output.cpp revision 3602:da91efe96a93
1/*
2 * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/assembler.inline.hpp"
27#include "code/debugInfo.hpp"
28#include "code/debugInfoRec.hpp"
29#include "compiler/compileBroker.hpp"
30#include "compiler/oopMap.hpp"
31#include "memory/allocation.inline.hpp"
32#include "opto/callnode.hpp"
33#include "opto/cfgnode.hpp"
34#include "opto/locknode.hpp"
35#include "opto/machnode.hpp"
36#include "opto/output.hpp"
37#include "opto/regalloc.hpp"
38#include "opto/runtime.hpp"
39#include "opto/subnode.hpp"
40#include "opto/type.hpp"
41#include "runtime/handles.inline.hpp"
42#include "utilities/xmlstream.hpp"
43
44extern uint size_java_to_interp();
45extern uint reloc_java_to_interp();
46extern uint size_exception_handler();
47extern uint size_deopt_handler();
48
49#ifndef PRODUCT
50#define DEBUG_ARG(x) , x
51#else
52#define DEBUG_ARG(x)
53#endif
54
55extern int emit_exception_handler(CodeBuffer &cbuf);
56extern int emit_deopt_handler(CodeBuffer &cbuf);
57
58//------------------------------Output-----------------------------------------
59// Convert Nodes to instruction bits and pass off to the VM
60void Compile::Output() {
61  // RootNode goes
62  assert( _cfg->_broot->_nodes.size() == 0, "" );
63
64  // The number of new nodes (mostly MachNop) is proportional to
65  // the number of java calls and inner loops which are aligned.
66  if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
67                            C->inner_loops()*(OptoLoopAlignment-1)),
68                           "out of nodes before code generation" ) ) {
69    return;
70  }
71  // Make sure I can find the Start Node
72  Block_Array& bbs = _cfg->_bbs;
73  Block *entry = _cfg->_blocks[1];
74  Block *broot = _cfg->_broot;
75
76  const StartNode *start = entry->_nodes[0]->as_Start();
77
78  // Replace StartNode with prolog
79  MachPrologNode *prolog = new (this) MachPrologNode();
80  entry->_nodes.map( 0, prolog );
81  bbs.map( prolog->_idx, entry );
82  bbs.map( start->_idx, NULL ); // start is no longer in any block
83
84  // Virtual methods need an unverified entry point
85
86  if( is_osr_compilation() ) {
87    if( PoisonOSREntry ) {
88      // TODO: Should use a ShouldNotReachHereNode...
89      _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
90    }
91  } else {
92    if( _method && !_method->flags().is_static() ) {
93      // Insert unvalidated entry point
94      _cfg->insert( broot, 0, new (this) MachUEPNode() );
95    }
96
97  }
98
99
100  // Break before main entry point
101  if( (_method && _method->break_at_execute())
102#ifndef PRODUCT
103    ||(OptoBreakpoint && is_method_compilation())
104    ||(OptoBreakpointOSR && is_osr_compilation())
105    ||(OptoBreakpointC2R && !_method)
106#endif
107    ) {
108    // checking for _method means that OptoBreakpoint does not apply to
109    // runtime stubs or frame converters
110    _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
111  }
112
113  // Insert epilogs before every return
114  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
115    Block *b = _cfg->_blocks[i];
116    if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
117      Node *m = b->end();
118      if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
119        MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
120        b->add_inst( epilog );
121        bbs.map(epilog->_idx, b);
122        //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
123      }
124    }
125  }
126
127# ifdef ENABLE_ZAP_DEAD_LOCALS
128  if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
129# endif
130
131  uint* blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
132  blk_starts[0]    = 0;
133
134  // Initialize code buffer and process short branches.
135  CodeBuffer* cb = init_buffer(blk_starts);
136
137  if (cb == NULL || failing())  return;
138
139  ScheduleAndBundle();
140
141#ifndef PRODUCT
142  if (trace_opto_output()) {
143    tty->print("\n---- After ScheduleAndBundle ----\n");
144    for (uint i = 0; i < _cfg->_num_blocks; i++) {
145      tty->print("\nBB#%03d:\n", i);
146      Block *bb = _cfg->_blocks[i];
147      for (uint j = 0; j < bb->_nodes.size(); j++) {
148        Node *n = bb->_nodes[j];
149        OptoReg::Name reg = _regalloc->get_reg_first(n);
150        tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
151        n->dump();
152      }
153    }
154  }
155#endif
156
157  if (failing())  return;
158
159  BuildOopMaps();
160
161  if (failing())  return;
162
163  fill_buffer(cb, blk_starts);
164}
165
166bool Compile::need_stack_bang(int frame_size_in_bytes) const {
167  // Determine if we need to generate a stack overflow check.
