output.cpp revision 6764:b1eb6f5a41ec
1/*
2 * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/assembler.inline.hpp"
27#include "code/compiledIC.hpp"
28#include "code/debugInfo.hpp"
29#include "code/debugInfoRec.hpp"
30#include "compiler/compileBroker.hpp"
31#include "compiler/oopMap.hpp"
32#include "memory/allocation.inline.hpp"
33#include "opto/ad.hpp"
34#include "opto/callnode.hpp"
35#include "opto/cfgnode.hpp"
36#include "opto/locknode.hpp"
37#include "opto/machnode.hpp"
38#include "opto/optoreg.hpp"
39#include "opto/output.hpp"
40#include "opto/regalloc.hpp"
41#include "opto/runtime.hpp"
42#include "opto/subnode.hpp"
43#include "opto/type.hpp"
44#include "runtime/handles.inline.hpp"
45#include "utilities/xmlstream.hpp"
46
47#ifndef PRODUCT
48#define DEBUG_ARG(x) , x
49#else
50#define DEBUG_ARG(x)
51#endif
52
53// Convert Nodes to instruction bits and pass off to the VM
54void Compile::Output() {
55  // RootNode goes
56  assert( _cfg->get_root_block()->number_of_nodes() == 0, "" );
57
58  // The number of new nodes (mostly MachNop) is proportional to
59  // the number of java calls and inner loops which are aligned.
60  if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
61                            C->inner_loops()*(OptoLoopAlignment-1)),
62                           "out of nodes before code generation" ) ) {
63    return;
64  }
65  // Make sure I can find the Start Node
66  Block *entry = _cfg->get_block(1);
67  Block *broot = _cfg->get_root_block();
68
69  const StartNode *start = entry->head()->as_Start();
70
71  // Replace StartNode with prolog
72  MachPrologNode *prolog = new MachPrologNode();
73  entry->map_node(prolog, 0);
74  _cfg->map_node_to_block(prolog, entry);
75  _cfg->unmap_node_from_block(start); // start is no longer in any block
76
77  // Virtual methods need an unverified entry point
78
79  if( is_osr_compilation() ) {
80    if( PoisonOSREntry ) {
81      // TODO: Should use a ShouldNotReachHereNode...
82      _cfg->insert( broot, 0, new MachBreakpointNode() );
83    }
84  } else {
85    if( _method && !_method->flags().is_static() ) {
86      // Insert unvalidated entry point
87      _cfg->insert( broot, 0, new MachUEPNode() );
88    }
89
90  }
91
92
93  // Break before main entry point
94  if( (_method && _method->break_at_execute())
95#ifndef PRODUCT
96    ||(OptoBreakpoint && is_method_compilation())
97    ||(OptoBreakpointOSR && is_osr_compilation())
98    ||(OptoBreakpointC2R && !_method)
99#endif
100    ) {
101    // checking for _method means that OptoBreakpoint does not apply to
102    // runtime stubs or frame converters
103    _cfg->insert( entry, 1, new MachBreakpointNode() );
104  }
105
106  // Insert epilogs before every return
107  for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
108    Block* block = _cfg->get_block(i);
109    if (!block->is_connector() && block->non_connector_successor(0) == _cfg->get_root_block()) { // Found a program exit point?
110      Node* m = block->end();
111      if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
112        MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
113        block->add_inst(epilog);
114        _cfg->map_node_to_block(epilog, block);
115      }
116    }
117  }
118
119# ifdef ENABLE_ZAP_DEAD_LOCALS
120  if (ZapDeadCompiledLocals) {
121    Insert_zap_nodes();
122  }
123# endif
124
125  uint* blk_starts = NEW_RESOURCE_ARRAY(uint, _cfg->number_of_blocks() + 1);
126  blk_starts[0] = 0;
127
128  // Initialize code buffer and process short branches.
129  CodeBuffer* cb = init_buffer(blk_starts);
130
131  if (cb == NULL || failing()) {
132    return;
133  }
134
135  ScheduleAndBundle();
136
137#ifndef PRODUCT
138  if (trace_opto_output()) {
139    tty->print("\n---- After ScheduleAndBundle ----\n");
140    for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
141      tty->print("\nBB#%03d:\n", i);
142      Block* block = _cfg->get_block(i);
143      for (uint j = 0; j < block->number_of_nodes(); j++) {
144        Node* n = block->get_node(j);
145        OptoReg::Name reg = _regalloc->get_reg_first(n);
146        tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
147        n->dump();
148      }
149    }
150  }
151#endif
152
153  if (failing()) {
154    return;
155  }
156
157  BuildOopMaps();
158
159  if (failing())  {
160    return;
161  }
162
163  fill_buffer(cb, blk_starts);
164}
165
166bool Compile::need_stack_bang(int frame_size_in_bytes) const {
167  // Determine if we need to generate a stack overflow check.
168  // Do it if the method is not a stub function and
169  // has java calls or has frame size > vm_page_size/8.
170  // The debug VM checks that deoptimization doesn't trigger an
171  // unexpected stack overflow (compiled method stack banging should
172  // guarantee it doesn't happen) so we always need the stack bang in
173  // a debug VM.
174  return (UseStackBanging && stub_function() == NULL &&
175          (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3
176           DEBUG_ONLY(|| true)));
177}
178
179bool Compile::need_register_stack_bang() const {
180  // Determine if we need to generate a register stack overflow check.
181  // This is only used on architectures which have split register
182  // and memory stacks (ie. IA64).
183  // Bang if the method is not a stub function and has java calls
184  return (stub_function() == NULL && has_java_calls());
185}
186
187# ifdef ENABLE_ZAP_DEAD_LOCALS
188
189
190// In order to catch compiler oop-map bugs, we have implemented
191// a debugging mode called ZapDeadCompilerLocals.
192// This mode causes the compiler to insert a call to a runtime routine,
193// "zap_dead_locals", right before each place in compiled code
194// that could potentially be a gc-point (i.e., a safepoint or oop map point).
195// The runtime routine checks that locations mapped as oops are really
196// oops, that locations mapped as values do not look like oops,
197// and that locations mapped as dead are not used later
198// (by zapping them to an invalid address).
199
200int Compile::_CompiledZap_count = 0;
201
202void Compile::Insert_zap_nodes() {
203  bool skip = false;
204
205
206  // Dink with static counts because code code without the extra
207  // runtime calls is MUCH faster for debugging purposes
208
209       if ( CompileZapFirst  ==  0  ) ; // nothing special
210  else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
211  else if ( CompileZapFirst  == CompiledZap_count() )
212    warning("starting zap compilation after skipping");
213
214       if ( CompileZapLast  ==  -1  ) ; // nothing special
215  else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
216  else if ( CompileZapLast  ==  CompiledZap_count() )
217    warning("about to compile last zap");
218
219  ++_CompiledZap_count; // counts skipped zaps, too
220
221  if ( skip )  return;
222
223
224  if ( _method == NULL )
225    return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
226
227  // Insert call to zap runtime stub before every node with an oop map
228  for( uint i=0; i<_cfg->number_of_blocks(); i++ ) {
229    Block *b = _cfg->get_block(i);
230    for ( uint j = 0;  j < b->number_of_nodes();  ++j ) {
231      Node *n = b->get_node(j);
232
233      // Determining if we should insert a zap-a-lot node in output.
234      // We do that for all nodes that has oopmap info, except for calls
235      // to allocation.  Calls to allocation passes in the old top-of-eden pointer
236      // and expect the C code to reset it.  Hence, there can be no safepoints between
237      // the inlined-allocation and the call to new_Java, etc.
238      // We also cannot zap monitor calls, as they must hold the microlock
239      // during the call to Zap, which also wants to grab the microlock.
240      bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
241      if ( insert ) { // it is MachSafePoint
242        if ( !n->is_MachCall() ) {
243          insert = false;
244        } else if ( n->is_MachCall() ) {
245          MachCallNode* call = n->as_MachCall();
246          if (call->entry_point() == OptoRuntime::new_instance_Java() ||
247              call->entry_point() == OptoRuntime::new_array_Java() ||
248              call->entry_point() == OptoRuntime::multianewarray2_Java() ||
249              call->entry_point() == OptoRuntime::multianewarray3_Java() ||
250              call->entry_point() == OptoRuntime::multianewarray4_Java() ||
251              call->entry_point() == OptoRuntime::multianewarray5_Java() ||
252              call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
253              call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
254              ) {
255            insert = false;
256          }
257        }
258        if (insert) {
259          Node *zap = call_zap_node(n->as_MachSafePoint(), i);
260          b->insert_node(zap, j);
261          _cfg->map_node_to_block(zap, b);
262          ++j;
263        }
264      }
265    }
266  }
267}
268
269
270Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
271  const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
272  CallStaticJavaNode* ideal_node =
273    new CallStaticJavaNode( tf,
274         OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
275                       "call zap dead locals stub", 0, TypePtr::BOTTOM);
276  // We need to copy the OopMap from the site we're zapping at.
277  // We have to make a copy, because the zap site might not be
278  // a call site, and zap_dead is a call site.
279  OopMap* clone = node_to_check->oop_map()->deep_copy();
280
281  // Add the cloned OopMap to the zap node
282  ideal_node->set_oop_map(clone);
283  return _matcher->match_sfpt(ideal_node);
284}
285
286bool Compile::is_node_getting_a_safepoint( Node* n) {
287  // This code duplicates the logic prior to the call of add_safepoint
288  // below in this file.
289  if( n->is_MachSafePoint() ) return true;
290  return false;
291}
292
293# endif // ENABLE_ZAP_DEAD_LOCALS
294
295// Compute the size of first NumberOfLoopInstrToAlign instructions at the top
296// of a loop. When aligning a loop we need to provide enough instructions
297// in cpu's fetch buffer to feed decoders. The loop alignment could be
298// avoided if we have enough instructions in fetch buffer at the head of a loop.
299// By default, the size is set to 999999 by Block's constructor so that
300// a loop will be aligned if the size is not reset here.
301//
302// Note: Mach instructions could contain several HW instructions
303// so the size is estimated only.
304//
305void Compile::compute_loop_first_inst_sizes() {
306  // The next condition is used to gate the loop alignment optimization.
307  // Don't aligned a loop if there are enough instructions at the head of a loop
308  // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
309  // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
310  // equal to 11 bytes which is the largest address NOP instruction.
311  if (MaxLoopPad < OptoLoopAlignment - 1) {
312    uint last_block = _cfg->number_of_blocks() - 1;
313    for (uint i = 1; i <= last_block; i++) {
314      Block* block = _cfg->get_block(i);
315      // Check the first loop's block which requires an alignment.
316      if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
317        uint sum_size = 0;
318        uint inst_cnt = NumberOfLoopInstrToAlign;
319        inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
320
321        // Check subsequent fallthrough blocks if the loop's first
322        // block(s) does not have enough instructions.
323        Block *nb = block;
324        while(inst_cnt > 0 &&
325              i < last_block &&
326              !_cfg->get_block(i + 1)->has_loop_alignment() &&
327              !nb->has_successor(block)) {
328          i++;
329          nb = _cfg->get_block(i);
330          inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
331        } // while( inst_cnt > 0 && i < last_block  )
332
333        block->set_first_inst_size(sum_size);
334      } // f( b->head()->is_Loop() )
335    } // for( i <= last_block )
336  } // if( MaxLoopPad < OptoLoopAlignment-1 )
337}
338
339// The architecture description provides short branch variants for some long
340// branch instructions. Replace eligible long branches with short branches.
341void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
342  // Compute size of each block, method size, and relocation information size
343  uint nblocks  = _cfg->number_of_blocks();
344
345  uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
346  uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
347  int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
348
349  // Collect worst case block paddings
350  int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks);
351  memset(block_worst_case_pad, 0, nblocks * sizeof(int));
352
353  DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
354  DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
355
356  bool has_short_branch_candidate = false;
357
358  // Initialize the sizes to 0
359  code_size  = 0;          // Size in bytes of generated code
360  stub_size  = 0;          // Size in bytes of all stub entries
361  // Size in bytes of all relocation entries, including those in local stubs.
362  // Start with 2-bytes of reloc info for the unvalidated entry point
363  reloc_size = 1;          // Number of relocation entries
364
365  // Make three passes.  The first computes pessimistic blk_starts,
366  // relative jmp_offset and reloc_size information.  The second performs
367  // short branch substitution using the pessimistic sizing.  The
368  // third inserts nops where needed.
369
370  // Step one, perform a pessimistic sizing pass.
371  uint last_call_adr = max_juint;
372  uint last_avoid_back_to_back_adr = max_juint;
373  uint nop_size = (new MachNopNode())->size(_regalloc);
374  for (uint i = 0; i < nblocks; i++) { // For all blocks
375    Block* block = _cfg->get_block(i);
376
377    // During short branch replacement, we store the relative (to blk_starts)
378    // offset of jump in jmp_offset, rather than the absolute offset of jump.
