output.cpp revision 4566:e10e43e58e92
1/*
2 * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/assembler.inline.hpp"
27#include "code/compiledIC.hpp"
28#include "code/debugInfo.hpp"
29#include "code/debugInfoRec.hpp"
30#include "compiler/compileBroker.hpp"
31#include "compiler/oopMap.hpp"
32#include "memory/allocation.inline.hpp"
33#include "opto/callnode.hpp"
34#include "opto/cfgnode.hpp"
35#include "opto/locknode.hpp"
36#include "opto/machnode.hpp"
37#include "opto/output.hpp"
38#include "opto/regalloc.hpp"
39#include "opto/runtime.hpp"
40#include "opto/subnode.hpp"
41#include "opto/type.hpp"
42#include "runtime/handles.inline.hpp"
43#include "utilities/xmlstream.hpp"
44
45extern uint size_exception_handler();
46extern uint size_deopt_handler();
47
48#ifndef PRODUCT
49#define DEBUG_ARG(x) , x
50#else
51#define DEBUG_ARG(x)
52#endif
53
54extern int emit_exception_handler(CodeBuffer &cbuf);
55extern int emit_deopt_handler(CodeBuffer &cbuf);
56
57//------------------------------Output-----------------------------------------
58// Convert Nodes to instruction bits and pass off to the VM
59void Compile::Output() {
60  // RootNode goes
61  assert( _cfg->_broot->_nodes.size() == 0, "" );
62
63  // The number of new nodes (mostly MachNop) is proportional to
64  // the number of java calls and inner loops which are aligned.
65  if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
66                            C->inner_loops()*(OptoLoopAlignment-1)),
67                           "out of nodes before code generation" ) ) {
68    return;
69  }
70  // Make sure I can find the Start Node
71  Block_Array& bbs = _cfg->_bbs;
72  Block *entry = _cfg->_blocks[1];
73  Block *broot = _cfg->_broot;
74
75  const StartNode *start = entry->_nodes[0]->as_Start();
76
77  // Replace StartNode with prolog
78  MachPrologNode *prolog = new (this) MachPrologNode();
79  entry->_nodes.map( 0, prolog );
80  bbs.map( prolog->_idx, entry );
81  bbs.map( start->_idx, NULL ); // start is no longer in any block
82
83  // Virtual methods need an unverified entry point
84
85  if( is_osr_compilation() ) {
86    if( PoisonOSREntry ) {
87      // TODO: Should use a ShouldNotReachHereNode...
88      _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
89    }
90  } else {
91    if( _method && !_method->flags().is_static() ) {
92      // Insert unvalidated entry point
93      _cfg->insert( broot, 0, new (this) MachUEPNode() );
94    }
95
96  }
97
98
99  // Break before main entry point
100  if( (_method && _method->break_at_execute())
101#ifndef PRODUCT
102    ||(OptoBreakpoint && is_method_compilation())
103    ||(OptoBreakpointOSR && is_osr_compilation())
104    ||(OptoBreakpointC2R && !_method)
105#endif
106    ) {
107    // checking for _method means that OptoBreakpoint does not apply to
108    // runtime stubs or frame converters
109    _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
110  }
111
112  // Insert epilogs before every return
113  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
114    Block *b = _cfg->_blocks[i];
115    if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
116      Node *m = b->end();
117      if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
118        MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
119        b->add_inst( epilog );
120        bbs.map(epilog->_idx, b);
121        //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
122      }
123    }
124  }
125
126# ifdef ENABLE_ZAP_DEAD_LOCALS
127  if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
128# endif
129
130  uint* blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
131  blk_starts[0]    = 0;
132
133  // Initialize code buffer and process short branches.
134  CodeBuffer* cb = init_buffer(blk_starts);
135
136  if (cb == NULL || failing())  return;
137
138  ScheduleAndBundle();
139
140#ifndef PRODUCT
141  if (trace_opto_output()) {
142    tty->print("\n---- After ScheduleAndBundle ----\n");
143    for (uint i = 0; i < _cfg->_num_blocks; i++) {
144      tty->print("\nBB#%03d:\n", i);
145      Block *bb = _cfg->_blocks[i];
146      for (uint j = 0; j < bb->_nodes.size(); j++) {
147        Node *n = bb->_nodes[j];
148        OptoReg::Name reg = _regalloc->get_reg_first(n);
149        tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
150        n->dump();
151      }
152    }
153  }
154#endif
155
156  if (failing())  return;
157
158  BuildOopMaps();
159
160  if (failing())  return;
161
162  fill_buffer(cb, blk_starts);
163}
164
165bool Compile::need_stack_bang(int frame_size_in_bytes) const {
166  // Determine if we need to generate a stack overflow check.
167  // Do it if the method is not a stub function and
168  // has java calls or has frame size > vm_page_size/8.
169  return (UseStackBanging && stub_function() == NULL &&
170          (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
171}
172
173bool Compile::need_register_stack_bang() const {
174  // Determine if we need to generate a register stack overflow check.
175  // This is only used on architectures which have split register
176  // and memory stacks (ie. IA64).
177  // Bang if the method is not a stub function and has java calls
178  return (stub_function() == NULL && has_java_calls());
179}
180
181# ifdef ENABLE_ZAP_DEAD_LOCALS
182
183
184// In order to catch compiler oop-map bugs, we have implemented
185// a debugging mode called ZapDeadCompilerLocals.
186// This mode causes the compiler to insert a call to a runtime routine,
187// "zap_dead_locals", right before each place in compiled code
188// that could potentially be a gc-point (i.e., a safepoint or oop map point).
189// The runtime routine checks that locations mapped as oops are really
190// oops, that locations mapped as values do not look like oops,
191// and that locations mapped as dead are not used later
192// (by zapping them to an invalid address).
193
194int Compile::_CompiledZap_count = 0;
195
196void Compile::Insert_zap_nodes() {
197  bool skip = false;
198
199
200  // Dink with static counts because code code without the extra
201  // runtime calls is MUCH faster for debugging purposes
202
203       if ( CompileZapFirst  ==  0  ) ; // nothing special
204  else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
205  else if ( CompileZapFirst  == CompiledZap_count() )
206    warning("starting zap compilation after skipping");
207
208       if ( CompileZapLast  ==  -1  ) ; // nothing special
209  else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
210  else if ( CompileZapLast  ==  CompiledZap_count() )
211    warning("about to compile last zap");
212
213  ++_CompiledZap_count; // counts skipped zaps, too
214
215  if ( skip )  return;
216
217
218  if ( _method == NULL )
219    return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
220
221  // Insert call to zap runtime stub before every node with an oop map
222  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
223    Block *b = _cfg->_blocks[i];
224    for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
225      Node *n = b->_nodes[j];
226
227      // Determining if we should insert a zap-a-lot node in output.
228      // We do that for all nodes that has oopmap info, except for calls
229      // to allocation.  Calls to allocation passes in the old top-of-eden pointer
230      // and expect the C code to reset it.  Hence, there can be no safepoints between
231      // the inlined-allocation and the call to new_Java, etc.
232      // We also cannot zap monitor calls, as they must hold the microlock
233      // during the call to Zap, which also wants to grab the microlock.
234      bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
235      if ( insert ) { // it is MachSafePoint
236        if ( !n->is_MachCall() ) {
237          insert = false;
238        } else if ( n->is_MachCall() ) {
239          MachCallNode* call = n->as_MachCall();
240          if (call->entry_point() == OptoRuntime::new_instance_Java() ||
241              call->entry_point() == OptoRuntime::new_array_Java() ||
242              call->entry_point() == OptoRuntime::multianewarray2_Java() ||
243              call->entry_point() == OptoRuntime::multianewarray3_Java() ||
244              call->entry_point() == OptoRuntime::multianewarray4_Java() ||
245              call->entry_point() == OptoRuntime::multianewarray5_Java() ||
246              call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
247              call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
248              ) {
249            insert = false;
250          }
251        }
252        if (insert) {
253          Node *zap = call_zap_node(n->as_MachSafePoint(), i);
254          b->_nodes.insert( j, zap );
255          _cfg->_bbs.map( zap->_idx, b );
256          ++j;
257        }
258      }
259    }
260  }
261}
262
263
264Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
265  const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
266  CallStaticJavaNode* ideal_node =
267    new (this) CallStaticJavaNode( tf,
268         OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
269                       "call zap dead locals stub", 0, TypePtr::BOTTOM);
270  // We need to copy the OopMap from the site we're zapping at.
271  // We have to make a copy, because the zap site might not be
272  // a call site, and zap_dead is a call site.
273  OopMap* clone = node_to_check->oop_map()->deep_copy();
274
275  // Add the cloned OopMap to the zap node
276  ideal_node->set_oop_map(clone);
277  return _matcher->match_sfpt(ideal_node);
278}
279
280//------------------------------is_node_getting_a_safepoint--------------------
281bool Compile::is_node_getting_a_safepoint( Node* n) {
282  // This code duplicates the logic prior to the call of add_safepoint
283  // below in this file.
284  if( n->is_MachSafePoint() ) return true;
285  return false;
286}
287
288# endif // ENABLE_ZAP_DEAD_LOCALS
289
290//------------------------------compute_loop_first_inst_sizes------------------
291// Compute the size of first NumberOfLoopInstrToAlign instructions at the top
292// of a loop. When aligning a loop we need to provide enough instructions
293// in cpu's fetch buffer to feed decoders. The loop alignment could be
294// avoided if we have enough instructions in fetch buffer at the head of a loop.
295// By default, the size is set to 999999 by Block's constructor so that
296// a loop will be aligned if the size is not reset here.
297//
298// Note: Mach instructions could contain several HW instructions
299// so the size is estimated only.
300//
301void Compile::compute_loop_first_inst_sizes() {
302  // The next condition is used to gate the loop alignment optimization.
303  // Don't aligned a loop if there are enough instructions at the head of a loop
304  // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
305  // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
306  // equal to 11 bytes which is the largest address NOP instruction.
307  if( MaxLoopPad < OptoLoopAlignment-1 ) {
308    uint last_block = _cfg->_num_blocks-1;
309    for( uint i=1; i <= last_block; i++ ) {
310      Block *b = _cfg->_blocks[i];
311      // Check the first loop's block which requires an alignment.
312      if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
313        uint sum_size = 0;
314        uint inst_cnt = NumberOfLoopInstrToAlign;
315        inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
316
317        // Check subsequent fallthrough blocks if the loop's first
318        // block(s) does not have enough instructions.
319        Block *nb = b;
320        while( inst_cnt > 0 &&
321               i < last_block &&
322               !_cfg->_blocks[i+1]->has_loop_alignment() &&
323               !nb->has_successor(b) ) {
324          i++;
325          nb = _cfg->_blocks[i];
326          inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
327        } // while( inst_cnt > 0 && i < last_block  )
328
329        b->set_first_inst_size(sum_size);
330      } // f( b->head()->is_Loop() )
331    } // for( i <= last_block )
332  } // if( MaxLoopPad < OptoLoopAlignment-1 )
333}
334
335//----------------------shorten_branches---------------------------------------
336// The architecture description provides short branch variants for some long
337// branch instructions. Replace eligible long branches with short branches.
338void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
339
340  // ------------------
341  // Compute size of each block, method size, and relocation information size
342  uint nblocks  = _cfg->_num_blocks;
343
344  uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
345  uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
346  int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
347  DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
348  DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
349
350  bool has_short_branch_candidate = false;
351
352  // Initialize the sizes to 0
353  code_size  = 0;          // Size in bytes of generated code
354  stub_size  = 0;          // Size in bytes of all stub entries
355  // Size in bytes of all relocation entries, including those in local stubs.
356  // Start with 2-bytes of reloc info for the unvalidated entry point
357  reloc_size = 1;          // Number of relocation entries
358
359  // Make three passes.  The first computes pessimistic blk_starts,
360  // relative jmp_offset and reloc_size information.  The second performs
361  // short branch substitution using the pessimistic sizing.  The
362  // third inserts nops where needed.
363
364  // Step one, perform a pessimistic sizing pass.
365  uint last_call_adr = max_uint;
366  uint last_avoid_back_to_back_adr = max_uint;
367  uint nop_size = (new (this) MachNopNode())->size(_regalloc);
368  for (uint i = 0; i < nblocks; i++) { // For all blocks
369    Block *b = _cfg->_blocks[i];
370
371    // During short branch replacement, we store the relative (to blk_starts)
372    // offset of jump in jmp_offset, rather than the absolute offset of jump.
373    // This is so that we do not need to recompute sizes of all nodes when
374    // we compute correct blk_starts in our next sizing pass.
