformation.
113        // This creates "tentative" range checks at this point,
114        // which are not guaranteed to throw exceptions.
115        // See IfNode::Ideal, is_range_check, adjust_check.
116        uncommon_trap(Deoptimization::Reason_range_check,
117                      Deoptimization::Action_make_not_entrant,
118                      NULL, "range_check");
119      } else {
120        // If we have already recompiled with the range-check-widening
121        // heroic optimization turned off, then we must really be throwing
122        // range check exceptions.
123        builtin_throw(Deoptimization::Reason_range_check, idx);
124      }
125    }
126  }
127  // Check for always knowing you are throwing a range-check exception
128  if (stopped())  return top();
129
130  Node* ptr = array_element_address( ary, idx, type, sizetype);
131
132  if (result2 != NULL)  *result2 = elemtype;
133  return ptr;
134}
135
136
137// returns IfNode
138IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
139  Node   *cmp = _gvn.transform( new (C, 3) CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
140  Node   *tst = _gvn.transform( new (C, 2) BoolNode( cmp, mask));
141  IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
142  return iff;
143}
144
145// return Region node
146Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
147  Node *region  = new (C, 3) RegionNode(3); // 2 results
148  record_for_igvn(region);
149  region->init_req(1, iffalse);
150  region->init_req(2, iftrue );
151  _gvn.set_type(region, Type::CONTROL);
152  region = _gvn.transform(region);
153  set_control (region);
154  return region;
155}
156
157
158//------------------------------helper for tableswitch-------------------------
159void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
160  // True branch, use existing map info
161  { PreserveJVMState pjvms(this);
162    Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
163    set_control( iftrue );
164    profile_switch_case(prof_table_index);
165    merge_new_path(dest_bci_if_true);
166  }
167
168  // False branch
169  Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
170  set_control( iffalse );
171}
172
173void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
174  // True branch, use existing map info
175  { PreserveJVMState pjvms(this);
176    Node *iffalse  = _gvn.transform( new (C, 1) IfFalseNode (iff) );
177    set_control( iffalse );
178    profile_switch_case(prof_table_index);
179    merge_new_path(dest_bci_if_true);
180  }
181
182  // False branch
183  Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(iff) );
184  set_control( iftrue );
185}
186
187void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
188  // False branch, use existing map and control()
189  profile_switch_case(prof_table_index);
190  merge_new_path(dest_bci);
191}
192
193
194extern "C" {
195  static int jint_cmp(const void *i, const void *j) {
196    int a = *(jint *)i;
197    int b = *(jint *)j;
198    return a > b ? 1 : a < b ? -1 : 0;
199  }
200}
201
202
203// Default value for methodData switch indexing. Must be a negative value to avoid
204// conflict with any legal switch index.
205#define NullTableIndex -1
206
207class SwitchRange : public StackObj {
208  // a range of integers coupled with a bci destination
209  jint _lo;                     // inclusive lower limit
210  jint _hi;                     // inclusive upper limit
211  int _dest;
212  int _table_index;             // index into method data table
213
214public:
215  jint lo() const              { return _lo;   }
216  jint hi() const              { return _hi;   }
217  int  dest() const            { return _dest; }
218  int  table_index() const     { return _table_index; }
219  bool is_singleton() const    { return _lo == _hi; }
220
221  void setRange(jint lo, jint hi, int dest, int table_index) {
222    assert(lo <= hi, "must be a non-empty range");
223    _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
224  }
225  bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
226    assert(lo <= hi, "must be a non-empty range");
227    if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
228      _hi = hi;
229      return true;
230    }
231    return false;
232  }
233
234  void set (jint value, int dest, int table_index) {
235    setRange(value, value, dest, table_index);
236  }
237  bool adjoin(jint value, int dest, int table_index) {
238    return adjoinRange(value, value, dest, table_index);
239  }
240
241  void print(ciEnv* env) {
242    if (is_singleton())
243      tty->print(" {%d}=>%d", lo(), dest());
244    else if (lo() == min_jint)
245      tty->print(" {..%d}=>%d", hi(), dest());
246    else if (hi() == max_jint)
247      tty->print(" {%d..}=>%d", lo(), dest());
248    else
249      tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
250  }
251};
252
253
254//-------------------------------do_tableswitch--------------------------------
255void Parse::do_tableswitch() {
256  Node* lookup = pop();
257
258  // Get information about tableswitch
259  int default_dest = iter().get_dest_table(0);
260  int lo_index     = iter().get_int_table(1);
261  int hi_index     = iter().get_int_table(2);
262  int len          = hi_index - lo_index + 1;
263
264  if (len < 1) {
265    // If this is a backward branch, add safepoint
266    maybe_add_safepoint(default_dest);
267    merge(default_dest);
268    return;
269  }
270
271  // generate decision tree, using trichotomy when possible
272  int rnum = len+2;
273  bool makes_backward_branch = false;
274  SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
275  int rp = -1;
276  if (lo_index != min_jint) {
277    ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
278  }
279  for (int j = 0; j < len; j++) {
280    jint match_int = lo_index+j;
281    int  dest      = iter().get_dest_table(j+3);
282    makes_backward_branch |= (dest <= bci());
283    int  table_index = method_data_update() ? j : NullTableIndex;
284    if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
285      ranges[++rp].set(match_int, dest, table_index);
286    }
287  }
288  jint highest = lo_index+(len-1);
289  assert(ranges[rp].hi() == highest, "");
290  if (highest != max_jint
291      && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
292    ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
293  }
294  assert(rp < len+2, "not too many ranges");
295
296  // Safepoint in case if backward branch observed
297  if( makes_backward_branch && UseLoopSafepoints )
298    add_safepoint();
299
300  jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
301}
302
303
304//------------------------------do_lookupswitch--------------------------------
305void Parse::do_lookupswitch() {
306  Node *lookup = pop();         // lookup value
307  // Get information about lookupswitch
308  int default_dest = iter().get_dest_table(0);
309  int len          = iter().get_int_table(1);
310
311  if (len < 1) {    // If this is a backward branch, add safepoint
312    maybe_add_safepoint(default_dest);
313    merge(default_dest);
314    return;
315  }
316
317  // generate decision tree, using trichotomy when possible
318  jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
319  {
320    for( int j = 0; j < len; j++ ) {
321      table[j+j+0] = iter().get_int_table(2+j+j);
322      table[j+j+1] = iter().get_dest_table(2+j+j+1);
323    }
324    qsort( table, len, 2*sizeof(table[0]), jint_cmp );
325  }
326
327  int rnum = len*2+1;
328  bool makes_backward_branch = false;
329  SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
330  int rp = -1;
331  for( int j = 0; j < len; j++ ) {
332    jint match_int   = table[j+j+0];
333    int  dest        = table[j+j+1];
334    int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
335    int  table_index = method_data_update() ? j : NullTableIndex;
336    makes_backward_branch |= (dest <= bci());
337    if( match_int != next_lo ) {
338      ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
339    }
340    if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
341      ranges[++rp].set(match_int, dest, table_index);
342    }
343  }
344  jint highest = table[2*(len-1)];
345  assert(ranges[rp].hi() == highest, "");
346  if( highest != max_jint
347      && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
348    ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
349  }
350  assert(rp < rnum, "not too many ranges");
351
352  // Safepoint in case backward branch observed
353  if( makes_backward_branch && UseLoopSafepoints )
354    add_safepoint();
355
356  jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
357}
358
359//----------------------------create_jump_tables-------------------------------
360bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
361  // Are jumptables enabled
362  if (!UseJumpTables)  return false;
363
364  // Are jumptables supported
365  if (!Matcher::has_match_rule(Op_Jump))  return false;
366
367  // Don't make jump table if profiling
368  if (method_data_update())  return false;
369
370  // Decide if a guard is needed to lop off big ranges at either (or
371  // both) end(s) of the input set. We'll call this the default target
372  // even though we can't be sure that it is the true "default".
373
374  bool needs_guard = false;
375  int default_dest;
376  int64 total_outlier_size = 0;
377  int64 hi_size = ((int64)hi->hi()) - ((int64)hi->lo()) + 1;
378  int64 lo_size = ((int64)lo->hi()) - ((int64)lo->lo()) + 1;
379
380  if (lo->dest() == hi->dest()) {
381    total_outlier_size = hi_size + lo_size;
382    default_dest = lo->dest();
383  } else if (lo_size > hi_size) {
384    total_outlier_size = lo_size;
385    default_dest = lo->dest();
386  } else {
387    total_outlier_size = hi_size;
388    default_dest = hi->dest();
389  }
390
391  // If a guard test will eliminate very sparse end ranges, then
392  // it is worth the cost of an extra jump.
393  if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
394    needs_guard = true;
395    if (default_dest == lo->dest()) lo++;
396    if (default_dest == hi->dest()) hi--;
397  }
398
399  // Find the total number of cases and ranges
400  int64 num_cases = ((int64)hi->hi()) - ((int64)lo->lo()) + 1;
401  int num_range = hi - lo + 1;
402
403  // Don't create table if: too large, too small, or too sparse.