379    // This is so that we do not need to recompute sizes of all nodes when
380    // we compute correct blk_starts in our next sizing pass.
381    jmp_offset[i] = 0;
382    jmp_size[i]   = 0;
383    jmp_nidx[i]   = -1;
384    DEBUG_ONLY( jmp_target[i] = 0; )
385    DEBUG_ONLY( jmp_rule[i]   = 0; )
386
387    // Sum all instruction sizes to compute block size
388    uint last_inst = block->number_of_nodes();
389    uint blk_size = 0;
390    for (uint j = 0; j < last_inst; j++) {
391      Node* nj = block->get_node(j);
392      // Handle machine instruction nodes
393      if (nj->is_Mach()) {
394        MachNode *mach = nj->as_Mach();
395        blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
396        reloc_size += mach->reloc();
397        if (mach->is_MachCall()) {
398          // add size information for trampoline stub
399          // class CallStubImpl is platform-specific and defined in the *.ad files.
400          stub_size  += CallStubImpl::size_call_trampoline();
401          reloc_size += CallStubImpl::reloc_call_trampoline();
402
403          MachCallNode *mcall = mach->as_MachCall();
404          // This destination address is NOT PC-relative
405
406          mcall->method_set((intptr_t)mcall->entry_point());
407
408          if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
409            stub_size  += CompiledStaticCall::to_interp_stub_size();
410            reloc_size += CompiledStaticCall::reloc_to_interp_stub();
411          }
412        } else if (mach->is_MachSafePoint()) {
413          // If call/safepoint are adjacent, account for possible
414          // nop to disambiguate the two safepoints.
415          // ScheduleAndBundle() can rearrange nodes in a block,
416          // check for all offsets inside this block.
417          if (last_call_adr >= blk_starts[i]) {
418            blk_size += nop_size;
419          }
420        }
421        if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
422          // Nop is inserted between "avoid back to back" instructions.
423          // ScheduleAndBundle() can rearrange nodes in a block,
424          // check for all offsets inside this block.
425          if (last_avoid_back_to_back_adr >= blk_starts[i]) {
426            blk_size += nop_size;
427          }
428        }
429        if (mach->may_be_short_branch()) {
430          if (!nj->is_MachBranch()) {
431#ifndef PRODUCT
432            nj->dump(3);
433#endif
434            Unimplemented();
435          }
436          assert(jmp_nidx[i] == -1, "block should have only one branch");
437          jmp_offset[i] = blk_size;
438          jmp_size[i]   = nj->size(_regalloc);
439          jmp_nidx[i]   = j;
440          has_short_branch_candidate = true;
441        }
442      }
443      blk_size += nj->size(_regalloc);
444      // Remember end of call offset
445      if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
446        last_call_adr = blk_starts[i]+blk_size;
447      }
448      // Remember end of avoid_back_to_back offset
449      if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
450        last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
451      }
452    }
453
454    // When the next block starts a loop, we may insert pad NOP
455    // instructions.  Since we cannot know our future alignment,
456    // assume the worst.
457    if (i < nblocks - 1) {
458      Block* nb = _cfg->get_block(i + 1);
459      int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
460      if (max_loop_pad > 0) {
461        assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
462        // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
463        // If either is the last instruction in this block, bump by
464        // max_loop_pad in lock-step with blk_size, so sizing
465        // calculations in subsequent blocks still can conservatively
466        // detect that it may the last instruction in this block.
467        if (last_call_adr == blk_starts[i]+blk_size) {
468          last_call_adr += max_loop_pad;
469        }
470        if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
471          last_avoid_back_to_back_adr += max_loop_pad;
472        }
473        blk_size += max_loop_pad;
474        block_worst_case_pad[i + 1] = max_loop_pad;
475      }
476    }
477
478    // Save block size; update total method size
479    blk_starts[i+1] = blk_starts[i]+blk_size;
480  }
481
482  // Step two, replace eligible long jumps.
483  bool progress = true;
484  uint last_may_be_short_branch_adr = max_juint;
485  while (has_short_branch_candidate && progress) {
486    progress = false;
487    has_short_branch_candidate = false;
488    int adjust_block_start = 0;
489    for (uint i = 0; i < nblocks; i++) {
490      Block* block = _cfg->get_block(i);
491      int idx = jmp_nidx[i];
492      MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach();
493      if (mach != NULL && mach->may_be_short_branch()) {
494#ifdef ASSERT
495        assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
496        int j;
497        // Find the branch; ignore trailing NOPs.
498        for (j = block->number_of_nodes()-1; j>=0; j--) {
499          Node* n = block->get_node(j);
500          if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
501            break;
502        }
503        assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
504#endif
505        int br_size = jmp_size[i];
506        int br_offs = blk_starts[i] + jmp_offset[i];
507
508        // This requires the TRUE branch target be in succs[0]
509        uint bnum = block->non_connector_successor(0)->_pre_order;
510        int offset = blk_starts[bnum] - br_offs;
511        if (bnum > i) { // adjust following block's offset
512          offset -= adjust_block_start;
513        }
514
515        // This block can be a loop header, account for the padding
516        // in the previous block.
517        int block_padding = block_worst_case_pad[i];
518        assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top");
519        // In the following code a nop could be inserted before
520        // the branch which will increase the backward distance.
521        bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr);
522        assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block");
523
524        if (needs_padding && offset <= 0)
525          offset -= nop_size;
526
527        if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
528          // We've got a winner.  Replace this branch.
529          MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
530
531          // Update the jmp_size.
532          int new_size = replacement->size(_regalloc);
533          int diff     = br_size - new_size;
534          assert(diff >= (int)nop_size, "short_branch size should be smaller");
535          // Conservatively take into account padding between
536          // avoid_back_to_back branches. Previous branch could be
537          // converted into avoid_back_to_back branch during next
538          // rounds.
539          if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
540            jmp_offset[i] += nop_size;
541            diff -= nop_size;
542          }
543          adjust_block_start += diff;
544          block->map_node(replacement, idx);
545          mach->subsume_by(replacement, C);
546          mach = replacement;
547          progress = true;
548
549          jmp_size[i] = new_size;
550          DEBUG_ONLY( jmp_target[i] = bnum; );
551          DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
552        } else {
553          // The jump distance is not short, try again during next iteration.
554          has_short_branch_candidate = true;
555        }
556      } // (mach->may_be_short_branch())
557      if (mach != NULL && (mach->may_be_short_branch() ||
558                           mach->avoid_back_to_back(MachNode::AVOID_AFTER))) {
559        last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
560      }
561      blk_starts[i+1] -= adjust_block_start;
562    }
563  }
564
565#ifdef ASSERT
566  for (uint i = 0; i < nblocks; i++) { // For all blocks
567    if (jmp_target[i] != 0) {
568      int br_size = jmp_size[i];
569      int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
570      if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
571        tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
572      }
573      assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
574    }
575  }
576#endif
577
578  // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
579  // after ScheduleAndBundle().
580
581  // ------------------
582  // Compute size for code buffer
583  code_size = blk_starts[nblocks];
584
585  // Relocation records
586  reloc_size += 1;              // Relo entry for exception handler
587
588  // Adjust reloc_size to number of record of relocation info
589  // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
590  // a relocation index.
591  // The CodeBuffer will expand the locs array if this estimate is too low.
592  reloc_size *= 10 / sizeof(relocInfo);
593}
594
595//------------------------------FillLocArray-----------------------------------
596// Create a bit of debug info and append it to the array.  The mapping is from
597// Java local or expression stack to constant, register or stack-slot.  For
598// doubles, insert 2 mappings and return 1 (to tell the caller that the next
599// entry has been taken care of and caller should skip it).
600static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
601  // This should never have accepted Bad before
602  assert(OptoReg::is_valid(regnum), "location must be valid");
603  return (OptoReg::is_reg(regnum))
604    ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
605    : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
606}
607
608
609ObjectValue*
610Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
611  for (int i = 0; i < objs->length(); i++) {
612    assert(objs->at(i)->is_object(), "corrupt object cache");
613    ObjectValue* sv = (ObjectValue*) objs->at(i);
614    if (sv->id() == id) {
615      return sv;
616    }
617  }
618  // Otherwise..
619  return NULL;
620}
621
622void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
623                                     ObjectValue* sv ) {
624  assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
625  objs->append(sv);
626}
627
628
629void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
630                            GrowableArray<ScopeValue*> *array,
631                            GrowableArray<ScopeValue*> *objs ) {
632  assert( local, "use _top instead of null" );
633  if (array->length() != idx) {
634    assert(array->length() == idx + 1, "Unexpected array count");
635    // Old functionality:
636    //   return
637    // New functionality:
638    //   Assert if the local is not top. In product mode let the new node
639    //   override the old entry.
640    assert(local == top(), "LocArray collision");
641    if (local == top()) {
642      return;
643    }
644    array->pop();
645  }
646  const Type *t = local->bottom_type();
647
648  // Is it a safepoint scalar object node?
649  if (local->is_SafePointScalarObject()) {
650    SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
651
652    ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
653    if (sv == NULL) {
654      ciKlass* cik = t->is_oopptr()->klass();
655      assert(cik->is_instance_klass() ||
656             cik->is_array_klass(), "Not supported allocation.");
657      sv = new ObjectValue(spobj->_idx,
658                           new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
659      Compile::set_sv_for_object_node(objs, sv);
660
661      uint first_ind = spobj->first_index(sfpt->jvms());
662      for (uint i = 0; i < spobj->n_fields(); i++) {
663        Node* fld_node = sfpt->in(first_ind+i);
664        (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
665      }
666    }
667    array->append(sv);
668    return;
669  }
670
671  // Grab the register number for the local
672  OptoReg::Name regnum = _regalloc->get_reg_first(local);
673  if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
674    // Record the double as two float registers.
675    // The register mask for such a value always specifies two adjacent
676    // float registers, with the lower register number even.
677    // Normally, the allocation of high and low words to these registers
678    // is irrelevant, because nearly all operations on register pairs
679    // (e.g., StoreD) treat them as a single unit.
680    // Here, we assume in addition that the words in these two registers
681    // stored "naturally" (by operations like StoreD and double stores
682    // within the interpreter) such that the lower-numbered register
683    // is written to the lower memory address.  This may seem like
684    // a machine dependency, but it is not--it is a requirement on
685    // the author of the <arch>.ad file to ensure that, for every
686    // even/odd double-register pair to which a double may be allocated,
687    // the word in the even single-register is stored to the first
688    // memory word.  (Note that register numbers are completely
689    // arbitrary, and are not tied to any machine-level encodings.)
690#ifdef _LP64
691    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
692      array->append(new ConstantIntValue(0));
693      array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
694    } else if ( t->base() == Type::Long ) {
695      array->append(new ConstantIntValue(0));
696      array->append(new_loc_value( _regalloc, regnum, Location::lng ));
697    } else if ( t->base() == Type::RawPtr ) {
698      // jsr/ret return address which must be restored into a the full
699      // width 64-bit stack slot.
700      array->append(new_loc_value( _regalloc, regnum, Location::lng ));
701    }
702#else //_LP64
703#ifdef SPARC
704    if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
705      // For SPARC we have to swap high and low words for
706      // long values stored in a single-register (g0-g7).
707      array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
708      array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
709    } else
710#endif //SPARC
711    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
712      // Repack the double/long as two jints.
713      // The convention the interpreter uses is that the second local
714      // holds the first raw word of the native double representation.
715      // This is actually reasonable, since locals and stack arrays
716      // grow downwards in all implementations.
717      // (If, on some machine, the interpreter's Java locals or stack
718      // were to grow upwards, the embedded doubles would be word-swapped.)
719      array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
720      array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
721    }
722#endif //_LP64
723    else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
724               OptoReg::is_reg(regnum) ) {
725      array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
726                                   ? Location::float_in_dbl : Location::normal ));
727    } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
728      array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
729                                   ? Location::int_in_long : Location::normal ));
730    } else if( t->base() == Type::NarrowOop ) {
731      array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
732    } else {
733      array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
734    }
735    return;
736  }
737
738  // No register.  It must be constant data.
739  switch (t->base()) {
740  case Type::Half:              // Second half of a double
741    ShouldNotReachHere();       // Caller should skip 2nd halves
742    break;
743  case Type::AnyPtr:
744    array->append(new ConstantOopWriteValue(NULL));
745    break;
746  case Type::AryPtr:
747  case Type::InstPtr:          // fall through
748    array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
749    break;
750  case Type::NarrowOop:
751    if (t == TypeNarrowOop::NULL_PTR) {
752      array->append(new ConstantOopWriteValue(NULL));
753    } else {
754      array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
755    }
756    break;
757  case Type::Int:
758    array->append(new ConstantIntValue(t->is_int()->get_con()));
759    break;
760  case Type::RawPtr:
761    // A return address (T_ADDRESS).