168  // Do it if the method is not a stub function and
169  // has java calls or has frame size > vm_page_size/8.
170  return (UseStackBanging && stub_function() == NULL &&
171          (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
172}
173
174bool Compile::need_register_stack_bang() const {
175  // Determine if we need to generate a register stack overflow check.
176  // This is only used on architectures which have split register
177  // and memory stacks (ie. IA64).
178  // Bang if the method is not a stub function and has java calls
179  return (stub_function() == NULL && has_java_calls());
180}
181
182# ifdef ENABLE_ZAP_DEAD_LOCALS
183
184
185// In order to catch compiler oop-map bugs, we have implemented
186// a debugging mode called ZapDeadCompilerLocals.
187// This mode causes the compiler to insert a call to a runtime routine,
188// "zap_dead_locals", right before each place in compiled code
189// that could potentially be a gc-point (i.e., a safepoint or oop map point).
190// The runtime routine checks that locations mapped as oops are really
191// oops, that locations mapped as values do not look like oops,
192// and that locations mapped as dead are not used later
193// (by zapping them to an invalid address).
194
195int Compile::_CompiledZap_count = 0;
196
197void Compile::Insert_zap_nodes() {
198  bool skip = false;
199
200
201  // Dink with static counts because code code without the extra
202  // runtime calls is MUCH faster for debugging purposes
203
204       if ( CompileZapFirst  ==  0  ) ; // nothing special
205  else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
206  else if ( CompileZapFirst  == CompiledZap_count() )
207    warning("starting zap compilation after skipping");
208
209       if ( CompileZapLast  ==  -1  ) ; // nothing special
210  else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
211  else if ( CompileZapLast  ==  CompiledZap_count() )
212    warning("about to compile last zap");
213
214  ++_CompiledZap_count; // counts skipped zaps, too
215
216  if ( skip )  return;
217
218
219  if ( _method == NULL )
220    return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
221
222  // Insert call to zap runtime stub before every node with an oop map
223  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
224    Block *b = _cfg->_blocks[i];
225    for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
226      Node *n = b->_nodes[j];
227
228      // Determining if we should insert a zap-a-lot node in output.
229      // We do that for all nodes that has oopmap info, except for calls
230      // to allocation.  Calls to allocation passes in the old top-of-eden pointer
231      // and expect the C code to reset it.  Hence, there can be no safepoints between
232      // the inlined-allocation and the call to new_Java, etc.
233      // We also cannot zap monitor calls, as they must hold the microlock
234      // during the call to Zap, which also wants to grab the microlock.
235      bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
236      if ( insert ) { // it is MachSafePoint
237        if ( !n->is_MachCall() ) {
238          insert = false;
239        } else if ( n->is_MachCall() ) {
240          MachCallNode* call = n->as_MachCall();
241          if (call->entry_point() == OptoRuntime::new_instance_Java() ||
242              call->entry_point() == OptoRuntime::new_array_Java() ||
243              call->entry_point() == OptoRuntime::multianewarray2_Java() ||
244              call->entry_point() == OptoRuntime::multianewarray3_Java() ||
245              call->entry_point() == OptoRuntime::multianewarray4_Java() ||
246              call->entry_point() == OptoRuntime::multianewarray5_Java() ||
247              call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
248              call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
249              ) {
250            insert = false;
251          }
252        }
253        if (insert) {
254          Node *zap = call_zap_node(n->as_MachSafePoint(), i);
255          b->_nodes.insert( j, zap );
256          _cfg->_bbs.map( zap->_idx, b );
257          ++j;
258        }
259      }
260    }
261  }
262}
263
264
265Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
266  const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
267  CallStaticJavaNode* ideal_node =
268    new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
269         OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
270                            "call zap dead locals stub", 0, TypePtr::BOTTOM);
271  // We need to copy the OopMap from the site we're zapping at.
272  // We have to make a copy, because the zap site might not be
273  // a call site, and zap_dead is a call site.
274  OopMap* clone = node_to_check->oop_map()->deep_copy();
275
276  // Add the cloned OopMap to the zap node
277  ideal_node->set_oop_map(clone);
278  return _matcher->match_sfpt(ideal_node);
279}
280
281//------------------------------is_node_getting_a_safepoint--------------------
282bool Compile::is_node_getting_a_safepoint( Node* n) {
283  // This code duplicates the logic prior to the call of add_safepoint
284  // below in this file.
