output.cpp revision 6010:abec000618bf
1/*
2 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/assembler.inline.hpp"
27#include "code/compiledIC.hpp"
28#include "code/debugInfo.hpp"
29#include "code/debugInfoRec.hpp"
30#include "compiler/compileBroker.hpp"
31#include "compiler/oopMap.hpp"
32#include "memory/allocation.inline.hpp"
33#include "opto/callnode.hpp"
34#include "opto/cfgnode.hpp"
35#include "opto/locknode.hpp"
36#include "opto/machnode.hpp"
37#include "opto/output.hpp"
38#include "opto/regalloc.hpp"
39#include "opto/runtime.hpp"
40#include "opto/subnode.hpp"
41#include "opto/type.hpp"
42#include "runtime/handles.inline.hpp"
43#include "utilities/xmlstream.hpp"
44
45extern uint size_exception_handler();
46extern uint size_deopt_handler();
47
48#ifndef PRODUCT
49#define DEBUG_ARG(x) , x
50#else
51#define DEBUG_ARG(x)
52#endif
53
54extern int emit_exception_handler(CodeBuffer &cbuf);
55extern int emit_deopt_handler(CodeBuffer &cbuf);
56
57// Convert Nodes to instruction bits and pass off to the VM
58void Compile::Output() {
59  // RootNode goes
60  assert( _cfg->get_root_block()->number_of_nodes() == 0, "" );
61
62  // The number of new nodes (mostly MachNop) is proportional to
63  // the number of java calls and inner loops which are aligned.
64  if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
65                            C->inner_loops()*(OptoLoopAlignment-1)),
66                           "out of nodes before code generation" ) ) {
67    return;
68  }
69  // Make sure I can find the Start Node
70  Block *entry = _cfg->get_block(1);
71  Block *broot = _cfg->get_root_block();
72
73  const StartNode *start = entry->head()->as_Start();
74
75  // Replace StartNode with prolog
76  MachPrologNode *prolog = new (this) MachPrologNode();
77  entry->map_node(prolog, 0);
78  _cfg->map_node_to_block(prolog, entry);
79  _cfg->unmap_node_from_block(start); // start is no longer in any block
80
81  // Virtual methods need an unverified entry point
82
83  if( is_osr_compilation() ) {
84    if( PoisonOSREntry ) {
85      // TODO: Should use a ShouldNotReachHereNode...
86      _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
87    }
88  } else {
89    if( _method && !_method->flags().is_static() ) {
90      // Insert unvalidated entry point
91      _cfg->insert( broot, 0, new (this) MachUEPNode() );
92    }
93
94  }
95
96
97  // Break before main entry point
98  if( (_method && _method->break_at_execute())
99#ifndef PRODUCT
100    ||(OptoBreakpoint && is_method_compilation())
101    ||(OptoBreakpointOSR && is_osr_compilation())
102    ||(OptoBreakpointC2R && !_method)
103#endif
104    ) {
105    // checking for _method means that OptoBreakpoint does not apply to
106    // runtime stubs or frame converters
107    _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
108  }
109
110  // Insert epilogs before every return
111  for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
112    Block* block = _cfg->get_block(i);
113    if (!block->is_connector() && block->non_connector_successor(0) == _cfg->get_root_block()) { // Found a program exit point?
114      Node* m = block->end();
115      if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
116        MachEpilogNode* epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
117        block->add_inst(epilog);
118        _cfg->map_node_to_block(epilog, block);
119      }
120    }
121  }
122
123# ifdef ENABLE_ZAP_DEAD_LOCALS
124  if (ZapDeadCompiledLocals) {
125    Insert_zap_nodes();
126  }
127# endif
128
129  uint* blk_starts = NEW_RESOURCE_ARRAY(uint, _cfg->number_of_blocks() + 1);
130  blk_starts[0] = 0;
131
132  // Initialize code buffer and process short branches.
133  CodeBuffer* cb = init_buffer(blk_starts);
134
135  if (cb == NULL || failing()) {
136    return;
137  }
138
139  ScheduleAndBundle();
140
141#ifndef PRODUCT
142  if (trace_opto_output()) {
143    tty->print("\n---- After ScheduleAndBundle ----\n");
144    for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
145      tty->print("\nBB#%03d:\n", i);
146      Block* block = _cfg->get_block(i);
147      for (uint j = 0; j < block->number_of_nodes(); j++) {
148        Node* n = block->get_node(j);
149        OptoReg::Name reg = _regalloc->get_reg_first(n);
150        tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
151        n->dump();
152      }
153    }
154  }
155#endif
156
157  if (failing()) {
158    return;
159  }
160
161  BuildOopMaps();
162
163  if (failing())  {
164    return;
165  }
166
167  fill_buffer(cb, blk_starts);
168}
169
170bool Compile::need_stack_bang(int frame_size_in_bytes) const {
171  // Determine if we need to generate a stack overflow check.
172  // Do it if the method is not a stub function and
173  // has java calls or has frame size > vm_page_size/8.
174  return (UseStackBanging && stub_function() == NULL &&
175          (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
176}
177
178bool Compile::need_register_stack_bang() const {
179  // Determine if we need to generate a register stack overflow check.
180  // This is only used on architectures which have split register
181  // and memory stacks (ie. IA64).
182  // Bang if the method is not a stub function and has java calls
183  return (stub_function() == NULL && has_java_calls());
184}
185
186# ifdef ENABLE_ZAP_DEAD_LOCALS
187
188
189// In order to catch compiler oop-map bugs, we have implemented
190// a debugging mode called ZapDeadCompilerLocals.
191// This mode causes the compiler to insert a call to a runtime routine,
192// "zap_dead_locals", right before each place in compiled code
193// that could potentially be a gc-point (i.e., a safepoint or oop map point).
194// The runtime routine checks that locations mapped as oops are really
195// oops, that locations mapped as values do not look like oops,
196// and that locations mapped as dead are not used later
197// (by zapping them to an invalid address).
198
199int Compile::_CompiledZap_count = 0;
200
201void Compile::Insert_zap_nodes() {
202  bool skip = false;
203
204
205  // Dink with static counts because code code without the extra
206  // runtime calls is MUCH faster for debugging purposes
207
208       if ( CompileZapFirst  ==  0  ) ; // nothing special
209  else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
210  else if ( CompileZapFirst  == CompiledZap_count() )
211    warning("starting zap compilation after skipping");
212
213       if ( CompileZapLast  ==  -1  ) ; // nothing special
214  else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
215  else if ( CompileZapLast  ==  CompiledZap_count() )
216    warning("about to compile last zap");
217
218  ++_CompiledZap_count; // counts skipped zaps, too
219
220  if ( skip )  return;
221
222
223  if ( _method == NULL )
224    return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
225
226  // Insert call to zap runtime stub before every node with an oop map
227  for( uint i=0; i<_cfg->number_of_blocks(); i++ ) {
228    Block *b = _cfg->get_block(i);
229    for ( uint j = 0;  j < b->number_of_nodes();  ++j ) {
230      Node *n = b->get_node(j);
231
232      // Determining if we should insert a zap-a-lot node in output.
233      // We do that for all nodes that has oopmap info, except for calls
234      // to allocation.  Calls to allocation passes in the old top-of-eden pointer
235      // and expect the C code to reset it.  Hence, there can be no safepoints between
236      // the inlined-allocation and the call to new_Java, etc.
237      // We also cannot zap monitor calls, as they must hold the microlock
238      // during the call to Zap, which also wants to grab the microlock.
239      bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
240      if ( insert ) { // it is MachSafePoint
241        if ( !n->is_MachCall() ) {
242          insert = false;
243        } else if ( n->is_MachCall() ) {
244          MachCallNode* call = n->as_MachCall();
245          if (call->entry_point() == OptoRuntime::new_instance_Java() ||
246              call->entry_point() == OptoRuntime::new_array_Java() ||
247              call->entry_point() == OptoRuntime::multianewarray2_Java() ||
248              call->entry_point() == OptoRuntime::multianewarray3_Java() ||
249              call->entry_point() == OptoRuntime::multianewarray4_Java() ||
250              call->entry_point() == OptoRuntime::multianewarray5_Java() ||
251              call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
252              call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
253              ) {
254            insert = false;
255          }
256        }
257        if (insert) {
258          Node *zap = call_zap_node(n->as_MachSafePoint(), i);
259          b->insert_node(zap, j);
260          _cfg->map_node_to_block(zap, b);
261          ++j;
262        }
263      }
264    }
265  }
266}
267
268
269Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
270  const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
271  CallStaticJavaNode* ideal_node =
272    new (this) CallStaticJavaNode( tf,
273         OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
274                       "call zap dead locals stub", 0, TypePtr::BOTTOM);
275  // We need to copy the OopMap from the site we're zapping at.
276  // We have to make a copy, because the zap site might not be
277  // a call site, and zap_dead is a call site.
278  OopMap* clone = node_to_check->oop_map()->deep_copy();
279
280  // Add the cloned OopMap to the zap node
281  ideal_node->set_oop_map(clone);
282  return _matcher->match_sfpt(ideal_node);
283}
284
285bool Compile::is_node_getting_a_safepoint( Node* n) {
286  // This code duplicates the logic prior to the call of add_safepoint
287  // below in this file.
288  if( n->is_MachSafePoint() ) return true;
289  return false;
290}
291
292# endif // ENABLE_ZAP_DEAD_LOCALS
293
294// Compute the size of first NumberOfLoopInstrToAlign instructions at the top
295// of a loop. When aligning a loop we need to provide enough instructions
296// in cpu's fetch buffer to feed decoders. The loop alignment could be
297// avoided if we have enough instructions in fetch buffer at the head of a loop.
298// By default, the size is set to 999999 by Block's constructor so that
299// a loop will be aligned if the size is not reset here.
300//
301// Note: Mach instructions could contain several HW instructions
302// so the size is estimated only.
303//
304void Compile::compute_loop_first_inst_sizes() {
305  // The next condition is used to gate the loop alignment optimization.
306  // Don't aligned a loop if there are enough instructions at the head of a loop
307  // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
308  // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
309  // equal to 11 bytes which is the largest address NOP instruction.
310  if (MaxLoopPad < OptoLoopAlignment - 1) {
311    uint last_block = _cfg->number_of_blocks() - 1;
312    for (uint i = 1; i <= last_block; i++) {
313      Block* block = _cfg->get_block(i);
314      // Check the first loop's block which requires an alignment.
315      if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
316        uint sum_size = 0;
317        uint inst_cnt = NumberOfLoopInstrToAlign;
318        inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
319
320        // Check subsequent fallthrough blocks if the loop's first
321        // block(s) does not have enough instructions.
322        Block *nb = block;
323        while(inst_cnt > 0 &&
324              i < last_block &&
325              !_cfg->get_block(i + 1)->has_loop_alignment() &&
326              !nb->has_successor(block)) {
327          i++;
328          nb = _cfg->get_block(i);
329          inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
330        } // while( inst_cnt > 0 && i < last_block  )
331
332        block->set_first_inst_size(sum_size);
333      } // f( b->head()->is_Loop() )
334    } // for( i <= last_block )
335  } // if( MaxLoopPad < OptoLoopAlignment-1 )
336}
337
338// The architecture description provides short branch variants for some long
339// branch instructions. Replace eligible long branches with short branches.
340void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
341  // Compute size of each block, method size, and relocation information size
342  uint nblocks  = _cfg->number_of_blocks();
343
344  uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
345  uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
346  int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
347  DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
348  DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
349
350  bool has_short_branch_candidate = false;
351
352  // Initialize the sizes to 0
353  code_size  = 0;          // Size in bytes of generated code
354  stub_size  = 0;          // Size in bytes of all stub entries
355  // Size in bytes of all relocation entries, including those in local stubs.
356  // Start with 2-bytes of reloc info for the unvalidated entry point
357  reloc_size = 1;          // Number of relocation entries
358
359  // Make three passes.  The first computes pessimistic blk_starts,
360  // relative jmp_offset and reloc_size information.  The second performs
361  // short branch substitution using the pessimistic sizing.  The
362  // third inserts nops where needed.
363
364  // Step one, perform a pessimistic sizing pass.
365  uint last_call_adr = max_uint;
366  uint last_avoid_back_to_back_adr = max_uint;
367  uint nop_size = (new (this) MachNopNode())->size(_regalloc);
368  for (uint i = 0; i < nblocks; i++) { // For all blocks
369    Block* block = _cfg->get_block(i);
370
371    // During short branch replacement, we store the relative (to blk_starts)
372    // offset of jump in jmp_offset, rather than the absolute offset of jump.
373    // This is so that we do not need to recompute sizes of all nodes when
374    // we compute correct blk_starts in our next sizing pass.