762    assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
763#ifdef _LP64
764    // Must be restored to the full-width 64-bit stack slot.
765    array->append(new ConstantLongValue(t->is_ptr()->get_con()));
766#else
767    array->append(new ConstantIntValue(t->is_ptr()->get_con()));
768#endif
769    break;
770  case Type::FloatCon: {
771    float f = t->is_float_constant()->getf();
772    array->append(new ConstantIntValue(jint_cast(f)));
773    break;
774  }
775  case Type::DoubleCon: {
776    jdouble d = t->is_double_constant()->getd();
777#ifdef _LP64
778    array->append(new ConstantIntValue(0));
779    array->append(new ConstantDoubleValue(d));
780#else
781    // Repack the double as two jints.
782    // The convention the interpreter uses is that the second local
783    // holds the first raw word of the native double representation.
784    // This is actually reasonable, since locals and stack arrays
785    // grow downwards in all implementations.
786    // (If, on some machine, the interpreter's Java locals or stack
787    // were to grow upwards, the embedded doubles would be word-swapped.)
788    jint   *dp = (jint*)&d;
789    array->append(new ConstantIntValue(dp[1]));
790    array->append(new ConstantIntValue(dp[0]));
791#endif
792    break;
793  }
794  case Type::Long: {
795    jlong d = t->is_long()->get_con();
796#ifdef _LP64
797    array->append(new ConstantIntValue(0));
798    array->append(new ConstantLongValue(d));
799#else
800    // Repack the long as two jints.
801    // The convention the interpreter uses is that the second local
802    // holds the first raw word of the native double representation.
803    // This is actually reasonable, since locals and stack arrays
804    // grow downwards in all implementations.
805    // (If, on some machine, the interpreter's Java locals or stack
806    // were to grow upwards, the embedded doubles would be word-swapped.)
807    jint *dp = (jint*)&d;
808    array->append(new ConstantIntValue(dp[1]));
809    array->append(new ConstantIntValue(dp[0]));
810#endif
811    break;
812  }
813  case Type::Top:               // Add an illegal value here
814    array->append(new LocationValue(Location()));
815    break;
816  default:
817    ShouldNotReachHere();
818    break;
819  }
820}
821
822// Determine if this node starts a bundle
823bool Compile::starts_bundle(const Node *n) const {
824  return (_node_bundling_limit > n->_idx &&
825          _node_bundling_base[n->_idx].starts_bundle());
826}
827
828//--------------------------Process_OopMap_Node--------------------------------
829void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
830
831  // Handle special safepoint nodes for synchronization
832  MachSafePointNode *sfn   = mach->as_MachSafePoint();
833  MachCallNode      *mcall;
834
835#ifdef ENABLE_ZAP_DEAD_LOCALS
836  assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
837#endif
838
839  int safepoint_pc_offset = current_offset;
840  bool is_method_handle_invoke = false;
841  bool return_oop = false;
842
843  // Add the safepoint in the DebugInfoRecorder
844  if( !mach->is_MachCall() ) {
845    mcall = NULL;
846    debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
847  } else {
848    mcall = mach->as_MachCall();
849
850    // Is the call a MethodHandle call?
851    if (mcall->is_MachCallJava()) {
852      if (mcall->as_MachCallJava()->_method_handle_invoke) {
853        assert(has_method_handle_invokes(), "must have been set during call generation");
854        is_method_handle_invoke = true;
855      }
856    }
857
858    // Check if a call returns an object.
859    if (mcall->returns_pointer()) {
860      return_oop = true;
861    }
862    safepoint_pc_offset += mcall->ret_addr_offset();
863    debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
864  }
865
866  // Loop over the JVMState list to add scope information
867  // Do not skip safepoints with a NULL method, they need monitor info
868  JVMState* youngest_jvms = sfn->jvms();
869  int max_depth = youngest_jvms->depth();
870
871  // Allocate the object pool for scalar-replaced objects -- the map from
872  // small-integer keys (which can be recorded in the local and ostack
873  // arrays) to descriptions of the object state.
874  GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
875
876  // Visit scopes from oldest to youngest.
877  for (int depth = 1; depth <= max_depth; depth++) {
878    JVMState* jvms = youngest_jvms->of_depth(depth);
879    int idx;
880    ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
881    // Safepoints that do not have method() set only provide oop-map and monitor info
882    // to support GC; these do not support deoptimization.
883    int num_locs = (method == NULL) ? 0 : jvms->loc_size();
884    int num_exps = (method == NULL) ? 0 : jvms->stk_size();
885    int num_mon  = jvms->nof_monitors();
886    assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
887           "JVMS local count must match that of the method");
888
889    // Add Local and Expression Stack Information
890
891    // Insert locals into the locarray
892    GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
893    for( idx = 0; idx < num_locs; idx++ ) {
894      FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
895    }
896
897    // Insert expression stack entries into the exparray
898    GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
899    for( idx = 0; idx < num_exps; idx++ ) {
900      FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
901    }
902
903    // Add in mappings of the monitors
904    assert( !method ||
905            !method->is_synchronized() ||
906            method->is_native() ||
907            num_mon > 0 ||
908            !GenerateSynchronizationCode,
909            "monitors must always exist for synchronized methods");
910
911    // Build the growable array of ScopeValues for exp stack
912    GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
913
914    // Loop over monitors and insert into array
915    for (idx = 0; idx < num_mon; idx++) {
916      // Grab the node that defines this monitor
917      Node* box_node = sfn->monitor_box(jvms, idx);
918      Node* obj_node = sfn->monitor_obj(jvms, idx);
919
920      // Create ScopeValue for object
921      ScopeValue *scval = NULL;
922
923      if (obj_node->is_SafePointScalarObject()) {
924        SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
925        scval = Compile::sv_for_node_id(objs, spobj->_idx);
926        if (scval == NULL) {
927          const Type *t = spobj->bottom_type();
928          ciKlass* cik = t->is_oopptr()->klass();
929          assert(cik->is_instance_klass() ||
930                 cik->is_array_klass(), "Not supported allocation.");
931          ObjectValue* sv = new ObjectValue(spobj->_idx,
932                                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
933          Compile::set_sv_for_object_node(objs, sv);
934
935          uint first_ind = spobj->first_index(youngest_jvms);
936          for (uint i = 0; i < spobj->n_fields(); i++) {
937            Node* fld_node = sfn->in(first_ind+i);
938            (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
939          }
940          scval = sv;
941        }
942      } else if (!obj_node->is_Con()) {
943        OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
944        if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
945          scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
946        } else {
947          scval = new_loc_value( _regalloc, obj_reg, Location::oop );
948        }
949      } else {
950        const TypePtr *tp = obj_node->get_ptr_type();
951        scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
952      }
953
954      OptoReg::Name box_reg = BoxLockNode::reg(box_node);
955      Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
956      bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
957      monarray->append(new MonitorValue(scval, basic_lock, eliminated));
958    }
959
960    // We dump the object pool first, since deoptimization reads it in first.
961    debug_info()->dump_object_pool(objs);
962
963    // Build first class objects to pass to scope
964    DebugToken *locvals = debug_info()->create_scope_values(locarray);
965    DebugToken *expvals = debug_info()->create_scope_values(exparray);
966    DebugToken *monvals = debug_info()->create_monitor_values(monarray);
967
968    // Make method available for all Safepoints
969    ciMethod* scope_method = method ? method : _method;
970    // Describe the scope here
971    assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
972    assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
973    // Now we can describe the scope.
974    debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
975  } // End jvms loop
976
977  // Mark the end of the scope set.
978  debug_info()->end_safepoint(safepoint_pc_offset);
979}
980
981
982
983// A simplified version of Process_OopMap_Node, to handle non-safepoints.
984class NonSafepointEmitter {
985  Compile*  C;
986  JVMState* _pending_jvms;
987  int       _pending_offset;
988
989  void emit_non_safepoint();
990
991 public:
992  NonSafepointEmitter(Compile* compile) {
993    this->C = compile;
994    _pending_jvms = NULL;
995    _pending_offset = 0;
996  }
997
998  void observe_instruction(Node* n, int pc_offset) {
999    if (!C->debug_info()->recording_non_safepoints())  return;
1000
1001    Node_Notes* nn = C->node_notes_at(n->_idx);
1002    if (nn == NULL || nn->jvms() == NULL)  return;
1003    if (_pending_jvms != NULL &&
1004        _pending_jvms->same_calls_as(nn->jvms())) {
1005      // Repeated JVMS?  Stretch it up here.
1006      _pending_offset = pc_offset;
1007    } else {
1008      if (_pending_jvms != NULL &&
1009          _pending_offset < pc_offset) {
1010        emit_non_safepoint();
1011      }
1012      _pending_jvms = NULL;
1013      if (pc_offset > C->debug_info()->last_pc_offset()) {
1014        // This is the only way _pending_jvms can become non-NULL:
1015        _pending_jvms = nn->jvms();
1016        _pending_offset = pc_offset;
1017      }
1018    }
1019  }
1020
1021  // Stay out of the way of real safepoints:
1022  void observe_safepoint(JVMState* jvms, int pc_offset) {
1023    if (_pending_jvms != NULL &&
1024        !_pending_jvms->same_calls_as(jvms) &&
1025        _pending_offset < pc_offset) {
1026      emit_non_safepoint();
1027    }
1028    _pending_jvms = NULL;
1029  }
1030
1031  void flush_at_end() {
1032    if (_pending_jvms != NULL) {
1033      emit_non_safepoint();
1034    }
1035    _pending_jvms = NULL;
1036  }
1037};
1038
1039void NonSafepointEmitter::emit_non_safepoint() {
1040  JVMState* youngest_jvms = _pending_jvms;
1041  int       pc_offset     = _pending_offset;
1042
1043  // Clear it now:
1044  _pending_jvms = NULL;
1045
1046  DebugInformationRecorder* debug_info = C->debug_info();
1047  assert(debug_info->recording_non_safepoints(), "sanity");
1048
1049  debug_info->add_non_safepoint(pc_offset);
1050  int max_depth = youngest_jvms->depth();
1051
1052  // Visit scopes from oldest to youngest.
1053  for (int depth = 1; depth <= max_depth; depth++) {
1054    JVMState* jvms = youngest_jvms->of_depth(depth);
1055    ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1056    assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1057    debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
1058  }
1059
1060  // Mark the end of the scope set.
1061  debug_info->end_non_safepoint(pc_offset);
1062}
1063
1064//------------------------------init_buffer------------------------------------
1065CodeBuffer* Compile::init_buffer(uint* blk_starts) {
1066
1067  // Set the initially allocated size
1068  int  code_req   = initial_code_capacity;
1069  int  locs_req   = initial_locs_capacity;
1070  int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
1071  int  const_req  = initial_const_capacity;
1072
1073  int  pad_req    = NativeCall::instruction_size;
1074  // The extra spacing after the code is necessary on some platforms.
1075  // Sometimes we need to patch in a jump after the last instruction,
1076  // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1077
1078  // Compute the byte offset where we can store the deopt pc.
1079  if (fixed_slots() != 0) {
1080    _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1081  }
1082
1083  // Compute prolog code size
1084  _method_size = 0;
1085  _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
1086#if defined(IA64) && !defined(AIX)
1087  if (save_argument_registers()) {
1088    // 4815101: this is a stub with implicit and unknown precision fp args.
1089    // The usual spill mechanism can only generate stfd's in this case, which
1090    // doesn't work if the fp reg to spill contains a single-precision denorm.
1091    // Instead, we hack around the normal spill mechanism using stfspill's and
1092    // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1093    // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1094    //
1095    // If we ever implement 16-byte 'registers' == stack slots, we can
1096    // get rid of this hack and have SpillCopy generate stfspill/ldffill
1097    // instead of stfd/stfs/ldfd/ldfs.
1098    _frame_slots += 8*(16/BytesPerInt);
1099  }
1100#endif
1101  assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1102
1103  if (has_mach_constant_base_node()) {
1104    uint add_size = 0;
1105    // Fill the constant table.
1106    // Note:  This must happen before shorten_branches.
1107    for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
1108      Block* b = _cfg->get_block(i);
1109
1110      for (uint j = 0; j < b->number_of_nodes(); j++) {
1111        Node* n = b->get_node(j);
1112
1113        // If the node is a MachConstantNode evaluate the constant
1114        // value section.
1115        if (n->is_MachConstant()) {
1116          MachConstantNode* machcon = n->as_MachConstant();
1117          machcon->eval_constant(C);
1118        } else if (n->is_Mach()) {
1119          // On Power there are more nodes that issue constants.