285  if( n->is_MachSafePoint() ) return true;
286  return false;
287}
288
289# endif // ENABLE_ZAP_DEAD_LOCALS
290
291//------------------------------compute_loop_first_inst_sizes------------------
292// Compute the size of first NumberOfLoopInstrToAlign instructions at the top
293// of a loop. When aligning a loop we need to provide enough instructions
294// in cpu's fetch buffer to feed decoders. The loop alignment could be
295// avoided if we have enough instructions in fetch buffer at the head of a loop.
296// By default, the size is set to 999999 by Block's constructor so that
297// a loop will be aligned if the size is not reset here.
298//
299// Note: Mach instructions could contain several HW instructions
300// so the size is estimated only.
301//
302void Compile::compute_loop_first_inst_sizes() {
303  // The next condition is used to gate the loop alignment optimization.
304  // Don't aligned a loop if there are enough instructions at the head of a loop
305  // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
306  // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
307  // equal to 11 bytes which is the largest address NOP instruction.
308  if( MaxLoopPad < OptoLoopAlignment-1 ) {
309    uint last_block = _cfg->_num_blocks-1;
310    for( uint i=1; i <= last_block; i++ ) {
311      Block *b = _cfg->_blocks[i];
312      // Check the first loop's block which requires an alignment.
313      if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
314        uint sum_size = 0;
315        uint inst_cnt = NumberOfLoopInstrToAlign;
316        inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
317
318        // Check subsequent fallthrough blocks if the loop's first
319        // block(s) does not have enough instructions.
320        Block *nb = b;
321        while( inst_cnt > 0 &&
322               i < last_block &&
323               !_cfg->_blocks[i+1]->has_loop_alignment() &&
324               !nb->has_successor(b) ) {
325          i++;
326          nb = _cfg->_blocks[i];
327          inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
328        } // while( inst_cnt > 0 && i < last_block  )
329
330        b->set_first_inst_size(sum_size);
331      } // f( b->head()->is_Loop() )
332    } // for( i <= last_block )
333  } // if( MaxLoopPad < OptoLoopAlignment-1 )
334}
335
336//----------------------shorten_branches---------------------------------------
337// The architecture description provides short branch variants for some long
338// branch instructions. Replace eligible long branches with short branches.
339void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
340
341  // ------------------
342  // Compute size of each block, method size, and relocation information size
343  uint nblocks  = _cfg->_num_blocks;
344
345  uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
346  uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
347  int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
348  DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
349  DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
350
351  bool has_short_branch_candidate = false;
352
353  // Initialize the sizes to 0
354  code_size  = 0;          // Size in bytes of generated code
355  stub_size  = 0;          // Size in bytes of all stub entries
356  // Size in bytes of all relocation entries, including those in local stubs.
357  // Start with 2-bytes of reloc info for the unvalidated entry point
358  reloc_size = 1;          // Number of relocation entries
359
360  // Make three passes.  The first computes pessimistic blk_starts,
361  // relative jmp_offset and reloc_size information.  The second performs
362  // short branch substitution using the pessimistic sizing.  The
363  // third inserts nops where needed.
364
365  // Step one, perform a pessimistic sizing pass.
366  uint last_call_adr = max_uint;
367  uint last_avoid_back_to_back_adr = max_uint;
368  uint nop_size = (new (this) MachNopNode())->size(_regalloc);
369  for (uint i = 0; i < nblocks; i++) { // For all blocks
370    Block *b = _cfg->_blocks[i];
371
372    // During short branch replacement, we store the relative (to blk_starts)
373    // offset of jump in jmp_offset, rather than the absolute offset of jump.
374    // This is so that we do not need to recompute sizes of all nodes when
375    // we compute correct blk_starts in our next sizing pass.
376    jmp_offset[i] = 0;
377    jmp_size[i]   = 0;
378    jmp_nidx[i]   = -1;
379    DEBUG_ONLY( jmp_target[i] = 0; )
380    DEBUG_ONLY( jmp_rule[i]   = 0; )
381
382    // Sum all instruction sizes to compute block size
383    uint last_inst = b->_nodes.size();
384    uint blk_size = 0;
385    for (uint j = 0; j < last_inst; j++) {
386      Node* nj = b->_nodes[j];
387      // Handle machine instruction nodes
388      if (nj->is_Mach()) {
389        MachNode *mach = nj->as_Mach();
390        blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
391        reloc_size += mach->reloc();
392        if( mach->is_MachCall() ) {
393          MachCallNode *mcall = mach->as_MachCall();
394          // This destination address is NOT PC-relative
395
396          mcall->method_set((intptr_t)mcall->entry_point());
397
398          if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
399            stub_size  += size_java_to_interp();
400            reloc_size += reloc_java_to_interp();
401          }
402        } else if (mach->is_MachSafePoint()) {
403          // If call/safepoint are adjacent, account for possible
404          // nop to disambiguate the two safepoints.