404  if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
405    return false;
406  if (num_cases > (MaxJumpTableSparseness * num_range))
407    return false;
408
409  // Normalize table lookups to zero
410  int lowval = lo->lo();
411  key_val = _gvn.transform( new (C, 3) SubINode(key_val, _gvn.intcon(lowval)) );
412
413  // Generate a guard to protect against input keyvals that aren't
414  // in the switch domain.
415  if (needs_guard) {
416    Node*   size = _gvn.intcon(num_cases);
417    Node*   cmp = _gvn.transform( new (C, 3) CmpUNode(key_val, size) );
418    Node*   tst = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ge) );
419    IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
420    jump_if_true_fork(iff, default_dest, NullTableIndex);
421  }
422
423  // Create an ideal node JumpTable that has projections
424  // of all possible ranges for a switch statement
425  // The key_val input must be converted to a pointer offset and scaled.
426  // Compare Parse::array_addressing above.
427#ifdef _LP64
428  // Clean the 32-bit int into a real 64-bit offset.
429  // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
430  const TypeLong* lkeytype = TypeLong::make(CONST64(0), num_cases-1, Type::WidenMin);
431  key_val       = _gvn.transform( new (C, 2) ConvI2LNode(key_val, lkeytype) );
432#endif
433  // Shift the value by wordsize so we have an index into the table, rather
434  // than a switch value
435  Node *shiftWord = _gvn.MakeConX(wordSize);
436  key_val = _gvn.transform( new (C, 3) MulXNode( key_val, shiftWord));
437
438  // Create the JumpNode
439  Node* jtn = _gvn.transform( new (C, 2) JumpNode(control(), key_val, num_cases) );
440
441  // These are the switch destinations hanging off the jumpnode
442  int i = 0;
443  for (SwitchRange* r = lo; r <= hi; r++) {
444    for (int j = r->lo(); j <= r->hi(); j++, i++) {
445      Node* input = _gvn.transform(new (C, 1) JumpProjNode(jtn, i, r->dest(), j - lowval));
446      {
447        PreserveJVMState pjvms(this);
448        set_control(input);
449        jump_if_always_fork(r->dest(), r->table_index());
450      }
451    }
452  }
453  assert(i == num_cases, "miscount of cases");
454  stop_and_kill_map();  // no more uses for this JVMS
455  return true;
456}
457
458//----------------------------jump_switch_ranges-------------------------------
459void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
460  Block* switch_block = block();
461
462  if (switch_depth == 0) {
463    // Do special processing for the top-level call.
464    assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
465    assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
466
467    // Decrement pred-numbers for the unique set of nodes.
468#ifdef ASSERT
469    // Ensure that the block's successors are a (duplicate-free) set.
470    int successors_counted = 0;  // block occurrences in [hi..lo]
471    int unique_successors = switch_block->num_successors();
472    for (int i = 0; i < unique_successors; i++) {
473      Block* target = switch_block->successor_at(i);
474
475      // Check that the set of successors is the same in both places.
476      int successors_found = 0;
477      for (SwitchRange* p = lo; p <= hi; p++) {
478        if (p->dest() == target->start())  successors_found++;
479      }
480      assert(successors_found > 0, "successor must be known");
481      successors_counted += successors_found;
482    }
483    assert(successors_counted == (hi-lo)+1, "no unexpected successors");
484#endif
485
486    // Maybe prune the inputs, based on the type of key_val.
487    jint min_val = min_jint;
488    jint max_val = max_jint;
489    const TypeInt* ti = key_val->bottom_type()->isa_int();
490    if (ti != NULL) {
491      min_val = ti->_lo;
492      max_val = ti->_hi;
493      assert(min_val <= max_val, "invalid int type");
494    }
495    while (lo->hi() < min_val)  lo++;
496    if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
497    while (hi->lo() > max_val)  hi--;
498    if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
499  }
500
501#ifndef PRODUCT
502  if (switch_depth == 0) {
503    _max_switch_depth = 0;
504    _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
505  }
506#endif
507
508  assert(lo <= hi, "must be a non-empty set of ranges");
509  if (lo == hi) {
510    jump_if_always_fork(lo->dest(), lo->table_index());
511  } else {
512    assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
513    assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
514
515    if (create_jump_tables(key_val, lo, hi)) return;
516
517    int nr = hi - lo + 1;
518
519    SwitchRange* mid = lo + nr/2;
520    // if there is an easy choice, pivot at a singleton:
521    if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
522
523    assert(lo < mid && mid <= hi, "good pivot choice");
524    assert(nr != 2 || mid == hi,   "should pick higher of 2");
525    assert(nr != 3 || mid == hi-1, "should pick middle of 3");
526
527    Node *test_val = _gvn.intcon(mid->lo());
528
529    if (mid->is_singleton()) {
530      IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
531      jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
532
533      // Special Case:  If there are exactly three ranges, and the high
534      // and low range each go to the same place, omit the "gt" test,
535      // since it will not discriminate anything.
536      bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
537      if (eq_test_only) {
538        assert(mid == hi-1, "");
539      }
540
541      // if there is a higher range, test for it and process it:
542      if (mid < hi && !eq_test_only) {
543        // two comparisons of same values--should enable 1 test for 2 branches
544        // Use BoolTest::le instead of BoolTest::gt
545        IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
546        Node   *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_le) );
547        Node   *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_le) );
548        { PreserveJVMState pjvms(this);
549          set_control(iffalse);
550          jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
551        }
552        set_control(iftrue);
553      }
554
555    } else {
556      // mid is a range, not a singleton, so treat mid..hi as a unit
557      IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
558
559      // if there is a higher range, test for it and process it:
560      if (mid == hi) {
561        jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
562      } else {
563        Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_ge) );
564        Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_ge) );
565        { PreserveJVMState pjvms(this);
566          set_control(iftrue);
567          jump_switch_ranges(key_val, mid, hi, switch_depth+1);
568        }
569        set_control(iffalse);
570      }
571    }
572
573    // in any case, process the lower range
574    jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
575  }
576
577  // Decrease pred_count for each successor after all is done.
578  if (switch_depth == 0) {
579    int unique_successors = switch_block->num_successors();
580    for (int i = 0; i < unique_successors; i++) {
581      Block* target = switch_block->successor_at(i);
582      // Throw away the pre-allocated path for each unique successor.
583      target->next_path_num();
584    }
585  }
586
587#ifndef PRODUCT
588  _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
589  if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
590    SwitchRange* r;
591    int nsing = 0;
592    for( r = lo; r <= hi; r++ ) {
593      if( r->is_singleton() )  nsing++;
594    }
595    tty->print(">>> ");
596    _method->print_short_name();
597    tty->print_cr(" switch decision tree");
598    tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
599                  hi-lo+1, nsing, _max_switch_depth, _est_switch_depth);
600    if (_max_switch_depth > _est_switch_depth) {
601      tty->print_cr("******** BAD SWITCH DEPTH ********");
602    }
603    tty->print("   ");
604    for( r = lo; r <= hi; r++ ) {
605      r->print(env());
606    }
607    tty->print_cr("");
608  }
609#endif
610}
611
612void Parse::modf() {
613  Node *f2 = pop();
614  Node *f1 = pop();
615  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
616                              CAST_FROM_FN_PTR(address, SharedRuntime::frem),
617                              "frem", NULL, //no memory effects
618                              f1, f2);
619  Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
620
621  push(res);
622}
623
624void Parse::modd() {
625  Node *d2 = pop_pair();
626  Node *d1 = pop_pair();
627  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
628                              CAST_FROM_FN_PTR(address, SharedRuntime::drem),
629                              "drem", NULL, //no memory effects
630                              d1, top(), d2, top());
631  Node* res_d   = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
632
633#ifdef ASSERT
634  Node* res_top = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 1));
635  assert(res_top == top(), "second value must be top");
636#endif
637
638  push_pair(res_d);
639}
640
641void Parse::l2f() {
642  Node* f2 = pop();
643  Node* f1 = pop();
644  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
645                              CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
646                              "l2f", NULL, //no memory effects
647                              f1, f2);
648  Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
649
650  push(res);
651}
652
653void Parse::do_irem() {
654  // Must keep both values on the expression-stack during null-check
655  do_null_check(peek(), T_INT);
656  // Compile-time detect of null-exception?
657  if (stopped())  return;
658
659  Node* b = pop();
660  Node* a = pop();
661
662  const Type *t = _gvn.type(b);
663  if (t != Type::TOP) {
664    const TypeInt *ti = t->is_int();
665    if (ti->is_con()) {
666      int divisor = ti->get_con();
667      // check for positive power of 2
668      if (divisor > 0 &&
669          (divisor & ~(divisor-1)) == divisor) {
670        // yes !