375    jmp_offset[i] = 0;
376    jmp_size[i]   = 0;
377    jmp_nidx[i]   = -1;
378    DEBUG_ONLY( jmp_target[i] = 0; )
379    DEBUG_ONLY( jmp_rule[i]   = 0; )
380
381    // Sum all instruction sizes to compute block size
382    uint last_inst = block->number_of_nodes();
383    uint blk_size = 0;
384    for (uint j = 0; j < last_inst; j++) {
385      Node* nj = block->get_node(j);
386      // Handle machine instruction nodes
387      if (nj->is_Mach()) {
388        MachNode *mach = nj->as_Mach();
389        blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
390        reloc_size += mach->reloc();
391        if (mach->is_MachCall()) {
392          MachCallNode *mcall = mach->as_MachCall();
393          // This destination address is NOT PC-relative
394
395          mcall->method_set((intptr_t)mcall->entry_point());
396
397          if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
398            stub_size  += CompiledStaticCall::to_interp_stub_size();
399            reloc_size += CompiledStaticCall::reloc_to_interp_stub();
400          }
401        } else if (mach->is_MachSafePoint()) {
402          // If call/safepoint are adjacent, account for possible
403          // nop to disambiguate the two safepoints.
404          // ScheduleAndBundle() can rearrange nodes in a block,
405          // check for all offsets inside this block.
406          if (last_call_adr >= blk_starts[i]) {
407            blk_size += nop_size;
408          }
409        }
410        if (mach->avoid_back_to_back()) {
411          // Nop is inserted between "avoid back to back" instructions.
412          // ScheduleAndBundle() can rearrange nodes in a block,
413          // check for all offsets inside this block.
414          if (last_avoid_back_to_back_adr >= blk_starts[i]) {
415            blk_size += nop_size;
416          }
417        }
418        if (mach->may_be_short_branch()) {
419          if (!nj->is_MachBranch()) {
420#ifndef PRODUCT
421            nj->dump(3);
422#endif
423            Unimplemented();
424          }
425          assert(jmp_nidx[i] == -1, "block should have only one branch");
426          jmp_offset[i] = blk_size;
427          jmp_size[i]   = nj->size(_regalloc);
428          jmp_nidx[i]   = j;
429          has_short_branch_candidate = true;
430        }
431      }
432      blk_size += nj->size(_regalloc);
433      // Remember end of call offset
434      if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
435        last_call_adr = blk_starts[i]+blk_size;
436      }
437      // Remember end of avoid_back_to_back offset
438      if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back()) {
439        last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
440      }
441    }
442
443    // When the next block starts a loop, we may insert pad NOP
444    // instructions.  Since we cannot know our future alignment,
445    // assume the worst.
446    if (i < nblocks - 1) {
447      Block* nb = _cfg->get_block(i + 1);
448      int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
449      if (max_loop_pad > 0) {
450        assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
451        // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
452        // If either is the last instruction in this block, bump by
453        // max_loop_pad in lock-step with blk_size, so sizing
454        // calculations in subsequent blocks still can conservatively
455        // detect that it may the last instruction in this block.
456        if (last_call_adr == blk_starts[i]+blk_size) {
457          last_call_adr += max_loop_pad;
458        }
459        if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
460          last_avoid_back_to_back_adr += max_loop_pad;
461        }
462        blk_size += max_loop_pad;
463      }
464    }
465
466    // Save block size; update total method size
467    blk_starts[i+1] = blk_starts[i]+blk_size;
468  }
469
470  // Step two, replace eligible long jumps.
471  bool progress = true;
472  uint last_may_be_short_branch_adr = max_uint;
473  while (has_short_branch_candidate && progress) {
474    progress = false;
475    has_short_branch_candidate = false;
476    int adjust_block_start = 0;
477    for (uint i = 0; i < nblocks; i++) {
478      Block* block = _cfg->get_block(i);
479      int idx = jmp_nidx[i];
480      MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach();
481      if (mach != NULL && mach->may_be_short_branch()) {
482#ifdef ASSERT
483        assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
484        int j;
485        // Find the branch; ignore trailing NOPs.
486        for (j = block->number_of_nodes()-1; j>=0; j--) {
487          Node* n = block->get_node(j);
488          if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
489            break;
490        }
491        assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
492#endif
493        int br_size = jmp_size[i];
494        int br_offs = blk_starts[i] + jmp_offset[i];
495
496        // This requires the TRUE branch target be in succs[0]
497        uint bnum = block->non_connector_successor(0)->_pre_order;
498        int offset = blk_starts[bnum] - br_offs;
499        if (bnum > i) { // adjust following block's offset
500          offset -= adjust_block_start;
501        }
502        // In the following code a nop could be inserted before
503        // the branch which will increase the backward distance.
504        bool needs_padding = ((uint)br_offs == last_may_be_short_branch_adr);
505        if (needs_padding && offset <= 0)
506          offset -= nop_size;
507
508        if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
509          // We've got a winner.  Replace this branch.
510          MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
511
512          // Update the jmp_size.
513          int new_size = replacement->size(_regalloc);
514          int diff     = br_size - new_size;
515          assert(diff >= (int)nop_size, "short_branch size should be smaller");
516          // Conservatively take into accound padding between
517          // avoid_back_to_back branches. Previous branch could be
518          // converted into avoid_back_to_back branch during next
519          // rounds.
520          if (needs_padding && replacement->avoid_back_to_back()) {
521            jmp_offset[i] += nop_size;
522            diff -= nop_size;
523          }
524          adjust_block_start += diff;
525          block->map_node(replacement, idx);
526          mach->subsume_by(replacement, C);
527          mach = replacement;
528          progress = true;
529
530          jmp_size[i] = new_size;
531          DEBUG_ONLY( jmp_target[i] = bnum; );
532          DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
533        } else {
534          // The jump distance is not short, try again during next iteration.
535          has_short_branch_candidate = true;
536        }
537      } // (mach->may_be_short_branch())
538      if (mach != NULL && (mach->may_be_short_branch() ||
539                           mach->avoid_back_to_back())) {
540        last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
541      }
542      blk_starts[i+1] -= adjust_block_start;
543    }
544  }
545
546#ifdef ASSERT
547  for (uint i = 0; i < nblocks; i++) { // For all blocks
548    if (jmp_target[i] != 0) {
549      int br_size = jmp_size[i];
550      int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
551      if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
552        tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
553      }
554      assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
555    }
556  }
557#endif
558
559  // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
560  // after ScheduleAndBundle().
561
562  // ------------------
563  // Compute size for code buffer
564  code_size = blk_starts[nblocks];
565
566  // Relocation records
567  reloc_size += 1;              // Relo entry for exception handler
568
569  // Adjust reloc_size to number of record of relocation info
570  // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
571  // a relocation index.
572  // The CodeBuffer will expand the locs array if this estimate is too low.
573  reloc_size *= 10 / sizeof(relocInfo);
574}
575
576//------------------------------FillLocArray-----------------------------------
577// Create a bit of debug info and append it to the array.  The mapping is from
578// Java local or expression stack to constant, register or stack-slot.  For
579// doubles, insert 2 mappings and return 1 (to tell the caller that the next
580// entry has been taken care of and caller should skip it).
581static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
582  // This should never have accepted Bad before
583  assert(OptoReg::is_valid(regnum), "location must be valid");
584  return (OptoReg::is_reg(regnum))
585    ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
586    : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
587}
588
589
590ObjectValue*
591Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
592  for (int i = 0; i < objs->length(); i++) {
593    assert(objs->at(i)->is_object(), "corrupt object cache");
594    ObjectValue* sv = (ObjectValue*) objs->at(i);
595    if (sv->id() == id) {
596      return sv;
597    }
598  }
599  // Otherwise..
600  return NULL;
601}
602
603void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
604                                     ObjectValue* sv ) {
605  assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
606  objs->append(sv);
607}
608
609
610void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
611                            GrowableArray<ScopeValue*> *array,
612                            GrowableArray<ScopeValue*> *objs ) {
613  assert( local, "use _top instead of null" );
614  if (array->length() != idx) {
615    assert(array->length() == idx + 1, "Unexpected array count");
616    // Old functionality:
617    //   return
618    // New functionality:
619    //   Assert if the local is not top. In product mode let the new node
620    //   override the old entry.
621    assert(local == top(), "LocArray collision");
622    if (local == top()) {
623      return;
624    }
625    array->pop();
626  }
627  const Type *t = local->bottom_type();
628
629  // Is it a safepoint scalar object node?
630  if (local->is_SafePointScalarObject()) {
631    SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
632
633    ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
634    if (sv == NULL) {
635      ciKlass* cik = t->is_oopptr()->klass();
636      assert(cik->is_instance_klass() ||
637             cik->is_array_klass(), "Not supported allocation.");
638      sv = new ObjectValue(spobj->_idx,
639                           new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
640      Compile::set_sv_for_object_node(objs, sv);
641
642      uint first_ind = spobj->first_index(sfpt->jvms());
643      for (uint i = 0; i < spobj->n_fields(); i++) {
644        Node* fld_node = sfpt->in(first_ind+i);
645        (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
646      }
647    }
648    array->append(sv);
649    return;
650  }
651
652  // Grab the register number for the local
653  OptoReg::Name regnum = _regalloc->get_reg_first(local);
654  if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
655    // Record the double as two float registers.
656    // The register mask for such a value always specifies two adjacent
657    // float registers, with the lower register number even.
658    // Normally, the allocation of high and low words to these registers
659    // is irrelevant, because nearly all operations on register pairs
660    // (e.g., StoreD) treat them as a single unit.
661    // Here, we assume in addition that the words in these two registers
662    // stored "naturally" (by operations like StoreD and double stores
663    // within the interpreter) such that the lower-numbered register
664    // is written to the lower memory address.  This may seem like
665    // a machine dependency, but it is not--it is a requirement on
666    // the author of the <arch>.ad file to ensure that, for every
667    // even/odd double-register pair to which a double may be allocated,
668    // the word in the even single-register is stored to the first
669    // memory word.  (Note that register numbers are completely
670    // arbitrary, and are not tied to any machine-level encodings.)
671#ifdef _LP64
672    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
673      array->append(new ConstantIntValue(0));
674      array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
675    } else if ( t->base() == Type::Long ) {
676      array->append(new ConstantIntValue(0));
677      array->append(new_loc_value( _regalloc, regnum, Location::lng ));
678    } else if ( t->base() == Type::RawPtr ) {
679      // jsr/ret return address which must be restored into a the full
680      // width 64-bit stack slot.
681      array->append(new_loc_value( _regalloc, regnum, Location::lng ));
682    }
683#else //_LP64
684#ifdef SPARC
685    if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
686      // For SPARC we have to swap high and low words for
687      // long values stored in a single-register (g0-g7).
688      array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
689      array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
690    } else
691#endif //SPARC
692    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
693      // Repack the double/long as two jints.
694      // The convention the interpreter uses is that the second local
695      // holds the first raw word of the native double representation.
696      // This is actually reasonable, since locals and stack arrays
697      // grow downwards in all implementations.
698      // (If, on some machine, the interpreter's Java locals or stack
699      // were to grow upwards, the embedded doubles would be word-swapped.)
700      array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
701      array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
702    }
703#endif //_LP64
704    else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
705               OptoReg::is_reg(regnum) ) {
706      array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
707                                   ? Location::float_in_dbl : Location::normal ));
708    } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
709      array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
710                                   ? Location::int_in_long : Location::normal ));
711    } else if( t->base() == Type::NarrowOop ) {
712      array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
713    } else {
714      array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
715    }
716    return;
717  }
718
719  // No register.  It must be constant data.
720  switch (t->base()) {
721  case Type::Half:              // Second half of a double
722    ShouldNotReachHere();       // Caller should skip 2nd halves
723    break;
724  case Type::AnyPtr:
725    array->append(new ConstantOopWriteValue(NULL));
726    break;
727  case Type::AryPtr:
728  case Type::InstPtr:          // fall through
729    array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
730    break;
731  case Type::NarrowOop:
732    if (t == TypeNarrowOop::NULL_PTR) {
733      array->append(new ConstantOopWriteValue(NULL));
734    } else {
735      array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
736    }
737    break;
738  case Type::Int:
739    array->append(new ConstantIntValue(t->is_int()->get_con()));
740    break;
741  case Type::RawPtr:
742    // A return address (T_ADDRESS).
743    assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
744#ifdef _LP64
745    // Must be restored to the full-width 64-bit stack slot.