1120          add_size += (n->as_Mach()->ins_num_consts() * 8);
1121        }
1122      }
1123    }
1124
1125    // Calculate the offsets of the constants and the size of the
1126    // constant table (including the padding to the next section).
1127    constant_table().calculate_offsets_and_size();
1128    const_req = constant_table().size() + add_size;
1129  }
1130
1131  // Initialize the space for the BufferBlob used to find and verify
1132  // instruction size in MachNode::emit_size()
1133  init_scratch_buffer_blob(const_req);
1134  if (failing())  return NULL; // Out of memory
1135
1136  // Pre-compute the length of blocks and replace
1137  // long branches with short if machine supports it.
1138  shorten_branches(blk_starts, code_req, locs_req, stub_req);
1139
1140  // nmethod and CodeBuffer count stubs & constants as part of method's code.
1141  // class HandlerImpl is platform-specific and defined in the *.ad files.
1142  int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler
1143  int deopt_handler_req     = HandlerImpl::size_deopt_handler()     + MAX_stubs_size; // add marginal slop for handler
1144  stub_req += MAX_stubs_size;   // ensure per-stub margin
1145  code_req += MAX_inst_size;    // ensure per-instruction margin
1146
1147  if (StressCodeBuffers)
1148    code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1149
1150  int total_req =
1151    const_req +
1152    code_req +
1153    pad_req +
1154    stub_req +
1155    exception_handler_req +
1156    deopt_handler_req;               // deopt handler
1157
1158  if (has_method_handle_invokes())
1159    total_req += deopt_handler_req;  // deopt MH handler
1160
1161  CodeBuffer* cb = code_buffer();
1162  cb->initialize(total_req, locs_req);
1163
1164  // Have we run out of code space?
1165  if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1166    C->record_failure("CodeCache is full");
1167    CompileBroker::handle_full_code_cache();
1168    return NULL;
1169  }
1170  // Configure the code buffer.
1171  cb->initialize_consts_size(const_req);
1172  cb->initialize_stubs_size(stub_req);
1173  cb->initialize_oop_recorder(env()->oop_recorder());
1174
1175  // fill in the nop array for bundling computations
1176  MachNode *_nop_list[Bundle::_nop_count];
1177  Bundle::initialize_nops(_nop_list, this);
1178
1179  return cb;
1180}
1181
1182//------------------------------fill_buffer------------------------------------
1183void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1184  // blk_starts[] contains offsets calculated during short branches processing,
1185  // offsets should not be increased during following steps.
1186
1187  // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1188  // of a loop. It is used to determine the padding for loop alignment.
1189  compute_loop_first_inst_sizes();
1190
1191  // Create oopmap set.
1192  _oop_map_set = new OopMapSet();
1193
1194  // !!!!! This preserves old handling of oopmaps for now
1195  debug_info()->set_oopmaps(_oop_map_set);
1196
1197  uint nblocks  = _cfg->number_of_blocks();
1198  // Count and start of implicit null check instructions
1199  uint inct_cnt = 0;
1200  uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1201
1202  // Count and start of calls
1203  uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1204
1205  uint  return_offset = 0;
1206  int nop_size = (new MachNopNode())->size(_regalloc);
1207
1208  int previous_offset = 0;
1209  int current_offset  = 0;
1210  int last_call_offset = -1;
1211  int last_avoid_back_to_back_offset = -1;
1212#ifdef ASSERT
1213  uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1214  uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1215  uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1216  uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1217#endif
1218
1219  // Create an array of unused labels, one for each basic block, if printing is enabled
1220#ifndef PRODUCT
1221  int *node_offsets      = NULL;
1222  uint node_offset_limit = unique();
1223
1224  if (print_assembly())
1225    node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1226#endif
1227
1228  NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1229
1230  // Emit the constant table.
1231  if (has_mach_constant_base_node()) {
1232    constant_table().emit(*cb);
1233  }
1234
1235  // Create an array of labels, one for each basic block
1236  Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1237  for (uint i=0; i <= nblocks; i++) {
1238    blk_labels[i].init();
1239  }
1240
1241  // ------------------
1242  // Now fill in the code buffer
1243  Node *delay_slot = NULL;
1244
1245  for (uint i = 0; i < nblocks; i++) {
1246    Block* block = _cfg->get_block(i);
1247    Node* head = block->head();
1248
1249    // If this block needs to start aligned (i.e, can be reached other
1250    // than by falling-thru from the previous block), then force the
1251    // start of a new bundle.
1252    if (Pipeline::requires_bundling() && starts_bundle(head)) {
1253      cb->flush_bundle(true);
1254    }
1255
1256#ifdef ASSERT
1257    if (!block->is_connector()) {
1258      stringStream st;
1259      block->dump_head(_cfg, &st);
1260      MacroAssembler(cb).block_comment(st.as_string());
1261    }
1262    jmp_target[i] = 0;
1263    jmp_offset[i] = 0;
1264    jmp_size[i]   = 0;
1265    jmp_rule[i]   = 0;
1266#endif
1267    int blk_offset = current_offset;
1268
1269    // Define the label at the beginning of the basic block
1270    MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
1271
1272    uint last_inst = block->number_of_nodes();
1273
1274    // Emit block normally, except for last instruction.
1275    // Emit means "dump code bits into code buffer".
1276    for (uint j = 0; j<last_inst; j++) {
1277
1278      // Get the node
1279      Node* n = block->get_node(j);
1280
1281      // See if delay slots are supported
1282      if (valid_bundle_info(n) &&
1283          node_bundling(n)->used_in_unconditional_delay()) {
1284        assert(delay_slot == NULL, "no use of delay slot node");
1285        assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1286
1287        delay_slot = n;
1288        continue;
1289      }
1290
1291      // If this starts a new instruction group, then flush the current one
1292      // (but allow split bundles)
1293      if (Pipeline::requires_bundling() && starts_bundle(n))
1294        cb->flush_bundle(false);
1295
1296      // The following logic is duplicated in the code ifdeffed for
1297      // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1298      // should be factored out.  Or maybe dispersed to the nodes?
1299
1300      // Special handling for SafePoint/Call Nodes
1301      bool is_mcall = false;
1302      if (n->is_Mach()) {
1303        MachNode *mach = n->as_Mach();
1304        is_mcall = n->is_MachCall();
1305        bool is_sfn = n->is_MachSafePoint();
1306
1307        // If this requires all previous instructions be flushed, then do so
1308        if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1309          cb->flush_bundle(true);
1310          current_offset = cb->insts_size();
1311        }
1312
1313        // A padding may be needed again since a previous instruction
1314        // could be moved to delay slot.
1315
1316        // align the instruction if necessary
1317        int padding = mach->compute_padding(current_offset);
1318        // Make sure safepoint node for polling is distinct from a call's
1319        // return by adding a nop if needed.
1320        if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1321          padding = nop_size;
1322        }
1323        if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) &&
1324            current_offset == last_avoid_back_to_back_offset) {
1325          // Avoid back to back some instructions.
1326          padding = nop_size;
1327        }
1328
1329        if(padding > 0) {
1330          assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1331          int nops_cnt = padding / nop_size;
1332          MachNode *nop = new MachNopNode(nops_cnt);
1333          block->insert_node(nop, j++);
1334          last_inst++;
1335          _cfg->map_node_to_block(nop, block);
1336          nop->emit(*cb, _regalloc);
1337          cb->flush_bundle(true);
1338          current_offset = cb->insts_size();
1339        }
1340
1341        // Remember the start of the last call in a basic block
1342        if (is_mcall) {
1343          MachCallNode *mcall = mach->as_MachCall();
1344
1345          // This destination address is NOT PC-relative
1346          mcall->method_set((intptr_t)mcall->entry_point());
1347
1348          // Save the return address
1349          call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
1350
1351          if (mcall->is_MachCallLeaf()) {
1352            is_mcall = false;
1353            is_sfn = false;
1354          }
1355        }
1356
1357        // sfn will be valid whenever mcall is valid now because of inheritance
1358        if (is_sfn || is_mcall) {
1359
1360          // Handle special safepoint nodes for synchronization
1361          if (!is_mcall) {
1362            MachSafePointNode *sfn = mach->as_MachSafePoint();
1363            // !!!!! Stubs only need an oopmap right now, so bail out
1364            if (sfn->jvms()->method() == NULL) {
1365              // Write the oopmap directly to the code blob??!!
1366#             ifdef ENABLE_ZAP_DEAD_LOCALS
1367              assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1368#             endif
1369              continue;
1370            }
1371          } // End synchronization
1372
1373          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1374                                           current_offset);
1375          Process_OopMap_Node(mach, current_offset);
1376        } // End if safepoint
1377
1378        // If this is a null check, then add the start of the previous instruction to the list
1379        else if( mach->is_MachNullCheck() ) {
1380          inct_starts[inct_cnt++] = previous_offset;
1381        }
1382
1383        // If this is a branch, then fill in the label with the target BB's label
1384        else if (mach->is_MachBranch()) {
1385          // This requires the TRUE branch target be in succs[0]
1386          uint block_num = block->non_connector_successor(0)->_pre_order;
1387
1388          // Try to replace long branch if delay slot is not used,
1389          // it is mostly for back branches since forward branch's
1390          // distance is not updated yet.
1391          bool delay_slot_is_used = valid_bundle_info(n) &&
1392                                    node_bundling(n)->use_unconditional_delay();
1393          if (!delay_slot_is_used && mach->may_be_short_branch()) {
1394           assert(delay_slot == NULL, "not expecting delay slot node");
1395           int br_size = n->size(_regalloc);
1396            int offset = blk_starts[block_num] - current_offset;
1397            if (block_num >= i) {
1398              // Current and following block's offset are not
1399              // finalized yet, adjust distance by the difference
1400              // between calculated and final offsets of current block.
1401              offset -= (blk_starts[i] - blk_offset);
1402            }
1403            // In the following code a nop could be inserted before
1404            // the branch which will increase the backward distance.
1405            bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1406            if (needs_padding && offset <= 0)
1407              offset -= nop_size;
1408
1409            if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
1410              // We've got a winner.  Replace this branch.
1411              MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
1412
1413              // Update the jmp_size.
1414              int new_size = replacement->size(_regalloc);
1415              assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1416              // Insert padding between avoid_back_to_back branches.
1417              if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
1418                MachNode *nop = new MachNopNode();
1419                block->insert_node(nop, j++);
1420                _cfg->map_node_to_block(nop, block);
1421                last_inst++;
1422                nop->emit(*cb, _regalloc);
1423                cb->flush_bundle(true);
1424                current_offset = cb->insts_size();
1425              }
1426#ifdef ASSERT
1427              jmp_target[i] = block_num;
1428              jmp_offset[i] = current_offset - blk_offset;
1429              jmp_size[i]   = new_size;
1430              jmp_rule[i]   = mach->rule();
1431#endif
1432              block->map_node(replacement, j);
1433              mach->subsume_by(replacement, C);
1434              n    = replacement;
1435              mach = replacement;
1436            }
1437          }
1438          mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1439        } else if (mach->ideal_Opcode() == Op_Jump) {
1440          for (uint h = 0; h < block->_num_succs; h++) {
1441            Block* succs_block = block->_succs[h];
1442            for (uint j = 1; j < succs_block->num_preds(); j++) {
1443              Node* jpn = succs_block->pred(j);
1444              if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1445                uint block_num = succs_block->non_connector()->_pre_order;
1446                Label *blkLabel = &blk_labels[block_num];
1447                mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1448              }
1449            }
1450          }
1451        }
1452#ifdef ASSERT
1453        // Check that oop-store precedes the card-mark
1454        else if (mach->ideal_Opcode() == Op_StoreCM) {
1455          uint storeCM_idx = j;
1456          int count = 0;
1457          for (uint prec = mach->req(); prec < mach->len(); prec++) {
1458            Node *oop_store = mach->in(prec);  // Precedence edge
1459            if (oop_store == NULL) continue;
1460            count++;
1461            uint i4;
1462            for (i4 = 0; i4 < last_inst; ++i4) {
1463              if (block->get_node(i4) == oop_store) {
1464                break;
1465              }
1466            }
1467            // Note: This test can provide a false failure if other precedence
1468            // edges have been added to the storeCMNode.
1469            assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1470          }
1471          assert(count > 0, "storeCM expects at least one precedence edge");
1472        }
1473#endif
1474        else if (!n->is_Proj()) {
1475          // Remember the beginning of the previous instruction, in case
1476          // it's followed by a flag-kill and a null-check.  Happens on
1477          // Intel all the time, with add-to-memory kind of opcodes.
1478          previous_offset = current_offset;
1479        }
1480
1481        // Not an else-if!
1482        // If this is a trap based cmp then add its offset to the list.