671        Node *mask = _gvn.intcon((divisor - 1));
672        // Sigh, must handle negative dividends
673        Node *zero = _gvn.intcon(0);
674        IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
675        Node *iff = _gvn.transform( new (C, 1) IfFalseNode(ifff) );
676        Node *ift = _gvn.transform( new (C, 1) IfTrueNode (ifff) );
677        Node *reg = jump_if_join(ift, iff);
678        Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
679        // Negative path; negate/and/negate
680        Node *neg = _gvn.transform( new (C, 3) SubINode(zero, a) );
681        Node *andn= _gvn.transform( new (C, 3) AndINode(neg, mask) );
682        Node *negn= _gvn.transform( new (C, 3) SubINode(zero, andn) );
683        phi->init_req(1, negn);
684        // Fast positive case
685        Node *andx = _gvn.transform( new (C, 3) AndINode(a, mask) );
686        phi->init_req(2, andx);
687        // Push the merge
688        push( _gvn.transform(phi) );
689        return;
690      }
691    }
692  }
693  // Default case
694  push( _gvn.transform( new (C, 3) ModINode(control(),a,b) ) );
695}
696
697// Handle jsr and jsr_w bytecode
698void Parse::do_jsr() {
699  assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
700
701  // Store information about current state, tagged with new _jsr_bci
702  int return_bci = iter().next_bci();
703  int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
704
705  // Update method data
706  profile_taken_branch(jsr_bci);
707
708  // The way we do things now, there is only one successor block
709  // for the jsr, because the target code is cloned by ciTypeFlow.
710  Block* target = successor_for_bci(jsr_bci);
711
712  // What got pushed?
713  const Type* ret_addr = target->peek();
714  assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
715
716  // Effect on jsr on stack
717  push(_gvn.makecon(ret_addr));
718
719  // Flow to the jsr.
720  merge(jsr_bci);
721}
722
723// Handle ret bytecode
724void Parse::do_ret() {
725  // Find to whom we return.
726#if 0 // %%%% MAKE THIS WORK
727  Node* con = local();
728  const TypePtr* tp = con->bottom_type()->isa_ptr();
729  assert(tp && tp->singleton(), "");
730  int return_bci = (int) tp->get_con();
731  merge(return_bci);
732#else
733  assert(block()->num_successors() == 1, "a ret can only go one place now");
734  Block* target = block()->successor_at(0);
735  assert(!target->is_ready(), "our arrival must be expected");
736  profile_ret(target->flow()->start());
737  int pnum = target->next_path_num();
738  merge_common(target, pnum);
739#endif
740}
741
742//--------------------------dynamic_branch_prediction--------------------------
743// Try to gather dynamic branch prediction behavior.  Return a probability
744// of the branch being taken and set the "cnt" field.  Returns a -1.0
745// if we need to use static prediction for some reason.
746float Parse::dynamic_branch_prediction(float &cnt) {
747  ResourceMark rm;
748
749  cnt  = COUNT_UNKNOWN;
750
751  // Use MethodData information if it is available
752  // FIXME: free the ProfileData structure
753  ciMethodData* methodData = method()->method_data();
754  if (!methodData->is_mature())  return PROB_UNKNOWN;
755  ciProfileData* data = methodData->bci_to_data(bci());
756  if (!data->is_JumpData())  return PROB_UNKNOWN;
757
758  // get taken and not taken values
759  int     taken = data->as_JumpData()->taken();
760  int not_taken = 0;
761  if (data->is_BranchData()) {
762    not_taken = data->as_BranchData()->not_taken();
763  }
764
765  // scale the counts to be commensurate with invocation counts:
766  taken = method()->scale_count(taken);
767  not_taken = method()->scale_count(not_taken);
768
769  // Give up if too few counts to be meaningful
770  if (taken + not_taken < 40) {
771    if (C->log() != NULL) {
772      C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
773    }
774    return PROB_UNKNOWN;
775  }
776
777  // Compute frequency that we arrive here
778  int sum = taken + not_taken;
779  // Adjust, if this block is a cloned private block but the
780  // Jump counts are shared.  Taken the private counts for
781  // just this path instead of the shared counts.
782  if( block()->count() > 0 )
783    sum = block()->count();
784  cnt = (float)sum / (float)FreqCountInvocations;
785
786  // Pin probability to sane limits
787  float prob;
788  if( !taken )
789    prob = (0+PROB_MIN) / 2;
790  else if( !not_taken )
791    prob = (1+PROB_MAX) / 2;
792  else {                         // Compute probability of true path
793    prob = (float)taken / (float)(taken + not_taken);
794    if (prob > PROB_MAX)  prob = PROB_MAX;
795    if (prob < PROB_MIN)   prob = PROB_MIN;
796  }
797
798  assert((cnt > 0.0f) && (prob > 0.0f),
799         "Bad frequency assignment in if");
800
801  if (C->log() != NULL) {
802    const char* prob_str = NULL;
803    if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
804    if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
805    char prob_str_buf[30];
806    if (prob_str == NULL) {
807      sprintf(prob_str_buf, "%g", prob);
808      prob_str = prob_str_buf;
809    }
810    C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'",
811                   iter().get_dest(), taken, not_taken, cnt, prob_str);
812  }
813  return prob;
814}
815
816//-----------------------------branch_prediction-------------------------------
817float Parse::branch_prediction(float& cnt,
818                               BoolTest::mask btest,
819                               int target_bci) {
820  float prob = dynamic_branch_prediction(cnt);
821  // If prob is unknown, switch to static prediction
822  if (prob != PROB_UNKNOWN)  return prob;
823
824  prob = PROB_FAIR;                   // Set default value
825  if (btest == BoolTest::eq)          // Exactly equal test?
826    prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
827  else if (btest == BoolTest::ne)
828    prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
829
830  // If this is a conditional test guarding a backwards branch,
831  // assume its a loop-back edge.  Make it a likely taken branch.
832  if (target_bci < bci()) {
833    if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
834      // Since it's an OSR, we probably have profile data, but since
835      // branch_prediction returned PROB_UNKNOWN, the counts are too small.
836      // Let's make a special check here for completely zero counts.
837      ciMethodData* methodData = method()->method_data();
838      if (!methodData->is_empty()) {
839        ciProfileData* data = methodData->bci_to_data(bci());
840        // Only stop for truly zero counts, which mean an unknown part
841        // of the OSR-ed method, and we want to deopt to gather more stats.
842        // If you have ANY counts, then this loop is simply 'cold' relative
843        // to the OSR loop.
844        if (data->as_BranchData()->taken() +
845            data->as_BranchData()->not_taken() == 0 ) {
846          // This is the only way to return PROB_UNKNOWN:
847          return PROB_UNKNOWN;
848        }
849      }
850    }
851    prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
852  }
853
854  assert(prob != PROB_UNKNOWN, "must have some guess at this point");
855  return prob;
856}
857
858// The magic constants are chosen so as to match the output of
859// branch_prediction() when the profile reports a zero taken count.
860// It is important to distinguish zero counts unambiguously, because
861// some branches (e.g., _213_javac.Assembler.eliminate) validly produce
862// very small but nonzero probabilities, which if confused with zero
863// counts would keep the program recompiling indefinitely.
864bool Parse::seems_never_taken(float prob) {
865  return prob < PROB_MIN;
866}
867
868inline void Parse::repush_if_args() {
869#ifndef PRODUCT
870  if (PrintOpto && WizardMode) {
871    tty->print("defending against excessive implicit null exceptions on %s @%d in ",
872               Bytecodes::name(iter().cur_bc()), iter().cur_bci());
873    method()->print_name(); tty->cr();
874  }
875#endif
876  int bc_depth = - Bytecodes::depth(iter().cur_bc());
877  assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
878  DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
879  assert(argument(0) != NULL, "must exist");
880  assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
881  _sp += bc_depth;
882}
883
884//----------------------------------do_ifnull----------------------------------
885void Parse::do_ifnull(BoolTest::mask btest) {
886  int target_bci = iter().get_dest();
887
888  float cnt;
889  float prob = branch_prediction(cnt, btest, target_bci);
890  if (prob == PROB_UNKNOWN) {
891    // (An earlier version of do_ifnull omitted this trap for OSR methods.)