375    jmp_offset[i] = 0;
376    jmp_size[i]   = 0;
377    jmp_nidx[i]   = -1;
378    DEBUG_ONLY( jmp_target[i] = 0; )
379    DEBUG_ONLY( jmp_rule[i]   = 0; )
380
381    // Sum all instruction sizes to compute block size
382    uint last_inst = b->_nodes.size();
383    uint blk_size = 0;
384    for (uint j = 0; j < last_inst; j++) {
385      Node* nj = b->_nodes[j];
386      // Handle machine instruction nodes
387      if (nj->is_Mach()) {
388        MachNode *mach = nj->as_Mach();
389        blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
390        reloc_size += mach->reloc();
391        if (mach->is_MachCall()) {
392          MachCallNode *mcall = mach->as_MachCall();
393          // This destination address is NOT PC-relative
394
395          mcall->method_set((intptr_t)mcall->entry_point());
396
397          if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
398            stub_size  += CompiledStaticCall::to_interp_stub_size();
399            reloc_size += CompiledStaticCall::reloc_to_interp_stub();
400          }
401        } else if (mach->is_MachSafePoint()) {
402          // If call/safepoint are adjacent, account for possible
403          // nop to disambiguate the two safepoints.
404          // ScheduleAndBundle() can rearrange nodes in a block,
405          // check for all offsets inside this block.
406          if (last_call_adr >= blk_starts[i]) {
407            blk_size += nop_size;
408          }
409        }
410        if (mach->avoid_back_to_back()) {
411          // Nop is inserted between "avoid back to back" instructions.
412          // ScheduleAndBundle() can rearrange nodes in a block,
413          // check for all offsets inside this block.
414          if (last_avoid_back_to_back_adr >= blk_starts[i]) {
415            blk_size += nop_size;
416          }
417        }
418        if (mach->may_be_short_branch()) {
419          if (!nj->is_MachBranch()) {
420#ifndef PRODUCT
421            nj->dump(3);
422#endif
423            Unimplemented();
424          }
425          assert(jmp_nidx[i] == -1, "block should have only one branch");
426          jmp_offset[i] = blk_size;
427          jmp_size[i]   = nj->size(_regalloc);
428          jmp_nidx[i]   = j;
429          has_short_branch_candidate = true;
430        }
431      }
432      blk_size += nj->size(_regalloc);
433      // Remember end of call offset
434      if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
435        last_call_adr = blk_starts[i]+blk_size;
436      }
437      // Remember end of avoid_back_to_back offset
438      if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back()) {
439        last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
440      }
441    }
442
443    // When the next block starts a loop, we may insert pad NOP
444    // instructions.  Since we cannot know our future alignment,
445    // assume the worst.
446    if (i< nblocks-1) {
447      Block *nb = _cfg->_blocks[i+1];
448      int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
449      if (max_loop_pad > 0) {
450        assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
451        // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
452        // If either is the last instruction in this block, bump by
453        // max_loop_pad in lock-step with blk_size, so sizing
454        // calculations in subsequent blocks still can conservatively
455        // detect that it may the last instruction in this block.
456        if (last_call_adr == blk_starts[i]+blk_size) {
457          last_call_adr += max_loop_pad;
458        }
459        if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
460          last_avoid_back_to_back_adr += max_loop_pad;
461        }
462        blk_size += max_loop_pad;
463      }
464    }
465
466    // Save block size; update total method size
467    blk_starts[i+1] = blk_starts[i]+blk_size;
468  }
469
470  // Step two, replace eligible long jumps.
471  bool progress = true;
472  uint last_may_be_short_branch_adr = max_uint;
473  while (has_short_branch_candidate && progress) {
474    progress = false;
475    has_short_branch_candidate = false;
476    int adjust_block_start = 0;
477    for (uint i = 0; i < nblocks; i++) {
478      Block *b = _cfg->_blocks[i];
479      int idx = jmp_nidx[i];
480      MachNode* mach = (idx == -1) ? NULL: b->_nodes[idx]->as_Mach();
481      if (mach != NULL && mach->may_be_short_branch()) {
482#ifdef ASSERT
483        assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
484        int j;
485        // Find the branch; ignore trailing NOPs.
486        for (j = b->_nodes.size()-1; j>=0; j--) {
487          Node* n = b->_nodes[j];
488          if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
489            break;
490        }
491        assert(j >= 0 && j == idx && b->_nodes[j] == (Node*)mach, "sanity");
492#endif
493        int br_size = jmp_size[i];
494        int br_offs = blk_starts[i] + jmp_offset[i];
495
496        // This requires the TRUE branch target be in succs[0]
497        uint bnum = b->non_connector_successor(0)->_pre_order;
498        int offset = blk_starts[bnum] - br_offs;
499        if (bnum > i) { // adjust following block's offset
500          offset -= adjust_block_start;
501        }
502        // In the following code a nop could be inserted before
503        // the branch which will increase the backward distance.
504        bool needs_padding = ((uint)br_offs == last_may_be_short_branch_adr);
505        if (needs_padding && offset <= 0)
506          offset -= nop_size;
507
508        if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
509          // We've got a winner.  Replace this branch.
510          MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
511
512          // Update the jmp_size.
513          int new_size = replacement->size(_regalloc);
514          int diff     = br_size - new_size;
515          assert(diff >= (int)nop_size, "short_branch size should be smaller");
516          // Conservatively take into accound padding between
517          // avoid_back_to_back branches. Previous branch could be
518          // converted into avoid_back_to_back branch during next
519          // rounds.
520          if (needs_padding && replacement->avoid_back_to_back()) {
521            jmp_offset[i] += nop_size;
522            diff -= nop_size;
523          }
524          adjust_block_start += diff;
525          b->_nodes.map(idx, replacement);
526          mach->subsume_by(replacement, C);
527          mach = replacement;
528          progress = true;
529
530          jmp_size[i] = new_size;
531          DEBUG_ONLY( jmp_target[i] = bnum; );
532          DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
533        } else {
534          // The jump distance is not short, try again during next iteration.
535          has_short_branch_candidate = true;
536        }
537      } // (mach->may_be_short_branch())
538      if (mach != NULL && (mach->may_be_short_branch() ||
539                           mach->avoid_back_to_back())) {
540        last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
541      }
542      blk_starts[i+1] -= adjust_block_start;
543    }
544  }
545
546#ifdef ASSERT
547  for (uint i = 0; i < nblocks; i++) { // For all blocks
548    if (jmp_target[i] != 0) {
549      int br_size = jmp_size[i];
550      int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
551      if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
552        tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
553      }
554      assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
555    }
556  }
557#endif
558
559  // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
560  // after ScheduleAndBundle().
561
562  // ------------------
563  // Compute size for code buffer
564  code_size = blk_starts[nblocks];
565
566  // Relocation records
567  reloc_size += 1;              // Relo entry for exception handler
568
569  // Adjust reloc_size to number of record of relocation info
570  // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
571  // a relocation index.
572  // The CodeBuffer will expand the locs array if this estimate is too low.
573  reloc_size *= 10 / sizeof(relocInfo);
574}
575
576//------------------------------FillLocArray-----------------------------------
577// Create a bit of debug info and append it to the array.  The mapping is from
578// Java local or expression stack to constant, register or stack-slot.  For
579// doubles, insert 2 mappings and return 1 (to tell the caller that the next
580// entry has been taken care of and caller should skip it).
581static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
582  // This should never have accepted Bad before
583  assert(OptoReg::is_valid(regnum), "location must be valid");
584  return (OptoReg::is_reg(regnum))
585    ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
586    : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
587}
588
589
590ObjectValue*
591Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
592  for (int i = 0; i < objs->length(); i++) {
593    assert(objs->at(i)->is_object(), "corrupt object cache");
594    ObjectValue* sv = (ObjectValue*) objs->at(i);
595    if (sv->id() == id) {
596      return sv;
597    }
598  }
599  // Otherwise..
600  return NULL;
601}
602
603void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
604                                     ObjectValue* sv ) {
605  assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
606  objs->append(sv);
607}
608
609
610void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
611                            GrowableArray<ScopeValue*> *array,
612                            GrowableArray<ScopeValue*> *objs ) {
613  assert( local, "use _top instead of null" );
614  if (array->length() != idx) {
615    assert(array->length() == idx + 1, "Unexpected array count");
616    // Old functionality:
617    //   return
618    // New functionality:
619    //   Assert if the local is not top. In product mode let the new node
620    //   override the old entry.
621    assert(local == top(), "LocArray collision");
622    if (local == top()) {
623      return;
624    }
625    array->pop();
626  }
627  const Type *t = local->bottom_type();
628
629  // Is it a safepoint scalar object node?
630  if (local->is_SafePointScalarObject()) {
631    SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
632
633    ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
634    if (sv == NULL) {
635      ciKlass* cik = t->is_oopptr()->klass();
636      assert(cik->is_instance_klass() ||
637             cik->is_array_klass(), "Not supported allocation.");
638      sv = new ObjectValue(spobj->_idx,
639                           new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
640      Compile::set_sv_for_object_node(objs, sv);
641
642      uint first_ind = spobj->first_index();
643      for (uint i = 0; i < spobj->n_fields(); i++) {
644        Node* fld_node = sfpt->in(first_ind+i);
645        (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
646      }
647    }
648    array->append(sv);
649    return;
650  }
651
652  // Grab the register number for the local
653  OptoReg::Name regnum = _regalloc->get_reg_first(local);
654  if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
655    // Record the double as two float registers.
656    // The register mask for such a value always specifies two adjacent
657    // float registers, with the lower register number even.
658    // Normally, the allocation of high and low words to these registers
659    // is irrelevant, because nearly all operations on register pairs
660    // (e.g., StoreD) treat them as a single unit.
661    // Here, we assume in addition that the words in these two registers
662    // stored "naturally" (by operations like StoreD and double stores
663    // within the interpreter) such that the lower-numbered register
664    // is written to the lower memory address.  This may seem like
665    // a machine dependency, but it is not--it is a requirement on
666    // the author of the <arch>.ad file to ensure that, for every
667    // even/odd double-register pair to which a double may be allocated,
668    // the word in the even single-register is stored to the first
669    // memory word.  (Note that register numbers are completely
670    // arbitrary, and are not tied to any machine-level encodings.)
671#ifdef _LP64
672    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
673      array->append(new ConstantIntValue(0));
674      array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
675    } else if ( t->base() == Type::Long ) {
676      array->append(new ConstantIntValue(0));
677      array->append(new_loc_value( _regalloc, regnum, Location::lng ));
678    } else if ( t->base() == Type::RawPtr ) {
679      // jsr/ret return address which must be restored into a the full
680      // width 64-bit stack slot.
681      array->append(new_loc_value( _regalloc, regnum, Location::lng ));
682    }
683#else //_LP64
684#ifdef SPARC
685    if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
686      // For SPARC we have to swap high and low words for
687      // long values stored in a single-register (g0-g7).
688      array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
689      array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
690    } else
691#endif //SPARC
692    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
693      // Repack the double/long as two jints.
694      // The convention the interpreter uses is that the second local
695      // holds the first raw word of the native double representation.
696      // This is actually reasonable, since locals and stack arrays
697      // grow downwards in all implementations.
698      // (If, on some machine, the interpreter's Java locals or stack
699      // were to grow upwards, the embedded doubles would be word-swapped.)
700      array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
701      array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
702    }
703#endif //_LP64
704    else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
705               OptoReg::is_reg(regnum) ) {
706      array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
707                                   ? Location::float_in_dbl : Location::normal ));
708    } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
709      array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
710                                   ? Location::int_in_long : Location::normal ));
711    } else if( t->base() == Type::NarrowOop ) {
712      array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
713    } else {
714      array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
715    }
716    return;
717  }
718
719  // No register.  It must be constant data.
720  switch (t->base()) {
721  case Type::Half:              // Second half of a double
722    ShouldNotReachHere();       // Caller should skip 2nd halves
723    break;
724  case Type::AnyPtr:
725    array->append(new ConstantOopWriteValue(NULL));
726    break;
727  case Type::AryPtr:
728  case Type::InstPtr:          // fall through
729    array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
730    break;
731  case Type::NarrowOop:
732    if (t == TypeNarrowOop::NULL_PTR) {
733      array->append(new ConstantOopWriteValue(NULL));
734    } else {
735      array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
736    }
737    break;
738  case Type::Int:
739    array->append(new ConstantIntValue(t->is_int()->get_con()));
740    break;
741  case Type::RawPtr:
742    // A return address (T_ADDRESS).
743    assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
744#ifdef _LP64
745    // Must be restored to the full-width 64-bit stack slot.