405          // ScheduleAndBundle() can rearrange nodes in a block,
406          // check for all offsets inside this block.
407          if (last_call_adr >= blk_starts[i]) {
408            blk_size += nop_size;
409          }
410        }
411        if (mach->avoid_back_to_back()) {
412          // Nop is inserted between "avoid back to back" instructions.
413          // ScheduleAndBundle() can rearrange nodes in a block,
414          // check for all offsets inside this block.
415          if (last_avoid_back_to_back_adr >= blk_starts[i]) {
416            blk_size += nop_size;
417          }
418        }
419        if (mach->may_be_short_branch()) {
420          if (!nj->is_MachBranch()) {
421#ifndef PRODUCT
422            nj->dump(3);
423#endif
424            Unimplemented();
425          }
426          assert(jmp_nidx[i] == -1, "block should have only one branch");
427          jmp_offset[i] = blk_size;
428          jmp_size[i]   = nj->size(_regalloc);
429          jmp_nidx[i]   = j;
430          has_short_branch_candidate = true;
431        }
432      }
433      blk_size += nj->size(_regalloc);
434      // Remember end of call offset
435      if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
436        last_call_adr = blk_starts[i]+blk_size;
437      }
438      // Remember end of avoid_back_to_back offset
439      if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back()) {
440        last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
441      }
442    }
443
444    // When the next block starts a loop, we may insert pad NOP
445    // instructions.  Since we cannot know our future alignment,
446    // assume the worst.
447    if (i< nblocks-1) {
448      Block *nb = _cfg->_blocks[i+1];
449      int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
450      if (max_loop_pad > 0) {
451        assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
452        blk_size += max_loop_pad;
453      }
454    }
455
456    // Save block size; update total method size
457    blk_starts[i+1] = blk_starts[i]+blk_size;
458  }
459
460  // Step two, replace eligible long jumps.
461  bool progress = true;
462  uint last_may_be_short_branch_adr = max_uint;
463  while (has_short_branch_candidate && progress) {
464    progress = false;
465    has_short_branch_candidate = false;
466    int adjust_block_start = 0;
467    for (uint i = 0; i < nblocks; i++) {
468      Block *b = _cfg->_blocks[i];
469      int idx = jmp_nidx[i];
470      MachNode* mach = (idx == -1) ? NULL: b->_nodes[idx]->as_Mach();
471      if (mach != NULL && mach->may_be_short_branch()) {
472#ifdef ASSERT
473        assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
474        int j;
475        // Find the branch; ignore trailing NOPs.
476        for (j = b->_nodes.size()-1; j>=0; j--) {
477          Node* n = b->_nodes[j];
478          if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
479            break;
480        }
481        assert(j >= 0 && j == idx && b->_nodes[j] == (Node*)mach, "sanity");
482#endif
483        int br_size = jmp_size[i];
484        int br_offs = blk_starts[i] + jmp_offset[i];
485
486        // This requires the TRUE branch target be in succs[0]
487        uint bnum = b->non_connector_successor(0)->_pre_order;
488        int offset = blk_starts[bnum] - br_offs;
489        if (bnum > i) { // adjust following block's offset
490          offset -= adjust_block_start;
491        }
492        // In the following code a nop could be inserted before
493        // the branch which will increase the backward distance.
494        bool needs_padding = ((uint)br_offs == last_may_be_short_branch_adr);
495        if (needs_padding && offset <= 0)
496          offset -= nop_size;
497
498        if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
499          // We've got a winner.  Replace this branch.
500          MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
501
502          // Update the jmp_size.
503          int new_size = replacement->size(_regalloc);
504          int diff     = br_size - new_size;
505          assert(diff >= (int)nop_size, "short_branch size should be smaller");
506          // Conservatively take into accound padding between
507          // avoid_back_to_back branches. Previous branch could be
508          // converted into avoid_back_to_back branch during next
509          // rounds.
510          if (needs_padding && replacement->avoid_back_to_back()) {
511            jmp_offset[i] += nop_size;
512            diff -= nop_size;
513          }
514          adjust_block_start += diff;
515          b->_nodes.map(idx, replacement);
516          mach->subsume_by(replacement);
517          mach = replacement;
518          progress = true;
519
520          jmp_size[i] = new_size;
521          DEBUG_ONLY( jmp_target[i] = bnum; );
522          DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
523        } else {
524          // The jump distance is not short, try again during next iteration.