892#ifndef PRODUCT
893    if (PrintOpto && Verbose)
894      tty->print_cr("Never-taken backedge stops compilation at bci %d",bci());
895#endif
896    repush_if_args(); // to gather stats on loop
897    // We need to mark this branch as taken so that if we recompile we will
898    // see that it is possible. In the tiered system the interpreter doesn't
899    // do profiling and by the time we get to the lower tier from the interpreter
900    // the path may be cold again. Make sure it doesn't look untaken
901    profile_taken_branch(target_bci, !ProfileInterpreter);
902    uncommon_trap(Deoptimization::Reason_unreached,
903                  Deoptimization::Action_reinterpret,
904                  NULL, "cold");
905    return;
906  }
907
908  // If this is a backwards branch in the bytecodes, add Safepoint
909  maybe_add_safepoint(target_bci);
910  Block* branch_block = successor_for_bci(target_bci);
911  Block* next_block   = successor_for_bci(iter().next_bci());
912
913  explicit_null_checks_inserted++;
914  Node* a = null();
915  Node* b = pop();
916  Node* c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
917
918  // Make a cast-away-nullness that is control dependent on the test
919  const Type *t = _gvn.type(b);
920  const Type *t_not_null = t->join(TypePtr::NOTNULL);
921  Node *cast = new (C, 2) CastPPNode(b,t_not_null);
922
923  // Generate real control flow
924  Node   *tst = _gvn.transform( new (C, 2) BoolNode( c, btest ) );
925
926  // Sanity check the probability value
927  assert(prob > 0.0f,"Bad probability in Parser");
928 // Need xform to put node in hash table
929  IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
930  assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
931  // True branch
932  { PreserveJVMState pjvms(this);
933    Node* iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
934    set_control(iftrue);
935
936    if (stopped()) {            // Path is dead?
937      explicit_null_checks_elided++;
938    } else {                    // Path is live.
939      // Update method data
940      profile_taken_branch(target_bci);
941      adjust_map_after_if(btest, c, prob, branch_block, next_block);
942      if (!stopped())
943        merge(target_bci);
944    }
945  }
946
947  // False branch
948  Node* iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
949  set_control(iffalse);
950
951  if (stopped()) {              // Path is dead?
952    explicit_null_checks_elided++;
953  } else  {                     // Path is live.
954    // Update method data
955    profile_not_taken_branch();
956    adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
957                        next_block, branch_block);
958  }
959}
960
961//------------------------------------do_if------------------------------------
962void Parse::do_if(BoolTest::mask btest, Node* c) {
963  int target_bci = iter().get_dest();
964
965  float cnt;
966  float prob = branch_prediction(cnt, btest, target_bci);
967  float untaken_prob = 1.0 - prob;
968
969  if (prob == PROB_UNKNOWN) {
970#ifndef PRODUCT
971    if (PrintOpto && Verbose)
972      tty->print_cr("Never-taken backedge stops compilation at bci %d",bci());
973#endif
974    repush_if_args(); // to gather stats on loop
975    // We need to mark this branch as taken so that if we recompile we will
976    // see that it is possible. In the tiered system the interpreter doesn't
977    // do profiling and by the time we get to the lower tier from the interpreter
978    // the path may be cold again. Make sure it doesn't look untaken
979    profile_taken_branch(target_bci, !ProfileInterpreter);
980    uncommon_trap(Deoptimization::Reason_unreached,
981                  Deoptimization::Action_reinterpret,
982                  NULL, "cold");
983    return;
984  }
985
986  // Sanity check the probability value
987  assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
988
989  bool taken_if_true = true;
990  // Convert BoolTest to canonical form:
991  if (!BoolTest(btest).is_canonical()) {
992    btest         = BoolTest(btest).negate();
993    taken_if_true = false;
994    // prob is NOT updated here; it remains the probability of the taken
995    // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
996  }
997  assert(btest != BoolTest::eq, "!= is the only canonical exact test");
998
999  Node* tst0 = new (C, 2) BoolNode(c, btest);
1000  Node* tst = _gvn.transform(tst0);
1001  BoolTest::mask taken_btest   = BoolTest::illegal;
1002  BoolTest::mask untaken_btest = BoolTest::illegal;
1003  if (btest == BoolTest::ne) {
1004    // For now, these are the only cases of btest that matter.  (More later.)
1005    taken_btest   = taken_if_true ?        btest : BoolTest::eq;
1006    untaken_btest = taken_if_true ? BoolTest::eq :        btest;
1007  }
1008
1009  // Generate real control flow
1010  float true_prob = (taken_if_true ? prob : untaken_prob);
1011  IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1012  assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1013  Node* taken_branch   = new (C, 1) IfTrueNode(iff);
1014  Node* untaken_branch = new (C, 1) IfFalseNode(iff);
1015  if (!taken_if_true) {  // Finish conversion to canonical form
1016    Node* tmp      = taken_branch;
1017    taken_branch   = untaken_branch;
1018    untaken_branch = tmp;
1019  }
1020
1021  Block* branch_block = successor_for_bci(target_bci);
1022  Block* next_block   = successor_for_bci(iter().next_bci());
1023
1024  // Branch is taken:
1025  { PreserveJVMState pjvms(this);
1026    taken_branch = _gvn.transform(taken_branch);
1027    set_control(taken_branch);
1028
1029    if (!stopped()) {
1030      // Update method data
1031      profile_taken_branch(target_bci);
1032      adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
1033      if (!stopped())
1034        merge(target_bci);
1035    }
1036  }
1037
1038  untaken_branch = _gvn.transform(untaken_branch);
1039  set_control(untaken_branch);
1040
1041  // Branch not taken.
1042  if (!stopped()) {
1043    // Update method data
1044    profile_not_taken_branch();
1045    adjust_map_after_if(untaken_btest, c, untaken_prob,
1046                        next_block, branch_block);
1047  }
1048}
1049
1050//----------------------------adjust_map_after_if------------------------------
1051// Adjust the JVM state to reflect the result of taking this path.
1052// Basically, it means inspecting the CmpNode controlling this
1053// branch, seeing how it constrains a tested value, and then
1054// deciding if it's worth our while to encode this constraint
1055// as graph nodes in the current abstract interpretation map.
1056void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
1057                                Block* path, Block* other_path) {
1058  if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
1059    return;                             // nothing to do
1060
1061  bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
1062
1063  int cop = c->Opcode();
1064  if (seems_never_taken(prob) && cop == Op_CmpP && btest == BoolTest::eq) {
1065    // (An earlier version of do_if omitted '&& btest == BoolTest::eq'.)
1066    //
1067    // If this might possibly turn into an implicit null check,
1068    // and the null has never yet been seen, we need to generate
1069    // an uncommon trap, so as to recompile instead of suffering
1070    // with very slow branches.  (We'll get the slow branches if
1071    // the program ever changes phase and starts seeing nulls here.)
1072    //
1073    // The tests we worry about are of the form (p == null).
1074    // We do not simply inspect for a null constant, since a node may
1075    // optimize to 'null' later on.
1076    repush_if_args();
1077    // We need to mark this branch as taken so that if we recompile we will
1078    // see that it is possible. In the tiered system the interpreter doesn't
1079    // do profiling and by the time we get to the lower tier from the interpreter
1080    // the path may be cold again. Make sure it doesn't look untaken
1081    if (is_fallthrough) {
1082      profile_not_taken_branch(!ProfileInterpreter);
1083    } else {
1084      profile_taken_branch(iter().get_dest(), !ProfileInterpreter);
1085    }
1086    uncommon_trap(Deoptimization::Reason_unreached,
1087                  Deoptimization::Action_reinterpret,
1088                  NULL,
1089                  (is_fallthrough ? "taken always" : "taken never"));
1090    return;
1091  }
1092
1093  Node* val = c->in(1);
1094  Node* con = c->in(2);
1095  const Type* tcon = _gvn.type(con);
1096  const Type* tval = _gvn.type(val);
1097  bool have_con = tcon->singleton();
1098  if (tval->singleton()) {
1099    if (!have_con) {
1100      // Swap, so constant is in con.
1101      con  = val;
1102      tcon = tval;
1103      val  = c->in(2);
1104      tval = _gvn.type(val);
1105      btest = BoolTest(btest).commute();
1106      have_con = true;
1107    } else {
1108      // Do we have two constants?  Then leave well enough alone.
1109      have_con = false;
1110    }
1111  }
1112  if (!have_con)                        // remaining adjustments need a con
1113    return;
1114
1115
1116  int val_in_map = map()->find_edge(val);
1117  if (val_in_map < 0)  return;          // replace_in_map would be useless
1118  {
1119    JVMState* jvms = this->jvms();
1120    if (!(jvms->is_loc(val_in_map) ||
1121          jvms->is_stk(val_in_map)))
1122      return;                           // again, it would be useless
1123  }
1124
1125  // Check for a comparison to a constant, and "know" that the compared
1126  // value is constrained on this path.
1127  assert(tcon->singleton(), "");
1128  ConstraintCastNode* ccast = NULL;
1129  Node* cast = NULL;
1130
1131  switch (btest) {
1132  case BoolTest::eq:                    // Constant test?
1133    {
1134      const Type* tboth = tcon->join(tval);
1135      if (tboth == tval)  break;        // Nothing to gain.
1136      if (tcon->isa_int()) {
1137        ccast = new (C, 2) CastIINode(val, tboth);
1138      } else if (tcon == TypePtr::NULL_PTR) {
1139        // Cast to null, but keep the pointer identity temporarily live.
1140        ccast = new (C, 2) CastPPNode(val, tboth);
1141      } else {
1142        const TypeF* tf = tcon->isa_float_constant();
1143        const TypeD* td = tcon->isa_double_constant();
1144        // Exclude tests vs float/double 0 as these could be
1145        // either +0 or -0.  Just because you are equal to +0
1146        // doesn't mean you ARE +0!