746    array->append(new ConstantLongValue(t->is_ptr()->get_con()));
747#else
748    array->append(new ConstantIntValue(t->is_ptr()->get_con()));
749#endif
750    break;
751  case Type::FloatCon: {
752    float f = t->is_float_constant()->getf();
753    array->append(new ConstantIntValue(jint_cast(f)));
754    break;
755  }
756  case Type::DoubleCon: {
757    jdouble d = t->is_double_constant()->getd();
758#ifdef _LP64
759    array->append(new ConstantIntValue(0));
760    array->append(new ConstantDoubleValue(d));
761#else
762    // Repack the double as two jints.
763    // The convention the interpreter uses is that the second local
764    // holds the first raw word of the native double representation.
765    // This is actually reasonable, since locals and stack arrays
766    // grow downwards in all implementations.
767    // (If, on some machine, the interpreter's Java locals or stack
768    // were to grow upwards, the embedded doubles would be word-swapped.)
769    jint   *dp = (jint*)&d;
770    array->append(new ConstantIntValue(dp[1]));
771    array->append(new ConstantIntValue(dp[0]));
772#endif
773    break;
774  }
775  case Type::Long: {
776    jlong d = t->is_long()->get_con();
777#ifdef _LP64
778    array->append(new ConstantIntValue(0));
779    array->append(new ConstantLongValue(d));
780#else
781    // Repack the long as two jints.
782    // The convention the interpreter uses is that the second local
783    // holds the first raw word of the native double representation.
784    // This is actually reasonable, since locals and stack arrays
785    // grow downwards in all implementations.
786    // (If, on some machine, the interpreter's Java locals or stack
787    // were to grow upwards, the embedded doubles would be word-swapped.)
788    jint *dp = (jint*)&d;
789    array->append(new ConstantIntValue(dp[1]));
790    array->append(new ConstantIntValue(dp[0]));
791#endif
792    break;
793  }
794  case Type::Top:               // Add an illegal value here
795    array->append(new LocationValue(Location()));
796    break;
797  default:
798    ShouldNotReachHere();
799    break;
800  }
801}
802
803// Determine if this node starts a bundle
804bool Compile::starts_bundle(const Node *n) const {
805  return (_node_bundling_limit > n->_idx &&
806          _node_bundling_base[n->_idx].starts_bundle());
807}
808
809//--------------------------Process_OopMap_Node--------------------------------
810void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
811
812  // Handle special safepoint nodes for synchronization
813  MachSafePointNode *sfn   = mach->as_MachSafePoint();
814  MachCallNode      *mcall;
815
816#ifdef ENABLE_ZAP_DEAD_LOCALS
817  assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
818#endif
819
820  int safepoint_pc_offset = current_offset;
821  bool is_method_handle_invoke = false;
822  bool return_oop = false;
823
824  // Add the safepoint in the DebugInfoRecorder
825  if( !mach->is_MachCall() ) {
826    mcall = NULL;
827    debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
828  } else {
829    mcall = mach->as_MachCall();
830
831    // Is the call a MethodHandle call?
832    if (mcall->is_MachCallJava()) {
833      if (mcall->as_MachCallJava()->_method_handle_invoke) {
834        assert(has_method_handle_invokes(), "must have been set during call generation");
835        is_method_handle_invoke = true;
836      }
837    }
838
839    // Check if a call returns an object.
840    if (mcall->return_value_is_used() &&
841        mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
842      return_oop = true;
843    }
844    safepoint_pc_offset += mcall->ret_addr_offset();
845    debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
846  }
847
848  // Loop over the JVMState list to add scope information
849  // Do not skip safepoints with a NULL method, they need monitor info
850  JVMState* youngest_jvms = sfn->jvms();
851  int max_depth = youngest_jvms->depth();
852
853  // Allocate the object pool for scalar-replaced objects -- the map from
854  // small-integer keys (which can be recorded in the local and ostack
855  // arrays) to descriptions of the object state.
856  GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
857
858  // Visit scopes from oldest to youngest.
859  for (int depth = 1; depth <= max_depth; depth++) {
860    JVMState* jvms = youngest_jvms->of_depth(depth);
861    int idx;
862    ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
863    // Safepoints that do not have method() set only provide oop-map and monitor info
864    // to support GC; these do not support deoptimization.
865    int num_locs = (method == NULL) ? 0 : jvms->loc_size();
866    int num_exps = (method == NULL) ? 0 : jvms->stk_size();
867    int num_mon  = jvms->nof_monitors();
868    assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
869           "JVMS local count must match that of the method");
870
871    // Add Local and Expression Stack Information
872
873    // Insert locals into the locarray
874    GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
875    for( idx = 0; idx < num_locs; idx++ ) {
876      FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
877    }
878
879    // Insert expression stack entries into the exparray
880    GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
881    for( idx = 0; idx < num_exps; idx++ ) {
882      FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
883    }
884
885    // Add in mappings of the monitors
886    assert( !method ||
887            !method->is_synchronized() ||
888            method->is_native() ||
889            num_mon > 0 ||
890            !GenerateSynchronizationCode,
891            "monitors must always exist for synchronized methods");
892
893    // Build the growable array of ScopeValues for exp stack
894    GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
895
896    // Loop over monitors and insert into array
897    for (idx = 0; idx < num_mon; idx++) {
898      // Grab the node that defines this monitor
899      Node* box_node = sfn->monitor_box(jvms, idx);
900      Node* obj_node = sfn->monitor_obj(jvms, idx);
901
902      // Create ScopeValue for object
903      ScopeValue *scval = NULL;
904
905      if (obj_node->is_SafePointScalarObject()) {
906        SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
907        scval = Compile::sv_for_node_id(objs, spobj->_idx);
908        if (scval == NULL) {
909          const Type *t = spobj->bottom_type();
910          ciKlass* cik = t->is_oopptr()->klass();
911          assert(cik->is_instance_klass() ||
912                 cik->is_array_klass(), "Not supported allocation.");
913          ObjectValue* sv = new ObjectValue(spobj->_idx,
914                                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
915          Compile::set_sv_for_object_node(objs, sv);
916
917          uint first_ind = spobj->first_index(youngest_jvms);
918          for (uint i = 0; i < spobj->n_fields(); i++) {
919            Node* fld_node = sfn->in(first_ind+i);
920            (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
921          }
922          scval = sv;
923        }
924      } else if (!obj_node->is_Con()) {
925        OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
926        if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
927          scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
928        } else {
929          scval = new_loc_value( _regalloc, obj_reg, Location::oop );
930        }
931      } else {
932        const TypePtr *tp = obj_node->get_ptr_type();
933        scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
934      }
935
936      OptoReg::Name box_reg = BoxLockNode::reg(box_node);
937      Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
938      bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
939      monarray->append(new MonitorValue(scval, basic_lock, eliminated));
940    }
941
942    // We dump the object pool first, since deoptimization reads it in first.
943    debug_info()->dump_object_pool(objs);
944
945    // Build first class objects to pass to scope
946    DebugToken *locvals = debug_info()->create_scope_values(locarray);
947    DebugToken *expvals = debug_info()->create_scope_values(exparray);
948    DebugToken *monvals = debug_info()->create_monitor_values(monarray);
949
950    // Make method available for all Safepoints
951    ciMethod* scope_method = method ? method : _method;
952    // Describe the scope here
953    assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
954    assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
955    // Now we can describe the scope.
956    debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
957  } // End jvms loop
958
959  // Mark the end of the scope set.
960  debug_info()->end_safepoint(safepoint_pc_offset);
961}
962
963
964
965// A simplified version of Process_OopMap_Node, to handle non-safepoints.
966class NonSafepointEmitter {
967  Compile*  C;
968  JVMState* _pending_jvms;
969  int       _pending_offset;
970
971  void emit_non_safepoint();
972
973 public:
974  NonSafepointEmitter(Compile* compile) {
975    this->C = compile;
976    _pending_jvms = NULL;
977    _pending_offset = 0;
978  }
979
980  void observe_instruction(Node* n, int pc_offset) {
981    if (!C->debug_info()->recording_non_safepoints())  return;
982
983    Node_Notes* nn = C->node_notes_at(n->_idx);
984    if (nn == NULL || nn->jvms() == NULL)  return;
985    if (_pending_jvms != NULL &&
986        _pending_jvms->same_calls_as(nn->jvms())) {
987      // Repeated JVMS?  Stretch it up here.
988      _pending_offset = pc_offset;
989    } else {
990      if (_pending_jvms != NULL &&
991          _pending_offset < pc_offset) {
992        emit_non_safepoint();
993      }
994      _pending_jvms = NULL;
995      if (pc_offset > C->debug_info()->last_pc_offset()) {
996        // This is the only way _pending_jvms can become non-NULL:
997        _pending_jvms = nn->jvms();
998        _pending_offset = pc_offset;
999      }
1000    }
1001  }
1002
1003  // Stay out of the way of real safepoints:
1004  void observe_safepoint(JVMState* jvms, int pc_offset) {
1005    if (_pending_jvms != NULL &&
1006        !_pending_jvms->same_calls_as(jvms) &&
1007        _pending_offset < pc_offset) {
1008      emit_non_safepoint();
1009    }
1010    _pending_jvms = NULL;
1011  }
1012
1013  void flush_at_end() {
1014    if (_pending_jvms != NULL) {
1015      emit_non_safepoint();
1016    }
1017    _pending_jvms = NULL;
1018  }
1019};
1020
1021void NonSafepointEmitter::emit_non_safepoint() {
1022  JVMState* youngest_jvms = _pending_jvms;
1023  int       pc_offset     = _pending_offset;
1024
1025  // Clear it now:
1026  _pending_jvms = NULL;
1027
1028  DebugInformationRecorder* debug_info = C->debug_info();
1029  assert(debug_info->recording_non_safepoints(), "sanity");
1030
1031  debug_info->add_non_safepoint(pc_offset);
1032  int max_depth = youngest_jvms->depth();
1033
1034  // Visit scopes from oldest to youngest.
1035  for (int depth = 1; depth <= max_depth; depth++) {
1036    JVMState* jvms = youngest_jvms->of_depth(depth);
1037    ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1038    assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1039    debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
1040  }
1041
1042  // Mark the end of the scope set.
1043  debug_info->end_non_safepoint(pc_offset);
1044}
1045
1046//------------------------------init_buffer------------------------------------
1047CodeBuffer* Compile::init_buffer(uint* blk_starts) {
1048
1049  // Set the initially allocated size
1050  int  code_req   = initial_code_capacity;
1051  int  locs_req   = initial_locs_capacity;
1052  int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
1053  int  const_req  = initial_const_capacity;
1054
1055  int  pad_req    = NativeCall::instruction_size;
1056  // The extra spacing after the code is necessary on some platforms.
1057  // Sometimes we need to patch in a jump after the last instruction,
1058  // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1059
1060  // Compute the byte offset where we can store the deopt pc.
1061  if (fixed_slots() != 0) {
1062    _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1063  }
1064
1065  // Compute prolog code size
1066  _method_size = 0;
1067  _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
1068#if defined(IA64) && !defined(AIX)
1069  if (save_argument_registers()) {
1070    // 4815101: this is a stub with implicit and unknown precision fp args.
1071    // The usual spill mechanism can only generate stfd's in this case, which
1072    // doesn't work if the fp reg to spill contains a single-precision denorm.
1073    // Instead, we hack around the normal spill mechanism using stfspill's and
1074    // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1075    // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1076    //
1077    // If we ever implement 16-byte 'registers' == stack slots, we can
1078    // get rid of this hack and have SpillCopy generate stfspill/ldffill
1079    // instead of stfd/stfs/ldfd/ldfs.
1080    _frame_slots += 8*(16/BytesPerInt);
1081  }
1082#endif
1083  assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1084
1085  if (has_mach_constant_base_node()) {
1086    uint add_size = 0;
1087    // Fill the constant table.
1088    // Note:  This must happen before shorten_branches.
1089    for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
1090      Block* b = _cfg->get_block(i);
1091
1092      for (uint j = 0; j < b->number_of_nodes(); j++) {
1093        Node* n = b->get_node(j);
1094
1095        // If the node is a MachConstantNode evaluate the constant
1096        // value section.
1097        if (n->is_MachConstant()) {
1098          MachConstantNode* machcon = n->as_MachConstant();
1099          machcon->eval_constant(C);
1100        } else if (n->is_Mach()) {
1101          // On Power there are more nodes that issue constants.
1102          add_size += (n->as_Mach()->ins_num_consts() * 8);
1103        }
1104      }
1105    }
1106
1107    // Calculate the offsets of the constants and the size of the
1108    // constant table (including the padding to the next section).
1109    constant_table().calculate_offsets_and_size();
1110    const_req = constant_table().size() + add_size;
1111  }
1112
1113  // Initialize the space for the BufferBlob used to find and verify
1114  // instruction size in MachNode::emit_size()
1115  init_scratch_buffer_blob(const_req);
1116  if (failing())  return NULL; // Out of memory
1117
1118  // Pre-compute the length of blocks and replace
1119  // long branches with short if machine supports it.