525          has_short_branch_candidate = true;
526        }
527      } // (mach->may_be_short_branch())
528      if (mach != NULL && (mach->may_be_short_branch() ||
529                           mach->avoid_back_to_back())) {
530        last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
531      }
532      blk_starts[i+1] -= adjust_block_start;
533    }
534  }
535
536#ifdef ASSERT
537  for (uint i = 0; i < nblocks; i++) { // For all blocks
538    if (jmp_target[i] != 0) {
539      int br_size = jmp_size[i];
540      int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
541      if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
542        tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
543      }
544      assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
545    }
546  }
547#endif
548
549  // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
550  // after ScheduleAndBundle().
551
552  // ------------------
553  // Compute size for code buffer
554  code_size = blk_starts[nblocks];
555
556  // Relocation records
557  reloc_size += 1;              // Relo entry for exception handler
558
559  // Adjust reloc_size to number of record of relocation info
560  // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
561  // a relocation index.
562  // The CodeBuffer will expand the locs array if this estimate is too low.
563  reloc_size *= 10 / sizeof(relocInfo);
564}
565
566//------------------------------FillLocArray-----------------------------------
567// Create a bit of debug info and append it to the array.  The mapping is from
568// Java local or expression stack to constant, register or stack-slot.  For
569// doubles, insert 2 mappings and return 1 (to tell the caller that the next
570// entry has been taken care of and caller should skip it).
571static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
572  // This should never have accepted Bad before
573  assert(OptoReg::is_valid(regnum), "location must be valid");
574  return (OptoReg::is_reg(regnum))
575    ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
576    : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
577}
578
579
580ObjectValue*
581Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
582  for (int i = 0; i < objs->length(); i++) {
583    assert(objs->at(i)->is_object(), "corrupt object cache");
584    ObjectValue* sv = (ObjectValue*) objs->at(i);
585    if (sv->id() == id) {
586      return sv;
587    }
588  }
589  // Otherwise..
590  return NULL;
591}
592
593void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
594                                     ObjectValue* sv ) {
595  assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
596  objs->append(sv);
597}
598
599
600void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
601                            GrowableArray<ScopeValue*> *array,
602                            GrowableArray<ScopeValue*> *objs ) {
603  assert( local, "use _top instead of null" );
604  if (array->length() != idx) {
605    assert(array->length() == idx + 1, "Unexpected array count");
606    // Old functionality:
607    //   return
608    // New functionality:
609    //   Assert if the local is not top. In product mode let the new node
610    //   override the old entry.
611    assert(local == top(), "LocArray collision");
612    if (local == top()) {
613      return;
614    }
615    array->pop();
616  }
617  const Type *t = local->bottom_type();
618
619  // Is it a safepoint scalar object node?
620  if (local->is_SafePointScalarObject()) {
621    SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
622
623    ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
624    if (sv == NULL) {
625      ciKlass* cik = t->is_oopptr()->klass();
626      assert(cik->is_instance_klass() ||
627             cik->is_array_klass(), "Not supported allocation.");
628      sv = new ObjectValue(spobj->_idx,
629                           new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
630      Compile::set_sv_for_object_node(objs, sv);
631
632      uint first_ind = spobj->first_index();
633      for (uint i = 0; i < spobj->n_fields(); i++) {
634        Node* fld_node = sfpt->in(first_ind+i);
635        (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
636      }
637    }
638    array->append(sv);
639    return;
640  }
641
642  // Grab the register number for the local
643  OptoReg::Name regnum = _regalloc->get_reg_first(local);
644  if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
645    // Record the double as two float registers.
646    // The register mask for such a value always specifies two adjacent
647    // float registers, with the lower register number even.
648    // Normally, the allocation of high and low words to these registers
649    // is irrelevant, because nearly all operations on register pairs
650    // (e.g., StoreD) treat them as a single unit.
651    // Here, we assume in addition that the words in these two registers
652    // stored "naturally" (by operations like StoreD and double stores
653    // within the interpreter) such that the lower-numbered register
654    // is written to the lower memory address.  This may seem like
655    // a machine dependency, but it is not--it is a requirement on
656    // the author of the <arch>.ad file to ensure that, for every
657    // even/odd double-register pair to which a double may be allocated,
658    // the word in the even single-register is stored to the first
659    // memory word.  (Note that register numbers are completely
660    // arbitrary, and are not tied to any machine-level encodings.)
661#ifdef _LP64
662    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
663      array->append(new ConstantIntValue(0));
664      array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
665    } else if ( t->base() == Type::Long ) {
666      array->append(new ConstantIntValue(0));
667      array->append(new_loc_value( _regalloc, regnum, Location::lng ));
668    } else if ( t->base() == Type::RawPtr ) {
669      // jsr/ret return address which must be restored into a the full
670      // width 64-bit stack slot.