1147        if ((!tf || tf->_f != 0.0) &&
1148            (!td || td->_d != 0.0))
1149          cast = con;                   // Replace non-constant val by con.
1150      }
1151    }
1152    break;
1153
1154  case BoolTest::ne:
1155    if (tcon == TypePtr::NULL_PTR) {
1156      cast = cast_not_null(val, false);
1157    }
1158    break;
1159
1160  default:
1161    // (At this point we could record int range types with CastII.)
1162    break;
1163  }
1164
1165  if (ccast != NULL) {
1166    const Type* tcc = ccast->as_Type()->type();
1167    assert(tcc != tval && tcc->higher_equal(tval), "must improve");
1168    // Delay transform() call to allow recovery of pre-cast value
1169    // at the control merge.
1170    ccast->set_req(0, control());
1171    _gvn.set_type_bottom(ccast);
1172    record_for_igvn(ccast);
1173    cast = ccast;
1174  }
1175
1176  if (cast != NULL) {                   // Here's the payoff.
1177    replace_in_map(val, cast);
1178  }
1179}
1180
1181
1182//------------------------------do_one_bytecode--------------------------------
1183// Parse this bytecode, and alter the Parsers JVM->Node mapping
1184void Parse::do_one_bytecode() {
1185  Node *a, *b, *c, *d;          // Handy temps
1186  BoolTest::mask btest;
1187  int i;
1188
1189  assert(!has_exceptions(), "bytecode entry state must be clear of throws");
1190
1191  if (C->check_node_count(NodeLimitFudgeFactor * 5,
1192                          "out of nodes parsing method")) {
1193    return;
1194  }
1195
1196#ifdef ASSERT
1197  // for setting breakpoints
1198  if (TraceOptoParse) {
1199    tty->print(" @");
1200    dump_bci(bci());
1201  }
1202#endif
1203
1204  switch (bc()) {
1205  case Bytecodes::_nop:
1206    // do nothing
1207    break;
1208  case Bytecodes::_lconst_0:
1209    push_pair(longcon(0));
1210    break;
1211
1212  case Bytecodes::_lconst_1:
1213    push_pair(longcon(1));
1214    break;
1215
1216  case Bytecodes::_fconst_0:
1217    push(zerocon(T_FLOAT));
1218    break;
1219
1220  case Bytecodes::_fconst_1:
1221    push(makecon(TypeF::ONE));
1222    break;
1223
1224  case Bytecodes::_fconst_2:
1225    push(makecon(TypeF::make(2.0f)));
1226    break;
1227
1228  case Bytecodes::_dconst_0:
1229    push_pair(zerocon(T_DOUBLE));
1230    break;
1231
1232  case Bytecodes::_dconst_1:
1233    push_pair(makecon(TypeD::ONE));
1234    break;
1235
1236  case Bytecodes::_iconst_m1:push(intcon(-1)); break;
1237  case Bytecodes::_iconst_0: push(intcon( 0)); break;
1238  case Bytecodes::_iconst_1: push(intcon( 1)); break;
1239  case Bytecodes::_iconst_2: push(intcon( 2)); break;
1240  case Bytecodes::_iconst_3: push(intcon( 3)); break;
1241  case Bytecodes::_iconst_4: push(intcon( 4)); break;
1242  case Bytecodes::_iconst_5: push(intcon( 5)); break;
1243  case Bytecodes::_bipush:   push(intcon( iter().get_byte())); break;
1244  case Bytecodes::_sipush:   push(intcon( iter().get_short())); break;
1245  case Bytecodes::_aconst_null: push(null());  break;
1246  case Bytecodes::_ldc:
1247  case Bytecodes::_ldc_w:
1248  case Bytecodes::_ldc2_w:
1249    // If the constant is unresolved, run this BC once in the interpreter.
1250    if (iter().is_unresolved_string()) {
1251      uncommon_trap(Deoptimization::make_trap_request
1252                    (Deoptimization::Reason_unloaded,
1253                     Deoptimization::Action_reinterpret,
1254                     iter().get_constant_index()),
1255                    NULL, "unresolved_string");
1256      break;
1257    } else {
1258      ciConstant constant = iter().get_constant();
1259      if (constant.basic_type() == T_OBJECT) {
1260        ciObject* c = constant.as_object();
1261        if (c->is_klass()) {
1262          // The constant returned for a klass is the ciKlass for the
1263          // entry.  We want the java_mirror so get it.
1264          ciKlass* klass = c->as_klass();
1265          if (klass->is_loaded()) {
1266            constant = ciConstant(T_OBJECT, klass->java_mirror());
1267          } else {
1268            uncommon_trap(Deoptimization::make_trap_request
1269                          (Deoptimization::Reason_unloaded,
1270                           Deoptimization::Action_reinterpret,
1271                           iter().get_constant_index()),
1272                          NULL, "unresolved_klass");
1273            break;
1274          }
1275        }
1276      }
1277      push_constant(constant);
1278    }
1279
1280    break;
1281
1282  case Bytecodes::_aload_0:
1283    push( local(0) );
1284    break;
1285  case Bytecodes::_aload_1:
1286    push( local(1) );
1287    break;
1288  case Bytecodes::_aload_2:
1289    push( local(2) );
1290    break;
1291  case Bytecodes::_aload_3:
1292    push( local(3) );
1293    break;
1294  case Bytecodes::_aload:
1295    push( local(iter().get_index()) );
1296    break;
1297
1298  case Bytecodes::_fload_0:
1299  case Bytecodes::_iload_0:
1300    push( local(0) );
1301    break;
1302  case Bytecodes::_fload_1:
1303  case Bytecodes::_iload_1:
1304    push( local(1) );
1305    break;
1306  case Bytecodes::_fload_2:
1307  case Bytecodes::_iload_2:
1308    push( local(2) );
1309    break;
1310  case Bytecodes::_fload_3:
1311  case Bytecodes::_iload_3:
1312    push( local(3) );
1313    break;
1314  case Bytecodes::_fload:
1315  case Bytecodes::_iload:
1316    push( local(iter().get_index()) );
1317    break;
1318  case Bytecodes::_lload_0:
1319    push_pair_local( 0 );
1320    break;
1321  case Bytecodes::_lload_1:
1322    push_pair_local( 1 );
1323    break;
1324  case Bytecodes::_lload_2:
1325    push_pair_local( 2 );
1326    break;
1327  case Bytecodes::_lload_3:
1328    push_pair_local( 3 );
1329    break;
1330  case Bytecodes::_lload:
1331    push_pair_local( iter().get_index() );
1332    break;
1333
1334  case Bytecodes::_dload_0:
1335    push_pair_local(0);
1336    break;
1337  case Bytecodes::_dload_1:
1338    push_pair_local(1);
1339    break;
1340  case Bytecodes::_dload_2:
1341    push_pair_local(2);
1342    break;
1343  case Bytecodes::_dload_3:
1344    push_pair_local(3);
1345    break;
1346  case Bytecodes::_dload:
1347    push_pair_local(iter().get_index());
1348    break;
1349  case Bytecodes::_fstore_0:
1350  case Bytecodes::_istore_0:
1351  case Bytecodes::_astore_0:
1352    set_local( 0, pop() );
1353    break;
1354  case Bytecodes::_fstore_1:
1355  case Bytecodes::_istore_1:
1356  case Bytecodes::_astore_1:
1357    set_local( 1, pop() );
1358    break;
1359  case Bytecodes::_fstore_2:
1360  case Bytecodes::_istore_2:
1361  case Bytecodes::_astore_2:
1362    set_local( 2, pop() );
1363    break;
1364  case Bytecodes::_fstore_3:
1365  case Bytecodes::_istore_3:
1366  case Bytecodes::_astore_3:
1367    set_local( 3, pop() );
1368    break;
1369  case Bytecodes::_fstore:
1370  case Bytecodes::_istore:
1371  case Bytecodes::_astore:
1372    set_local( iter().get_index(), pop() );
1373    break;
1374  // long stores
1375  case Bytecodes::_lstore_0:
1376    set_pair_local( 0, pop_pair() );
1377    break;
1378  case Bytecodes::_lstore_1:
1379    set_pair_local( 1, pop_pair() );
1380    break;
1381  case Bytecodes::_lstore_2:
1382    set_pair_local( 2, pop_pair() );
1383    break;
1384  case Bytecodes::_lstore_3:
1385    set_pair_local( 3, pop_pair() );
1386    break;
1387  case Bytecodes::_lstore:
1388    set_pair_local( iter().get_index(), pop_pair() );
1389    break;
1390
1391  // double stores
1392  case Bytecodes::_dstore_0:
1393    set_pair_local( 0, dstore_rounding(pop_pair()) );
1394    break;
1395  case Bytecodes::_dstore_1:
1396    set_pair_local( 1, dstore_rounding(pop_pair()) );
1397    break;
1398  case Bytecodes::_dstore_2:
1399    set_pair_local( 2, dstore_rounding(pop_pair()) );
1400    break;
1401  case Bytecodes::_dstore_3:
1402    set_pair_local( 3, dstore_rounding(pop_pair()) );
1403    break;
1404  case Bytecodes::_dstore:
1405    set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
1406    break;
1407
1408  case Bytecodes::_pop:  _sp -= 1;   break;
1409  case Bytecodes::_pop2: _sp -= 2;   break;
1410  case Bytecodes::_swap:
1411    a = pop();
1412    b = pop();
1413    push(a);
1414    push(b);
1415    break;
1416  case Bytecodes::_dup:
1417    a = pop();
1418    push(a);
1419    push(a);
1420    break;
1421  case Bytecodes::_dup_x1:
1422    a = pop();
1423    b = pop();
1424    push( a );
1425    push( b );
1426    push( a );
1427    break;
1428  case Bytecodes::_dup_x2:
1429    a = pop();
1430    b = pop();
1431    c = pop();
1432    push( a );
1433    push( c );
1434    push( b );
1435    push( a );
1436    break;
1437  case Bytecodes::_dup2:
1438    a = pop();
1439    b = pop();
1440    push( b );
1441    push( a );
1442    push( b );
1443    push( a );
1444    break;
1445
1446  case Bytecodes::_dup2_x1:
1447    // before: .. c, b, a
1448    // after:  .. b, a, c, b, a
1449    // not tested
1450    a = pop();
1451    b = pop();
1452    c = pop();
1453    push( b );
1454    push( a );
1455    push( c );
1456    push( b );
1457    push( a );
1458    break;
1459  case Bytecodes::_dup2_x2:
1460    // before: .. d, c, b, a
1461    // after:  .. b, a, d, c, b, a
1462    // not tested
1463    a = pop();
1464    b = pop();
1465    c = pop();
1466    d = pop();
1467    push( b );
1468    push( a );
1469    push( d );
1470    push( c );
1471    push( b );
1472    push( a );
1473    break;
1474
1475  case Bytecodes::_arraylength: {
1476    // Must do null-check with value on expression stack
1477    Node *ary = do_null_check(peek(), T_ARRAY);
1478    // Compile-time detect of null-exception?