746    array->append(new ConstantLongValue(t->is_ptr()->get_con()));
747#else
748    array->append(new ConstantIntValue(t->is_ptr()->get_con()));
749#endif
750    break;
751  case Type::FloatCon: {
752    float f = t->is_float_constant()->getf();
753    array->append(new ConstantIntValue(jint_cast(f)));
754    break;
755  }
756  case Type::DoubleCon: {
757    jdouble d = t->is_double_constant()->getd();
758#ifdef _LP64
759    array->append(new ConstantIntValue(0));
760    array->append(new ConstantDoubleValue(d));
761#else
762    // Repack the double as two jints.
763    // The convention the interpreter uses is that the second local
764    // holds the first raw word of the native double representation.
765    // This is actually reasonable, since locals and stack arrays
766    // grow downwards in all implementations.
767    // (If, on some machine, the interpreter's Java locals or stack
768    // were to grow upwards, the embedded doubles would be word-swapped.)
769    jint   *dp = (jint*)&d;
770    array->append(new ConstantIntValue(dp[1]));
771    array->append(new ConstantIntValue(dp[0]));
772#endif
773    break;
774  }
775  case Type::Long: {
776    jlong d = t->is_long()->get_con();
777#ifdef _LP64
778    array->append(new ConstantIntValue(0));
779    array->append(new ConstantLongValue(d));
780#else
781    // Repack the long as two jints.
782    // The convention the interpreter uses is that the second local
783    // holds the first raw word of the native double representation.
784    // This is actually reasonable, since locals and stack arrays
785    // grow downwards in all implementations.
786    // (If, on some machine, the interpreter's Java locals or stack
787    // were to grow upwards, the embedded doubles would be word-swapped.)
788    jint *dp = (jint*)&d;
789    array->append(new ConstantIntValue(dp[1]));
790    array->append(new ConstantIntValue(dp[0]));
791#endif
792    break;
793  }
794  case Type::Top:               // Add an illegal value here
795    array->append(new LocationValue(Location()));
796    break;
797  default:
798    ShouldNotReachHere();
799    break;
800  }
801}
802
803// Determine if this node starts a bundle
804bool Compile::starts_bundle(const Node *n) const {
805  return (_node_bundling_limit > n->_idx &&
806          _node_bundling_base[n->_idx].starts_bundle());
807}
808
809//--------------------------Process_OopMap_Node--------------------------------
810void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
811
812  // Handle special safepoint nodes for synchronization
813  MachSafePointNode *sfn   = mach->as_MachSafePoint();
814  MachCallNode      *mcall;
815
816#ifdef ENABLE_ZAP_DEAD_LOCALS
817  assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
818#endif
819
820  int safepoint_pc_offset = current_offset;
821  bool is_method_handle_invoke = false;
822  bool return_oop = false;
823
824  // Add the safepoint in the DebugInfoRecorder
825  if( !mach->is_MachCall() ) {
826    mcall = NULL;
827    debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
828  } else {
829    mcall = mach->as_MachCall();
830
831    // Is the call a MethodHandle call?
832    if (mcall->is_MachCallJava()) {
833      if (mcall->as_MachCallJava()->_method_handle_invoke) {
834        assert(has_method_handle_invokes(), "must have been set during call generation");
835        is_method_handle_invoke = true;
836      }
837    }
838
839    // Check if a call returns an object.
840    if (mcall->return_value_is_used() &&
841        mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
842      return_oop = true;
843    }
844    safepoint_pc_offset += mcall->ret_addr_offset();
845    debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
846  }
847
848  // Loop over the JVMState list to add scope information
849  // Do not skip safepoints with a NULL method, they need monitor info
850  JVMState* youngest_jvms = sfn->jvms();
851  int max_depth = youngest_jvms->depth();
852
853  // Allocate the object pool for scalar-replaced objects -- the map from
854  // small-integer keys (which can be recorded in the local and ostack
855  // arrays) to descriptions of the object state.
856  GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
857
858  // Visit scopes from oldest to youngest.
859  for (int depth = 1; depth <= max_depth; depth++) {
860    JVMState* jvms = youngest_jvms->of_depth(depth);
861    int idx;
862    ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
863    // Safepoints that do not have method() set only provide oop-map and monitor info
864    // to support GC; these do not support deoptimization.
865    int num_locs = (method == NULL) ? 0 : jvms->loc_size();
866    int num_exps = (method == NULL) ? 0 : jvms->stk_size();
867    int num_mon  = jvms->nof_monitors();
868    assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
869           "JVMS local count must match that of the method");
870
871    // Add Local and Expression Stack Information
872
873    // Insert locals into the locarray
874    GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
875    for( idx = 0; idx < num_locs; idx++ ) {
876      FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
877    }
878
879    // Insert expression stack entries into the exparray
880    GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
881    for( idx = 0; idx < num_exps; idx++ ) {
882      FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
883    }
884
885    // Add in mappings of the monitors
886    assert( !method ||
887            !method->is_synchronized() ||
888            method->is_native() ||
889            num_mon > 0 ||
890            !GenerateSynchronizationCode,
891            "monitors must always exist for synchronized methods");
892
893    // Build the growable array of ScopeValues for exp stack
894    GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
895
896    // Loop over monitors and insert into array
897    for(idx = 0; idx < num_mon; idx++) {
898      // Grab the node that defines this monitor
899      Node* box_node = sfn->monitor_box(jvms, idx);
900      Node* obj_node = sfn->monitor_obj(jvms, idx);
901
902      // Create ScopeValue for object
903      ScopeValue *scval = NULL;
904
905      if( obj_node->is_SafePointScalarObject() ) {
906        SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
907        scval = Compile::sv_for_node_id(objs, spobj->_idx);
908        if (scval == NULL) {
909          const Type *t = obj_node->bottom_type();
910          ciKlass* cik = t->is_oopptr()->klass();
911          assert(cik->is_instance_klass() ||
912                 cik->is_array_klass(), "Not supported allocation.");
913          ObjectValue* sv = new ObjectValue(spobj->_idx,
914                                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
915          Compile::set_sv_for_object_node(objs, sv);
916
917          uint first_ind = spobj->first_index();
918          for (uint i = 0; i < spobj->n_fields(); i++) {
919            Node* fld_node = sfn->in(first_ind+i);
920            (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
921          }
922          scval = sv;
923        }
924      } else if( !obj_node->is_Con() ) {
925        OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
926        if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
927          scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
928        } else {
929          scval = new_loc_value( _regalloc, obj_reg, Location::oop );
930        }
931      } else {
932        const TypePtr *tp = obj_node->bottom_type()->make_ptr();
933        scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
934      }
935
936      OptoReg::Name box_reg = BoxLockNode::reg(box_node);
937      Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
938      bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
939      monarray->append(new MonitorValue(scval, basic_lock, eliminated));
940    }
941
942    // We dump the object pool first, since deoptimization reads it in first.
943    debug_info()->dump_object_pool(objs);
944
945    // Build first class objects to pass to scope
946    DebugToken *locvals = debug_info()->create_scope_values(locarray);
947    DebugToken *expvals = debug_info()->create_scope_values(exparray);
948    DebugToken *monvals = debug_info()->create_monitor_values(monarray);
949
950    // Make method available for all Safepoints
951    ciMethod* scope_method = method ? method : _method;
952    // Describe the scope here
953    assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
954    assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
955    // Now we can describe the scope.
956    debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
957  } // End jvms loop
958
959  // Mark the end of the scope set.
960  debug_info()->end_safepoint(safepoint_pc_offset);
961}
962
963
964
965// A simplified version of Process_OopMap_Node, to handle non-safepoints.
966class NonSafepointEmitter {
967  Compile*  C;
968  JVMState* _pending_jvms;
969  int       _pending_offset;
970
971  void emit_non_safepoint();
972
973 public:
974  NonSafepointEmitter(Compile* compile) {
975    this->C = compile;
976    _pending_jvms = NULL;
977    _pending_offset = 0;
978  }
979
980  void observe_instruction(Node* n, int pc_offset) {
981    if (!C->debug_info()->recording_non_safepoints())  return;
982
983    Node_Notes* nn = C->node_notes_at(n->_idx);
984    if (nn == NULL || nn->jvms() == NULL)  return;
985    if (_pending_jvms != NULL &&
986        _pending_jvms->same_calls_as(nn->jvms())) {
987      // Repeated JVMS?  Stretch it up here.
988      _pending_offset = pc_offset;
989    } else {
990      if (_pending_jvms != NULL &&
991          _pending_offset < pc_offset) {
992        emit_non_safepoint();
993      }
994      _pending_jvms = NULL;
995      if (pc_offset > C->debug_info()->last_pc_offset()) {
996        // This is the only way _pending_jvms can become non-NULL:
997        _pending_jvms = nn->jvms();
998        _pending_offset = pc_offset;
999      }
1000    }
1001  }
1002
1003  // Stay out of the way of real safepoints:
1004  void observe_safepoint(JVMState* jvms, int pc_offset) {
1005    if (_pending_jvms != NULL &&
1006        !_pending_jvms->same_calls_as(jvms) &&
1007        _pending_offset < pc_offset) {
1008      emit_non_safepoint();
1009    }
1010    _pending_jvms = NULL;
1011  }
1012
1013  void flush_at_end() {
1014    if (_pending_jvms != NULL) {
1015      emit_non_safepoint();
1016    }
1017    _pending_jvms = NULL;
1018  }
1019};
1020
1021void NonSafepointEmitter::emit_non_safepoint() {
1022  JVMState* youngest_jvms = _pending_jvms;
1023  int       pc_offset     = _pending_offset;
1024
1025  // Clear it now:
1026  _pending_jvms = NULL;
1027
1028  DebugInformationRecorder* debug_info = C->debug_info();
1029  assert(debug_info->recording_non_safepoints(), "sanity");
1030
1031  debug_info->add_non_safepoint(pc_offset);
1032  int max_depth = youngest_jvms->depth();
1033
1034  // Visit scopes from oldest to youngest.
1035  for (int depth = 1; depth <= max_depth; depth++) {
1036    JVMState* jvms = youngest_jvms->of_depth(depth);
1037    ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1038    assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1039    debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
1040  }
1041
1042  // Mark the end of the scope set.
1043  debug_info->end_non_safepoint(pc_offset);
1044}
1045
1046//------------------------------init_buffer------------------------------------
1047CodeBuffer* Compile::init_buffer(uint* blk_starts) {
1048
1049  // Set the initially allocated size
1050  int  code_req   = initial_code_capacity;
1051  int  locs_req   = initial_locs_capacity;
1052  int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
1053  int  const_req  = initial_const_capacity;
1054
1055  int  pad_req    = NativeCall::instruction_size;
1056  // The extra spacing after the code is necessary on some platforms.
1057  // Sometimes we need to patch in a jump after the last instruction,
1058  // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1059
1060  // Compute the byte offset where we can store the deopt pc.
1061  if (fixed_slots() != 0) {
1062    _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1063  }
1064
1065  // Compute prolog code size
1066  _method_size = 0;
1067  _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
1068#ifdef IA64
1069  if (save_argument_registers()) {
1070    // 4815101: this is a stub with implicit and unknown precision fp args.
1071    // The usual spill mechanism can only generate stfd's in this case, which
1072    // doesn't work if the fp reg to spill contains a single-precision denorm.
1073    // Instead, we hack around the normal spill mechanism using stfspill's and
1074    // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1075    // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1076    //
1077    // If we ever implement 16-byte 'registers' == stack slots, we can
1078    // get rid of this hack and have SpillCopy generate stfspill/ldffill
1079    // instead of stfd/stfs/ldfd/ldfs.
1080    _frame_slots += 8*(16/BytesPerInt);
1081  }
1082#endif
1083  assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1084
1085  if (has_mach_constant_base_node()) {
1086    // Fill the constant table.
1087    // Note:  This must happen before shorten_branches.
1088    for (uint i = 0; i < _cfg->_num_blocks; i++) {
1089      Block* b = _cfg->_blocks[i];
1090
1091      for (uint j = 0; j < b->_nodes.size(); j++) {
1092        Node* n = b->_nodes[j];
1093
1094        // If the node is a MachConstantNode evaluate the constant
1095        // value section.
1096        if (n->is_MachConstant()) {
1097          MachConstantNode* machcon = n->as_MachConstant();
1098          machcon->eval_constant(C);
1099        }
1100      }
1101    }
1102
1103    // Calculate the offsets of the constants and the size of the
1104    // constant table (including the padding to the next section).
1105    constant_table().calculate_offsets_and_size();
1106    const_req = constant_table().size();
1107  }
1108
1109  // Initialize the space for the BufferBlob used to find and verify
1110  // instruction size in MachNode::emit_size()
1111  init_scratch_buffer_blob(const_req);
1112  if (failing())  return NULL; // Out of memory
1113
1114  // Pre-compute the length of blocks and replace
1115  // long branches with short if machine supports it.
1116  shorten_branches(blk_starts, code_req, locs_req, stub_req);
1117
1118  // nmethod and CodeBuffer count stubs & constants as part of method's code.