1483        if (mach->is_TrapBasedCheckNode()) {
1484          inct_starts[inct_cnt++] = current_offset;
1485        }
1486      }
1487
1488      // Verify that there is sufficient space remaining
1489      cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1490      if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1491        C->record_failure("CodeCache is full");
1492        CompileBroker::handle_full_code_cache();
1493        return;
1494      }
1495
1496      // Save the offset for the listing
1497#ifndef PRODUCT
1498      if (node_offsets && n->_idx < node_offset_limit)
1499        node_offsets[n->_idx] = cb->insts_size();
1500#endif
1501
1502      // "Normal" instruction case
1503      DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
1504      n->emit(*cb, _regalloc);
1505      current_offset  = cb->insts_size();
1506
1507#ifdef ASSERT
1508      if (n->size(_regalloc) < (current_offset-instr_offset)) {
1509        n->dump();
1510        assert(false, "wrong size of mach node");
1511      }
1512#endif
1513      non_safepoints.observe_instruction(n, current_offset);
1514
1515      // mcall is last "call" that can be a safepoint
1516      // record it so we can see if a poll will directly follow it
1517      // in which case we'll need a pad to make the PcDesc sites unique
1518      // see  5010568. This can be slightly inaccurate but conservative
1519      // in the case that return address is not actually at current_offset.
1520      // This is a small price to pay.
1521
1522      if (is_mcall) {
1523        last_call_offset = current_offset;
1524      }
1525
1526      if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
1527        // Avoid back to back some instructions.
1528        last_avoid_back_to_back_offset = current_offset;
1529      }
1530
1531      // See if this instruction has a delay slot
1532      if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1533        assert(delay_slot != NULL, "expecting delay slot node");
1534
1535        // Back up 1 instruction
1536        cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1537
1538        // Save the offset for the listing
1539#ifndef PRODUCT
1540        if (node_offsets && delay_slot->_idx < node_offset_limit)
1541          node_offsets[delay_slot->_idx] = cb->insts_size();
1542#endif
1543
1544        // Support a SafePoint in the delay slot
1545        if (delay_slot->is_MachSafePoint()) {
1546          MachNode *mach = delay_slot->as_Mach();
1547          // !!!!! Stubs only need an oopmap right now, so bail out
1548          if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
1549            // Write the oopmap directly to the code blob??!!
1550#           ifdef ENABLE_ZAP_DEAD_LOCALS
1551            assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1552#           endif
1553            delay_slot = NULL;
1554            continue;
1555          }
1556
1557          int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1558          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1559                                           adjusted_offset);
1560          // Generate an OopMap entry
1561          Process_OopMap_Node(mach, adjusted_offset);
1562        }
1563
1564        // Insert the delay slot instruction
1565        delay_slot->emit(*cb, _regalloc);
1566
1567        // Don't reuse it
1568        delay_slot = NULL;
1569      }
1570
1571    } // End for all instructions in block
1572
1573    // If the next block is the top of a loop, pad this block out to align
1574    // the loop top a little. Helps prevent pipe stalls at loop back branches.
1575    if (i < nblocks-1) {
1576      Block *nb = _cfg->get_block(i + 1);
1577      int padding = nb->alignment_padding(current_offset);
1578      if( padding > 0 ) {
1579        MachNode *nop = new MachNopNode(padding / nop_size);
1580        block->insert_node(nop, block->number_of_nodes());
1581        _cfg->map_node_to_block(nop, block);
1582        nop->emit(*cb, _regalloc);
1583        current_offset = cb->insts_size();
1584      }
1585    }
1586    // Verify that the distance for generated before forward
1587    // short branches is still valid.
1588    guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1589
1590    // Save new block start offset
1591    blk_starts[i] = blk_offset;
1592  } // End of for all blocks
1593  blk_starts[nblocks] = current_offset;
1594
1595  non_safepoints.flush_at_end();
1596
1597  // Offset too large?
1598  if (failing())  return;
1599
1600  // Define a pseudo-label at the end of the code
1601  MacroAssembler(cb).bind( blk_labels[nblocks] );
1602
1603  // Compute the size of the first block
1604  _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1605
1606  assert(cb->insts_size() < 500000, "method is unreasonably large");
1607
1608#ifdef ASSERT
1609  for (uint i = 0; i < nblocks; i++) { // For all blocks
1610    if (jmp_target[i] != 0) {
1611      int br_size = jmp_size[i];
1612      int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1613      if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1614        tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1615        assert(false, "Displacement too large for short jmp");
1616      }
1617    }
1618  }
1619#endif
1620
1621#ifndef PRODUCT
1622  // Information on the size of the method, without the extraneous code
1623  Scheduling::increment_method_size(cb->insts_size());
1624#endif
1625
1626  // ------------------
1627  // Fill in exception table entries.
1628  FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1629
1630  // Only java methods have exception handlers and deopt handlers
1631  // class HandlerImpl is platform-specific and defined in the *.ad files.
1632  if (_method) {
1633    // Emit the exception handler code.
1634    _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(*cb));
1635    // Emit the deopt handler code.
1636    _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(*cb));
1637
1638    // Emit the MethodHandle deopt handler code (if required).
1639    if (has_method_handle_invokes()) {
1640      // We can use the same code as for the normal deopt handler, we
1641      // just need a different entry point address.
1642      _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(*cb));
1643    }
1644  }
1645
1646  // One last check for failed CodeBuffer::expand:
1647  if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1648    C->record_failure("CodeCache is full");
1649    CompileBroker::handle_full_code_cache();
1650    return;
1651  }
1652
1653#ifndef PRODUCT
1654  // Dump the assembly code, including basic-block numbers
1655  if (print_assembly()) {
1656    ttyLocker ttyl;  // keep the following output all in one block
1657    if (!VMThread::should_terminate()) {  // test this under the tty lock
1658      // This output goes directly to the tty, not the compiler log.
1659      // To enable tools to match it up with the compilation activity,
1660      // be sure to tag this tty output with the compile ID.
1661      if (xtty != NULL) {
1662        xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1663                   is_osr_compilation()    ? " compile_kind='osr'" :
1664                   "");
1665      }
1666      if (method() != NULL) {
1667        method()->print_metadata();
1668      }
1669      dump_asm(node_offsets, node_offset_limit);
1670      if (xtty != NULL) {
1671        xtty->tail("opto_assembly");
1672      }
1673    }
1674  }
1675#endif
1676
1677}
1678
1679void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1680  _inc_table.set_size(cnt);
1681
1682  uint inct_cnt = 0;
1683  for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
1684    Block* block = _cfg->get_block(i);
1685    Node *n = NULL;
1686    int j;
1687
1688    // Find the branch; ignore trailing NOPs.
1689    for (j = block->number_of_nodes() - 1; j >= 0; j--) {
1690      n = block->get_node(j);
1691      if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
1692        break;
1693      }
1694    }
1695
1696    // If we didn't find anything, continue
1697    if (j < 0) {
1698      continue;
1699    }
1700
1701    // Compute ExceptionHandlerTable subtable entry and add it
1702    // (skip empty blocks)
1703    if (n->is_Catch()) {
1704
1705      // Get the offset of the return from the call
1706      uint call_return = call_returns[block->_pre_order];
1707#ifdef ASSERT
1708      assert( call_return > 0, "no call seen for this basic block" );
1709      while (block->get_node(--j)->is_MachProj()) ;
1710      assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1711#endif
1712      // last instruction is a CatchNode, find it's CatchProjNodes
1713      int nof_succs = block->_num_succs;
1714      // allocate space
1715      GrowableArray<intptr_t> handler_bcis(nof_succs);
1716      GrowableArray<intptr_t> handler_pcos(nof_succs);
1717      // iterate through all successors
1718      for (int j = 0; j < nof_succs; j++) {
1719        Block* s = block->_succs[j];
1720        bool found_p = false;
1721        for (uint k = 1; k < s->num_preds(); k++) {
1722          Node* pk = s->pred(k);
1723          if (pk->is_CatchProj() && pk->in(0) == n) {
1724            const CatchProjNode* p = pk->as_CatchProj();
1725            found_p = true;
1726            // add the corresponding handler bci & pco information
1727            if (p->_con != CatchProjNode::fall_through_index) {
1728              // p leads to an exception handler (and is not fall through)
1729              assert(s == _cfg->get_block(s->_pre_order), "bad numbering");
1730              // no duplicates, please
1731              if (!handler_bcis.contains(p->handler_bci())) {
1732                uint block_num = s->non_connector()->_pre_order;
1733                handler_bcis.append(p->handler_bci());
1734                handler_pcos.append(blk_labels[block_num].loc_pos());
1735              }
1736            }
1737          }
1738        }
1739        assert(found_p, "no matching predecessor found");
1740        // Note:  Due to empty block removal, one block may have
1741        // several CatchProj inputs, from the same Catch.
1742      }
1743
1744      // Set the offset of the return from the call
1745      _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1746      continue;
1747    }
1748
1749    // Handle implicit null exception table updates
1750    if (n->is_MachNullCheck()) {
1751      uint block_num = block->non_connector_successor(0)->_pre_order;
1752      _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1753      continue;
1754    }
1755    // Handle implicit exception table updates: trap instructions.
1756    if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) {
1757      uint block_num = block->non_connector_successor(0)->_pre_order;
1758      _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1759      continue;
1760    }
1761  } // End of for all blocks fill in exception table entries
1762}
1763
1764// Static Variables
1765#ifndef PRODUCT
1766uint Scheduling::_total_nop_size = 0;
1767uint Scheduling::_total_method_size = 0;
1768uint Scheduling::_total_branches = 0;
1769uint Scheduling::_total_unconditional_delays = 0;
1770uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1771#endif
1772
1773// Initializer for class Scheduling
1774
1775Scheduling::Scheduling(Arena *arena, Compile &compile)
1776  : _arena(arena),
1777    _cfg(compile.cfg()),
1778    _regalloc(compile.regalloc()),
1779    _reg_node(arena),
1780    _bundle_instr_count(0),
1781    _bundle_cycle_number(0),
1782    _scheduled(arena),
1783    _available(arena),
1784    _next_node(NULL),
1785    _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1786    _pinch_free_list(arena)
1787#ifndef PRODUCT
1788  , _branches(0)
1789  , _unconditional_delays(0)
1790#endif
1791{
1792  // Create a MachNopNode
1793  _nop = new MachNopNode();
1794
1795  // Now that the nops are in the array, save the count
1796  // (but allow entries for the nops)
1797  _node_bundling_limit = compile.unique();
1798  uint node_max = _regalloc->node_regs_max_index();
1799
1800  compile.set_node_bundling_limit(_node_bundling_limit);
1801
1802  // This one is persistent within the Compile class
1803  _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1804
1805  // Allocate space for fixed-size arrays
1806  _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1807  _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1808  _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1809
1810  // Clear the arrays
1811  memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1812  memset(_node_latency,       0, node_max * sizeof(unsigned short));
1813  memset(_uses,               0, node_max * sizeof(short));
1814  memset(_current_latency,    0, node_max * sizeof(unsigned short));
1815
1816  // Clear the bundling information
1817  memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
1818
1819  // Get the last node
1820  Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
1821
1822  _next_node = block->get_node(block->number_of_nodes() - 1);
1823}
1824
1825#ifndef PRODUCT
1826// Scheduling destructor
1827Scheduling::~Scheduling() {
1828  _total_branches             += _branches;
1829  _total_unconditional_delays += _unconditional_delays;
1830}
1831#endif
1832
1833// Step ahead "i" cycles
1834void Scheduling::step(uint i) {
1835
1836  Bundle *bundle = node_bundling(_next_node);
1837  bundle->set_starts_bundle();
1838
1839  // Update the bundle record, but leave the flags information alone
1840  if (_bundle_instr_count > 0) {
1841    bundle->set_instr_count(_bundle_instr_count);
1842    bundle->set_resources_used(_bundle_use.resourcesUsed());
1843  }
1844
1845  // Update the state information
1846  _bundle_instr_count = 0;
1847  _bundle_cycle_number += i;
1848  _bundle_use.step(i);
1849}
1850
1851void Scheduling::step_and_clear() {
1852  Bundle *bundle = node_bundling(_next_node);
1853  bundle->set_starts_bundle();
1854
1855  // Update the bundle record
1856  if (_bundle_instr_count > 0) {
1857    bundle->set_instr_count(_bundle_instr_count);
1858    bundle->set_resources_used(_bundle_use.resourcesUsed());
1859
1860    _bundle_cycle_number += 1;
1861  }
1862
1863  // Clear the bundling information
1864  _bundle_instr_count = 0;
1865  _bundle_use.reset();
1866
1867  memcpy(_bundle_use_elements,
1868    Pipeline_Use::elaborated_elements,
1869    sizeof(Pipeline_Use::elaborated_elements));
1870}
1871
1872// Perform instruction scheduling and bundling over the sequence of
1873// instructions in backwards order.