671      array->append(new_loc_value( _regalloc, regnum, Location::lng ));
672    }
673#else //_LP64
674#ifdef SPARC
675    if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
676      // For SPARC we have to swap high and low words for
677      // long values stored in a single-register (g0-g7).
678      array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
679      array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
680    } else
681#endif //SPARC
682    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
683      // Repack the double/long as two jints.
684      // The convention the interpreter uses is that the second local
685      // holds the first raw word of the native double representation.
686      // This is actually reasonable, since locals and stack arrays
687      // grow downwards in all implementations.
688      // (If, on some machine, the interpreter's Java locals or stack
689      // were to grow upwards, the embedded doubles would be word-swapped.)
690      array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
691      array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
692    }
693#endif //_LP64
694    else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
695               OptoReg::is_reg(regnum) ) {
696      array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
697                                   ? Location::float_in_dbl : Location::normal ));
698    } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
699      array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
700                                   ? Location::int_in_long : Location::normal ));
701    } else if( t->base() == Type::NarrowOop ) {
702      array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
703    } else {
704      array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
705    }
706    return;
707  }
708
709  // No register.  It must be constant data.
710  switch (t->base()) {
711  case Type::Half:              // Second half of a double
712    ShouldNotReachHere();       // Caller should skip 2nd halves
713    break;
714  case Type::AnyPtr:
715    array->append(new ConstantOopWriteValue(NULL));
716    break;
717  case Type::AryPtr:
718  case Type::InstPtr:          // fall through
719    array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
720    break;
721  case Type::NarrowOop:
722    if (t == TypeNarrowOop::NULL_PTR) {
723      array->append(new ConstantOopWriteValue(NULL));
724    } else {
725      array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
726    }
727    break;
728  case Type::Int:
729    array->append(new ConstantIntValue(t->is_int()->get_con()));
730    break;
731  case Type::RawPtr:
732    // A return address (T_ADDRESS).
733    assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
734#ifdef _LP64
735    // Must be restored to the full-width 64-bit stack slot.
736    array->append(new ConstantLongValue(t->is_ptr()->get_con()));
737#else
738    array->append(new ConstantIntValue(t->is_ptr()->get_con()));
739#endif
740    break;
741  case Type::FloatCon: {
742    float f = t->is_float_constant()->getf();
743    array->append(new ConstantIntValue(jint_cast(f)));
744    break;
745  }
746  case Type::DoubleCon: {
747    jdouble d = t->is_double_constant()->getd();
748#ifdef _LP64
749    array->append(new ConstantIntValue(0));
750    array->append(new ConstantDoubleValue(d));
751#else
752    // Repack the double as two jints.
753    // The convention the interpreter uses is that the second local
754    // holds the first raw word of the native double representation.
755    // This is actually reasonable, since locals and stack arrays
756    // grow downwards in all implementations.
757    // (If, on some machine, the interpreter's Java locals or stack
758    // were to grow upwards, the embedded doubles would be word-swapped.)
759    jint   *dp = (jint*)&d;
760    array->append(new ConstantIntValue(dp[1]));
761    array->append(new ConstantIntValue(dp[0]));
762#endif
763    break;
764  }
765  case Type::Long: {
766    jlong d = t->is_long()->get_con();
767#ifdef _LP64
768    array->append(new ConstantIntValue(0));
769    array->append(new ConstantLongValue(d));
770#else
771    // Repack the long as two jints.
772    // The convention the interpreter uses is that the second local
773    // holds the first raw word of the native double representation.
774    // This is actually reasonable, since locals and stack arrays
775    // grow downwards in all implementations.
776    // (If, on some machine, the interpreter's Java locals or stack
777    // were to grow upwards, the embedded doubles would be word-swapped.)
778    jint *dp = (jint*)&d;
779    array->append(new ConstantIntValue(dp[1]));
780    array->append(new ConstantIntValue(dp[0]));
781#endif
782    break;
783  }
784  case Type::Top:               // Add an illegal value here
785    array->append(new LocationValue(Location()));
786    break;
787  default:
788    ShouldNotReachHere();
789    break;
790  }
791}
792
793// Determine if this node starts a bundle
794bool Compile::starts_bundle(const Node *n) const {
795  return (_node_bundling_limit > n->_idx &&
796          _node_bundling_base[n->_idx].starts_bundle());
797}
798
799//--------------------------Process_OopMap_Node--------------------------------
800void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
801
802  // Handle special safepoint nodes for synchronization
803  MachSafePointNode *sfn   = mach->as_MachSafePoint();
804  MachCallNode      *mcall;
805
806#ifdef ENABLE_ZAP_DEAD_LOCALS
807  assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
808#endif
809
810  int safepoint_pc_offset = current_offset;
811  bool is_method_handle_invoke = false;
812  bool return_oop = false;
813
814  // Add the safepoint in the DebugInfoRecorder
815  if( !mach->is_MachCall() ) {
816    mcall = NULL;
817    debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
818  } else {
819    mcall = mach->as_MachCall();
820
821    // Is the call a MethodHandle call?