1119  int exception_handler_req = size_exception_handler();
1120  int deopt_handler_req = size_deopt_handler();
1121  exception_handler_req += MAX_stubs_size; // add marginal slop for handler
1122  deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
1123  stub_req += MAX_stubs_size;   // ensure per-stub margin
1124  code_req += MAX_inst_size;    // ensure per-instruction margin
1125
1126  if (StressCodeBuffers)
1127    code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1128
1129  int total_req =
1130    const_req +
1131    code_req +
1132    pad_req +
1133    stub_req +
1134    exception_handler_req +
1135    deopt_handler_req;               // deopt handler
1136
1137  if (has_method_handle_invokes())
1138    total_req += deopt_handler_req;  // deopt MH handler
1139
1140  CodeBuffer* cb = code_buffer();
1141  cb->initialize(total_req, locs_req);
1142
1143  // Have we run out of code space?
1144  if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1145    C->record_failure("CodeCache is full");
1146    return NULL;
1147  }
1148  // Configure the code buffer.
1149  cb->initialize_consts_size(const_req);
1150  cb->initialize_stubs_size(stub_req);
1151  cb->initialize_oop_recorder(env()->oop_recorder());
1152
1153  // fill in the nop array for bundling computations
1154  MachNode *_nop_list[Bundle::_nop_count];
1155  Bundle::initialize_nops(_nop_list, this);
1156
1157  return cb;
1158}
1159
1160//------------------------------fill_buffer------------------------------------
1161void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1162  // blk_starts[] contains offsets calculated during short branches processing,
1163  // offsets should not be increased during following steps.
1164
1165  // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1166  // of a loop. It is used to determine the padding for loop alignment.
1167  compute_loop_first_inst_sizes();
1168
1169  // Create oopmap set.
1170  _oop_map_set = new OopMapSet();
1171
1172  // !!!!! This preserves old handling of oopmaps for now
1173  debug_info()->set_oopmaps(_oop_map_set);
1174
1175  uint nblocks  = _cfg->_num_blocks;
1176  // Count and start of implicit null check instructions
1177  uint inct_cnt = 0;
1178  uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1179
1180  // Count and start of calls
1181  uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1182
1183  uint  return_offset = 0;
1184  int nop_size = (new (this) MachNopNode())->size(_regalloc);
1185
1186  int previous_offset = 0;
1187  int current_offset  = 0;
1188  int last_call_offset = -1;
1189  int last_avoid_back_to_back_offset = -1;
1190#ifdef ASSERT
1191  uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1192  uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1193  uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1194  uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1195#endif
1196
1197  // Create an array of unused labels, one for each basic block, if printing is enabled
1198#ifndef PRODUCT
1199  int *node_offsets      = NULL;
1200  uint node_offset_limit = unique();
1201
1202  if (print_assembly())
1203    node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1204#endif
1205
1206  NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1207
1208  // Emit the constant table.
1209  if (has_mach_constant_base_node()) {
1210    constant_table().emit(*cb);
1211  }
1212
1213  // Create an array of labels, one for each basic block
1214  Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1215  for (uint i=0; i <= nblocks; i++) {
1216    blk_labels[i].init();
1217  }
1218
1219  // ------------------
1220  // Now fill in the code buffer
1221  Node *delay_slot = NULL;
1222
1223  for (uint i=0; i < nblocks; i++) {
1224    Block *b = _cfg->_blocks[i];
1225
1226    Node *head = b->head();
1227
1228    // If this block needs to start aligned (i.e, can be reached other
1229    // than by falling-thru from the previous block), then force the
1230    // start of a new bundle.
1231    if (Pipeline::requires_bundling() && starts_bundle(head))
1232      cb->flush_bundle(true);
1233
1234#ifdef ASSERT
1235    if (!b->is_connector()) {
1236      stringStream st;
1237      b->dump_head(&_cfg->_bbs, &st);
1238      MacroAssembler(cb).block_comment(st.as_string());
1239    }
1240    jmp_target[i] = 0;
1241    jmp_offset[i] = 0;
1242    jmp_size[i]   = 0;
1243    jmp_rule[i]   = 0;
1244#endif
1245    int blk_offset = current_offset;
1246
1247    // Define the label at the beginning of the basic block
1248    MacroAssembler(cb).bind(blk_labels[b->_pre_order]);
1249
1250    uint last_inst = b->_nodes.size();
1251
1252    // Emit block normally, except for last instruction.
1253    // Emit means "dump code bits into code buffer".
1254    for (uint j = 0; j<last_inst; j++) {
1255
1256      // Get the node
1257      Node* n = b->_nodes[j];
1258
1259      // See if delay slots are supported
1260      if (valid_bundle_info(n) &&
1261          node_bundling(n)->used_in_unconditional_delay()) {
1262        assert(delay_slot == NULL, "no use of delay slot node");
1263        assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1264
1265        delay_slot = n;
1266        continue;
1267      }
1268
1269      // If this starts a new instruction group, then flush the current one
1270      // (but allow split bundles)
1271      if (Pipeline::requires_bundling() && starts_bundle(n))
1272        cb->flush_bundle(false);
1273
1274      // The following logic is duplicated in the code ifdeffed for
1275      // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1276      // should be factored out.  Or maybe dispersed to the nodes?
1277
1278      // Special handling for SafePoint/Call Nodes
1279      bool is_mcall = false;
1280      if (n->is_Mach()) {
1281        MachNode *mach = n->as_Mach();
1282        is_mcall = n->is_MachCall();
1283        bool is_sfn = n->is_MachSafePoint();
1284
1285        // If this requires all previous instructions be flushed, then do so
1286        if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1287          cb->flush_bundle(true);
1288          current_offset = cb->insts_size();
1289        }
1290
1291        // A padding may be needed again since a previous instruction
1292        // could be moved to delay slot.
1293
1294        // align the instruction if necessary
1295        int padding = mach->compute_padding(current_offset);
1296        // Make sure safepoint node for polling is distinct from a call's
1297        // return by adding a nop if needed.
1298        if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1299          padding = nop_size;
1300        }
1301        if (padding == 0 && mach->avoid_back_to_back() &&
1302            current_offset == last_avoid_back_to_back_offset) {
1303          // Avoid back to back some instructions.
1304          padding = nop_size;
1305        }
1306
1307        if(padding > 0) {
1308          assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1309          int nops_cnt = padding / nop_size;
1310          MachNode *nop = new (this) MachNopNode(nops_cnt);
1311          b->_nodes.insert(j++, nop);
1312          last_inst++;
1313          _cfg->_bbs.map( nop->_idx, b );
1314          nop->emit(*cb, _regalloc);
1315          cb->flush_bundle(true);
1316          current_offset = cb->insts_size();
1317        }
1318
1319        // Remember the start of the last call in a basic block
1320        if (is_mcall) {
1321          MachCallNode *mcall = mach->as_MachCall();
1322
1323          // This destination address is NOT PC-relative
1324          mcall->method_set((intptr_t)mcall->entry_point());
1325
1326          // Save the return address
1327          call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
1328
1329          if (mcall->is_MachCallLeaf()) {
1330            is_mcall = false;
1331            is_sfn = false;
1332          }
1333        }
1334
1335        // sfn will be valid whenever mcall is valid now because of inheritance
1336        if (is_sfn || is_mcall) {
1337
1338          // Handle special safepoint nodes for synchronization
1339          if (!is_mcall) {
1340            MachSafePointNode *sfn = mach->as_MachSafePoint();
1341            // !!!!! Stubs only need an oopmap right now, so bail out
1342            if (sfn->jvms()->method() == NULL) {
1343              // Write the oopmap directly to the code blob??!!
1344#             ifdef ENABLE_ZAP_DEAD_LOCALS
1345              assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1346#             endif
1347              continue;
1348            }
1349          } // End synchronization
1350
1351          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1352                                           current_offset);
1353          Process_OopMap_Node(mach, current_offset);
1354        } // End if safepoint
1355
1356        // If this is a null check, then add the start of the previous instruction to the list
1357        else if( mach->is_MachNullCheck() ) {
1358          inct_starts[inct_cnt++] = previous_offset;
1359        }
1360
1361        // If this is a branch, then fill in the label with the target BB's label
1362        else if (mach->is_MachBranch()) {
1363          // This requires the TRUE branch target be in succs[0]
1364          uint block_num = b->non_connector_successor(0)->_pre_order;
1365
1366          // Try to replace long branch if delay slot is not used,
1367          // it is mostly for back branches since forward branch's
1368          // distance is not updated yet.
1369          bool delay_slot_is_used = valid_bundle_info(n) &&
1370                                    node_bundling(n)->use_unconditional_delay();
1371          if (!delay_slot_is_used && mach->may_be_short_branch()) {
1372           assert(delay_slot == NULL, "not expecting delay slot node");
1373           int br_size = n->size(_regalloc);
1374            int offset = blk_starts[block_num] - current_offset;
1375            if (block_num >= i) {
1376              // Current and following block's offset are not
1377              // finilized yet, adjust distance by the difference
1378              // between calculated and final offsets of current block.
1379              offset -= (blk_starts[i] - blk_offset);
1380            }
1381            // In the following code a nop could be inserted before
1382            // the branch which will increase the backward distance.
1383            bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1384            if (needs_padding && offset <= 0)
1385              offset -= nop_size;
1386
1387            if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
1388              // We've got a winner.  Replace this branch.
1389              MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
1390
1391              // Update the jmp_size.
1392              int new_size = replacement->size(_regalloc);
1393              assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1394              // Insert padding between avoid_back_to_back branches.
1395              if (needs_padding && replacement->avoid_back_to_back()) {
1396                MachNode *nop = new (this) MachNopNode();
1397                b->_nodes.insert(j++, nop);
1398                _cfg->_bbs.map(nop->_idx, b);
1399                last_inst++;
1400                nop->emit(*cb, _regalloc);
1401                cb->flush_bundle(true);
1402                current_offset = cb->insts_size();
1403              }
1404#ifdef ASSERT
1405              jmp_target[i] = block_num;
1406              jmp_offset[i] = current_offset - blk_offset;
1407              jmp_size[i]   = new_size;
1408              jmp_rule[i]   = mach->rule();
1409#endif
1410              b->_nodes.map(j, replacement);
1411              mach->subsume_by(replacement, C);
1412              n    = replacement;
1413              mach = replacement;
1414            }
1415          }
1416          mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1417        } else if (mach->ideal_Opcode() == Op_Jump) {
1418          for (uint h = 0; h < b->_num_succs; h++) {
1419            Block* succs_block = b->_succs[h];
1420            for (uint j = 1; j < succs_block->num_preds(); j++) {
1421              Node* jpn = succs_block->pred(j);
1422              if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1423                uint block_num = succs_block->non_connector()->_pre_order;
1424                Label *blkLabel = &blk_labels[block_num];
1425                mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1426              }
1427            }
1428          }
1429        }
1430
1431#ifdef ASSERT
1432        // Check that oop-store precedes the card-mark
1433        else if (mach->ideal_Opcode() == Op_StoreCM) {
1434          uint storeCM_idx = j;
1435          int count = 0;
1436          for (uint prec = mach->req(); prec < mach->len(); prec++) {
1437            Node *oop_store = mach->in(prec);  // Precedence edge
1438            if (oop_store == NULL) continue;
1439            count++;
1440            uint i4;
1441            for( i4 = 0; i4 < last_inst; ++i4 ) {
1442              if( b->_nodes[i4] == oop_store ) break;
1443            }
1444            // Note: This test can provide a false failure if other precedence
1445            // edges have been added to the storeCMNode.
1446            assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1447          }
1448          assert(count > 0, "storeCM expects at least one precedence edge");
1449        }
1450#endif
1451
1452        else if (!n->is_Proj()) {
1453          // Remember the beginning of the previous instruction, in case
1454          // it's followed by a flag-kill and a null-check.  Happens on
1455          // Intel all the time, with add-to-memory kind of opcodes.
1456          previous_offset = current_offset;
1457        }
1458      }
1459
1460      // Verify that there is sufficient space remaining
1461      cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1462      if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1463        C->record_failure("CodeCache is full");
1464        return;
1465      }
1466
1467      // Save the offset for the listing
1468#ifndef PRODUCT
1469      if (node_offsets && n->_idx < node_offset_limit)
1470        node_offsets[n->_idx] = cb->insts_size();
1471#endif
1472
1473      // "Normal" instruction case
1474      DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
1475      n->emit(*cb, _regalloc);
1476      current_offset  = cb->insts_size();
1477
1478#ifdef ASSERT
1479      if (n->size(_regalloc) < (current_offset-instr_offset)) {
1480        n->dump();
1481        assert(false, "wrong size of mach node");
1482      }
1483#endif
1484      non_safepoints.observe_instruction(n, current_offset);
1485
1486      // mcall is last "call" that can be a safepoint
1487      // record it so we can see if a poll will directly follow it
1488      // in which case we'll need a pad to make the PcDesc sites unique
1489      // see  5010568. This can be slightly inaccurate but conservative
1490      // in the case that return address is not actually at current_offset.