1874void Compile::ScheduleAndBundle() {
1875
1876  // Don't optimize this if it isn't a method
1877  if (!_method)
1878    return;
1879
1880  // Don't optimize this if scheduling is disabled
1881  if (!do_scheduling())
1882    return;
1883
1884  // Scheduling code works only with pairs (8 bytes) maximum.
1885  if (max_vector_size() > 8)
1886    return;
1887
1888  NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1889
1890  // Create a data structure for all the scheduling information
1891  Scheduling scheduling(Thread::current()->resource_area(), *this);
1892
1893  // Walk backwards over each basic block, computing the needed alignment
1894  // Walk over all the basic blocks
1895  scheduling.DoScheduling();
1896}
1897
1898// Compute the latency of all the instructions.  This is fairly simple,
1899// because we already have a legal ordering.  Walk over the instructions
1900// from first to last, and compute the latency of the instruction based
1901// on the latency of the preceding instruction(s).
1902void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1903#ifndef PRODUCT
1904  if (_cfg->C->trace_opto_output())
1905    tty->print("# -> ComputeLocalLatenciesForward\n");
1906#endif
1907
1908  // Walk over all the schedulable instructions
1909  for( uint j=_bb_start; j < _bb_end; j++ ) {
1910
1911    // This is a kludge, forcing all latency calculations to start at 1.
1912    // Used to allow latency 0 to force an instruction to the beginning
1913    // of the bb
1914    uint latency = 1;
1915    Node *use = bb->get_node(j);
1916    uint nlen = use->len();
1917
1918    // Walk over all the inputs
1919    for ( uint k=0; k < nlen; k++ ) {
1920      Node *def = use->in(k);
1921      if (!def)
1922        continue;
1923
1924      uint l = _node_latency[def->_idx] + use->latency(k);
1925      if (latency < l)
1926        latency = l;
1927    }
1928
1929    _node_latency[use->_idx] = latency;
1930
1931#ifndef PRODUCT
1932    if (_cfg->C->trace_opto_output()) {
1933      tty->print("# latency %4d: ", latency);
1934      use->dump();
1935    }
1936#endif
1937  }
1938
1939#ifndef PRODUCT
1940  if (_cfg->C->trace_opto_output())
1941    tty->print("# <- ComputeLocalLatenciesForward\n");
1942#endif
1943
1944} // end ComputeLocalLatenciesForward
1945
1946// See if this node fits into the present instruction bundle
1947bool Scheduling::NodeFitsInBundle(Node *n) {
1948  uint n_idx = n->_idx;
1949
1950  // If this is the unconditional delay instruction, then it fits
1951  if (n == _unconditional_delay_slot) {
1952#ifndef PRODUCT
1953    if (_cfg->C->trace_opto_output())
1954      tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1955#endif
1956    return (true);
1957  }
1958
1959  // If the node cannot be scheduled this cycle, skip it
1960  if (_current_latency[n_idx] > _bundle_cycle_number) {
1961#ifndef PRODUCT
1962    if (_cfg->C->trace_opto_output())
1963      tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1964        n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1965#endif
1966    return (false);
1967  }
1968
1969  const Pipeline *node_pipeline = n->pipeline();
1970
1971  uint instruction_count = node_pipeline->instructionCount();
1972  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1973    instruction_count = 0;
1974  else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1975    instruction_count++;
1976
1977  if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1978#ifndef PRODUCT
1979    if (_cfg->C->trace_opto_output())
1980      tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1981        n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1982#endif
1983    return (false);
1984  }
1985
1986  // Don't allow non-machine nodes to be handled this way
1987  if (!n->is_Mach() && instruction_count == 0)
1988    return (false);
1989
1990  // See if there is any overlap
1991  uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1992
1993  if (delay > 0) {
1994#ifndef PRODUCT
1995    if (_cfg->C->trace_opto_output())
1996      tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1997#endif
1998    return false;
1999  }
2000
2001#ifndef PRODUCT
2002  if (_cfg->C->trace_opto_output())
2003    tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
2004#endif
2005
2006  return true;
2007}
2008
2009Node * Scheduling::ChooseNodeToBundle() {
2010  uint siz = _available.size();
2011
2012  if (siz == 0) {
2013
2014#ifndef PRODUCT
2015    if (_cfg->C->trace_opto_output())
2016      tty->print("#   ChooseNodeToBundle: NULL\n");
2017#endif
2018    return (NULL);
2019  }
2020
2021  // Fast path, if only 1 instruction in the bundle
2022  if (siz == 1) {
2023#ifndef PRODUCT
2024    if (_cfg->C->trace_opto_output()) {
2025      tty->print("#   ChooseNodeToBundle (only 1): ");
2026      _available[0]->dump();
2027    }
2028#endif
2029    return (_available[0]);
2030  }
2031
2032  // Don't bother, if the bundle is already full
2033  if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2034    for ( uint i = 0; i < siz; i++ ) {
2035      Node *n = _available[i];
2036
2037      // Skip projections, we'll handle them another way
2038      if (n->is_Proj())
2039        continue;
2040
2041      // This presupposed that instructions are inserted into the
2042      // available list in a legality order; i.e. instructions that
2043      // must be inserted first are at the head of the list
2044      if (NodeFitsInBundle(n)) {
2045#ifndef PRODUCT
2046        if (_cfg->C->trace_opto_output()) {
2047          tty->print("#   ChooseNodeToBundle: ");
2048          n->dump();
2049        }
2050#endif
2051        return (n);
2052      }
2053    }
2054  }
2055
2056  // Nothing fits in this bundle, choose the highest priority
2057#ifndef PRODUCT
2058  if (_cfg->C->trace_opto_output()) {
2059    tty->print("#   ChooseNodeToBundle: ");
2060    _available[0]->dump();
2061  }
2062#endif
2063
2064  return _available[0];
2065}
2066
2067void Scheduling::AddNodeToAvailableList(Node *n) {
2068  assert( !n->is_Proj(), "projections never directly made available" );
2069#ifndef PRODUCT
2070  if (_cfg->C->trace_opto_output()) {
2071    tty->print("#   AddNodeToAvailableList: ");
2072    n->dump();
2073  }
2074#endif
2075
2076  int latency = _current_latency[n->_idx];
2077
2078  // Insert in latency order (insertion sort)
2079  uint i;
2080  for ( i=0; i < _available.size(); i++ )
2081    if (_current_latency[_available[i]->_idx] > latency)
2082      break;
2083
2084  // Special Check for compares following branches
2085  if( n->is_Mach() && _scheduled.size() > 0 ) {
2086    int op = n->as_Mach()->ideal_Opcode();
2087    Node *last = _scheduled[0];
2088    if( last->is_MachIf() && last->in(1) == n &&
2089        ( op == Op_CmpI ||
2090          op == Op_CmpU ||
2091          op == Op_CmpP ||
2092          op == Op_CmpF ||
2093          op == Op_CmpD ||
2094          op == Op_CmpL ) ) {
2095
2096      // Recalculate position, moving to front of same latency
2097      for ( i=0 ; i < _available.size(); i++ )
2098        if (_current_latency[_available[i]->_idx] >= latency)
2099          break;
2100    }
2101  }
2102
2103  // Insert the node in the available list
2104  _available.insert(i, n);
2105
2106#ifndef PRODUCT
2107  if (_cfg->C->trace_opto_output())
2108    dump_available();
2109#endif
2110}
2111
2112void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2113  for ( uint i=0; i < n->len(); i++ ) {
2114    Node *def = n->in(i);
2115    if (!def) continue;
2116    if( def->is_Proj() )        // If this is a machine projection, then
2117      def = def->in(0);         // propagate usage thru to the base instruction
2118
2119    if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
2120      continue;
2121    }
2122
2123    // Compute the latency
2124    uint l = _bundle_cycle_number + n->latency(i);
2125    if (_current_latency[def->_idx] < l)
2126      _current_latency[def->_idx] = l;
2127
2128    // If this does not have uses then schedule it
2129    if ((--_uses[def->_idx]) == 0)
2130      AddNodeToAvailableList(def);
2131  }
2132}
2133
2134void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2135#ifndef PRODUCT
2136  if (_cfg->C->trace_opto_output()) {
2137    tty->print("#   AddNodeToBundle: ");
2138    n->dump();
2139  }
2140#endif
2141
2142  // Remove this from the available list
2143  uint i;
2144  for (i = 0; i < _available.size(); i++)
2145    if (_available[i] == n)
2146      break;
2147  assert(i < _available.size(), "entry in _available list not found");
2148  _available.remove(i);
2149
2150  // See if this fits in the current bundle
2151  const Pipeline *node_pipeline = n->pipeline();
2152  const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2153
2154  // Check for instructions to be placed in the delay slot. We
2155  // do this before we actually schedule the current instruction,
2156  // because the delay slot follows the current instruction.
2157  if (Pipeline::_branch_has_delay_slot &&
2158      node_pipeline->hasBranchDelay() &&
2159      !_unconditional_delay_slot) {
2160
2161    uint siz = _available.size();
2162
2163    // Conditional branches can support an instruction that
2164    // is unconditionally executed and not dependent by the
2165    // branch, OR a conditionally executed instruction if
2166    // the branch is taken.  In practice, this means that
2167    // the first instruction at the branch target is
2168    // copied to the delay slot, and the branch goes to
2169    // the instruction after that at the branch target
2170    if ( n->is_MachBranch() ) {
2171
2172      assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2173      assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2174
2175#ifndef PRODUCT
2176      _branches++;
2177#endif
2178
2179      // At least 1 instruction is on the available list
2180      // that is not dependent on the branch
2181      for (uint i = 0; i < siz; i++) {
2182        Node *d = _available[i];
2183        const Pipeline *avail_pipeline = d->pipeline();
2184
2185        // Don't allow safepoints in the branch shadow, that will
2186        // cause a number of difficulties
2187        if ( avail_pipeline->instructionCount() == 1 &&
2188            !avail_pipeline->hasMultipleBundles() &&
2189            !avail_pipeline->hasBranchDelay() &&
2190            Pipeline::instr_has_unit_size() &&
2191            d->size(_regalloc) == Pipeline::instr_unit_size() &&
2192            NodeFitsInBundle(d) &&
2193            !node_bundling(d)->used_in_delay()) {
2194
2195          if (d->is_Mach() && !d->is_MachSafePoint()) {
2196            // A node that fits in the delay slot was found, so we need to
2197            // set the appropriate bits in the bundle pipeline information so
2198            // that it correctly indicates resource usage.  Later, when we
2199            // attempt to add this instruction to the bundle, we will skip
2200            // setting the resource usage.
2201            _unconditional_delay_slot = d;
2202            node_bundling(n)->set_use_unconditional_delay();
2203            node_bundling(d)->set_used_in_unconditional_delay();
2204            _bundle_use.add_usage(avail_pipeline->resourceUse());
2205            _current_latency[d->_idx] = _bundle_cycle_number;
2206            _next_node = d;
2207            ++_bundle_instr_count;
2208#ifndef PRODUCT
2209            _unconditional_delays++;
2210#endif
2211            break;
2212          }
2213        }
2214      }
2215    }
2216
2217    // No delay slot, add a nop to the usage
2218    if (!_unconditional_delay_slot) {
2219      // See if adding an instruction in the delay slot will overflow
2220      // the bundle.
2221      if (!NodeFitsInBundle(_nop)) {
2222#ifndef PRODUCT
2223        if (_cfg->C->trace_opto_output())
2224          tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2225#endif
2226        step(1);
2227      }
2228
2229      _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2230      _next_node = _nop;
2231      ++_bundle_instr_count;
2232    }
2233
2234    // See if the instruction in the delay slot requires a
2235    // step of the bundles
2236    if (!NodeFitsInBundle(n)) {
2237#ifndef PRODUCT
2238        if (_cfg->C->trace_opto_output())
2239          tty->print("#  *** STEP(branch won't fit) ***\n");
2240#endif
2241        // Update the state information
2242        _bundle_instr_count = 0;
2243        _bundle_cycle_number += 1;
2244        _bundle_use.step(1);
2245    }
2246  }
2247
2248  // Get the number of instructions
2249  uint instruction_count = node_pipeline->instructionCount();
2250  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2251    instruction_count = 0;
2252
2253  // Compute the latency information
2254  uint delay = 0;
2255
2256  if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2257    int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2258    if (relative_latency < 0)
2259      relative_latency = 0;
2260
2261    delay = _bundle_use.full_latency(relative_latency, node_usage);
2262
2263    // Does not fit in this bundle, start a new one
2264    if (delay > 0) {
2265      step(delay);
2266
2267#ifndef PRODUCT
2268      if (_cfg->C->trace_opto_output())
2269        tty->print("#  *** STEP(%d) ***\n", delay);
2270#endif
2271    }
2272  }
2273
2274  // If this was placed in the delay slot, ignore it
2275  if (n != _unconditional_delay_slot) {
2276
2277    if (delay == 0) {
2278      if (node_pipeline->hasMultipleBundles()) {
2279#ifndef PRODUCT
2280        if (_cfg->C->trace_opto_output())
2281          tty->print("#  *** STEP(multiple instructions) ***\n");
2282#endif
2283        step(1);
2284      }
2285
2286      else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2287#ifndef PRODUCT
2288        if (_cfg->C->trace_opto_output())
2289          tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2290            instruction_count + _bundle_instr_count,
2291            Pipeline::_max_instrs_per_cycle);
2292#endif
2293        step(1);
2294      }
2295    }
2296
2297    if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2298      _bundle_instr_count++;
2299
2300    // Set the node's latency
2301    _current_latency[n->_idx] = _bundle_cycle_number;
2302
2303    // Now merge the functional unit information
2304    if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2305      _bundle_use.add_usage(node_usage);
2306
2307    // Increment the number of instructions in this bundle
2308    _bundle_instr_count += instruction_count;
2309
2310    // Remember this node for later
2311    if (n->is_Mach())
2312      _next_node = n;
2313  }
2314
2315  // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2316  // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2317  // 'Schedule' them (basically ignore in the schedule) but do not insert them
2318  // into the block.  All other scheduled nodes get put in the schedule here.