822    if (mcall->is_MachCallJava()) {
823      if (mcall->as_MachCallJava()->_method_handle_invoke) {
824        assert(has_method_handle_invokes(), "must have been set during call generation");
825        is_method_handle_invoke = true;
826      }
827    }
828
829    // Check if a call returns an object.
830    if (mcall->return_value_is_used() &&
831        mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
832      return_oop = true;
833    }
834    safepoint_pc_offset += mcall->ret_addr_offset();
835    debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
836  }
837
838  // Loop over the JVMState list to add scope information
839  // Do not skip safepoints with a NULL method, they need monitor info
840  JVMState* youngest_jvms = sfn->jvms();
841  int max_depth = youngest_jvms->depth();
842
843  // Allocate the object pool for scalar-replaced objects -- the map from
844  // small-integer keys (which can be recorded in the local and ostack
845  // arrays) to descriptions of the object state.
846  GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
847
848  // Visit scopes from oldest to youngest.
849  for (int depth = 1; depth <= max_depth; depth++) {
850    JVMState* jvms = youngest_jvms->of_depth(depth);
851    int idx;
852    ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
853    // Safepoints that do not have method() set only provide oop-map and monitor info
854    // to support GC; these do not support deoptimization.
855    int num_locs = (method == NULL) ? 0 : jvms->loc_size();
856    int num_exps = (method == NULL) ? 0 : jvms->stk_size();
857    int num_mon  = jvms->nof_monitors();
858    assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
859           "JVMS local count must match that of the method");
860
861    // Add Local and Expression Stack Information
862
863    // Insert locals into the locarray
864    GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
865    for( idx = 0; idx < num_locs; idx++ ) {
866      FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
867    }
868
869    // Insert expression stack entries into the exparray
870    GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
871    for( idx = 0; idx < num_exps; idx++ ) {
872      FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
873    }
874
875    // Add in mappings of the monitors
876    assert( !method ||
877            !method->is_synchronized() ||
878            method->is_native() ||
879            num_mon > 0 ||
880            !GenerateSynchronizationCode,
881            "monitors must always exist for synchronized methods");
882
883    // Build the growable array of ScopeValues for exp stack
884    GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
885
886    // Loop over monitors and insert into array
887    for(idx = 0; idx < num_mon; idx++) {
888      // Grab the node that defines this monitor
889      Node* box_node = sfn->monitor_box(jvms, idx);
890      Node* obj_node = sfn->monitor_obj(jvms, idx);
891
892      // Create ScopeValue for object
893      ScopeValue *scval = NULL;
894
895      if( obj_node->is_SafePointScalarObject() ) {
896        SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
897        scval = Compile::sv_for_node_id(objs, spobj->_idx);
898        if (scval == NULL) {
899          const Type *t = obj_node->bottom_type();
900          ciKlass* cik = t->is_oopptr()->klass();
901          assert(cik->is_instance_klass() ||
902                 cik->is_array_klass(), "Not supported allocation.");
903          ObjectValue* sv = new ObjectValue(spobj->_idx,
904                                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
905          Compile::set_sv_for_object_node(objs, sv);
906
907          uint first_ind = spobj->first_index();
908          for (uint i = 0; i < spobj->n_fields(); i++) {
909            Node* fld_node = sfn->in(first_ind+i);
910            (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
911          }
912          scval = sv;
913        }
914      } else if( !obj_node->is_Con() ) {
915        OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
916        if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
917          scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
918        } else {
919          scval = new_loc_value( _regalloc, obj_reg, Location::oop );
920        }
921      } else {
922        const TypePtr *tp = obj_node->bottom_type()->make_ptr();
923        scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
924      }
925
926      OptoReg::Name box_reg = BoxLockNode::reg(box_node);
927      Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
928      bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
929      monarray->append(new MonitorValue(scval, basic_lock, eliminated));
930    }
931
932    // We dump the object pool first, since deoptimization reads it in first.