1491      // This is a small price to pay.
1492
1493      if (is_mcall) {
1494        last_call_offset = current_offset;
1495      }
1496
1497      if (n->is_Mach() && n->as_Mach()->avoid_back_to_back()) {
1498        // Avoid back to back some instructions.
1499        last_avoid_back_to_back_offset = current_offset;
1500      }
1501
1502      // See if this instruction has a delay slot
1503      if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1504        assert(delay_slot != NULL, "expecting delay slot node");
1505
1506        // Back up 1 instruction
1507        cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1508
1509        // Save the offset for the listing
1510#ifndef PRODUCT
1511        if (node_offsets && delay_slot->_idx < node_offset_limit)
1512          node_offsets[delay_slot->_idx] = cb->insts_size();
1513#endif
1514
1515        // Support a SafePoint in the delay slot
1516        if (delay_slot->is_MachSafePoint()) {
1517          MachNode *mach = delay_slot->as_Mach();
1518          // !!!!! Stubs only need an oopmap right now, so bail out
1519          if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
1520            // Write the oopmap directly to the code blob??!!
1521#           ifdef ENABLE_ZAP_DEAD_LOCALS
1522            assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1523#           endif
1524            delay_slot = NULL;
1525            continue;
1526          }
1527
1528          int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1529          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1530                                           adjusted_offset);
1531          // Generate an OopMap entry
1532          Process_OopMap_Node(mach, adjusted_offset);
1533        }
1534
1535        // Insert the delay slot instruction
1536        delay_slot->emit(*cb, _regalloc);
1537
1538        // Don't reuse it
1539        delay_slot = NULL;
1540      }
1541
1542    } // End for all instructions in block
1543
1544    // If the next block is the top of a loop, pad this block out to align
1545    // the loop top a little. Helps prevent pipe stalls at loop back branches.
1546    if (i < nblocks-1) {
1547      Block *nb = _cfg->_blocks[i+1];
1548      int padding = nb->alignment_padding(current_offset);
1549      if( padding > 0 ) {
1550        MachNode *nop = new (this) MachNopNode(padding / nop_size);
1551        b->_nodes.insert( b->_nodes.size(), nop );
1552        _cfg->_bbs.map( nop->_idx, b );
1553        nop->emit(*cb, _regalloc);
1554        current_offset = cb->insts_size();
1555      }
1556    }
1557    // Verify that the distance for generated before forward
1558    // short branches is still valid.
1559    guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1560
1561    // Save new block start offset
1562    blk_starts[i] = blk_offset;
1563  } // End of for all blocks
1564  blk_starts[nblocks] = current_offset;
1565
1566  non_safepoints.flush_at_end();
1567
1568  // Offset too large?
1569  if (failing())  return;
1570
1571  // Define a pseudo-label at the end of the code
1572  MacroAssembler(cb).bind( blk_labels[nblocks] );
1573
1574  // Compute the size of the first block
1575  _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1576
1577  assert(cb->insts_size() < 500000, "method is unreasonably large");
1578
1579#ifdef ASSERT
1580  for (uint i = 0; i < nblocks; i++) { // For all blocks
1581    if (jmp_target[i] != 0) {
1582      int br_size = jmp_size[i];
1583      int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1584      if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1585        tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1586        assert(false, "Displacement too large for short jmp");
1587      }
1588    }
1589  }
1590#endif
1591
1592  // ------------------
1593
1594#ifndef PRODUCT
1595  // Information on the size of the method, without the extraneous code
1596  Scheduling::increment_method_size(cb->insts_size());
1597#endif
1598
1599  // ------------------
1600  // Fill in exception table entries.
1601  FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1602
1603  // Only java methods have exception handlers and deopt handlers
1604  if (_method) {
1605    // Emit the exception handler code.
1606    _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
1607    // Emit the deopt handler code.
1608    _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
1609
1610    // Emit the MethodHandle deopt handler code (if required).
1611    if (has_method_handle_invokes()) {
1612      // We can use the same code as for the normal deopt handler, we
1613      // just need a different entry point address.
1614      _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
1615    }
1616  }
1617
1618  // One last check for failed CodeBuffer::expand:
1619  if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1620    C->record_failure("CodeCache is full");
1621    return;
1622  }
1623
1624#ifndef PRODUCT
1625  // Dump the assembly code, including basic-block numbers
1626  if (print_assembly()) {
1627    ttyLocker ttyl;  // keep the following output all in one block
1628    if (!VMThread::should_terminate()) {  // test this under the tty lock
1629      // This output goes directly to the tty, not the compiler log.
1630      // To enable tools to match it up with the compilation activity,
1631      // be sure to tag this tty output with the compile ID.
1632      if (xtty != NULL) {
1633        xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1634                   is_osr_compilation()    ? " compile_kind='osr'" :
1635                   "");
1636      }
1637      if (method() != NULL) {
1638        method()->print_metadata();
1639      }
1640      dump_asm(node_offsets, node_offset_limit);
1641      if (xtty != NULL) {
1642        xtty->tail("opto_assembly");
1643      }
1644    }
1645  }
1646#endif
1647
1648}
1649
1650void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1651  _inc_table.set_size(cnt);
1652
1653  uint inct_cnt = 0;
1654  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1655    Block *b = _cfg->_blocks[i];
1656    Node *n = NULL;
1657    int j;
1658
1659    // Find the branch; ignore trailing NOPs.
1660    for( j = b->_nodes.size()-1; j>=0; j-- ) {
1661      n = b->_nodes[j];
1662      if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
1663        break;
1664    }
1665
1666    // If we didn't find anything, continue
1667    if( j < 0 ) continue;
1668
1669    // Compute ExceptionHandlerTable subtable entry and add it
1670    // (skip empty blocks)
1671    if( n->is_Catch() ) {
1672
1673      // Get the offset of the return from the call
1674      uint call_return = call_returns[b->_pre_order];
1675#ifdef ASSERT
1676      assert( call_return > 0, "no call seen for this basic block" );
1677      while( b->_nodes[--j]->is_MachProj() ) ;
1678      assert( b->_nodes[j]->is_MachCall(), "CatchProj must follow call" );
1679#endif
1680      // last instruction is a CatchNode, find it's CatchProjNodes
1681      int nof_succs = b->_num_succs;
1682      // allocate space
1683      GrowableArray<intptr_t> handler_bcis(nof_succs);
1684      GrowableArray<intptr_t> handler_pcos(nof_succs);
1685      // iterate through all successors
1686      for (int j = 0; j < nof_succs; j++) {
1687        Block* s = b->_succs[j];
1688        bool found_p = false;
1689        for( uint k = 1; k < s->num_preds(); k++ ) {
1690          Node *pk = s->pred(k);
1691          if( pk->is_CatchProj() && pk->in(0) == n ) {
1692            const CatchProjNode* p = pk->as_CatchProj();
1693            found_p = true;
1694            // add the corresponding handler bci & pco information
1695            if( p->_con != CatchProjNode::fall_through_index ) {
1696              // p leads to an exception handler (and is not fall through)
1697              assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
1698              // no duplicates, please
1699              if( !handler_bcis.contains(p->handler_bci()) ) {
1700                uint block_num = s->non_connector()->_pre_order;
1701                handler_bcis.append(p->handler_bci());
1702                handler_pcos.append(blk_labels[block_num].loc_pos());
1703              }
1704            }
1705          }
1706        }
1707        assert(found_p, "no matching predecessor found");
1708        // Note:  Due to empty block removal, one block may have
1709        // several CatchProj inputs, from the same Catch.
1710      }
1711
1712      // Set the offset of the return from the call
1713      _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1714      continue;
1715    }
1716
1717    // Handle implicit null exception table updates
1718    if( n->is_MachNullCheck() ) {
1719      uint block_num = b->non_connector_successor(0)->_pre_order;
1720      _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
1721      continue;
1722    }
1723  } // End of for all blocks fill in exception table entries
1724}
1725
1726// Static Variables
1727#ifndef PRODUCT
1728uint Scheduling::_total_nop_size = 0;
1729uint Scheduling::_total_method_size = 0;
1730uint Scheduling::_total_branches = 0;
1731uint Scheduling::_total_unconditional_delays = 0;
1732uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1733#endif
1734
1735// Initializer for class Scheduling
1736
1737Scheduling::Scheduling(Arena *arena, Compile &compile)
1738  : _arena(arena),
1739    _cfg(compile.cfg()),
1740    _bbs(compile.cfg()->_bbs),
1741    _regalloc(compile.regalloc()),
1742    _reg_node(arena),
1743    _bundle_instr_count(0),
1744    _bundle_cycle_number(0),
1745    _scheduled(arena),
1746    _available(arena),
1747    _next_node(NULL),
1748    _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1749    _pinch_free_list(arena)
1750#ifndef PRODUCT
1751  , _branches(0)
1752  , _unconditional_delays(0)
1753#endif
1754{
1755  // Create a MachNopNode
1756  _nop = new (&compile) MachNopNode();
1757
1758  // Now that the nops are in the array, save the count
1759  // (but allow entries for the nops)
1760  _node_bundling_limit = compile.unique();
1761  uint node_max = _regalloc->node_regs_max_index();
1762
1763  compile.set_node_bundling_limit(_node_bundling_limit);
1764
1765  // This one is persistent within the Compile class
1766  _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1767
1768  // Allocate space for fixed-size arrays
1769  _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1770  _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1771  _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1772
1773  // Clear the arrays
1774  memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1775  memset(_node_latency,       0, node_max * sizeof(unsigned short));
1776  memset(_uses,               0, node_max * sizeof(short));
1777  memset(_current_latency,    0, node_max * sizeof(unsigned short));
1778
1779  // Clear the bundling information
1780  memcpy(_bundle_use_elements,
1781    Pipeline_Use::elaborated_elements,
1782    sizeof(Pipeline_Use::elaborated_elements));
1783
1784  // Get the last node
1785  Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
1786
1787  _next_node = bb->_nodes[bb->_nodes.size()-1];
1788}
1789
1790#ifndef PRODUCT
1791// Scheduling destructor
1792Scheduling::~Scheduling() {
1793  _total_branches             += _branches;
1794  _total_unconditional_delays += _unconditional_delays;
1795}
1796#endif
1797
1798// Step ahead "i" cycles
1799void Scheduling::step(uint i) {
1800
1801  Bundle *bundle = node_bundling(_next_node);
1802  bundle->set_starts_bundle();
1803
1804  // Update the bundle record, but leave the flags information alone
1805  if (_bundle_instr_count > 0) {
1806    bundle->set_instr_count(_bundle_instr_count);
1807    bundle->set_resources_used(_bundle_use.resourcesUsed());
1808  }
1809
1810  // Update the state information
1811  _bundle_instr_count = 0;
1812  _bundle_cycle_number += i;
1813  _bundle_use.step(i);
1814}
1815
1816void Scheduling::step_and_clear() {
1817  Bundle *bundle = node_bundling(_next_node);
1818  bundle->set_starts_bundle();
1819
1820  // Update the bundle record
1821  if (_bundle_instr_count > 0) {
1822    bundle->set_instr_count(_bundle_instr_count);
1823    bundle->set_resources_used(_bundle_use.resourcesUsed());
1824
1825    _bundle_cycle_number += 1;
1826  }
1827
1828  // Clear the bundling information
1829  _bundle_instr_count = 0;
1830  _bundle_use.reset();
1831
1832  memcpy(_bundle_use_elements,
1833    Pipeline_Use::elaborated_elements,
1834    sizeof(Pipeline_Use::elaborated_elements));
1835}
1836
1837//------------------------------ScheduleAndBundle------------------------------
1838// Perform instruction scheduling and bundling over the sequence of
1839// instructions in backwards order.
1840void Compile::ScheduleAndBundle() {
1841
1842  // Don't optimize this if it isn't a method
1843  if (!_method)
1844    return;
1845
1846  // Don't optimize this if scheduling is disabled
1847  if (!do_scheduling())
1848    return;
1849
1850  // Scheduling code works only with pairs (8 bytes) maximum.
1851  if (max_vector_size() > 8)
1852    return;
1853
1854  NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1855
1856  // Create a data structure for all the scheduling information
1857  Scheduling scheduling(Thread::current()->resource_area(), *this);
1858
1859  // Walk backwards over each basic block, computing the needed alignment
1860  // Walk over all the basic blocks
1861  scheduling.DoScheduling();
1862}
1863
1864//------------------------------ComputeLocalLatenciesForward-------------------
1865// Compute the latency of all the instructions.  This is fairly simple,
1866// because we already have a legal ordering.  Walk over the instructions
1867// from first to last, and compute the latency of the instruction based
1868// on the latency of the preceding instruction(s).