2319  int op = n->Opcode();
2320  if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2321      (op != Op_Node &&         // Not an unused antidepedence node and
2322       // not an unallocated boxlock
2323       (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2324
2325    // Push any trailing projections
2326    if( bb->get_node(bb->number_of_nodes()-1) != n ) {
2327      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2328        Node *foi = n->fast_out(i);
2329        if( foi->is_Proj() )
2330          _scheduled.push(foi);
2331      }
2332    }
2333
2334    // Put the instruction in the schedule list
2335    _scheduled.push(n);
2336  }
2337
2338#ifndef PRODUCT
2339  if (_cfg->C->trace_opto_output())
2340    dump_available();
2341#endif
2342
2343  // Walk all the definitions, decrementing use counts, and
2344  // if a definition has a 0 use count, place it in the available list.
2345  DecrementUseCounts(n,bb);
2346}
2347
2348// This method sets the use count within a basic block.  We will ignore all
2349// uses outside the current basic block.  As we are doing a backwards walk,
2350// any node we reach that has a use count of 0 may be scheduled.  This also
2351// avoids the problem of cyclic references from phi nodes, as long as phi
2352// nodes are at the front of the basic block.  This method also initializes
2353// the available list to the set of instructions that have no uses within this
2354// basic block.
2355void Scheduling::ComputeUseCount(const Block *bb) {
2356#ifndef PRODUCT
2357  if (_cfg->C->trace_opto_output())
2358    tty->print("# -> ComputeUseCount\n");
2359#endif
2360
2361  // Clear the list of available and scheduled instructions, just in case
2362  _available.clear();
2363  _scheduled.clear();
2364
2365  // No delay slot specified
2366  _unconditional_delay_slot = NULL;
2367
2368#ifdef ASSERT
2369  for( uint i=0; i < bb->number_of_nodes(); i++ )
2370    assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
2371#endif
2372
2373  // Force the _uses count to never go to zero for unscheduable pieces
2374  // of the block
2375  for( uint k = 0; k < _bb_start; k++ )
2376    _uses[bb->get_node(k)->_idx] = 1;
2377  for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
2378    _uses[bb->get_node(l)->_idx] = 1;
2379
2380  // Iterate backwards over the instructions in the block.  Don't count the
2381  // branch projections at end or the block header instructions.
2382  for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2383    Node *n = bb->get_node(j);
2384    if( n->is_Proj() ) continue; // Projections handled another way
2385
2386    // Account for all uses
2387    for ( uint k = 0; k < n->len(); k++ ) {
2388      Node *inp = n->in(k);
2389      if (!inp) continue;
2390      assert(inp != n, "no cycles allowed" );
2391      if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
2392        if (inp->is_Proj()) { // Skip through Proj's
2393          inp = inp->in(0);
2394        }
2395        ++_uses[inp->_idx];     // Count 1 block-local use
2396      }
2397    }
2398
2399    // If this instruction has a 0 use count, then it is available
2400    if (!_uses[n->_idx]) {
2401      _current_latency[n->_idx] = _bundle_cycle_number;
2402      AddNodeToAvailableList(n);
2403    }
2404
2405#ifndef PRODUCT
2406    if (_cfg->C->trace_opto_output()) {
2407      tty->print("#   uses: %3d: ", _uses[n->_idx]);
2408      n->dump();
2409    }
2410#endif
2411  }
2412
2413#ifndef PRODUCT
2414  if (_cfg->C->trace_opto_output())
2415    tty->print("# <- ComputeUseCount\n");
2416#endif
2417}
2418
2419// This routine performs scheduling on each basic block in reverse order,
2420// using instruction latencies and taking into account function unit
2421// availability.
2422void Scheduling::DoScheduling() {
2423#ifndef PRODUCT
2424  if (_cfg->C->trace_opto_output())
2425    tty->print("# -> DoScheduling\n");
2426#endif
2427
2428  Block *succ_bb = NULL;
2429  Block *bb;
2430
2431  // Walk over all the basic blocks in reverse order
2432  for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
2433    bb = _cfg->get_block(i);
2434
2435#ifndef PRODUCT
2436    if (_cfg->C->trace_opto_output()) {
2437      tty->print("#  Schedule BB#%03d (initial)\n", i);
2438      for (uint j = 0; j < bb->number_of_nodes(); j++) {
2439        bb->get_node(j)->dump();
2440      }
2441    }
2442#endif
2443
2444    // On the head node, skip processing
2445    if (bb == _cfg->get_root_block()) {
2446      continue;
2447    }
2448
2449    // Skip empty, connector blocks
2450    if (bb->is_connector())
2451      continue;
2452
2453    // If the following block is not the sole successor of
2454    // this one, then reset the pipeline information
2455    if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2456#ifndef PRODUCT
2457      if (_cfg->C->trace_opto_output()) {
2458        tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2459                   _next_node->_idx, _bundle_instr_count);
2460      }
2461#endif
2462      step_and_clear();
2463    }
2464
2465    // Leave untouched the starting instruction, any Phis, a CreateEx node
2466    // or Top.  bb->get_node(_bb_start) is the first schedulable instruction.
2467    _bb_end = bb->number_of_nodes()-1;
2468    for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2469      Node *n = bb->get_node(_bb_start);
2470      // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2471      // Also, MachIdealNodes do not get scheduled
2472      if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2473      MachNode *mach = n->as_Mach();
2474      int iop = mach->ideal_Opcode();
2475      if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2476      if( iop == Op_Con ) continue;      // Do not schedule Top
2477      if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2478          mach->pipeline() == MachNode::pipeline_class() &&
2479          !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2480        continue;
2481      break;                    // Funny loop structure to be sure...
2482    }
2483    // Compute last "interesting" instruction in block - last instruction we
2484    // might schedule.  _bb_end points just after last schedulable inst.  We
2485    // normally schedule conditional branches (despite them being forced last
2486    // in the block), because they have delay slots we can fill.  Calls all
2487    // have their delay slots filled in the template expansions, so we don't
2488    // bother scheduling them.
2489    Node *last = bb->get_node(_bb_end);
2490    // Ignore trailing NOPs.
2491    while (_bb_end > 0 && last->is_Mach() &&
2492           last->as_Mach()->ideal_Opcode() == Op_Con) {
2493      last = bb->get_node(--_bb_end);
2494    }
2495    assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2496    if( last->is_Catch() ||
2497       // Exclude unreachable path case when Halt node is in a separate block.
2498       (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2499      // There must be a prior call.  Skip it.
2500      while( !bb->get_node(--_bb_end)->is_MachCall() ) {
2501        assert( bb->get_node(_bb_end)->is_MachProj(), "skipping projections after expected call" );
2502      }
2503    } else if( last->is_MachNullCheck() ) {
2504      // Backup so the last null-checked memory instruction is
2505      // outside the schedulable range. Skip over the nullcheck,
2506      // projection, and the memory nodes.
2507      Node *mem = last->in(1);
2508      do {
2509        _bb_end--;
2510      } while (mem != bb->get_node(_bb_end));
2511    } else {
2512      // Set _bb_end to point after last schedulable inst.
2513      _bb_end++;
2514    }
2515
2516    assert( _bb_start <= _bb_end, "inverted block ends" );
2517
2518    // Compute the register antidependencies for the basic block
2519    ComputeRegisterAntidependencies(bb);
2520    if (_cfg->C->failing())  return;  // too many D-U pinch points
2521
2522    // Compute intra-bb latencies for the nodes
2523    ComputeLocalLatenciesForward(bb);
2524
2525    // Compute the usage within the block, and set the list of all nodes
2526    // in the block that have no uses within the block.
2527    ComputeUseCount(bb);
2528
2529    // Schedule the remaining instructions in the block
2530    while ( _available.size() > 0 ) {
2531      Node *n = ChooseNodeToBundle();
2532      guarantee(n != NULL, "no nodes available");
2533      AddNodeToBundle(n,bb);
2534    }
2535
2536    assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2537#ifdef ASSERT
2538    for( uint l = _bb_start; l < _bb_end; l++ ) {
2539      Node *n = bb->get_node(l);
2540      uint m;
2541      for( m = 0; m < _bb_end-_bb_start; m++ )
2542        if( _scheduled[m] == n )
2543          break;
2544      assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2545    }
2546#endif
2547
2548    // Now copy the instructions (in reverse order) back to the block
2549    for ( uint k = _bb_start; k < _bb_end; k++ )
2550      bb->map_node(_scheduled[_bb_end-k-1], k);
2551
2552#ifndef PRODUCT
2553    if (_cfg->C->trace_opto_output()) {
2554      tty->print("#  Schedule BB#%03d (final)\n", i);
2555      uint current = 0;
2556      for (uint j = 0; j < bb->number_of_nodes(); j++) {
2557        Node *n = bb->get_node(j);
2558        if( valid_bundle_info(n) ) {
2559          Bundle *bundle = node_bundling(n);
2560          if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2561            tty->print("*** Bundle: ");
2562            bundle->dump();
2563          }
2564          n->dump();
2565        }
2566      }
2567    }
2568#endif
2569#ifdef ASSERT
2570  verify_good_schedule(bb,"after block local scheduling");
2571#endif
2572  }
2573
2574#ifndef PRODUCT
2575  if (_cfg->C->trace_opto_output())
2576    tty->print("# <- DoScheduling\n");
2577#endif
2578
2579  // Record final node-bundling array location
2580  _regalloc->C->set_node_bundling_base(_node_bundling_base);
2581
2582} // end DoScheduling
2583
2584// Verify that no live-range used in the block is killed in the block by a
2585// wrong DEF.  This doesn't verify live-ranges that span blocks.
2586
2587// Check for edge existence.  Used to avoid adding redundant precedence edges.
2588static bool edge_from_to( Node *from, Node *to ) {
2589  for( uint i=0; i<from->len(); i++ )
2590    if( from->in(i) == to )
2591      return true;
2592  return false;
2593}
2594
2595#ifdef ASSERT
2596void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2597  // Check for bad kills
2598  if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2599    Node *prior_use = _reg_node[def];
2600    if( prior_use && !edge_from_to(prior_use,n) ) {
2601      tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2602      n->dump();
2603      tty->print_cr("...");
2604      prior_use->dump();
2605      assert(edge_from_to(prior_use,n),msg);
2606    }
2607    _reg_node.map(def,NULL); // Kill live USEs
2608  }
2609}
2610
2611void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2612
2613  // Zap to something reasonable for the verify code
2614  _reg_node.clear();
2615
2616  // Walk over the block backwards.  Check to make sure each DEF doesn't
2617  // kill a live value (other than the one it's supposed to).  Add each
2618  // USE to the live set.
2619  for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
2620    Node *n = b->get_node(i);
2621    int n_op = n->Opcode();
2622    if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2623      // Fat-proj kills a slew of registers
2624      RegMask rm = n->out_RegMask();// Make local copy
2625      while( rm.is_NotEmpty() ) {
2626        OptoReg::Name kill = rm.find_first_elem();
2627        rm.Remove(kill);
2628        verify_do_def( n, kill, msg );
2629      }
2630    } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2631      // Get DEF'd registers the normal way
2632      verify_do_def( n, _regalloc->get_reg_first(n), msg );
2633      verify_do_def( n, _regalloc->get_reg_second(n), msg );
2634    }
2635
2636    // Now make all USEs live
2637    for( uint i=1; i<n->req(); i++ ) {
2638      Node *def = n->in(i);
2639      assert(def != 0, "input edge required");
2640      OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2641      OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2642      if( OptoReg::is_valid(reg_lo) ) {
2643        assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
2644        _reg_node.map(reg_lo,n);
2645      }
2646      if( OptoReg::is_valid(reg_hi) ) {
2647        assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
2648        _reg_node.map(reg_hi,n);
2649      }
2650    }
2651
2652  }
2653
2654  // Zap to something reasonable for the Antidependence code
2655  _reg_node.clear();
2656}
2657#endif
2658
2659// Conditionally add precedence edges.  Avoid putting edges on Projs.