1120  shorten_branches(blk_starts, code_req, locs_req, stub_req);
1121
1122  // nmethod and CodeBuffer count stubs & constants as part of method's code.
1123  int exception_handler_req = size_exception_handler();
1124  int deopt_handler_req = size_deopt_handler();
1125  exception_handler_req += MAX_stubs_size; // add marginal slop for handler
1126  deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
1127  stub_req += MAX_stubs_size;   // ensure per-stub margin
1128  code_req += MAX_inst_size;    // ensure per-instruction margin
1129
1130  if (StressCodeBuffers)
1131    code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1132
1133  int total_req =
1134    const_req +
1135    code_req +
1136    pad_req +
1137    stub_req +
1138    exception_handler_req +
1139    deopt_handler_req;               // deopt handler
1140
1141  if (has_method_handle_invokes())
1142    total_req += deopt_handler_req;  // deopt MH handler
1143
1144  CodeBuffer* cb = code_buffer();
1145  cb->initialize(total_req, locs_req);
1146
1147  // Have we run out of code space?
1148  if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1149    C->record_failure("CodeCache is full");
1150    return NULL;
1151  }
1152  // Configure the code buffer.
1153  cb->initialize_consts_size(const_req);
1154  cb->initialize_stubs_size(stub_req);
1155  cb->initialize_oop_recorder(env()->oop_recorder());
1156
1157  // fill in the nop array for bundling computations
1158  MachNode *_nop_list[Bundle::_nop_count];
1159  Bundle::initialize_nops(_nop_list, this);
1160
1161  return cb;
1162}
1163
1164//------------------------------fill_buffer------------------------------------
1165void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1166  // blk_starts[] contains offsets calculated during short branches processing,
1167  // offsets should not be increased during following steps.
1168
1169  // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1170  // of a loop. It is used to determine the padding for loop alignment.
1171  compute_loop_first_inst_sizes();
1172
1173  // Create oopmap set.
1174  _oop_map_set = new OopMapSet();
1175
1176  // !!!!! This preserves old handling of oopmaps for now
1177  debug_info()->set_oopmaps(_oop_map_set);
1178
1179  uint nblocks  = _cfg->number_of_blocks();
1180  // Count and start of implicit null check instructions
1181  uint inct_cnt = 0;
1182  uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1183
1184  // Count and start of calls
1185  uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1186
1187  uint  return_offset = 0;
1188  int nop_size = (new (this) MachNopNode())->size(_regalloc);
1189
1190  int previous_offset = 0;
1191  int current_offset  = 0;
1192  int last_call_offset = -1;
1193  int last_avoid_back_to_back_offset = -1;
1194#ifdef ASSERT
1195  uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1196  uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1197  uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1198  uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1199#endif
1200
1201  // Create an array of unused labels, one for each basic block, if printing is enabled
1202#ifndef PRODUCT
1203  int *node_offsets      = NULL;
1204  uint node_offset_limit = unique();
1205
1206  if (print_assembly())
1207    node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1208#endif
1209
1210  NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1211
1212  // Emit the constant table.
1213  if (has_mach_constant_base_node()) {
1214    constant_table().emit(*cb);
1215  }
1216
1217  // Create an array of labels, one for each basic block
1218  Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1219  for (uint i=0; i <= nblocks; i++) {
1220    blk_labels[i].init();
1221  }
1222
1223  // ------------------
1224  // Now fill in the code buffer
1225  Node *delay_slot = NULL;
1226
1227  for (uint i = 0; i < nblocks; i++) {
1228    Block* block = _cfg->get_block(i);
1229    Node* head = block->head();
1230
1231    // If this block needs to start aligned (i.e, can be reached other
1232    // than by falling-thru from the previous block), then force the
1233    // start of a new bundle.
1234    if (Pipeline::requires_bundling() && starts_bundle(head)) {
1235      cb->flush_bundle(true);
1236    }
1237
1238#ifdef ASSERT
1239    if (!block->is_connector()) {
1240      stringStream st;
1241      block->dump_head(_cfg, &st);
1242      MacroAssembler(cb).block_comment(st.as_string());
1243    }
1244    jmp_target[i] = 0;
1245    jmp_offset[i] = 0;
1246    jmp_size[i]   = 0;
1247    jmp_rule[i]   = 0;
1248#endif
1249    int blk_offset = current_offset;
1250
1251    // Define the label at the beginning of the basic block
1252    MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
1253
1254    uint last_inst = block->number_of_nodes();
1255
1256    // Emit block normally, except for last instruction.
1257    // Emit means "dump code bits into code buffer".
1258    for (uint j = 0; j<last_inst; j++) {
1259
1260      // Get the node
1261      Node* n = block->get_node(j);
1262
1263      // See if delay slots are supported
1264      if (valid_bundle_info(n) &&
1265          node_bundling(n)->used_in_unconditional_delay()) {
1266        assert(delay_slot == NULL, "no use of delay slot node");
1267        assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1268
1269        delay_slot = n;
1270        continue;
1271      }
1272
1273      // If this starts a new instruction group, then flush the current one
1274      // (but allow split bundles)
1275      if (Pipeline::requires_bundling() && starts_bundle(n))
1276        cb->flush_bundle(false);
1277
1278      // The following logic is duplicated in the code ifdeffed for
1279      // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1280      // should be factored out.  Or maybe dispersed to the nodes?
1281
1282      // Special handling for SafePoint/Call Nodes
1283      bool is_mcall = false;
1284      if (n->is_Mach()) {
1285        MachNode *mach = n->as_Mach();
1286        is_mcall = n->is_MachCall();
1287        bool is_sfn = n->is_MachSafePoint();
1288
1289        // If this requires all previous instructions be flushed, then do so
1290        if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1291          cb->flush_bundle(true);
1292          current_offset = cb->insts_size();
1293        }
1294
1295        // A padding may be needed again since a previous instruction
1296        // could be moved to delay slot.
1297
1298        // align the instruction if necessary
1299        int padding = mach->compute_padding(current_offset);
1300        // Make sure safepoint node for polling is distinct from a call's
1301        // return by adding a nop if needed.
1302        if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1303          padding = nop_size;
1304        }
1305        if (padding == 0 && mach->avoid_back_to_back() &&
1306            current_offset == last_avoid_back_to_back_offset) {
1307          // Avoid back to back some instructions.
1308          padding = nop_size;
1309        }
1310
1311        if(padding > 0) {
1312          assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1313          int nops_cnt = padding / nop_size;
1314          MachNode *nop = new (this) MachNopNode(nops_cnt);
1315          block->insert_node(nop, j++);
1316          last_inst++;
1317          _cfg->map_node_to_block(nop, block);
1318          nop->emit(*cb, _regalloc);
1319          cb->flush_bundle(true);
1320          current_offset = cb->insts_size();
1321        }
1322
1323        // Remember the start of the last call in a basic block
1324        if (is_mcall) {
1325          MachCallNode *mcall = mach->as_MachCall();
1326
1327          // This destination address is NOT PC-relative
1328          mcall->method_set((intptr_t)mcall->entry_point());
1329
1330          // Save the return address
1331          call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
1332
1333          if (mcall->is_MachCallLeaf()) {
1334            is_mcall = false;
1335            is_sfn = false;
1336          }
1337        }
1338
1339        // sfn will be valid whenever mcall is valid now because of inheritance
1340        if (is_sfn || is_mcall) {
1341
1342          // Handle special safepoint nodes for synchronization
1343          if (!is_mcall) {
1344            MachSafePointNode *sfn = mach->as_MachSafePoint();
1345            // !!!!! Stubs only need an oopmap right now, so bail out
1346            if (sfn->jvms()->method() == NULL) {
1347              // Write the oopmap directly to the code blob??!!
1348#             ifdef ENABLE_ZAP_DEAD_LOCALS
1349              assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1350#             endif
1351              continue;
1352            }
1353          } // End synchronization
1354
1355          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1356                                           current_offset);
1357          Process_OopMap_Node(mach, current_offset);
1358        } // End if safepoint
1359
1360        // If this is a null check, then add the start of the previous instruction to the list
1361        else if( mach->is_MachNullCheck() ) {
1362          inct_starts[inct_cnt++] = previous_offset;
1363        }
1364
1365        // If this is a branch, then fill in the label with the target BB's label
1366        else if (mach->is_MachBranch()) {
1367          // This requires the TRUE branch target be in succs[0]
1368          uint block_num = block->non_connector_successor(0)->_pre_order;
1369
1370          // Try to replace long branch if delay slot is not used,
1371          // it is mostly for back branches since forward branch's
1372          // distance is not updated yet.
1373          bool delay_slot_is_used = valid_bundle_info(n) &&
1374                                    node_bundling(n)->use_unconditional_delay();
1375          if (!delay_slot_is_used && mach->may_be_short_branch()) {
1376           assert(delay_slot == NULL, "not expecting delay slot node");
1377           int br_size = n->size(_regalloc);
1378            int offset = blk_starts[block_num] - current_offset;
1379            if (block_num >= i) {
1380              // Current and following block's offset are not
1381              // finalized yet, adjust distance by the difference
1382              // between calculated and final offsets of current block.
1383              offset -= (blk_starts[i] - blk_offset);
1384            }
1385            // In the following code a nop could be inserted before
1386            // the branch which will increase the backward distance.
1387            bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1388            if (needs_padding && offset <= 0)
1389              offset -= nop_size;
1390
1391            if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
1392              // We've got a winner.  Replace this branch.
1393              MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
1394
1395              // Update the jmp_size.
1396              int new_size = replacement->size(_regalloc);
1397              assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1398              // Insert padding between avoid_back_to_back branches.
1399              if (needs_padding && replacement->avoid_back_to_back()) {
1400                MachNode *nop = new (this) MachNopNode();
1401                block->insert_node(nop, j++);
1402                _cfg->map_node_to_block(nop, block);
1403                last_inst++;
1404                nop->emit(*cb, _regalloc);
1405                cb->flush_bundle(true);
1406                current_offset = cb->insts_size();
1407              }
1408#ifdef ASSERT
1409              jmp_target[i] = block_num;
1410              jmp_offset[i] = current_offset - blk_offset;
1411              jmp_size[i]   = new_size;
1412              jmp_rule[i]   = mach->rule();
1413#endif
1414              block->map_node(replacement, j);
1415              mach->subsume_by(replacement, C);
1416              n    = replacement;
1417              mach = replacement;
1418            }
1419          }
1420          mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1421        } else if (mach->ideal_Opcode() == Op_Jump) {
1422          for (uint h = 0; h < block->_num_succs; h++) {
1423            Block* succs_block = block->_succs[h];
1424            for (uint j = 1; j < succs_block->num_preds(); j++) {
1425              Node* jpn = succs_block->pred(j);
1426              if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1427                uint block_num = succs_block->non_connector()->_pre_order;
1428                Label *blkLabel = &blk_labels[block_num];
1429                mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1430              }
1431            }
1432          }
1433        }
1434#ifdef ASSERT
1435        // Check that oop-store precedes the card-mark
1436        else if (mach->ideal_Opcode() == Op_StoreCM) {
1437          uint storeCM_idx = j;
1438          int count = 0;
1439          for (uint prec = mach->req(); prec < mach->len(); prec++) {
1440            Node *oop_store = mach->in(prec);  // Precedence edge
1441            if (oop_store == NULL) continue;
1442            count++;
1443            uint i4;
1444            for (i4 = 0; i4 < last_inst; ++i4) {
1445              if (block->get_node(i4) == oop_store) {
1446                break;
1447              }
1448            }
1449            // Note: This test can provide a false failure if other precedence
1450            // edges have been added to the storeCMNode.
1451            assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1452          }
1453          assert(count > 0, "storeCM expects at least one precedence edge");
1454        }
1455#endif
1456        else if (!n->is_Proj()) {
1457          // Remember the beginning of the previous instruction, in case
1458          // it's followed by a flag-kill and a null-check.  Happens on
1459          // Intel all the time, with add-to-memory kind of opcodes.
1460          previous_offset = current_offset;
1461        }
1462
1463        // Not an else-if!
1464        // If this is a trap based cmp then add its offset to the list.