1869void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1870#ifndef PRODUCT
1871  if (_cfg->C->trace_opto_output())
1872    tty->print("# -> ComputeLocalLatenciesForward\n");
1873#endif
1874
1875  // Walk over all the schedulable instructions
1876  for( uint j=_bb_start; j < _bb_end; j++ ) {
1877
1878    // This is a kludge, forcing all latency calculations to start at 1.
1879    // Used to allow latency 0 to force an instruction to the beginning
1880    // of the bb
1881    uint latency = 1;
1882    Node *use = bb->_nodes[j];
1883    uint nlen = use->len();
1884
1885    // Walk over all the inputs
1886    for ( uint k=0; k < nlen; k++ ) {
1887      Node *def = use->in(k);
1888      if (!def)
1889        continue;
1890
1891      uint l = _node_latency[def->_idx] + use->latency(k);
1892      if (latency < l)
1893        latency = l;
1894    }
1895
1896    _node_latency[use->_idx] = latency;
1897
1898#ifndef PRODUCT
1899    if (_cfg->C->trace_opto_output()) {
1900      tty->print("# latency %4d: ", latency);
1901      use->dump();
1902    }
1903#endif
1904  }
1905
1906#ifndef PRODUCT
1907  if (_cfg->C->trace_opto_output())
1908    tty->print("# <- ComputeLocalLatenciesForward\n");
1909#endif
1910
1911} // end ComputeLocalLatenciesForward
1912
1913// See if this node fits into the present instruction bundle
1914bool Scheduling::NodeFitsInBundle(Node *n) {
1915  uint n_idx = n->_idx;
1916
1917  // If this is the unconditional delay instruction, then it fits
1918  if (n == _unconditional_delay_slot) {
1919#ifndef PRODUCT
1920    if (_cfg->C->trace_opto_output())
1921      tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1922#endif
1923    return (true);
1924  }
1925
1926  // If the node cannot be scheduled this cycle, skip it
1927  if (_current_latency[n_idx] > _bundle_cycle_number) {
1928#ifndef PRODUCT
1929    if (_cfg->C->trace_opto_output())
1930      tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1931        n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1932#endif
1933    return (false);
1934  }
1935
1936  const Pipeline *node_pipeline = n->pipeline();
1937
1938  uint instruction_count = node_pipeline->instructionCount();
1939  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1940    instruction_count = 0;
1941  else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1942    instruction_count++;
1943
1944  if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1945#ifndef PRODUCT
1946    if (_cfg->C->trace_opto_output())
1947      tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1948        n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1949#endif
1950    return (false);
1951  }
1952
1953  // Don't allow non-machine nodes to be handled this way
1954  if (!n->is_Mach() && instruction_count == 0)
1955    return (false);
1956
1957  // See if there is any overlap
1958  uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1959
1960  if (delay > 0) {
1961#ifndef PRODUCT
1962    if (_cfg->C->trace_opto_output())
1963      tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1964#endif
1965    return false;
1966  }
1967
1968#ifndef PRODUCT
1969  if (_cfg->C->trace_opto_output())
1970    tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
1971#endif
1972
1973  return true;
1974}
1975
1976Node * Scheduling::ChooseNodeToBundle() {
1977  uint siz = _available.size();
1978
1979  if (siz == 0) {
1980
1981#ifndef PRODUCT
1982    if (_cfg->C->trace_opto_output())
1983      tty->print("#   ChooseNodeToBundle: NULL\n");
1984#endif
1985    return (NULL);
1986  }
1987
1988  // Fast path, if only 1 instruction in the bundle
1989  if (siz == 1) {
1990#ifndef PRODUCT
1991    if (_cfg->C->trace_opto_output()) {
1992      tty->print("#   ChooseNodeToBundle (only 1): ");
1993      _available[0]->dump();
1994    }
1995#endif
1996    return (_available[0]);
1997  }
1998
1999  // Don't bother, if the bundle is already full
2000  if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2001    for ( uint i = 0; i < siz; i++ ) {
2002      Node *n = _available[i];
2003
2004      // Skip projections, we'll handle them another way
2005      if (n->is_Proj())
2006        continue;
2007
2008      // This presupposed that instructions are inserted into the
2009      // available list in a legality order; i.e. instructions that
2010      // must be inserted first are at the head of the list
2011      if (NodeFitsInBundle(n)) {
2012#ifndef PRODUCT
2013        if (_cfg->C->trace_opto_output()) {
2014          tty->print("#   ChooseNodeToBundle: ");
2015          n->dump();
2016        }
2017#endif
2018        return (n);
2019      }
2020    }
2021  }
2022
2023  // Nothing fits in this bundle, choose the highest priority
2024#ifndef PRODUCT
2025  if (_cfg->C->trace_opto_output()) {
2026    tty->print("#   ChooseNodeToBundle: ");
2027    _available[0]->dump();
2028  }
2029#endif
2030
2031  return _available[0];
2032}
2033
2034//------------------------------AddNodeToAvailableList-------------------------
2035void Scheduling::AddNodeToAvailableList(Node *n) {
2036  assert( !n->is_Proj(), "projections never directly made available" );
2037#ifndef PRODUCT
2038  if (_cfg->C->trace_opto_output()) {
2039    tty->print("#   AddNodeToAvailableList: ");
2040    n->dump();
2041  }
2042#endif
2043
2044  int latency = _current_latency[n->_idx];
2045
2046  // Insert in latency order (insertion sort)
2047  uint i;
2048  for ( i=0; i < _available.size(); i++ )
2049    if (_current_latency[_available[i]->_idx] > latency)
2050      break;
2051
2052  // Special Check for compares following branches
2053  if( n->is_Mach() && _scheduled.size() > 0 ) {
2054    int op = n->as_Mach()->ideal_Opcode();
2055    Node *last = _scheduled[0];
2056    if( last->is_MachIf() && last->in(1) == n &&
2057        ( op == Op_CmpI ||
2058          op == Op_CmpU ||
2059          op == Op_CmpP ||
2060          op == Op_CmpF ||
2061          op == Op_CmpD ||
2062          op == Op_CmpL ) ) {
2063
2064      // Recalculate position, moving to front of same latency
2065      for ( i=0 ; i < _available.size(); i++ )
2066        if (_current_latency[_available[i]->_idx] >= latency)
2067          break;
2068    }
2069  }
2070
2071  // Insert the node in the available list
2072  _available.insert(i, n);
2073
2074#ifndef PRODUCT
2075  if (_cfg->C->trace_opto_output())
2076    dump_available();
2077#endif
2078}
2079
2080//------------------------------DecrementUseCounts-----------------------------
2081void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2082  for ( uint i=0; i < n->len(); i++ ) {
2083    Node *def = n->in(i);
2084    if (!def) continue;
2085    if( def->is_Proj() )        // If this is a machine projection, then
2086      def = def->in(0);         // propagate usage thru to the base instruction
2087
2088    if( _bbs[def->_idx] != bb ) // Ignore if not block-local
2089      continue;
2090
2091    // Compute the latency
2092    uint l = _bundle_cycle_number + n->latency(i);
2093    if (_current_latency[def->_idx] < l)
2094      _current_latency[def->_idx] = l;
2095
2096    // If this does not have uses then schedule it
2097    if ((--_uses[def->_idx]) == 0)
2098      AddNodeToAvailableList(def);
2099  }
2100}
2101
2102//------------------------------AddNodeToBundle--------------------------------
2103void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2104#ifndef PRODUCT
2105  if (_cfg->C->trace_opto_output()) {
2106    tty->print("#   AddNodeToBundle: ");
2107    n->dump();
2108  }
2109#endif
2110
2111  // Remove this from the available list
2112  uint i;
2113  for (i = 0; i < _available.size(); i++)
2114    if (_available[i] == n)
2115      break;
2116  assert(i < _available.size(), "entry in _available list not found");
2117  _available.remove(i);
2118
2119  // See if this fits in the current bundle
2120  const Pipeline *node_pipeline = n->pipeline();
2121  const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2122
2123  // Check for instructions to be placed in the delay slot. We
2124  // do this before we actually schedule the current instruction,
2125  // because the delay slot follows the current instruction.
2126  if (Pipeline::_branch_has_delay_slot &&
2127      node_pipeline->hasBranchDelay() &&
2128      !_unconditional_delay_slot) {
2129
2130    uint siz = _available.size();
2131
2132    // Conditional branches can support an instruction that
2133    // is unconditionally executed and not dependent by the
2134    // branch, OR a conditionally executed instruction if
2135    // the branch is taken.  In practice, this means that
2136    // the first instruction at the branch target is
2137    // copied to the delay slot, and the branch goes to
2138    // the instruction after that at the branch target
2139    if ( n->is_MachBranch() ) {
2140
2141      assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2142      assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2143
2144#ifndef PRODUCT
2145      _branches++;
2146#endif
2147
2148      // At least 1 instruction is on the available list
2149      // that is not dependent on the branch
2150      for (uint i = 0; i < siz; i++) {
2151        Node *d = _available[i];
2152        const Pipeline *avail_pipeline = d->pipeline();
2153
2154        // Don't allow safepoints in the branch shadow, that will
2155        // cause a number of difficulties
2156        if ( avail_pipeline->instructionCount() == 1 &&
2157            !avail_pipeline->hasMultipleBundles() &&
2158            !avail_pipeline->hasBranchDelay() &&
2159            Pipeline::instr_has_unit_size() &&
2160            d->size(_regalloc) == Pipeline::instr_unit_size() &&
2161            NodeFitsInBundle(d) &&
2162            !node_bundling(d)->used_in_delay()) {
2163
2164          if (d->is_Mach() && !d->is_MachSafePoint()) {
2165            // A node that fits in the delay slot was found, so we need to
2166            // set the appropriate bits in the bundle pipeline information so
2167            // that it correctly indicates resource usage.  Later, when we
2168            // attempt to add this instruction to the bundle, we will skip
2169            // setting the resource usage.
2170            _unconditional_delay_slot = d;
2171            node_bundling(n)->set_use_unconditional_delay();
2172            node_bundling(d)->set_used_in_unconditional_delay();
2173            _bundle_use.add_usage(avail_pipeline->resourceUse());
2174            _current_latency[d->_idx] = _bundle_cycle_number;
2175            _next_node = d;
2176            ++_bundle_instr_count;
2177#ifndef PRODUCT
2178            _unconditional_delays++;
2179#endif
2180            break;
2181          }
2182        }
2183      }
2184    }
2185
2186    // No delay slot, add a nop to the usage
2187    if (!_unconditional_delay_slot) {
2188      // See if adding an instruction in the delay slot will overflow
2189      // the bundle.
2190      if (!NodeFitsInBundle(_nop)) {
2191#ifndef PRODUCT
2192        if (_cfg->C->trace_opto_output())
2193          tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2194#endif
2195        step(1);
2196      }
2197
2198      _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2199      _next_node = _nop;
2200      ++_bundle_instr_count;
2201    }
2202
2203    // See if the instruction in the delay slot requires a
2204    // step of the bundles
2205    if (!NodeFitsInBundle(n)) {
2206#ifndef PRODUCT
2207        if (_cfg->C->trace_opto_output())
2208          tty->print("#  *** STEP(branch won't fit) ***\n");
2209#endif
2210        // Update the state information
2211        _bundle_instr_count = 0;
2212        _bundle_cycle_number += 1;
2213        _bundle_use.step(1);
2214    }
2215  }
2216
2217  // Get the number of instructions
2218  uint instruction_count = node_pipeline->instructionCount();
2219  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2220    instruction_count = 0;
2221
2222  // Compute the latency information
2223  uint delay = 0;
2224
2225  if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2226    int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2227    if (relative_latency < 0)
2228      relative_latency = 0;
2229
2230    delay = _bundle_use.full_latency(relative_latency, node_usage);
2231
2232    // Does not fit in this bundle, start a new one
2233    if (delay > 0) {
2234      step(delay);
2235
2236#ifndef PRODUCT
2237      if (_cfg->C->trace_opto_output())
2238        tty->print("#  *** STEP(%d) ***\n", delay);
2239#endif
2240    }
2241  }
2242
2243  // If this was placed in the delay slot, ignore it
2244  if (n != _unconditional_delay_slot) {
2245
2246    if (delay == 0) {
2247      if (node_pipeline->hasMultipleBundles()) {
2248#ifndef PRODUCT
2249        if (_cfg->C->trace_opto_output())
2250          tty->print("#  *** STEP(multiple instructions) ***\n");
2251#endif
2252        step(1);
2253      }
2254
2255      else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2256#ifndef PRODUCT
2257        if (_cfg->C->trace_opto_output())
2258          tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2259            instruction_count + _bundle_instr_count,
2260            Pipeline::_max_instrs_per_cycle);
2261#endif
2262        step(1);
2263      }
2264    }
2265
2266    if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2267      _bundle_instr_count++;
2268
2269    // Set the node's latency
2270    _current_latency[n->_idx] = _bundle_cycle_number;
2271
2272    // Now merge the functional unit information
2273    if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2274      _bundle_use.add_usage(node_usage);
2275
2276    // Increment the number of instructions in this bundle
2277    _bundle_instr_count += instruction_count;
2278
2279    // Remember this node for later
2280    if (n->is_Mach())
2281      _next_node = n;
2282  }
2283
2284  // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2285  // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2286  // 'Schedule' them (basically ignore in the schedule) but do not insert them
2287  // into the block.  All other scheduled nodes get put in the schedule here.