2660static void add_prec_edge_from_to( Node *from, Node *to ) {
2661  if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2662    assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2663    from = from->in(0);
2664  }
2665  if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2666      !edge_from_to( from, to ) ) // Avoid duplicate edge
2667    from->add_prec(to);
2668}
2669
2670void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2671  if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2672    return;
2673
2674  Node *pinch = _reg_node[def_reg]; // Get pinch point
2675  if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
2676      is_def ) {    // Check for a true def (not a kill)
2677    _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2678    return;
2679  }
2680
2681  Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2682  debug_only( def = (Node*)0xdeadbeef; )
2683
2684  // After some number of kills there _may_ be a later def
2685  Node *later_def = NULL;
2686
2687  // Finding a kill requires a real pinch-point.
2688  // Check for not already having a pinch-point.
2689  // Pinch points are Op_Node's.
2690  if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2691    later_def = pinch;            // Must be def/kill as optimistic pinch-point
2692    if ( _pinch_free_list.size() > 0) {
2693      pinch = _pinch_free_list.pop();
2694    } else {
2695      pinch = new Node(1); // Pinch point to-be
2696    }
2697    if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2698      _cfg->C->record_method_not_compilable("too many D-U pinch points");
2699      return;
2700    }
2701    _cfg->map_node_to_block(pinch, b);      // Pretend it's valid in this block (lazy init)
2702    _reg_node.map(def_reg,pinch); // Record pinch-point
2703    //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2704    if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2705      pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2706      add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2707      later_def = NULL;           // and no later def
2708    }
2709    pinch->set_req(0,later_def);  // Hook later def so we can find it
2710  } else {                        // Else have valid pinch point
2711    if( pinch->in(0) )            // If there is a later-def
2712      later_def = pinch->in(0);   // Get it
2713  }
2714
2715  // Add output-dependence edge from later def to kill
2716  if( later_def )               // If there is some original def
2717    add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2718
2719  // See if current kill is also a use, and so is forced to be the pinch-point.
2720  if( pinch->Opcode() == Op_Node ) {
2721    Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2722    for( uint i=1; i<uses->req(); i++ ) {
2723      if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2724          _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2725        // Yes, found a use/kill pinch-point
2726        pinch->set_req(0,NULL);  //
2727        pinch->replace_by(kill); // Move anti-dep edges up
2728        pinch = kill;
2729        _reg_node.map(def_reg,pinch);
2730        return;
2731      }
2732    }
2733  }
2734
2735  // Add edge from kill to pinch-point
2736  add_prec_edge_from_to(kill,pinch);
2737}
2738
2739void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2740  if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2741    return;
2742  Node *pinch = _reg_node[use_reg]; // Get pinch point
2743  // Check for no later def_reg/kill in block
2744  if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b &&
2745      // Use has to be block-local as well
2746      _cfg->get_block_for_node(use) == b) {
2747    if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2748        pinch->req() == 1 ) {   // pinch not yet in block?
2749      pinch->del_req(0);        // yank pointer to later-def, also set flag
2750      // Insert the pinch-point in the block just after the last use
2751      b->insert_node(pinch, b->find_node(use) + 1);
2752      _bb_end++;                // Increase size scheduled region in block
2753    }
2754
2755    add_prec_edge_from_to(pinch,use);
2756  }
2757}
2758
2759// We insert antidependences between the reads and following write of
2760// allocated registers to prevent illegal code motion. Hopefully, the
2761// number of added references should be fairly small, especially as we
2762// are only adding references within the current basic block.
2763void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2764
2765#ifdef ASSERT
2766  verify_good_schedule(b,"before block local scheduling");
2767#endif
2768
2769  // A valid schedule, for each register independently, is an endless cycle
2770  // of: a def, then some uses (connected to the def by true dependencies),
2771  // then some kills (defs with no uses), finally the cycle repeats with a new
2772  // def.  The uses are allowed to float relative to each other, as are the
2773  // kills.  No use is allowed to slide past a kill (or def).  This requires
2774  // antidependencies between all uses of a single def and all kills that
2775  // follow, up to the next def.  More edges are redundant, because later defs
2776  // & kills are already serialized with true or antidependencies.  To keep
2777  // the edge count down, we add a 'pinch point' node if there's more than
2778  // one use or more than one kill/def.
2779
2780  // We add dependencies in one bottom-up pass.
2781
2782  // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2783
2784  // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2785  // register.  If not, we record the DEF/KILL in _reg_node, the
2786  // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2787  // "pinch point", a new Node that's in the graph but not in the block.
2788  // We put edges from the prior and current DEF/KILLs to the pinch point.
2789  // We put the pinch point in _reg_node.  If there's already a pinch point
2790  // we merely add an edge from the current DEF/KILL to the pinch point.
2791
2792  // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2793  // put an edge from the pinch point to the USE.
2794
2795  // To be expedient, the _reg_node array is pre-allocated for the whole
2796  // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2797  // or a valid def/kill/pinch-point, or a leftover node from some prior
2798  // block.  Leftover node from some prior block is treated like a NULL (no
2799  // prior def, so no anti-dependence needed).  Valid def is distinguished by
2800  // it being in the current block.
2801  bool fat_proj_seen = false;
2802  uint last_safept = _bb_end-1;
2803  Node* end_node         = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL;
2804  Node* last_safept_node = end_node;
2805  for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2806    Node *n = b->get_node(i);
2807    int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2808    if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2809      // Fat-proj kills a slew of registers
2810      // This can add edges to 'n' and obscure whether or not it was a def,
2811      // hence the is_def flag.
2812      fat_proj_seen = true;
2813      RegMask rm = n->out_RegMask();// Make local copy
2814      while( rm.is_NotEmpty() ) {
2815        OptoReg::Name kill = rm.find_first_elem();
2816        rm.Remove(kill);
2817        anti_do_def( b, n, kill, is_def );
2818      }
2819    } else {
2820      // Get DEF'd registers the normal way
2821      anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2822      anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2823    }
2824
2825    // Kill projections on a branch should appear to occur on the
2826    // branch, not afterwards, so grab the masks from the projections
2827    // and process them.
2828    if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
2829      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2830        Node* use = n->fast_out(i);
2831        if (use->is_Proj()) {
2832          RegMask rm = use->out_RegMask();// Make local copy
2833          while( rm.is_NotEmpty() ) {
2834            OptoReg::Name kill = rm.find_first_elem();
2835            rm.Remove(kill);
2836            anti_do_def( b, n, kill, false );
2837          }
2838        }
2839      }
2840    }
2841
2842    // Check each register used by this instruction for a following DEF/KILL
2843    // that must occur afterward and requires an anti-dependence edge.
2844    for( uint j=0; j<n->req(); j++ ) {
2845      Node *def = n->in(j);
2846      if( def ) {
2847        assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
2848        anti_do_use( b, n, _regalloc->get_reg_first(def) );
2849        anti_do_use( b, n, _regalloc->get_reg_second(def) );
2850      }
2851    }
2852    // Do not allow defs of new derived values to float above GC
2853    // points unless the base is definitely available at the GC point.
2854
2855    Node *m = b->get_node(i);
2856
2857    // Add precedence edge from following safepoint to use of derived pointer
2858    if( last_safept_node != end_node &&
2859        m != last_safept_node) {
2860      for (uint k = 1; k < m->req(); k++) {
2861        const Type *t = m->in(k)->bottom_type();
2862        if( t->isa_oop_ptr() &&
2863            t->is_ptr()->offset() != 0 ) {
2864          last_safept_node->add_prec( m );
2865          break;
2866        }
2867      }
2868    }
2869
2870    if( n->jvms() ) {           // Precedence edge from derived to safept
2871      // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2872      if( b->get_node(last_safept) != last_safept_node ) {
2873        last_safept = b->find_node(last_safept_node);
2874      }
2875      for( uint j=last_safept; j > i; j-- ) {
2876        Node *mach = b->get_node(j);
2877        if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2878          mach->add_prec( n );
2879      }
2880      last_safept = i;
2881      last_safept_node = m;
2882    }
2883  }
2884
2885  if (fat_proj_seen) {
2886    // Garbage collect pinch nodes that were not consumed.
2887    // They are usually created by a fat kill MachProj for a call.
2888    garbage_collect_pinch_nodes();
2889  }
2890}
2891
2892// Garbage collect pinch nodes for reuse by other blocks.
2893//
2894// The block scheduler's insertion of anti-dependence
2895// edges creates many pinch nodes when the block contains
2896// 2 or more Calls.  A pinch node is used to prevent a
2897// combinatorial explosion of edges.  If a set of kills for a
2898// register is anti-dependent on a set of uses (or defs), rather
2899// than adding an edge in the graph between each pair of kill
2900// and use (or def), a pinch is inserted between them:
2901//
2902//            use1   use2  use3
2903//                \   |   /
2904//                 \  |  /
2905//                  pinch
2906//                 /  |  \
2907//                /   |   \
2908//            kill1 kill2 kill3
2909//
2910// One pinch node is created per register killed when
2911// the second call is encountered during a backwards pass
2912// over the block.  Most of these pinch nodes are never
2913// wired into the graph because the register is never
2914// used or def'ed in the block.
2915//
2916void Scheduling::garbage_collect_pinch_nodes() {
2917#ifndef PRODUCT
2918    if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2919#endif
2920    int trace_cnt = 0;
2921    for (uint k = 0; k < _reg_node.Size(); k++) {
2922      Node* pinch = _reg_node[k];
2923      if ((pinch != NULL) && pinch->Opcode() == Op_Node &&
2924          // no predecence input edges
2925          (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2926        cleanup_pinch(pinch);
2927        _pinch_free_list.push(pinch);
2928        _reg_node.map(k, NULL);
2929#ifndef PRODUCT
2930        if (_cfg->C->trace_opto_output()) {
2931          trace_cnt++;
2932          if (trace_cnt > 40) {
2933            tty->print("\n");
2934            trace_cnt = 0;
2935          }
2936          tty->print(" %d", pinch->_idx);
2937        }
2938#endif
2939      }
2940    }
2941#ifndef PRODUCT
2942    if (_cfg->C->trace_opto_output()) tty->print("\n");
2943#endif
2944}
2945
2946// Clean up a pinch node for reuse.
2947void Scheduling::cleanup_pinch( Node *pinch ) {
2948  assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2949
2950  for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2951    Node* use = pinch->last_out(i);
2952    uint uses_found = 0;
2953    for (uint j = use->req(); j < use->len(); j++) {
2954      if (use->in(j) == pinch) {
2955        use->rm_prec(j);
2956        uses_found++;
2957      }
2958    }
2959    assert(uses_found > 0, "must be a precedence edge");
2960    i -= uses_found;    // we deleted 1 or more copies of this edge
2961  }
2962  // May have a later_def entry
2963  pinch->set_req(0, NULL);
2964}
2965
2966#ifndef PRODUCT
2967
2968void Scheduling::dump_available() const {
2969  tty->print("#Availist  ");
2970  for (uint i = 0; i < _available.size(); i++)
2971    tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2972  tty->cr();
2973}
2974
2975// Print Scheduling Statistics
2976void Scheduling::print_statistics() {
2977  // Print the size added by nops for bundling
2978  tty->print("Nops added %d bytes to total of %d bytes",
2979    _total_nop_size, _total_method_size);
2980  if (_total_method_size > 0)
2981    tty->print(", for %.2f%%",
2982      ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2983  tty->print("\n");
2984
2985  // Print the number of branch shadows filled
2986  if (Pipeline::_branch_has_delay_slot) {
2987    tty->print("Of %d branches, %d had unconditional delay slots filled",
2988      _total_branches, _total_unconditional_delays);
2989    if (_total_branches > 0)
2990      tty->print(", for %.2f%%",
2991        ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2992    tty->print("\n");
2993  }
2994
2995  uint total_instructions = 0, total_bundles = 0;
2996
2997  for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2998    uint bundle_count   = _total_instructions_per_bundle[i];
2999    total_instructions += bundle_count * i;
3000    total_bundles      += bundle_count;
3001  }
3002
3003  if (total_bundles > 0)
3004    tty->print("Average ILP (excluding nops) is %.2f\n",
3005      ((double)total_instructions) / ((double)total_bundles));
3006}
3007#endif
3008