1465        if (mach->is_TrapBasedCheckNode()) {
1466          inct_starts[inct_cnt++] = current_offset;
1467        }
1468      }
1469
1470      // Verify that there is sufficient space remaining
1471      cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1472      if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1473        C->record_failure("CodeCache is full");
1474        return;
1475      }
1476
1477      // Save the offset for the listing
1478#ifndef PRODUCT
1479      if (node_offsets && n->_idx < node_offset_limit)
1480        node_offsets[n->_idx] = cb->insts_size();
1481#endif
1482
1483      // "Normal" instruction case
1484      DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
1485      n->emit(*cb, _regalloc);
1486      current_offset  = cb->insts_size();
1487
1488#ifdef ASSERT
1489      if (n->size(_regalloc) < (current_offset-instr_offset)) {
1490        n->dump();
1491        assert(false, "wrong size of mach node");
1492      }
1493#endif
1494      non_safepoints.observe_instruction(n, current_offset);
1495
1496      // mcall is last "call" that can be a safepoint
1497      // record it so we can see if a poll will directly follow it
1498      // in which case we'll need a pad to make the PcDesc sites unique
1499      // see  5010568. This can be slightly inaccurate but conservative
1500      // in the case that return address is not actually at current_offset.
1501      // This is a small price to pay.
1502
1503      if (is_mcall) {
1504        last_call_offset = current_offset;
1505      }
1506
1507      if (n->is_Mach() && n->as_Mach()->avoid_back_to_back()) {
1508        // Avoid back to back some instructions.
1509        last_avoid_back_to_back_offset = current_offset;
1510      }
1511
1512      // See if this instruction has a delay slot
1513      if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1514        assert(delay_slot != NULL, "expecting delay slot node");
1515
1516        // Back up 1 instruction
1517        cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1518
1519        // Save the offset for the listing
1520#ifndef PRODUCT
1521        if (node_offsets && delay_slot->_idx < node_offset_limit)
1522          node_offsets[delay_slot->_idx] = cb->insts_size();
1523#endif
1524
1525        // Support a SafePoint in the delay slot
1526        if (delay_slot->is_MachSafePoint()) {
1527          MachNode *mach = delay_slot->as_Mach();
1528          // !!!!! Stubs only need an oopmap right now, so bail out
1529          if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
1530            // Write the oopmap directly to the code blob??!!
1531#           ifdef ENABLE_ZAP_DEAD_LOCALS
1532            assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1533#           endif
1534            delay_slot = NULL;
1535            continue;
1536          }
1537
1538          int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1539          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1540                                           adjusted_offset);
1541          // Generate an OopMap entry
1542          Process_OopMap_Node(mach, adjusted_offset);
1543        }
1544
1545        // Insert the delay slot instruction
1546        delay_slot->emit(*cb, _regalloc);
1547
1548        // Don't reuse it
1549        delay_slot = NULL;
1550      }
1551
1552    } // End for all instructions in block
1553
1554    // If the next block is the top of a loop, pad this block out to align
1555    // the loop top a little. Helps prevent pipe stalls at loop back branches.
1556    if (i < nblocks-1) {
1557      Block *nb = _cfg->get_block(i + 1);
1558      int padding = nb->alignment_padding(current_offset);
1559      if( padding > 0 ) {
1560        MachNode *nop = new (this) MachNopNode(padding / nop_size);
1561        block->insert_node(nop, block->number_of_nodes());
1562        _cfg->map_node_to_block(nop, block);
1563        nop->emit(*cb, _regalloc);
1564        current_offset = cb->insts_size();
1565      }
1566    }
1567    // Verify that the distance for generated before forward
1568    // short branches is still valid.
1569    guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1570
1571    // Save new block start offset
1572    blk_starts[i] = blk_offset;
1573  } // End of for all blocks
1574  blk_starts[nblocks] = current_offset;
1575
1576  non_safepoints.flush_at_end();
1577
1578  // Offset too large?
1579  if (failing())  return;
1580
1581  // Define a pseudo-label at the end of the code
1582  MacroAssembler(cb).bind( blk_labels[nblocks] );
1583
1584  // Compute the size of the first block
1585  _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1586
1587  assert(cb->insts_size() < 500000, "method is unreasonably large");
1588
1589#ifdef ASSERT
1590  for (uint i = 0; i < nblocks; i++) { // For all blocks
1591    if (jmp_target[i] != 0) {
1592      int br_size = jmp_size[i];
1593      int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1594      if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1595        tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1596        assert(false, "Displacement too large for short jmp");
1597      }
1598    }
1599  }
1600#endif
1601
1602#ifndef PRODUCT
1603  // Information on the size of the method, without the extraneous code
1604  Scheduling::increment_method_size(cb->insts_size());
1605#endif
1606
1607  // ------------------
1608  // Fill in exception table entries.
1609  FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1610
1611  // Only java methods have exception handlers and deopt handlers
1612  if (_method) {
1613    // Emit the exception handler code.
1614    _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
1615    // Emit the deopt handler code.
1616    _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
1617
1618    // Emit the MethodHandle deopt handler code (if required).
1619    if (has_method_handle_invokes()) {
1620      // We can use the same code as for the normal deopt handler, we
1621      // just need a different entry point address.
1622      _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
1623    }
1624  }
1625
1626  // One last check for failed CodeBuffer::expand:
1627  if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1628    C->record_failure("CodeCache is full");
1629    return;
1630  }
1631
1632#ifndef PRODUCT
1633  // Dump the assembly code, including basic-block numbers
1634  if (print_assembly()) {
1635    ttyLocker ttyl;  // keep the following output all in one block
1636    if (!VMThread::should_terminate()) {  // test this under the tty lock
1637      // This output goes directly to the tty, not the compiler log.
1638      // To enable tools to match it up with the compilation activity,
1639      // be sure to tag this tty output with the compile ID.
1640      if (xtty != NULL) {
1641        xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1642                   is_osr_compilation()    ? " compile_kind='osr'" :
1643                   "");
1644      }
1645      if (method() != NULL) {
1646        method()->print_metadata();
1647      }
1648      dump_asm(node_offsets, node_offset_limit);
1649      if (xtty != NULL) {
1650        xtty->tail("opto_assembly");
1651      }
1652    }
1653  }
1654#endif
1655
1656}
1657
1658void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1659  _inc_table.set_size(cnt);
1660
1661  uint inct_cnt = 0;
1662  for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
1663    Block* block = _cfg->get_block(i);
1664    Node *n = NULL;
1665    int j;
1666
1667    // Find the branch; ignore trailing NOPs.
1668    for (j = block->number_of_nodes() - 1; j >= 0; j--) {
1669      n = block->get_node(j);
1670      if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
1671        break;
1672      }
1673    }
1674
1675    // If we didn't find anything, continue
1676    if (j < 0) {
1677      continue;
1678    }
1679
1680    // Compute ExceptionHandlerTable subtable entry and add it
1681    // (skip empty blocks)
1682    if (n->is_Catch()) {
1683
1684      // Get the offset of the return from the call
1685      uint call_return = call_returns[block->_pre_order];
1686#ifdef ASSERT
1687      assert( call_return > 0, "no call seen for this basic block" );
1688      while (block->get_node(--j)->is_MachProj()) ;
1689      assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1690#endif
1691      // last instruction is a CatchNode, find it's CatchProjNodes
1692      int nof_succs = block->_num_succs;
1693      // allocate space
1694      GrowableArray<intptr_t> handler_bcis(nof_succs);
1695      GrowableArray<intptr_t> handler_pcos(nof_succs);
1696      // iterate through all successors
1697      for (int j = 0; j < nof_succs; j++) {
1698        Block* s = block->_succs[j];
1699        bool found_p = false;
1700        for (uint k = 1; k < s->num_preds(); k++) {
1701          Node* pk = s->pred(k);
1702          if (pk->is_CatchProj() && pk->in(0) == n) {
1703            const CatchProjNode* p = pk->as_CatchProj();
1704            found_p = true;
1705            // add the corresponding handler bci & pco information
1706            if (p->_con != CatchProjNode::fall_through_index) {
1707              // p leads to an exception handler (and is not fall through)
1708              assert(s == _cfg->get_block(s->_pre_order), "bad numbering");
1709              // no duplicates, please
1710              if (!handler_bcis.contains(p->handler_bci())) {
1711                uint block_num = s->non_connector()->_pre_order;
1712                handler_bcis.append(p->handler_bci());
1713                handler_pcos.append(blk_labels[block_num].loc_pos());
1714              }
1715            }
1716          }
1717        }
1718        assert(found_p, "no matching predecessor found");
1719        // Note:  Due to empty block removal, one block may have
1720        // several CatchProj inputs, from the same Catch.
1721      }
1722
1723      // Set the offset of the return from the call
1724      _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1725      continue;
1726    }
1727
1728    // Handle implicit null exception table updates
1729    if (n->is_MachNullCheck()) {
1730      uint block_num = block->non_connector_successor(0)->_pre_order;
1731      _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1732      continue;
1733    }
1734    // Handle implicit exception table updates: trap instructions.
1735    if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) {
1736      uint block_num = block->non_connector_successor(0)->_pre_order;
1737      _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1738      continue;
1739    }
1740  } // End of for all blocks fill in exception table entries
1741}
1742
1743// Static Variables
1744#ifndef PRODUCT
1745uint Scheduling::_total_nop_size = 0;
1746uint Scheduling::_total_method_size = 0;
1747uint Scheduling::_total_branches = 0;
1748uint Scheduling::_total_unconditional_delays = 0;
1749uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1750#endif
1751
1752// Initializer for class Scheduling
1753
1754Scheduling::Scheduling(Arena *arena, Compile &compile)
1755  : _arena(arena),
1756    _cfg(compile.cfg()),
1757    _regalloc(compile.regalloc()),
1758    _reg_node(arena),
1759    _bundle_instr_count(0),
1760    _bundle_cycle_number(0),
1761    _scheduled(arena),
1762    _available(arena),
1763    _next_node(NULL),
1764    _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1765    _pinch_free_list(arena)
1766#ifndef PRODUCT
1767  , _branches(0)
1768  , _unconditional_delays(0)
1769#endif
1770{
1771  // Create a MachNopNode
1772  _nop = new (&compile) MachNopNode();
1773
1774  // Now that the nops are in the array, save the count
1775  // (but allow entries for the nops)
1776  _node_bundling_limit = compile.unique();
1777  uint node_max = _regalloc->node_regs_max_index();
1778
1779  compile.set_node_bundling_limit(_node_bundling_limit);
1780
1781  // This one is persistent within the Compile class
1782  _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1783
1784  // Allocate space for fixed-size arrays
1785  _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1786  _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1787  _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1788
1789  // Clear the arrays
1790  memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1791  memset(_node_latency,       0, node_max * sizeof(unsigned short));
1792  memset(_uses,               0, node_max * sizeof(short));
1793  memset(_current_latency,    0, node_max * sizeof(unsigned short));
1794
1795  // Clear the bundling information
1796  memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
1797
1798  // Get the last node
1799  Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
1800
1801  _next_node = block->get_node(block->number_of_nodes() - 1);
1802}
1803
1804#ifndef PRODUCT
1805// Scheduling destructor
1806Scheduling::~Scheduling() {
1807  _total_branches             += _branches;
1808  _total_unconditional_delays += _unconditional_delays;
1809}
1810#endif
1811
1812// Step ahead "i" cycles
1813void Scheduling::step(uint i) {
1814
1815  Bundle *bundle = node_bundling(_next_node);
1816  bundle->set_starts_bundle();
1817
1818  // Update the bundle record, but leave the flags information alone
1819  if (_bundle_instr_count > 0) {
1820    bundle->set_instr_count(_bundle_instr_count);
1821    bundle->set_resources_used(_bundle_use.resourcesUsed());
1822  }
1823
1824  // Update the state information
1825  _bundle_instr_count = 0;
1826  _bundle_cycle_number += i;
1827  _bundle_use.step(i);
1828}
1829
1830void Scheduling::step_and_clear() {
1831  Bundle *bundle = node_bundling(_next_node);
1832  bundle->set_starts_bundle();
1833
1834  // Update the bundle record
1835  if (_bundle_instr_count > 0) {
1836    bundle->set_instr_count(_bundle_instr_count);
1837    bundle->set_resources_used(_bundle_use.resourcesUsed());
1838
1839    _bundle_cycle_number += 1;
1840  }
1841
1842  // Clear the bundling information
1843  _bundle_instr_count = 0;
1844  _bundle_use.reset();
1845
1846  memcpy(_bundle_use_elements,
1847    Pipeline_Use::elaborated_elements,
1848    sizeof(Pipeline_Use::elaborated_elements));
1849}
1850
1851// Perform instruction scheduling and bundling over the sequence of
1852// instructions in backwards order.
1853void Compile::ScheduleAndBundle() {
1854
1855  // Don't optimize this if it isn't a method
1856  if (!_method)
1857    return;
1858
1859  // Don't optimize this if scheduling is disabled
1860  if (!do_scheduling())
1861    return;
1862
1863  // Scheduling code works only with pairs (8 bytes) maximum.