2288  int op = n->Opcode();
2289  if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2290      (op != Op_Node &&         // Not an unused antidepedence node and
2291       // not an unallocated boxlock
2292       (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2293
2294    // Push any trailing projections
2295    if( bb->_nodes[bb->_nodes.size()-1] != n ) {
2296      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2297        Node *foi = n->fast_out(i);
2298        if( foi->is_Proj() )
2299          _scheduled.push(foi);
2300      }
2301    }
2302
2303    // Put the instruction in the schedule list
2304    _scheduled.push(n);
2305  }
2306
2307#ifndef PRODUCT
2308  if (_cfg->C->trace_opto_output())
2309    dump_available();
2310#endif
2311
2312  // Walk all the definitions, decrementing use counts, and
2313  // if a definition has a 0 use count, place it in the available list.
2314  DecrementUseCounts(n,bb);
2315}
2316
2317//------------------------------ComputeUseCount--------------------------------
2318// This method sets the use count within a basic block.  We will ignore all
2319// uses outside the current basic block.  As we are doing a backwards walk,
2320// any node we reach that has a use count of 0 may be scheduled.  This also
2321// avoids the problem of cyclic references from phi nodes, as long as phi
2322// nodes are at the front of the basic block.  This method also initializes
2323// the available list to the set of instructions that have no uses within this
2324// basic block.
2325void Scheduling::ComputeUseCount(const Block *bb) {
2326#ifndef PRODUCT
2327  if (_cfg->C->trace_opto_output())
2328    tty->print("# -> ComputeUseCount\n");
2329#endif
2330
2331  // Clear the list of available and scheduled instructions, just in case
2332  _available.clear();
2333  _scheduled.clear();
2334
2335  // No delay slot specified
2336  _unconditional_delay_slot = NULL;
2337
2338#ifdef ASSERT
2339  for( uint i=0; i < bb->_nodes.size(); i++ )
2340    assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
2341#endif
2342
2343  // Force the _uses count to never go to zero for unscheduable pieces
2344  // of the block
2345  for( uint k = 0; k < _bb_start; k++ )
2346    _uses[bb->_nodes[k]->_idx] = 1;
2347  for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
2348    _uses[bb->_nodes[l]->_idx] = 1;
2349
2350  // Iterate backwards over the instructions in the block.  Don't count the
2351  // branch projections at end or the block header instructions.
2352  for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2353    Node *n = bb->_nodes[j];
2354    if( n->is_Proj() ) continue; // Projections handled another way
2355
2356    // Account for all uses
2357    for ( uint k = 0; k < n->len(); k++ ) {
2358      Node *inp = n->in(k);
2359      if (!inp) continue;
2360      assert(inp != n, "no cycles allowed" );
2361      if( _bbs[inp->_idx] == bb ) { // Block-local use?
2362        if( inp->is_Proj() )    // Skip through Proj's
2363          inp = inp->in(0);
2364        ++_uses[inp->_idx];     // Count 1 block-local use
2365      }
2366    }
2367
2368    // If this instruction has a 0 use count, then it is available
2369    if (!_uses[n->_idx]) {
2370      _current_latency[n->_idx] = _bundle_cycle_number;
2371      AddNodeToAvailableList(n);
2372    }
2373
2374#ifndef PRODUCT
2375    if (_cfg->C->trace_opto_output()) {
2376      tty->print("#   uses: %3d: ", _uses[n->_idx]);
2377      n->dump();
2378    }
2379#endif
2380  }
2381
2382#ifndef PRODUCT
2383  if (_cfg->C->trace_opto_output())
2384    tty->print("# <- ComputeUseCount\n");
2385#endif
2386}
2387
2388// This routine performs scheduling on each basic block in reverse order,
2389// using instruction latencies and taking into account function unit
2390// availability.
2391void Scheduling::DoScheduling() {
2392#ifndef PRODUCT
2393  if (_cfg->C->trace_opto_output())
2394    tty->print("# -> DoScheduling\n");
2395#endif
2396
2397  Block *succ_bb = NULL;
2398  Block *bb;
2399
2400  // Walk over all the basic blocks in reverse order
2401  for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
2402    bb = _cfg->_blocks[i];
2403
2404#ifndef PRODUCT
2405    if (_cfg->C->trace_opto_output()) {
2406      tty->print("#  Schedule BB#%03d (initial)\n", i);
2407      for (uint j = 0; j < bb->_nodes.size(); j++)
2408        bb->_nodes[j]->dump();
2409    }
2410#endif
2411
2412    // On the head node, skip processing
2413    if( bb == _cfg->_broot )
2414      continue;
2415
2416    // Skip empty, connector blocks
2417    if (bb->is_connector())
2418      continue;
2419
2420    // If the following block is not the sole successor of
2421    // this one, then reset the pipeline information
2422    if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2423#ifndef PRODUCT
2424      if (_cfg->C->trace_opto_output()) {
2425        tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2426                   _next_node->_idx, _bundle_instr_count);
2427      }
2428#endif
2429      step_and_clear();
2430    }
2431
2432    // Leave untouched the starting instruction, any Phis, a CreateEx node
2433    // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
2434    _bb_end = bb->_nodes.size()-1;
2435    for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2436      Node *n = bb->_nodes[_bb_start];
2437      // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2438      // Also, MachIdealNodes do not get scheduled
2439      if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2440      MachNode *mach = n->as_Mach();
2441      int iop = mach->ideal_Opcode();
2442      if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2443      if( iop == Op_Con ) continue;      // Do not schedule Top
2444      if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2445          mach->pipeline() == MachNode::pipeline_class() &&
2446          !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2447        continue;
2448      break;                    // Funny loop structure to be sure...
2449    }
2450    // Compute last "interesting" instruction in block - last instruction we
2451    // might schedule.  _bb_end points just after last schedulable inst.  We
2452    // normally schedule conditional branches (despite them being forced last
2453    // in the block), because they have delay slots we can fill.  Calls all
2454    // have their delay slots filled in the template expansions, so we don't
2455    // bother scheduling them.
2456    Node *last = bb->_nodes[_bb_end];
2457    // Ignore trailing NOPs.
2458    while (_bb_end > 0 && last->is_Mach() &&
2459           last->as_Mach()->ideal_Opcode() == Op_Con) {
2460      last = bb->_nodes[--_bb_end];
2461    }
2462    assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2463    if( last->is_Catch() ||
2464       // Exclude unreachable path case when Halt node is in a separate block.
2465       (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2466      // There must be a prior call.  Skip it.
2467      while( !bb->_nodes[--_bb_end]->is_MachCall() ) {
2468        assert( bb->_nodes[_bb_end]->is_MachProj(), "skipping projections after expected call" );
2469      }
2470    } else if( last->is_MachNullCheck() ) {
2471      // Backup so the last null-checked memory instruction is
2472      // outside the schedulable range. Skip over the nullcheck,
2473      // projection, and the memory nodes.
2474      Node *mem = last->in(1);
2475      do {
2476        _bb_end--;
2477      } while (mem != bb->_nodes[_bb_end]);
2478    } else {
2479      // Set _bb_end to point after last schedulable inst.
2480      _bb_end++;
2481    }
2482
2483    assert( _bb_start <= _bb_end, "inverted block ends" );
2484
2485    // Compute the register antidependencies for the basic block
2486    ComputeRegisterAntidependencies(bb);
2487    if (_cfg->C->failing())  return;  // too many D-U pinch points
2488
2489    // Compute intra-bb latencies for the nodes
2490    ComputeLocalLatenciesForward(bb);
2491
2492    // Compute the usage within the block, and set the list of all nodes
2493    // in the block that have no uses within the block.
2494    ComputeUseCount(bb);
2495
2496    // Schedule the remaining instructions in the block
2497    while ( _available.size() > 0 ) {
2498      Node *n = ChooseNodeToBundle();
2499      guarantee(n != NULL, "no nodes available");
2500      AddNodeToBundle(n,bb);
2501    }
2502
2503    assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2504#ifdef ASSERT
2505    for( uint l = _bb_start; l < _bb_end; l++ ) {
2506      Node *n = bb->_nodes[l];
2507      uint m;
2508      for( m = 0; m < _bb_end-_bb_start; m++ )
2509        if( _scheduled[m] == n )
2510          break;
2511      assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2512    }
2513#endif
2514
2515    // Now copy the instructions (in reverse order) back to the block
2516    for ( uint k = _bb_start; k < _bb_end; k++ )
2517      bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
2518
2519#ifndef PRODUCT
2520    if (_cfg->C->trace_opto_output()) {
2521      tty->print("#  Schedule BB#%03d (final)\n", i);
2522      uint current = 0;
2523      for (uint j = 0; j < bb->_nodes.size(); j++) {
2524        Node *n = bb->_nodes[j];
2525        if( valid_bundle_info(n) ) {
2526          Bundle *bundle = node_bundling(n);
2527          if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2528            tty->print("*** Bundle: ");
2529            bundle->dump();
2530          }
2531          n->dump();
2532        }
2533      }
2534    }
2535#endif
2536#ifdef ASSERT
2537  verify_good_schedule(bb,"after block local scheduling");
2538#endif
2539  }
2540
2541#ifndef PRODUCT
2542  if (_cfg->C->trace_opto_output())
2543    tty->print("# <- DoScheduling\n");
2544#endif
2545
2546  // Record final node-bundling array location
2547  _regalloc->C->set_node_bundling_base(_node_bundling_base);
2548
2549} // end DoScheduling
2550
2551//------------------------------verify_good_schedule---------------------------
2552// Verify that no live-range used in the block is killed in the block by a
2553// wrong DEF.  This doesn't verify live-ranges that span blocks.
2554
2555// Check for edge existence.  Used to avoid adding redundant precedence edges.
2556static bool edge_from_to( Node *from, Node *to ) {
2557  for( uint i=0; i<from->len(); i++ )
2558    if( from->in(i) == to )
2559      return true;
2560  return false;
2561}
2562
2563#ifdef ASSERT
2564//------------------------------verify_do_def----------------------------------
2565void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2566  // Check for bad kills
2567  if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2568    Node *prior_use = _reg_node[def];
2569    if( prior_use && !edge_from_to(prior_use,n) ) {
2570      tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2571      n->dump();
2572      tty->print_cr("...");
2573      prior_use->dump();
2574      assert(edge_from_to(prior_use,n),msg);
2575    }
2576    _reg_node.map(def,NULL); // Kill live USEs
2577  }
2578}
2579
2580//------------------------------verify_good_schedule---------------------------
2581void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2582
2583  // Zap to something reasonable for the verify code
2584  _reg_node.clear();
2585
2586  // Walk over the block backwards.  Check to make sure each DEF doesn't
2587  // kill a live value (other than the one it's supposed to).  Add each
2588  // USE to the live set.
2589  for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
2590    Node *n = b->_nodes[i];
2591    int n_op = n->Opcode();
2592    if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2593      // Fat-proj kills a slew of registers
2594      RegMask rm = n->out_RegMask();// Make local copy
2595      while( rm.is_NotEmpty() ) {
2596        OptoReg::Name kill = rm.find_first_elem();
2597        rm.Remove(kill);
2598        verify_do_def( n, kill, msg );
2599      }
2600    } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2601      // Get DEF'd registers the normal way
2602      verify_do_def( n, _regalloc->get_reg_first(n), msg );
2603      verify_do_def( n, _regalloc->get_reg_second(n), msg );
2604    }
2605
2606    // Now make all USEs live
2607    for( uint i=1; i<n->req(); i++ ) {
2608      Node *def = n->in(i);
2609      assert(def != 0, "input edge required");
2610      OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2611      OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2612      if( OptoReg::is_valid(reg_lo) ) {
2613        assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
2614        _reg_node.map(reg_lo,n);
2615      }
2616      if( OptoReg::is_valid(reg_hi) ) {
2617        assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
2618        _reg_node.map(reg_hi,n);
2619      }
2620    }
2621
2622  }
2623
2624  // Zap to something reasonable for the Antidependence code
2625  _reg_node.clear();
2626}
2627#endif
2628
2629// Conditionally add precedence edges.  Avoid putting edges on Projs.