1479    if (stopped())  return;
1480    a = pop();
1481    push(load_array_length(a));
1482    break;
1483  }
1484
1485  case Bytecodes::_baload: array_load(T_BYTE);   break;
1486  case Bytecodes::_caload: array_load(T_CHAR);   break;
1487  case Bytecodes::_iaload: array_load(T_INT);    break;
1488  case Bytecodes::_saload: array_load(T_SHORT);  break;
1489  case Bytecodes::_faload: array_load(T_FLOAT);  break;
1490  case Bytecodes::_aaload: array_load(T_OBJECT); break;
1491  case Bytecodes::_laload: {
1492    a = array_addressing(T_LONG, 0);
1493    if (stopped())  return;     // guarenteed null or range check
1494    _sp -= 2;                   // Pop array and index
1495    push_pair( make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS));
1496    break;
1497  }
1498  case Bytecodes::_daload: {
1499    a = array_addressing(T_DOUBLE, 0);
1500    if (stopped())  return;     // guarenteed null or range check
1501    _sp -= 2;                   // Pop array and index
1502    push_pair( make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES));
1503    break;
1504  }
1505  case Bytecodes::_bastore: array_store(T_BYTE);  break;
1506  case Bytecodes::_castore: array_store(T_CHAR);  break;
1507  case Bytecodes::_iastore: array_store(T_INT);   break;
1508  case Bytecodes::_sastore: array_store(T_SHORT); break;
1509  case Bytecodes::_fastore: array_store(T_FLOAT); break;
1510  case Bytecodes::_aastore: {
1511    d = array_addressing(T_OBJECT, 1);
1512    if (stopped())  return;     // guarenteed null or range check
1513    array_store_check();
1514    c = pop();                  // Oop to store
1515    b = pop();                  // index (already used)
1516    a = pop();                  // the array itself
1517    const Type* elemtype  = _gvn.type(a)->is_aryptr()->elem();
1518    const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
1519    Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT);
1520    break;
1521  }
1522  case Bytecodes::_lastore: {
1523    a = array_addressing(T_LONG, 2);
1524    if (stopped())  return;     // guarenteed null or range check
1525    c = pop_pair();
1526    _sp -= 2;                   // Pop array and index
1527    store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS);
1528    break;
1529  }
1530  case Bytecodes::_dastore: {
1531    a = array_addressing(T_DOUBLE, 2);
1532    if (stopped())  return;     // guarenteed null or range check
1533    c = pop_pair();
1534    _sp -= 2;                   // Pop array and index
1535    c = dstore_rounding(c);
1536    store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES);
1537    break;
1538  }
1539  case Bytecodes::_getfield:
1540    do_getfield();
1541    break;
1542
1543  case Bytecodes::_getstatic:
1544    do_getstatic();
1545    break;
1546
1547  case Bytecodes::_putfield:
1548    do_putfield();
1549    break;
1550
1551  case Bytecodes::_putstatic:
1552    do_putstatic();
1553    break;
1554
1555  case Bytecodes::_irem:
1556    do_irem();
1557    break;
1558  case Bytecodes::_idiv:
1559    // Must keep both values on the expression-stack during null-check
1560    do_null_check(peek(), T_INT);
1561    // Compile-time detect of null-exception?
1562    if (stopped())  return;
1563    b = pop();
1564    a = pop();
1565    push( _gvn.transform( new (C, 3) DivINode(control(),a,b) ) );
1566    break;
1567  case Bytecodes::_imul:
1568    b = pop(); a = pop();
1569    push( _gvn.transform( new (C, 3) MulINode(a,b) ) );
1570    break;
1571  case Bytecodes::_iadd:
1572    b = pop(); a = pop();
1573    push( _gvn.transform( new (C, 3) AddINode(a,b) ) );
1574    break;
1575  case Bytecodes::_ineg:
1576    a = pop();
1577    push( _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),a)) );
1578    break;
1579  case Bytecodes::_isub:
1580    b = pop(); a = pop();
1581    push( _gvn.transform( new (C, 3) SubINode(a,b) ) );
1582    break;
1583  case Bytecodes::_iand:
1584    b = pop(); a = pop();
1585    push( _gvn.transform( new (C, 3) AndINode(a,b) ) );
1586    break;
1587  case Bytecodes::_ior:
1588    b = pop(); a = pop();
1589    push( _gvn.transform( new (C, 3) OrINode(a,b) ) );
1590    break;
1591  case Bytecodes::_ixor:
1592    b = pop(); a = pop();
1593    push( _gvn.transform( new (C, 3) XorINode(a,b) ) );
1594    break;
1595  case Bytecodes::_ishl:
1596    b = pop(); a = pop();
1597    push( _gvn.transform( new (C, 3) LShiftINode(a,b) ) );
1598    break;
1599  case Bytecodes::_ishr:
1600    b = pop(); a = pop();
1601    push( _gvn.transform( new (C, 3) RShiftINode(a,b) ) );
1602    break;
1603  case Bytecodes::_iushr:
1604    b = pop(); a = pop();
1605    push( _gvn.transform( new (C, 3) URShiftINode(a,b) ) );
1606    break;
1607
1608  case Bytecodes::_fneg:
1609    a = pop();
1610    b = _gvn.transform(new (C, 2) NegFNode (a));
1611    push(b);
1612    break;
1613
1614  case Bytecodes::_fsub:
1615    b = pop();
1616    a = pop();
1617    c = _gvn.transform( new (C, 3) SubFNode(a,b) );
1618    d = precision_rounding(c);
1619    push( d );
1620    break;
1621
1622  case Bytecodes::_fadd:
1623    b = pop();
1624    a = pop();
1625    c = _gvn.transform( new (C, 3) AddFNode(a,b) );
1626    d = precision_rounding(c);
1627    push( d );
1628    break;
1629
1630  case Bytecodes::_fmul:
1631    b = pop();
1632    a = pop();
1633    c = _gvn.transform( new (C, 3) MulFNode(a,b) );
1634    d = precision_rounding(c);
1635    push( d );
1636    break;
1637
1638  case Bytecodes::_fdiv:
1639    b = pop();
1640    a = pop();
1641    c = _gvn.transform( new (C, 3) DivFNode(0,a,b) );
1642    d = precision_rounding(c);
1643    push( d );
1644    break;
1645
1646  case Bytecodes::_frem:
1647    if (Matcher::has_match_rule(Op_ModF)) {
1648      // Generate a ModF node.
1649      b = pop();
1650      a = pop();
1651      c = _gvn.transform( new (C, 3) ModFNode(0,a,b) );
1652      d = precision_rounding(c);
1653      push( d );
1654    }
1655    else {
1656      // Generate a call.