1864  if (max_vector_size() > 8)
1865    return;
1866
1867  NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1868
1869  // Create a data structure for all the scheduling information
1870  Scheduling scheduling(Thread::current()->resource_area(), *this);
1871
1872  // Walk backwards over each basic block, computing the needed alignment
1873  // Walk over all the basic blocks
1874  scheduling.DoScheduling();
1875}
1876
1877// Compute the latency of all the instructions.  This is fairly simple,
1878// because we already have a legal ordering.  Walk over the instructions
1879// from first to last, and compute the latency of the instruction based
1880// on the latency of the preceding instruction(s).
1881void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1882#ifndef PRODUCT
1883  if (_cfg->C->trace_opto_output())
1884    tty->print("# -> ComputeLocalLatenciesForward\n");
1885#endif
1886
1887  // Walk over all the schedulable instructions
1888  for( uint j=_bb_start; j < _bb_end; j++ ) {
1889
1890    // This is a kludge, forcing all latency calculations to start at 1.
1891    // Used to allow latency 0 to force an instruction to the beginning
1892    // of the bb
1893    uint latency = 1;
1894    Node *use = bb->get_node(j);
1895    uint nlen = use->len();
1896
1897    // Walk over all the inputs
1898    for ( uint k=0; k < nlen; k++ ) {
1899      Node *def = use->in(k);
1900      if (!def)
1901        continue;
1902
1903      uint l = _node_latency[def->_idx] + use->latency(k);
1904      if (latency < l)
1905        latency = l;
1906    }
1907
1908    _node_latency[use->_idx] = latency;
1909
1910#ifndef PRODUCT
1911    if (_cfg->C->trace_opto_output()) {
1912      tty->print("# latency %4d: ", latency);
1913      use->dump();
1914    }
1915#endif
1916  }
1917
1918#ifndef PRODUCT
1919  if (_cfg->C->trace_opto_output())
1920    tty->print("# <- ComputeLocalLatenciesForward\n");
1921#endif
1922
1923} // end ComputeLocalLatenciesForward
1924
1925// See if this node fits into the present instruction bundle
1926bool Scheduling::NodeFitsInBundle(Node *n) {
1927  uint n_idx = n->_idx;
1928
1929  // If this is the unconditional delay instruction, then it fits
1930  if (n == _unconditional_delay_slot) {
1931#ifndef PRODUCT
1932    if (_cfg->C->trace_opto_output())
1933      tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1934#endif
1935    return (true);
1936  }
1937
1938  // If the node cannot be scheduled this cycle, skip it
1939  if (_current_latency[n_idx] > _bundle_cycle_number) {
1940#ifndef PRODUCT
1941    if (_cfg->C->trace_opto_output())
1942      tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1943        n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1944#endif
1945    return (false);
1946  }
1947
1948  const Pipeline *node_pipeline = n->pipeline();
1949
1950  uint instruction_count = node_pipeline->instructionCount();
1951  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1952    instruction_count = 0;
1953  else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1954    instruction_count++;
1955
1956  if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1957#ifndef PRODUCT
1958    if (_cfg->C->trace_opto_output())
1959      tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1960        n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1961#endif
1962    return (false);
1963  }
1964
1965  // Don't allow non-machine nodes to be handled this way
1966  if (!n->is_Mach() && instruction_count == 0)
1967    return (false);
1968
1969  // See if there is any overlap
1970  uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1971
1972  if (delay > 0) {
1973#ifndef PRODUCT
1974    if (_cfg->C->trace_opto_output())
1975      tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1976#endif
1977    return false;
1978  }
1979
1980#ifndef PRODUCT
1981  if (_cfg->C->trace_opto_output())
1982    tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
1983#endif
1984
1985  return true;
1986}
1987
1988Node * Scheduling::ChooseNodeToBundle() {
1989  uint siz = _available.size();
1990
1991  if (siz == 0) {
1992
1993#ifndef PRODUCT
1994    if (_cfg->C->trace_opto_output())
1995      tty->print("#   ChooseNodeToBundle: NULL\n");
1996#endif
1997    return (NULL);
1998  }
1999
2000  // Fast path, if only 1 instruction in the bundle
2001  if (siz == 1) {
2002#ifndef PRODUCT
2003    if (_cfg->C->trace_opto_output()) {
2004      tty->print("#   ChooseNodeToBundle (only 1): ");
2005      _available[0]->dump();
2006    }
2007#endif
2008    return (_available[0]);
2009  }
2010
2011  // Don't bother, if the bundle is already full
2012  if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2013    for ( uint i = 0; i < siz; i++ ) {
2014      Node *n = _available[i];
2015
2016      // Skip projections, we'll handle them another way
2017      if (n->is_Proj())
2018        continue;
2019
2020      // This presupposed that instructions are inserted into the
2021      // available list in a legality order; i.e. instructions that
2022      // must be inserted first are at the head of the list
2023      if (NodeFitsInBundle(n)) {
2024#ifndef PRODUCT
2025        if (_cfg->C->trace_opto_output()) {
2026          tty->print("#   ChooseNodeToBundle: ");
2027          n->dump();
2028        }
2029#endif
2030        return (n);
2031      }
2032    }
2033  }
2034
2035  // Nothing fits in this bundle, choose the highest priority
2036#ifndef PRODUCT
2037  if (_cfg->C->trace_opto_output()) {
2038    tty->print("#   ChooseNodeToBundle: ");
2039    _available[0]->dump();
2040  }
2041#endif
2042
2043  return _available[0];
2044}
2045
2046void Scheduling::AddNodeToAvailableList(Node *n) {
2047  assert( !n->is_Proj(), "projections never directly made available" );
2048#ifndef PRODUCT
2049  if (_cfg->C->trace_opto_output()) {
2050    tty->print("#   AddNodeToAvailableList: ");
2051    n->dump();
2052  }
2053#endif
2054
2055  int latency = _current_latency[n->_idx];
2056
2057  // Insert in latency order (insertion sort)
2058  uint i;
2059  for ( i=0; i < _available.size(); i++ )
2060    if (_current_latency[_available[i]->_idx] > latency)
2061      break;
2062
2063  // Special Check for compares following branches
2064  if( n->is_Mach() && _scheduled.size() > 0 ) {
2065    int op = n->as_Mach()->ideal_Opcode();
2066    Node *last = _scheduled[0];
2067    if( last->is_MachIf() && last->in(1) == n &&
2068        ( op == Op_CmpI ||
2069          op == Op_CmpU ||
2070          op == Op_CmpP ||
2071          op == Op_CmpF ||
2072          op == Op_CmpD ||
2073          op == Op_CmpL ) ) {
2074
2075      // Recalculate position, moving to front of same latency
2076      for ( i=0 ; i < _available.size(); i++ )
2077        if (_current_latency[_available[i]->_idx] >= latency)
2078          break;
2079    }
2080  }
2081
2082  // Insert the node in the available list
2083  _available.insert(i, n);
2084
2085#ifndef PRODUCT
2086  if (_cfg->C->trace_opto_output())
2087    dump_available();
2088#endif
2089}
2090
2091void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2092  for ( uint i=0; i < n->len(); i++ ) {
2093    Node *def = n->in(i);
2094    if (!def) continue;
2095    if( def->is_Proj() )        // If this is a machine projection, then
2096      def = def->in(0);         // propagate usage thru to the base instruction
2097
2098    if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
2099      continue;
2100    }
2101
2102    // Compute the latency
2103    uint l = _bundle_cycle_number + n->latency(i);
2104    if (_current_latency[def->_idx] < l)
2105      _current_latency[def->_idx] = l;
2106
2107    // If this does not have uses then schedule it
2108    if ((--_uses[def->_idx]) == 0)
2109      AddNodeToAvailableList(def);
2110  }
2111}
2112
2113void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2114#ifndef PRODUCT
2115  if (_cfg->C->trace_opto_output()) {
2116    tty->print("#   AddNodeToBundle: ");
2117    n->dump();
2118  }
2119#endif
2120
2121  // Remove this from the available list
2122  uint i;
2123  for (i = 0; i < _available.size(); i++)
2124    if (_available[i] == n)
2125      break;
2126  assert(i < _available.size(), "entry in _available list not found");
2127  _available.remove(i);
2128
2129  // See if this fits in the current bundle
2130  const Pipeline *node_pipeline = n->pipeline();
2131  const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2132
2133  // Check for instructions to be placed in the delay slot. We
2134  // do this before we actually schedule the current instruction,
2135  // because the delay slot follows the current instruction.
2136  if (Pipeline::_branch_has_delay_slot &&
2137      node_pipeline->hasBranchDelay() &&
2138      !_unconditional_delay_slot) {
2139
2140    uint siz = _available.size();
2141
2142    // Conditional branches can support an instruction that
2143    // is unconditionally executed and not dependent by the
2144    // branch, OR a conditionally executed instruction if
2145    // the branch is taken.  In practice, this means that
2146    // the first instruction at the branch target is
2147    // copied to the delay slot, and the branch goes to
2148    // the instruction after that at the branch target
2149    if ( n->is_MachBranch() ) {
2150
2151      assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2152      assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2153
2154#ifndef PRODUCT
2155      _branches++;
2156#endif
2157
2158      // At least 1 instruction is on the available list
2159      // that is not dependent on the branch
2160      for (uint i = 0; i < siz; i++) {
2161        Node *d = _available[i];
2162        const Pipeline *avail_pipeline = d->pipeline();
2163
2164        // Don't allow safepoints in the branch shadow, that will
2165        // cause a number of difficulties
2166        if ( avail_pipeline->instructionCount() == 1 &&
2167            !avail_pipeline->hasMultipleBundles() &&
2168            !avail_pipeline->hasBranchDelay() &&
2169            Pipeline::instr_has_unit_size() &&
2170            d->size(_regalloc) == Pipeline::instr_unit_size() &&
2171            NodeFitsInBundle(d) &&
2172            !node_bundling(d)->used_in_delay()) {
2173
2174          if (d->is_Mach() && !d->is_MachSafePoint()) {
2175            // A node that fits in the delay slot was found, so we need to
2176            // set the appropriate bits in the bundle pipeline information so
2177            // that it correctly indicates resource usage.  Later, when we
2178            // attempt to add this instruction to the bundle, we will skip
2179            // setting the resource usage.
2180            _unconditional_delay_slot = d;
2181            node_bundling(n)->set_use_unconditional_delay();
2182            node_bundling(d)->set_used_in_unconditional_delay();
2183            _bundle_use.add_usage(avail_pipeline->resourceUse());
2184            _current_latency[d->_idx] = _bundle_cycle_number;
2185            _next_node = d;
2186            ++_bundle_instr_count;
2187#ifndef PRODUCT
2188            _unconditional_delays++;
2189#endif
2190            break;
2191          }
2192        }
2193      }
2194    }
2195
2196    // No delay slot, add a nop to the usage
2197    if (!_unconditional_delay_slot) {
2198      // See if adding an instruction in the delay slot will overflow
2199      // the bundle.
2200      if (!NodeFitsInBundle(_nop)) {
2201#ifndef PRODUCT
2202        if (_cfg->C->trace_opto_output())
2203          tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2204#endif
2205        step(1);
2206      }
2207
2208      _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2209      _next_node = _nop;
2210      ++_bundle_instr_count;
2211    }
2212
2213    // See if the instruction in the delay slot requires a
2214    // step of the bundles
2215    if (!NodeFitsInBundle(n)) {
2216#ifndef PRODUCT
2217        if (_cfg->C->trace_opto_output())
2218          tty->print("#  *** STEP(branch won't fit) ***\n");
2219#endif
2220        // Update the state information
2221        _bundle_instr_count = 0;
2222        _bundle_cycle_number += 1;
2223        _bundle_use.step(1);
2224    }
2225  }
2226
2227  // Get the number of instructions
2228  uint instruction_count = node_pipeline->instructionCount();
2229  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2230    instruction_count = 0;
2231
2232  // Compute the latency information
2233  uint delay = 0;
2234
2235  if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2236    int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2237    if (relative_latency < 0)
2238      relative_latency = 0;
2239
2240    delay = _bundle_use.full_latency(relative_latency, node_usage);
2241
2242    // Does not fit in this bundle, start a new one
2243    if (delay > 0) {
2244      step(delay);
2245
2246#ifndef PRODUCT
2247      if (_cfg->C->trace_opto_output())
2248        tty->print("#  *** STEP(%d) ***\n", delay);
2249#endif
2250    }
2251  }
2252
2253  // If this was placed in the delay slot, ignore it
2254  if (n != _unconditional_delay_slot) {
2255
2256    if (delay == 0) {
2257      if (node_pipeline->hasMultipleBundles()) {
2258#ifndef PRODUCT
2259        if (_cfg->C->trace_opto_output())
2260          tty->print("#  *** STEP(multiple instructions) ***\n");
2261#endif
2262        step(1);
2263      }
2264
2265      else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2266#ifndef PRODUCT
2267        if (_cfg->C->trace_opto_output())
2268          tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2269            instruction_count + _bundle_instr_count,
2270            Pipeline::_max_instrs_per_cycle);
2271#endif
2272        step(1);
2273      }
2274    }
2275
2276    if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2277      _bundle_instr_count++;
2278
2279    // Set the node's latency
2280    _current_latency[n->_idx] = _bundle_cycle_number;
2281
2282    // Now merge the functional unit information
2283    if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2284      _bundle_use.add_usage(node_usage);
2285
2286    // Increment the number of instructions in this bundle
2287    _bundle_instr_count += instruction_count;
2288
2289    // Remember this node for later
2290    if (n->is_Mach())
2291      _next_node = n;
2292  }
2293
2294  // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2295  // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2296  // 'Schedule' them (basically ignore in the schedule) but do not insert them
2297  // into the block.  All other scheduled nodes get put in the schedule here.