2630static void add_prec_edge_from_to( Node *from, Node *to ) {
2631  if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2632    assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2633    from = from->in(0);
2634  }
2635  if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2636      !edge_from_to( from, to ) ) // Avoid duplicate edge
2637    from->add_prec(to);
2638}
2639
2640//------------------------------anti_do_def------------------------------------
2641void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2642  if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2643    return;
2644
2645  Node *pinch = _reg_node[def_reg]; // Get pinch point
2646  if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
2647      is_def ) {    // Check for a true def (not a kill)
2648    _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2649    return;
2650  }
2651
2652  Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2653  debug_only( def = (Node*)0xdeadbeef; )
2654
2655  // After some number of kills there _may_ be a later def
2656  Node *later_def = NULL;
2657
2658  // Finding a kill requires a real pinch-point.
2659  // Check for not already having a pinch-point.
2660  // Pinch points are Op_Node's.
2661  if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2662    later_def = pinch;            // Must be def/kill as optimistic pinch-point
2663    if ( _pinch_free_list.size() > 0) {
2664      pinch = _pinch_free_list.pop();
2665    } else {
2666      pinch = new (_cfg->C) Node(1); // Pinch point to-be
2667    }
2668    if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2669      _cfg->C->record_method_not_compilable("too many D-U pinch points");
2670      return;
2671    }
2672    _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
2673    _reg_node.map(def_reg,pinch); // Record pinch-point
2674    //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2675    if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2676      pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2677      add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2678      later_def = NULL;           // and no later def
2679    }
2680    pinch->set_req(0,later_def);  // Hook later def so we can find it
2681  } else {                        // Else have valid pinch point
2682    if( pinch->in(0) )            // If there is a later-def
2683      later_def = pinch->in(0);   // Get it
2684  }
2685
2686  // Add output-dependence edge from later def to kill
2687  if( later_def )               // If there is some original def
2688    add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2689
2690  // See if current kill is also a use, and so is forced to be the pinch-point.
2691  if( pinch->Opcode() == Op_Node ) {
2692    Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2693    for( uint i=1; i<uses->req(); i++ ) {
2694      if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2695          _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2696        // Yes, found a use/kill pinch-point
2697        pinch->set_req(0,NULL);  //
2698        pinch->replace_by(kill); // Move anti-dep edges up
2699        pinch = kill;
2700        _reg_node.map(def_reg,pinch);
2701        return;
2702      }
2703    }
2704  }
2705
2706  // Add edge from kill to pinch-point
2707  add_prec_edge_from_to(kill,pinch);
2708}
2709
2710//------------------------------anti_do_use------------------------------------
2711void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2712  if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2713    return;
2714  Node *pinch = _reg_node[use_reg]; // Get pinch point
2715  // Check for no later def_reg/kill in block
2716  if( pinch && _bbs[pinch->_idx] == b &&
2717      // Use has to be block-local as well
2718      _bbs[use->_idx] == b ) {
2719    if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2720        pinch->req() == 1 ) {   // pinch not yet in block?
2721      pinch->del_req(0);        // yank pointer to later-def, also set flag
2722      // Insert the pinch-point in the block just after the last use
2723      b->_nodes.insert(b->find_node(use)+1,pinch);
2724      _bb_end++;                // Increase size scheduled region in block
2725    }
2726
2727    add_prec_edge_from_to(pinch,use);
2728  }
2729}
2730
2731//------------------------------ComputeRegisterAntidependences-----------------
2732// We insert antidependences between the reads and following write of
2733// allocated registers to prevent illegal code motion. Hopefully, the
2734// number of added references should be fairly small, especially as we
2735// are only adding references within the current basic block.
2736void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2737
2738#ifdef ASSERT
2739  verify_good_schedule(b,"before block local scheduling");
2740#endif
2741
2742  // A valid schedule, for each register independently, is an endless cycle
2743  // of: a def, then some uses (connected to the def by true dependencies),
2744  // then some kills (defs with no uses), finally the cycle repeats with a new
2745  // def.  The uses are allowed to float relative to each other, as are the
2746  // kills.  No use is allowed to slide past a kill (or def).  This requires
2747  // antidependencies between all uses of a single def and all kills that
2748  // follow, up to the next def.  More edges are redundant, because later defs
2749  // & kills are already serialized with true or antidependencies.  To keep
2750  // the edge count down, we add a 'pinch point' node if there's more than
2751  // one use or more than one kill/def.
2752
2753  // We add dependencies in one bottom-up pass.
2754
2755  // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2756
2757  // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2758  // register.  If not, we record the DEF/KILL in _reg_node, the
2759  // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2760  // "pinch point", a new Node that's in the graph but not in the block.
2761  // We put edges from the prior and current DEF/KILLs to the pinch point.
2762  // We put the pinch point in _reg_node.  If there's already a pinch point
2763  // we merely add an edge from the current DEF/KILL to the pinch point.
2764
2765  // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2766  // put an edge from the pinch point to the USE.
2767
2768  // To be expedient, the _reg_node array is pre-allocated for the whole
2769  // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2770  // or a valid def/kill/pinch-point, or a leftover node from some prior
2771  // block.  Leftover node from some prior block is treated like a NULL (no
2772  // prior def, so no anti-dependence needed).  Valid def is distinguished by
2773  // it being in the current block.
2774  bool fat_proj_seen = false;
2775  uint last_safept = _bb_end-1;
2776  Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
2777  Node* last_safept_node = end_node;
2778  for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2779    Node *n = b->_nodes[i];
2780    int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2781    if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2782      // Fat-proj kills a slew of registers
2783      // This can add edges to 'n' and obscure whether or not it was a def,
2784      // hence the is_def flag.
2785      fat_proj_seen = true;
2786      RegMask rm = n->out_RegMask();// Make local copy
2787      while( rm.is_NotEmpty() ) {
2788        OptoReg::Name kill = rm.find_first_elem();
2789        rm.Remove(kill);
2790        anti_do_def( b, n, kill, is_def );
2791      }
2792    } else {
2793      // Get DEF'd registers the normal way
2794      anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2795      anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2796    }
2797
2798    // Kill projections on a branch should appear to occur on the
2799    // branch, not afterwards, so grab the masks from the projections
2800    // and process them.
2801    if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
2802      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2803        Node* use = n->fast_out(i);
2804        if (use->is_Proj()) {
2805          RegMask rm = use->out_RegMask();// Make local copy
2806          while( rm.is_NotEmpty() ) {
2807            OptoReg::Name kill = rm.find_first_elem();
2808            rm.Remove(kill);
2809            anti_do_def( b, n, kill, false );
2810          }
2811        }
2812      }
2813    }
2814
2815    // Check each register used by this instruction for a following DEF/KILL
2816    // that must occur afterward and requires an anti-dependence edge.
2817    for( uint j=0; j<n->req(); j++ ) {
2818      Node *def = n->in(j);
2819      if( def ) {
2820        assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
2821        anti_do_use( b, n, _regalloc->get_reg_first(def) );
2822        anti_do_use( b, n, _regalloc->get_reg_second(def) );
2823      }
2824    }
2825    // Do not allow defs of new derived values to float above GC
2826    // points unless the base is definitely available at the GC point.
2827
2828    Node *m = b->_nodes[i];
2829
2830    // Add precedence edge from following safepoint to use of derived pointer
2831    if( last_safept_node != end_node &&
2832        m != last_safept_node) {
2833      for (uint k = 1; k < m->req(); k++) {
2834        const Type *t = m->in(k)->bottom_type();
2835        if( t->isa_oop_ptr() &&
2836            t->is_ptr()->offset() != 0 ) {
2837          last_safept_node->add_prec( m );
2838          break;
2839        }
2840      }
2841    }
2842
2843    if( n->jvms() ) {           // Precedence edge from derived to safept
2844      // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2845      if( b->_nodes[last_safept] != last_safept_node ) {
2846        last_safept = b->find_node(last_safept_node);
2847      }
2848      for( uint j=last_safept; j > i; j-- ) {
2849        Node *mach = b->_nodes[j];
2850        if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2851          mach->add_prec( n );
2852      }
2853      last_safept = i;
2854      last_safept_node = m;
2855    }
2856  }
2857
2858  if (fat_proj_seen) {
2859    // Garbage collect pinch nodes that were not consumed.
2860    // They are usually created by a fat kill MachProj for a call.
2861    garbage_collect_pinch_nodes();
2862  }
2863}
2864
2865//------------------------------garbage_collect_pinch_nodes-------------------------------
2866
2867// Garbage collect pinch nodes for reuse by other blocks.
2868//
2869// The block scheduler's insertion of anti-dependence
2870// edges creates many pinch nodes when the block contains
2871// 2 or more Calls.  A pinch node is used to prevent a
2872// combinatorial explosion of edges.  If a set of kills for a
2873// register is anti-dependent on a set of uses (or defs), rather
2874// than adding an edge in the graph between each pair of kill
2875// and use (or def), a pinch is inserted between them:
2876//
2877//            use1   use2  use3
2878//                \   |   /
2879//                 \  |  /
2880//                  pinch
2881//                 /  |  \
2882//                /   |   \
2883//            kill1 kill2 kill3
2884//
2885// One pinch node is created per register killed when
2886// the second call is encountered during a backwards pass
2887// over the block.  Most of these pinch nodes are never
2888// wired into the graph because the register is never
2889// used or def'ed in the block.
2890//
2891void Scheduling::garbage_collect_pinch_nodes() {
2892#ifndef PRODUCT
2893    if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2894#endif
2895    int trace_cnt = 0;
2896    for (uint k = 0; k < _reg_node.Size(); k++) {
2897      Node* pinch = _reg_node[k];
2898      if (pinch != NULL && pinch->Opcode() == Op_Node &&
2899          // no predecence input edges
2900          (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2901        cleanup_pinch(pinch);
2902        _pinch_free_list.push(pinch);
2903        _reg_node.map(k, NULL);
2904#ifndef PRODUCT
2905        if (_cfg->C->trace_opto_output()) {
2906          trace_cnt++;
2907          if (trace_cnt > 40) {
2908            tty->print("\n");
2909            trace_cnt = 0;
2910          }
2911          tty->print(" %d", pinch->_idx);
2912        }
2913#endif
2914      }
2915    }
2916#ifndef PRODUCT
2917    if (_cfg->C->trace_opto_output()) tty->print("\n");
2918#endif
2919}
2920
2921// Clean up a pinch node for reuse.
2922void Scheduling::cleanup_pinch( Node *pinch ) {
2923  assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2924
2925  for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2926    Node* use = pinch->last_out(i);
2927    uint uses_found = 0;
2928    for (uint j = use->req(); j < use->len(); j++) {
2929      if (use->in(j) == pinch) {
2930        use->rm_prec(j);
2931        uses_found++;
2932      }
2933    }
2934    assert(uses_found > 0, "must be a precedence edge");
2935    i -= uses_found;    // we deleted 1 or more copies of this edge
2936  }
2937  // May have a later_def entry
2938  pinch->set_req(0, NULL);
2939}
2940
2941//------------------------------print_statistics-------------------------------
2942#ifndef PRODUCT
2943
2944void Scheduling::dump_available() const {
2945  tty->print("#Availist  ");
2946  for (uint i = 0; i < _available.size(); i++)
2947    tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2948  tty->cr();
2949}
2950
2951// Print Scheduling Statistics
2952void Scheduling::print_statistics() {
2953  // Print the size added by nops for bundling
2954  tty->print("Nops added %d bytes to total of %d bytes",
2955    _total_nop_size, _total_method_size);
2956  if (_total_method_size > 0)
2957    tty->print(", for %.2f%%",
2958      ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2959  tty->print("\n");
2960
2961  // Print the number of branch shadows filled
2962  if (Pipeline::_branch_has_delay_slot) {
2963    tty->print("Of %d branches, %d had unconditional delay slots filled",
2964      _total_branches, _total_unconditional_delays);
2965    if (_total_branches > 0)
2966      tty->print(", for %.2f%%",
2967        ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2968    tty->print("\n");
2969  }
2970
2971  uint total_instructions = 0, total_bundles = 0;
2972
2973  for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2974    uint bundle_count   = _total_instructions_per_bundle[i];
2975    total_instructions += bundle_count * i;
2976    total_bundles      += bundle_count;
2977  }
2978
2979  if (total_bundles > 0)
2980    tty->print("Average ILP (excluding nops) is %.2f\n",
2981      ((double)total_instructions) / ((double)total_bundles));
2982}
2983#endif
2984