1657      modf();
1658    }
1659    break;
1660
1661  case Bytecodes::_fcmpl:
1662    b = pop();
1663    a = pop();
1664    c = _gvn.transform( new (C, 3) CmpF3Node( a, b));
1665    push(c);
1666    break;
1667  case Bytecodes::_fcmpg:
1668    b = pop();
1669    a = pop();
1670
1671    // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
1672    // which negates the result sign except for unordered.  Flip the unordered
1673    // as well by using CmpF3 which implements unordered-lesser instead of
1674    // unordered-greater semantics.  Finally, commute the result bits.  Result
1675    // is same as using a CmpF3Greater except we did it with CmpF3 alone.
1676    c = _gvn.transform( new (C, 3) CmpF3Node( b, a));
1677    c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
1678    push(c);
1679    break;
1680
1681  case Bytecodes::_f2i:
1682    a = pop();
1683    push(_gvn.transform(new (C, 2) ConvF2INode(a)));
1684    break;
1685
1686  case Bytecodes::_d2i:
1687    a = pop_pair();
1688    b = _gvn.transform(new (C, 2) ConvD2INode(a));
1689    push( b );
1690    break;
1691
1692  case Bytecodes::_f2d:
1693    a = pop();
1694    b = _gvn.transform( new (C, 2) ConvF2DNode(a));
1695    push_pair( b );
1696    break;
1697
1698  case Bytecodes::_d2f:
1699    a = pop_pair();
1700    b = _gvn.transform( new (C, 2) ConvD2FNode(a));
1701    // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
1702    //b = _gvn.transform(new (C, 2) RoundFloatNode(0, b) );
1703    push( b );
1704    break;
1705
1706  case Bytecodes::_l2f:
1707    if (Matcher::convL2FSupported()) {
1708      a = pop_pair();
1709      b = _gvn.transform( new (C, 2) ConvL2FNode(a));
1710      // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
1711      // Rather than storing the result into an FP register then pushing
1712      // out to memory to round, the machine instruction that implements
1713      // ConvL2D is responsible for rounding.
1714      // c = precision_rounding(b);
1715      c = _gvn.transform(b);
1716      push(c);
1717    } else {
1718      l2f();
1719    }
1720    break;
1721
1722  case Bytecodes::_l2d:
1723    a = pop_pair();
1724    b = _gvn.transform( new (C, 2) ConvL2DNode(a));
1725    // For i486.ad, rounding is always necessary (see _l2f above).
1726    // c = dprecision_rounding(b);
1727    c = _gvn.transform(b);
1728    push_pair(c);
1729    break;
1730
1731  case Bytecodes::_f2l:
1732    a = pop();
1733    b = _gvn.transform( new (C, 2) ConvF2LNode(a));
1734    push_pair(b);
1735    break;
1736
1737  case Bytecodes::_d2l:
1738    a = pop_pair();
1739    b = _gvn.transform( new (C, 2) ConvD2LNode(a));
1740    push_pair(b);
1741    break;
1742
1743  case Bytecodes::_dsub:
1744    b = pop_pair();
1745    a = pop_pair();
1746    c = _gvn.transform( new (C, 3) SubDNode(a,b) );
1747    d = dprecision_rounding(c);
1748    push_pair( d );
1749    break;
1750
1751  case Bytecodes::_dadd:
1752    b = pop_pair();
1753    a = pop_pair();
1754    c = _gvn.transform( new (C, 3) AddDNode(a,b) );
1755    d = dprecision_rounding(c);
1756    push_pair( d );
1757    break;
1758
1759  case Bytecodes::_dmul:
1760    b = pop_pair();
1761    a = pop_pair();
1762    c = _gvn.transform( new (C, 3) MulDNode(a,b) );
1763    d = dprecision_rounding(c);
1764    push_pair( d );
1765    break;
1766
1767  case Bytecodes::_ddiv:
1768    b = pop_pair();
1769    a = pop_pair();
1770    c = _gvn.transform( new (C, 3) DivDNode(0,a,b) );
1771    d = dprecision_rounding(c);
1772    push_pair( d );
1773    break;
1774
1775  case Bytecodes::_dneg:
1776    a = pop_pair();
1777    b = _gvn.transform(new (C, 2) NegDNode (a));
1778    push_pair(b);
1779    break;
1780
1781  case Bytecodes::_drem:
1782    if (Matcher::has_match_rule(Op_ModD)) {
1783      // Generate a ModD node.
1784      b = pop_pair();
1785      a = pop_pair();
1786      // a % b
1787
1788      c = _gvn.transform( new (C, 3) ModDNode(0,a,b) );
1789      d = dprecision_rounding(c);
1790      push_pair( d );
1791    }
1792    else {
1793      // Generate a call.
1794      modd();
1795    }
1796    break;
1797
1798  case Bytecodes::_dcmpl:
1799    b = pop_pair();
1800    a = pop_pair();
1801    c = _gvn.transform( new (C, 3) CmpD3Node( a, b));
1802    push(c);
1803    break;
1804
1805  case Bytecodes::_dcmpg:
1806    b = pop_pair();
1807    a = pop_pair();
1808    // Same as dcmpl but need to flip the unordered case.
1809    // Commute the inputs, which negates the result sign except for unordered.
1810    // Flip the unordered as well by using CmpD3 which implements
1811    // unordered-lesser instead of unordered-greater semantics.
1812    // Finally, negate the result bits.  Result is same as using a
1813    // CmpD3Greater except we did it with CmpD3 alone.
1814    c = _gvn.transform( new (C, 3) CmpD3Node( b, a));
1815    c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
1816    push(c);
1817    break;
1818
1819
1820    // Note for longs -> lo word is on TOS, hi word is on TOS - 1
1821  case Bytecodes::_land:
1822    b = pop_pair();
1823    a = pop_pair();
1824    c = _gvn.transform( new (C, 3) AndLNode(a,b) );
1825    push_pair(c);
1826    break;
1827  case Bytecodes::_lor:
1828    b = pop_pair();
1829    a = pop_pair();
1830    c = _gvn.transform( new (C, 3) OrLNode(a,b) );
1831    push_pair(c);
1832    break;
1833  case Bytecodes::_lxor:
1834    b = pop_pair();
1835    a = pop_pair();
1836    c = _gvn.transform( new (C, 3) XorLNode(a,b) );
1837    push_pair(c);
1838    break;
1839
1840  case Bytecodes::_lshl:
1841    b = pop();                  // the shift count
1842    a = pop_pair();             // value to be shifted
1843    c = _gvn.transform( new (C, 3) LShiftLNode(a,b) );
1844    push_pair(c);
1845    break;
1846  case Bytecodes::_lshr:
1847    b = pop();                  // the shift count
1848    a = pop_pair();             // value to be shifted
1849    c = _gvn.transform( new (C, 3) RShiftLNode(a,b) );
1850    push_pair(c);
1851    break;
1852  case Bytecodes::_lushr:
1853    b = pop();                  // the shift count
1854    a = pop_pair();             // value to be shifted
1855    c = _gvn.transform( new (C, 3) URShiftLNode(a,b) );
1856    push_pair(c);
1857    break;
1858  case Bytecodes::_lmul:
1859    b = pop_pair();
1860    a = pop_pair();
1861    c = _gvn.transform( new (C, 3) MulLNode(a,b) );
1862    push_pair(c);
1863    break;
1864
1865  case Bytecodes::_lrem:
1866    // Must keep both values on the expression-stack during null-check
1867    assert(peek(0) == top(), "long word order");
1868    do_null_check(peek(1), T_LONG);
1869    // Compile-time detect of null-exception?
1870    if (stopped())  return;
1871    b = pop_pair();
1872    a = pop_pair();
1873    c = _gvn.transform( new (C, 3) ModLNode(control(),a,b) );
1874    push_pair(c);
1875    break;
1876
1877  case Bytecodes::_ldiv:
1878    // Must keep both values on the expression-stack during null-check
1879    assert(peek(0) == top(), "long word order");
1880    do_null_check(peek(1), T_LONG);
1881    // Compile-time detect of null-exception?
1882    if (stopped())  return;
1883    b = pop_pair();
1884    a = pop_pair();
1885    c = _gvn.transform( new (C, 3) DivLNode(control(),a,b) );
1886    push_pair(c);
1887    break;
1888
1889  case Bytecodes::_ladd:
1890    b = pop_pair();
1891    a = pop_pair();
1892    c = _gvn.transform( new (C, 3) AddLNode(a,b) );
1893    push_pair(c);
1894    break;
1895  case Bytecodes::_lsub:
1896    b = pop_pair();
1897    a = pop_pair();
1898    c = _gvn.transform( new (C, 3) SubLNode(a,b) );
1899    push_pair(c);
1900    break;
1901  case Bytecodes::_lcmp:
1902    // Safepoints are now inserted _before_ branches.  The long-compare
1903    // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
1904    // slew of control flow.  These are usually followed by a CmpI vs zero and
1905    // a branch; this pattern then optimizes to the obvious long-compare and
1906    // branch.  However, if the branch is backwards there's a Safepoint
1907    // inserted.  The inserted Safepoint captures the JVM state at the
1908    // pre-branch point, i.e. it captures the 3-way value.  Thus if a
1909    // long-compare is used to control a loop the debug info will force
1910    // computation of the 3-way value, even though the generated code uses a
1911    // long-compare and branch.  We try to rectify the situation by inserting
1912    // a SafePoint here and have it dominate and kill the safepoint added at a
1913    // following backwards branch.  At this point the JVM state merely holds 2
1914    // longs but not the 3-way value.