2298  int op = n->Opcode();
2299  if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2300      (op != Op_Node &&         // Not an unused antidepedence node and
2301       // not an unallocated boxlock
2302       (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2303
2304    // Push any trailing projections
2305    if( bb->get_node(bb->number_of_nodes()-1) != n ) {
2306      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2307        Node *foi = n->fast_out(i);
2308        if( foi->is_Proj() )
2309          _scheduled.push(foi);
2310      }
2311    }
2312
2313    // Put the instruction in the schedule list
2314    _scheduled.push(n);
2315  }
2316
2317#ifndef PRODUCT
2318  if (_cfg->C->trace_opto_output())
2319    dump_available();
2320#endif
2321
2322  // Walk all the definitions, decrementing use counts, and
2323  // if a definition has a 0 use count, place it in the available list.
2324  DecrementUseCounts(n,bb);
2325}
2326
2327// This method sets the use count within a basic block.  We will ignore all
2328// uses outside the current basic block.  As we are doing a backwards walk,
2329// any node we reach that has a use count of 0 may be scheduled.  This also
2330// avoids the problem of cyclic references from phi nodes, as long as phi
2331// nodes are at the front of the basic block.  This method also initializes
2332// the available list to the set of instructions that have no uses within this
2333// basic block.
2334void Scheduling::ComputeUseCount(const Block *bb) {
2335#ifndef PRODUCT
2336  if (_cfg->C->trace_opto_output())
2337    tty->print("# -> ComputeUseCount\n");
2338#endif
2339
2340  // Clear the list of available and scheduled instructions, just in case
2341  _available.clear();
2342  _scheduled.clear();
2343
2344  // No delay slot specified
2345  _unconditional_delay_slot = NULL;
2346
2347#ifdef ASSERT
2348  for( uint i=0; i < bb->number_of_nodes(); i++ )
2349    assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
2350#endif
2351
2352  // Force the _uses count to never go to zero for unscheduable pieces
2353  // of the block
2354  for( uint k = 0; k < _bb_start; k++ )
2355    _uses[bb->get_node(k)->_idx] = 1;
2356  for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
2357    _uses[bb->get_node(l)->_idx] = 1;
2358
2359  // Iterate backwards over the instructions in the block.  Don't count the
2360  // branch projections at end or the block header instructions.
2361  for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2362    Node *n = bb->get_node(j);
2363    if( n->is_Proj() ) continue; // Projections handled another way
2364
2365    // Account for all uses
2366    for ( uint k = 0; k < n->len(); k++ ) {
2367      Node *inp = n->in(k);
2368      if (!inp) continue;
2369      assert(inp != n, "no cycles allowed" );
2370      if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
2371        if (inp->is_Proj()) { // Skip through Proj's
2372          inp = inp->in(0);
2373        }
2374        ++_uses[inp->_idx];     // Count 1 block-local use
2375      }
2376    }
2377
2378    // If this instruction has a 0 use count, then it is available
2379    if (!_uses[n->_idx]) {
2380      _current_latency[n->_idx] = _bundle_cycle_number;
2381      AddNodeToAvailableList(n);
2382    }
2383
2384#ifndef PRODUCT
2385    if (_cfg->C->trace_opto_output()) {
2386      tty->print("#   uses: %3d: ", _uses[n->_idx]);
2387      n->dump();
2388    }
2389#endif
2390  }
2391
2392#ifndef PRODUCT
2393  if (_cfg->C->trace_opto_output())
2394    tty->print("# <- ComputeUseCount\n");
2395#endif
2396}
2397
2398// This routine performs scheduling on each basic block in reverse order,
2399// using instruction latencies and taking into account function unit
2400// availability.
2401void Scheduling::DoScheduling() {
2402#ifndef PRODUCT
2403  if (_cfg->C->trace_opto_output())
2404    tty->print("# -> DoScheduling\n");
2405#endif
2406
2407  Block *succ_bb = NULL;
2408  Block *bb;
2409
2410  // Walk over all the basic blocks in reverse order
2411  for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
2412    bb = _cfg->get_block(i);
2413
2414#ifndef PRODUCT
2415    if (_cfg->C->trace_opto_output()) {
2416      tty->print("#  Schedule BB#%03d (initial)\n", i);
2417      for (uint j = 0; j < bb->number_of_nodes(); j++) {
2418        bb->get_node(j)->dump();
2419      }
2420    }
2421#endif
2422
2423    // On the head node, skip processing
2424    if (bb == _cfg->get_root_block()) {
2425      continue;
2426    }
2427
2428    // Skip empty, connector blocks
2429    if (bb->is_connector())
2430      continue;
2431
2432    // If the following block is not the sole successor of
2433    // this one, then reset the pipeline information
2434    if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2435#ifndef PRODUCT
2436      if (_cfg->C->trace_opto_output()) {
2437        tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2438                   _next_node->_idx, _bundle_instr_count);
2439      }
2440#endif
2441      step_and_clear();
2442    }
2443
2444    // Leave untouched the starting instruction, any Phis, a CreateEx node
2445    // or Top.  bb->get_node(_bb_start) is the first schedulable instruction.
2446    _bb_end = bb->number_of_nodes()-1;
2447    for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2448      Node *n = bb->get_node(_bb_start);
2449      // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2450      // Also, MachIdealNodes do not get scheduled
2451      if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2452      MachNode *mach = n->as_Mach();
2453      int iop = mach->ideal_Opcode();
2454      if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2455      if( iop == Op_Con ) continue;      // Do not schedule Top
2456      if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2457          mach->pipeline() == MachNode::pipeline_class() &&
2458          !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2459        continue;
2460      break;                    // Funny loop structure to be sure...
2461    }
2462    // Compute last "interesting" instruction in block - last instruction we
2463    // might schedule.  _bb_end points just after last schedulable inst.  We
2464    // normally schedule conditional branches (despite them being forced last
2465    // in the block), because they have delay slots we can fill.  Calls all
2466    // have their delay slots filled in the template expansions, so we don't
2467    // bother scheduling them.
2468    Node *last = bb->get_node(_bb_end);
2469    // Ignore trailing NOPs.
2470    while (_bb_end > 0 && last->is_Mach() &&
2471           last->as_Mach()->ideal_Opcode() == Op_Con) {
2472      last = bb->get_node(--_bb_end);
2473    }
2474    assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2475    if( last->is_Catch() ||
2476       // Exclude unreachable path case when Halt node is in a separate block.
2477       (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2478      // There must be a prior call.  Skip it.
2479      while( !bb->get_node(--_bb_end)->is_MachCall() ) {
2480        assert( bb->get_node(_bb_end)->is_MachProj(), "skipping projections after expected call" );
2481      }
2482    } else if( last->is_MachNullCheck() ) {
2483      // Backup so the last null-checked memory instruction is
2484      // outside the schedulable range. Skip over the nullcheck,
2485      // projection, and the memory nodes.
2486      Node *mem = last->in(1);
2487      do {
2488        _bb_end--;
2489      } while (mem != bb->get_node(_bb_end));
2490    } else {
2491      // Set _bb_end to point after last schedulable inst.
2492      _bb_end++;
2493    }
2494
2495    assert( _bb_start <= _bb_end, "inverted block ends" );
2496
2497    // Compute the register antidependencies for the basic block
2498    ComputeRegisterAntidependencies(bb);
2499    if (_cfg->C->failing())  return;  // too many D-U pinch points
2500
2501    // Compute intra-bb latencies for the nodes
2502    ComputeLocalLatenciesForward(bb);
2503
2504    // Compute the usage within the block, and set the list of all nodes
2505    // in the block that have no uses within the block.
2506    ComputeUseCount(bb);
2507
2508    // Schedule the remaining instructions in the block
2509    while ( _available.size() > 0 ) {
2510      Node *n = ChooseNodeToBundle();
2511      guarantee(n != NULL, "no nodes available");
2512      AddNodeToBundle(n,bb);
2513    }
2514
2515    assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2516#ifdef ASSERT
2517    for( uint l = _bb_start; l < _bb_end; l++ ) {
2518      Node *n = bb->get_node(l);
2519      uint m;
2520      for( m = 0; m < _bb_end-_bb_start; m++ )
2521        if( _scheduled[m] == n )
2522          break;
2523      assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2524    }
2525#endif
2526
2527    // Now copy the instructions (in reverse order) back to the block
2528    for ( uint k = _bb_start; k < _bb_end; k++ )
2529      bb->map_node(_scheduled[_bb_end-k-1], k);
2530
2531#ifndef PRODUCT
2532    if (_cfg->C->trace_opto_output()) {
2533      tty->print("#  Schedule BB#%03d (final)\n", i);
2534      uint current = 0;
2535      for (uint j = 0; j < bb->number_of_nodes(); j++) {
2536        Node *n = bb->get_node(j);
2537        if( valid_bundle_info(n) ) {
2538          Bundle *bundle = node_bundling(n);
2539          if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2540            tty->print("*** Bundle: ");
2541            bundle->dump();
2542          }
2543          n->dump();
2544        }
2545      }
2546    }
2547#endif
2548#ifdef ASSERT
2549  verify_good_schedule(bb,"after block local scheduling");
2550#endif
2551  }
2552
2553#ifndef PRODUCT
2554  if (_cfg->C->trace_opto_output())
2555    tty->print("# <- DoScheduling\n");
2556#endif
2557
2558  // Record final node-bundling array location
2559  _regalloc->C->set_node_bundling_base(_node_bundling_base);
2560
2561} // end DoScheduling
2562
2563// Verify that no live-range used in the block is killed in the block by a
2564// wrong DEF.  This doesn't verify live-ranges that span blocks.
2565
2566// Check for edge existence.  Used to avoid adding redundant precedence edges.
2567static bool edge_from_to( Node *from, Node *to ) {
2568  for( uint i=0; i<from->len(); i++ )
2569    if( from->in(i) == to )
2570      return true;
2571  return false;
2572}
2573
2574#ifdef ASSERT
2575void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2576  // Check for bad kills
2577  if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2578    Node *prior_use = _reg_node[def];
2579    if( prior_use && !edge_from_to(prior_use,n) ) {
2580      tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2581      n->dump();
2582      tty->print_cr("...");
2583      prior_use->dump();
2584      assert(edge_from_to(prior_use,n),msg);
2585    }
2586    _reg_node.map(def,NULL); // Kill live USEs
2587  }
2588}
2589
2590void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2591
2592  // Zap to something reasonable for the verify code
2593  _reg_node.clear();
2594
2595  // Walk over the block backwards.  Check to make sure each DEF doesn't
2596  // kill a live value (other than the one it's supposed to).  Add each
2597  // USE to the live set.
2598  for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
2599    Node *n = b->get_node(i);
2600    int n_op = n->Opcode();
2601    if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2602      // Fat-proj kills a slew of registers
2603      RegMask rm = n->out_RegMask();// Make local copy
2604      while( rm.is_NotEmpty() ) {
2605        OptoReg::Name kill = rm.find_first_elem();
2606        rm.Remove(kill);
2607        verify_do_def( n, kill, msg );
2608      }
2609    } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2610      // Get DEF'd registers the normal way
2611      verify_do_def( n, _regalloc->get_reg_first(n), msg );
2612      verify_do_def( n, _regalloc->get_reg_second(n), msg );
2613    }
2614
2615    // Now make all USEs live
2616    for( uint i=1; i<n->req(); i++ ) {
2617      Node *def = n->in(i);
2618      assert(def != 0, "input edge required");
2619      OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2620      OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2621      if( OptoReg::is_valid(reg_lo) ) {
2622        assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
2623        _reg_node.map(reg_lo,n);
2624      }
2625      if( OptoReg::is_valid(reg_hi) ) {
2626        assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
2627        _reg_node.map(reg_hi,n);
2628      }
2629    }
2630
2631  }
2632
2633  // Zap to something reasonable for the Antidependence code
2634  _reg_node.clear();
2635}
2636#endif
2637
2638// Conditionally add precedence edges.  Avoid putting edges on Projs.