1915    if( UseLoopSafepoints ) {
1916      switch( iter().next_bc() ) {
1917      case Bytecodes::_ifgt:
1918      case Bytecodes::_iflt:
1919      case Bytecodes::_ifge:
1920      case Bytecodes::_ifle:
1921      case Bytecodes::_ifne:
1922      case Bytecodes::_ifeq:
1923        // If this is a backwards branch in the bytecodes, add Safepoint
1924        maybe_add_safepoint(iter().next_get_dest());
1925      }
1926    }
1927    b = pop_pair();
1928    a = pop_pair();
1929    c = _gvn.transform( new (C, 3) CmpL3Node( a, b ));
1930    push(c);
1931    break;
1932
1933  case Bytecodes::_lneg:
1934    a = pop_pair();
1935    b = _gvn.transform( new (C, 3) SubLNode(longcon(0),a));
1936    push_pair(b);
1937    break;
1938  case Bytecodes::_l2i:
1939    a = pop_pair();
1940    push( _gvn.transform( new (C, 2) ConvL2INode(a)));
1941    break;
1942  case Bytecodes::_i2l:
1943    a = pop();
1944    b = _gvn.transform( new (C, 2) ConvI2LNode(a));
1945    push_pair(b);
1946    break;
1947  case Bytecodes::_i2b:
1948    // Sign extend
1949    a = pop();
1950    a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(24)) );
1951    a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(24)) );
1952    push( a );
1953    break;
1954  case Bytecodes::_i2s:
1955    a = pop();
1956    a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(16)) );
1957    a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(16)) );
1958    push( a );
1959    break;
1960  case Bytecodes::_i2c:
1961    a = pop();
1962    push( _gvn.transform( new (C, 3) AndINode(a,_gvn.intcon(0xFFFF)) ) );
1963    break;
1964
1965  case Bytecodes::_i2f:
1966    a = pop();
1967    b = _gvn.transform( new (C, 2) ConvI2FNode(a) ) ;
1968    c = precision_rounding(b);
1969    push (b);
1970    break;
1971
1972  case Bytecodes::_i2d:
1973    a = pop();
1974    b = _gvn.transform( new (C, 2) ConvI2DNode(a));
1975    push_pair(b);
1976    break;
1977
1978  case Bytecodes::_iinc:        // Increment local
1979    i = iter().get_index();     // Get local index
1980    set_local( i, _gvn.transform( new (C, 3) AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
1981    break;
1982
1983  // Exit points of synchronized methods must have an unlock node
1984  case Bytecodes::_return:
1985    return_current(NULL);
1986    break;
1987
1988  case Bytecodes::_ireturn:
1989  case Bytecodes::_areturn:
1990  case Bytecodes::_freturn:
1991    return_current(pop());
1992    break;
1993  case Bytecodes::_lreturn:
1994    return_current(pop_pair());
1995    break;
1996  case Bytecodes::_dreturn:
1997    return_current(pop_pair());
1998    break;
1999
2000  case Bytecodes::_athrow:
2001    // null exception oop throws NULL pointer exception
2002    do_null_check(peek(), T_OBJECT);
2003    if (stopped())  return;
2004    if (JvmtiExport::can_post_exceptions()) {
2005      // "Full-speed throwing" is not necessary here,
2006      // since we're notifying the VM on every throw.
2007      uncommon_trap(Deoptimization::Reason_unhandled,
2008                    Deoptimization::Action_none);
2009      return;
2010    }
2011    // Hook the thrown exception directly to subsequent handlers.
2012    if (BailoutToInterpreterForThrows) {
2013      // Keep method interpreted from now on.
2014      uncommon_trap(Deoptimization::Reason_unhandled,
2015                    Deoptimization::Action_make_not_compilable);
2016      return;
2017    }
2018    add_exception_state(make_exception_state(peek()));
2019    break;
2020
2021  case Bytecodes::_goto:   // fall through
2022  case Bytecodes::_goto_w: {
2023    int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
2024
2025    // If this is a backwards branch in the bytecodes, add Safepoint
2026    maybe_add_safepoint(target_bci);
2027
2028    // Update method data
2029    profile_taken_branch(target_bci);
2030
2031    // Merge the current control into the target basic block
2032    merge(target_bci);
2033
2034    // See if we can get some profile data and hand it off to the next block
2035    Block *target_block = block()->successor_for_bci(target_bci);
2036    if (target_block->pred_count() != 1)  break;
2037    ciMethodData* methodData = method()->method_data();
2038    if (!methodData->is_mature())  break;
2039    ciProfileData* data = methodData->bci_to_data(bci());
2040    assert( data->is_JumpData(), "" );
2041    int taken = ((ciJumpData*)data)->taken();
2042    taken = method()->scale_count(taken);
2043    target_block->set_count(taken);
2044    break;
2045  }
2046
2047  case Bytecodes::_ifnull:
2048    do_ifnull(BoolTest::eq);
2049    break;
2050  case Bytecodes::_ifnonnull:
2051    do_ifnull(BoolTest::ne);
2052    break;
2053
2054  case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
2055  case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
2056  handle_if_acmp:
2057    // If this is a backwards branch in the bytecodes, add Safepoint
2058    maybe_add_safepoint(iter().get_dest());
2059    a = pop();
2060    b = pop();
2061    c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
2062    do_if(btest, c);
2063    break;
2064
2065  case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
2066  case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
2067  case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
2068  case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
2069  case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
2070  case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
2071  handle_ifxx:
2072    // If this is a backwards branch in the bytecodes, add Safepoint
2073    maybe_add_safepoint(iter().get_dest());
2074    a = _gvn.intcon(0);
2075    b = pop();
2076    c = _gvn.transform( new (C, 3) CmpINode(b, a) );
2077    do_if(btest, c);
2078    break;
2079
2080  case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
2081  case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
2082  case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
2083  case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
2084  case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
2085  case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
2086  handle_if_icmp:
2087    // If this is a backwards branch in the bytecodes, add Safepoint
2088    maybe_add_safepoint(iter().get_dest());
2089    a = pop();
2090    b = pop();
2091    c = _gvn.transform( new (C, 3) CmpINode( b, a ) );
2092    do_if(btest, c);
2093    break;
2094
2095  case Bytecodes::_tableswitch:
2096    do_tableswitch();
2097    break;
2098
2099  case Bytecodes::_lookupswitch:
2100    do_lookupswitch();
2101    break;
2102
2103  case Bytecodes::_invokestatic:
2104  case Bytecodes::_invokespecial:
2105  case Bytecodes::_invokevirtual:
2106  case Bytecodes::_invokeinterface:
2107    do_call();
2108    break;
2109  case Bytecodes::_checkcast:
2110    do_checkcast();
2111    break;
2112  case Bytecodes::_instanceof:
2113    do_instanceof();
2114    break;
2115  case Bytecodes::_anewarray:
2116    do_anewarray();
2117    break;
2118  case Bytecodes::_newarray:
2119    do_newarray((BasicType)iter().get_index());
2120    break;
2121  case Bytecodes::_multianewarray:
2122    do_multianewarray();
2123    break;
2124  case Bytecodes::_new:
2125    do_new();
2126    break;
2127
2128  case Bytecodes::_jsr:
2129  case Bytecodes::_jsr_w:
2130    do_jsr();
2131    break;
2132
2133  case Bytecodes::_ret:
2134    do_ret();
2135    break;
2136
2137
2138  case Bytecodes::_monitorenter:
2139    do_monitor_enter();
2140    break;
2141
2142  case Bytecodes::_monitorexit:
2143    do_monitor_exit();
2144    break;
2145
2146  case Bytecodes::_breakpoint:
2147    // Breakpoint set concurrently to compile
2148    // %%% use an uncommon trap?
2149    C->record_failure("breakpoint in method");
2150    return;
2151
2152  default:
2153#ifndef PRODUCT
2154    map()->dump(99);
2155#endif
2156    tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
2157    ShouldNotReachHere();
2158  }
2159
2160#ifndef PRODUCT
2161  IdealGraphPrinter *printer = IdealGraphPrinter::printer();
2162  if(printer) {
2163    char buffer[256];
2164    sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
2165    bool old = printer->traverse_outs();
2166    printer->set_traverse_outs(true);
2167    printer->print_method(C, buffer, 3);
2168    printer->set_traverse_outs(old);
2169  }
2170#endif
2171}
2172