2639static void add_prec_edge_from_to( Node *from, Node *to ) {
2640  if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2641    assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2642    from = from->in(0);
2643  }
2644  if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2645      !edge_from_to( from, to ) ) // Avoid duplicate edge
2646    from->add_prec(to);
2647}
2648
2649void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2650  if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2651    return;
2652
2653  Node *pinch = _reg_node[def_reg]; // Get pinch point
2654  if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
2655      is_def ) {    // Check for a true def (not a kill)
2656    _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2657    return;
2658  }
2659
2660  Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2661  debug_only( def = (Node*)0xdeadbeef; )
2662
2663  // After some number of kills there _may_ be a later def
2664  Node *later_def = NULL;
2665
2666  // Finding a kill requires a real pinch-point.
2667  // Check for not already having a pinch-point.
2668  // Pinch points are Op_Node's.
2669  if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2670    later_def = pinch;            // Must be def/kill as optimistic pinch-point
2671    if ( _pinch_free_list.size() > 0) {
2672      pinch = _pinch_free_list.pop();
2673    } else {
2674      pinch = new (_cfg->C) Node(1); // Pinch point to-be
2675    }
2676    if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2677      _cfg->C->record_method_not_compilable("too many D-U pinch points");
2678      return;
2679    }
2680    _cfg->map_node_to_block(pinch, b);      // Pretend it's valid in this block (lazy init)
2681    _reg_node.map(def_reg,pinch); // Record pinch-point
2682    //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2683    if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2684      pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2685      add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2686      later_def = NULL;           // and no later def
2687    }
2688    pinch->set_req(0,later_def);  // Hook later def so we can find it
2689  } else {                        // Else have valid pinch point
2690    if( pinch->in(0) )            // If there is a later-def
2691      later_def = pinch->in(0);   // Get it
2692  }
2693
2694  // Add output-dependence edge from later def to kill
2695  if( later_def )               // If there is some original def
2696    add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2697
2698  // See if current kill is also a use, and so is forced to be the pinch-point.
2699  if( pinch->Opcode() == Op_Node ) {
2700    Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2701    for( uint i=1; i<uses->req(); i++ ) {
2702      if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2703          _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2704        // Yes, found a use/kill pinch-point
2705        pinch->set_req(0,NULL);  //
2706        pinch->replace_by(kill); // Move anti-dep edges up
2707        pinch = kill;
2708        _reg_node.map(def_reg,pinch);
2709        return;
2710      }
2711    }
2712  }
2713
2714  // Add edge from kill to pinch-point
2715  add_prec_edge_from_to(kill,pinch);
2716}
2717
2718void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2719  if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2720    return;
2721  Node *pinch = _reg_node[use_reg]; // Get pinch point
2722  // Check for no later def_reg/kill in block
2723  if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b &&
2724      // Use has to be block-local as well
2725      _cfg->get_block_for_node(use) == b) {
2726    if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2727        pinch->req() == 1 ) {   // pinch not yet in block?
2728      pinch->del_req(0);        // yank pointer to later-def, also set flag
2729      // Insert the pinch-point in the block just after the last use
2730      b->insert_node(pinch, b->find_node(use) + 1);
2731      _bb_end++;                // Increase size scheduled region in block
2732    }
2733
2734    add_prec_edge_from_to(pinch,use);
2735  }
2736}
2737
2738// We insert antidependences between the reads and following write of
2739// allocated registers to prevent illegal code motion. Hopefully, the
2740// number of added references should be fairly small, especially as we
2741// are only adding references within the current basic block.
2742void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2743
2744#ifdef ASSERT
2745  verify_good_schedule(b,"before block local scheduling");
2746#endif
2747
2748  // A valid schedule, for each register independently, is an endless cycle
2749  // of: a def, then some uses (connected to the def by true dependencies),
2750  // then some kills (defs with no uses), finally the cycle repeats with a new
2751  // def.  The uses are allowed to float relative to each other, as are the
2752  // kills.  No use is allowed to slide past a kill (or def).  This requires
2753  // antidependencies between all uses of a single def and all kills that
2754  // follow, up to the next def.  More edges are redundant, because later defs
2755  // & kills are already serialized with true or antidependencies.  To keep
2756  // the edge count down, we add a 'pinch point' node if there's more than
2757  // one use or more than one kill/def.
2758
2759  // We add dependencies in one bottom-up pass.
2760
2761  // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2762
2763  // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2764  // register.  If not, we record the DEF/KILL in _reg_node, the
2765  // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2766  // "pinch point", a new Node that's in the graph but not in the block.
2767  // We put edges from the prior and current DEF/KILLs to the pinch point.
2768  // We put the pinch point in _reg_node.  If there's already a pinch point
2769  // we merely add an edge from the current DEF/KILL to the pinch point.
2770
2771  // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2772  // put an edge from the pinch point to the USE.
2773
2774  // To be expedient, the _reg_node array is pre-allocated for the whole
2775  // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2776  // or a valid def/kill/pinch-point, or a leftover node from some prior
2777  // block.  Leftover node from some prior block is treated like a NULL (no
2778  // prior def, so no anti-dependence needed).  Valid def is distinguished by
2779  // it being in the current block.
2780  bool fat_proj_seen = false;
2781  uint last_safept = _bb_end-1;
2782  Node* end_node         = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL;
2783  Node* last_safept_node = end_node;
2784  for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2785    Node *n = b->get_node(i);
2786    int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2787    if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2788      // Fat-proj kills a slew of registers
2789      // This can add edges to 'n' and obscure whether or not it was a def,
2790      // hence the is_def flag.
2791      fat_proj_seen = true;
2792      RegMask rm = n->out_RegMask();// Make local copy
2793      while( rm.is_NotEmpty() ) {
2794        OptoReg::Name kill = rm.find_first_elem();
2795        rm.Remove(kill);
2796        anti_do_def( b, n, kill, is_def );
2797      }
2798    } else {
2799      // Get DEF'd registers the normal way
2800      anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2801      anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2802    }
2803
2804    // Kill projections on a branch should appear to occur on the
2805    // branch, not afterwards, so grab the masks from the projections
2806    // and process them.
2807    if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
2808      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2809        Node* use = n->fast_out(i);
2810        if (use->is_Proj()) {
2811          RegMask rm = use->out_RegMask();// Make local copy
2812          while( rm.is_NotEmpty() ) {
2813            OptoReg::Name kill = rm.find_first_elem();
2814            rm.Remove(kill);
2815            anti_do_def( b, n, kill, false );
2816          }
2817        }
2818      }
2819    }
2820
2821    // Check each register used by this instruction for a following DEF/KILL
2822    // that must occur afterward and requires an anti-dependence edge.
2823    for( uint j=0; j<n->req(); j++ ) {
2824      Node *def = n->in(j);
2825      if( def ) {
2826        assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
2827        anti_do_use( b, n, _regalloc->get_reg_first(def) );
2828        anti_do_use( b, n, _regalloc->get_reg_second(def) );
2829      }
2830    }
2831    // Do not allow defs of new derived values to float above GC
2832    // points unless the base is definitely available at the GC point.
2833
2834    Node *m = b->get_node(i);
2835
2836    // Add precedence edge from following safepoint to use of derived pointer
2837    if( last_safept_node != end_node &&
2838        m != last_safept_node) {
2839      for (uint k = 1; k < m->req(); k++) {
2840        const Type *t = m->in(k)->bottom_type();
2841        if( t->isa_oop_ptr() &&
2842            t->is_ptr()->offset() != 0 ) {
2843          last_safept_node->add_prec( m );
2844          break;
2845        }
2846      }
2847    }
2848
2849    if( n->jvms() ) {           // Precedence edge from derived to safept
2850      // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2851      if( b->get_node(last_safept) != last_safept_node ) {
2852        last_safept = b->find_node(last_safept_node);
2853      }
2854      for( uint j=last_safept; j > i; j-- ) {
2855        Node *mach = b->get_node(j);
2856        if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2857          mach->add_prec( n );
2858      }
2859      last_safept = i;
2860      last_safept_node = m;
2861    }
2862  }
2863
2864  if (fat_proj_seen) {
2865    // Garbage collect pinch nodes that were not consumed.
2866    // They are usually created by a fat kill MachProj for a call.
2867    garbage_collect_pinch_nodes();
2868  }
2869}
2870
2871// Garbage collect pinch nodes for reuse by other blocks.
2872//
2873// The block scheduler's insertion of anti-dependence
2874// edges creates many pinch nodes when the block contains
2875// 2 or more Calls.  A pinch node is used to prevent a
2876// combinatorial explosion of edges.  If a set of kills for a
2877// register is anti-dependent on a set of uses (or defs), rather
2878// than adding an edge in the graph between each pair of kill
2879// and use (or def), a pinch is inserted between them:
2880//
2881//            use1   use2  use3
2882//                \   |   /
2883//                 \  |  /
2884//                  pinch
2885//                 /  |  \
2886//                /   |   \
2887//            kill1 kill2 kill3
2888//
2889// One pinch node is created per register killed when
2890// the second call is encountered during a backwards pass
2891// over the block.  Most of these pinch nodes are never
2892// wired into the graph because the register is never
2893// used or def'ed in the block.
2894//
2895void Scheduling::garbage_collect_pinch_nodes() {
2896#ifndef PRODUCT
2897    if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2898#endif
2899    int trace_cnt = 0;
2900    for (uint k = 0; k < _reg_node.Size(); k++) {
2901      Node* pinch = _reg_node[k];
2902      if ((pinch != NULL) && pinch->Opcode() == Op_Node &&
2903          // no predecence input edges
2904          (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2905        cleanup_pinch(pinch);
2906        _pinch_free_list.push(pinch);
2907        _reg_node.map(k, NULL);
2908#ifndef PRODUCT
2909        if (_cfg->C->trace_opto_output()) {
2910          trace_cnt++;
2911          if (trace_cnt > 40) {
2912            tty->print("\n");
2913            trace_cnt = 0;
2914          }
2915          tty->print(" %d", pinch->_idx);
2916        }
2917#endif
2918      }
2919    }
2920#ifndef PRODUCT
2921    if (_cfg->C->trace_opto_output()) tty->print("\n");
2922#endif
2923}
2924
2925// Clean up a pinch node for reuse.
2926void Scheduling::cleanup_pinch( Node *pinch ) {
2927  assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2928
2929  for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2930    Node* use = pinch->last_out(i);
2931    uint uses_found = 0;
2932    for (uint j = use->req(); j < use->len(); j++) {
2933      if (use->in(j) == pinch) {
2934        use->rm_prec(j);
2935        uses_found++;
2936      }
2937    }
2938    assert(uses_found > 0, "must be a precedence edge");
2939    i -= uses_found;    // we deleted 1 or more copies of this edge
2940  }
2941  // May have a later_def entry
2942  pinch->set_req(0, NULL);
2943}
2944
2945#ifndef PRODUCT
2946
2947void Scheduling::dump_available() const {
2948  tty->print("#Availist  ");
2949  for (uint i = 0; i < _available.size(); i++)
2950    tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2951  tty->cr();
2952}
2953
2954// Print Scheduling Statistics
2955void Scheduling::print_statistics() {
2956  // Print the size added by nops for bundling
2957  tty->print("Nops added %d bytes to total of %d bytes",
2958    _total_nop_size, _total_method_size);
2959  if (_total_method_size > 0)
2960    tty->print(", for %.2f%%",
2961      ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2962  tty->print("\n");
2963
2964  // Print the number of branch shadows filled
2965  if (Pipeline::_branch_has_delay_slot) {
2966    tty->print("Of %d branches, %d had unconditional delay slots filled",
2967      _total_branches, _total_unconditional_delays);
2968    if (_total_branches > 0)
2969      tty->print(", for %.2f%%",
2970        ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2971    tty->print("\n");
2972  }
2973
2974  uint total_instructions = 0, total_bundles = 0;
2975
2976  for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2977    uint bundle_count   = _total_instructions_per_bundle[i];
2978    total_instructions += bundle_count * i;
2979    total_bundles      += bundle_count;
2980  }
2981
2982  if (total_bundles > 0)
2983    tty->print("Average ILP (excluding nops) is %.2f\n",
2984      ((double)total_instructions) / ((double)total_bundles));
2985}
2986#endif
2987