933    debug_info()->dump_object_pool(objs);
934
935    // Build first class objects to pass to scope
936    DebugToken *locvals = debug_info()->create_scope_values(locarray);
937    DebugToken *expvals = debug_info()->create_scope_values(exparray);
938    DebugToken *monvals = debug_info()->create_monitor_values(monarray);
939
940    // Make method available for all Safepoints
941    ciMethod* scope_method = method ? method : _method;
942    // Describe the scope here
943    assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
944    assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
945    // Now we can describe the scope.
946    debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
947  } // End jvms loop
948
949  // Mark the end of the scope set.
950  debug_info()->end_safepoint(safepoint_pc_offset);
951}
952
953
954
955// A simplified version of Process_OopMap_Node, to handle non-safepoints.
956class NonSafepointEmitter {
957  Compile*  C;
958  JVMState* _pending_jvms;
959  int       _pending_offset;
960
961  void emit_non_safepoint();
962
963 public:
964  NonSafepointEmitter(Compile* compile) {
965    this->C = compile;
966    _pending_jvms = NULL;
967    _pending_offset = 0;
968  }
969
970  void observe_instruction(Node* n, int pc_offset) {
971    if (!C->debug_info()->recording_non_safepoints())  return;
972
973    Node_Notes* nn = C->node_notes_at(n->_idx);
974    if (nn == NULL || nn->jvms() == NULL)  return;
975    if (_pending_jvms != NULL &&
976        _pending_jvms->same_calls_as(nn->jvms())) {
977      // Repeated JVMS?  Stretch it up here.
978      _pending_offset = pc_offset;
979    } else {
980      if (_pending_jvms != NULL &&
981          _pending_offset < pc_offset) {
982        emit_non_safepoint();
983      }
984      _pending_jvms = NULL;
985      if (pc_offset > C->debug_info()->last_pc_offset()) {
986        // This is the only way _pending_jvms can become non-NULL:
987        _pending_jvms = nn->jvms();
988        _pending_offset = pc_offset;
989      }
990    }
991  }
992
993  // Stay out of the way of real safepoints:
994  void observe_safepoint(JVMState* jvms, int pc_offset) {
995    if (_pending_jvms != NULL &&
996        !_pending_jvms->same_calls_as(jvms) &&
997        _pending_offset < pc_offset) {
998      emit_non_safepoint();
999    }
1000    _pending_jvms = NULL;
1001  }
1002
1003  void flush_at_end() {
1004    if (_pending_jvms != NULL) {
1005      emit_non_safepoint();
1006    }
1007    _pending_jvms = NULL;
1008  }
1009};
1010
1011void NonSafepointEmitter::emit_non_safepoint() {
1012  JVMState* youngest_jvms = _pending_jvms;
1013  int       pc_offset     = _pending_offset;
1014
1015  // Clear it now:
1016  _pending_jvms = NULL;
1017
1018  DebugInformationRecorder* debug_info = C->debug_info();
1019  assert(debug_info->recording_non_safepoints(), "sanity");
1020
1021  debug_info->add_non_safepoint(pc_offset);
1022  int max_depth = youngest_jvms->depth();
1023
1024  // Visit scopes from oldest to youngest.
1025  for (int depth = 1; depth <= max_depth; depth++) {
1026    JVMState* jvms = youngest_jvms->of_depth(depth);
1027    ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1028    assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1029    debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
1030  }
1031
1032  // Mark the end of the scope set.
1033  debug_info->end_non_safepoint(pc_offset);
1034}
1035
1036
1037
1038// helper for fill_buffer bailout logic
1039static void turn_off_compiler(Compile* C) {
1040  if (CodeCache::largest_free_block() >= CodeCacheMinimumFreeSpace*10) {
1041    // Do not turn off compilation if a single giant method has
1042    // blown the code cache size.
1043    C->record_failure("excessive request to CodeCache");
1044  } else {
1045    // Let CompilerBroker disable further compilations.
1046    C->record_failure("CodeCache is full");
1047  }
1048}
1049
1050
1051//------------------------------init_buffer------------------------------------
1052CodeBuffer* Compile::init_buffer(uint* blk_starts) {
1053
1054  // Set the initially allocated size
1055  int  code_req   = initial_code_capacity;
1056  int  locs_req   = initial_locs_capacity;
1057  int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
1058  int  const_req  = initial_const_capacity;
1059
1060  int  pad_req    = NativeCall::instruction_size;
1061  // The extra spacing after the code is necessary on some platforms.
1062  // Sometimes we need to patch in a jump after the last instruction,
1063  // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1064
1065  // Compute the byte offset where we can store the deopt pc.
1066  if (fixed_slots() != 0) {
1067    _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1068  }
1069
1070  // Compute prolog code size
1071  _method_size = 0;
1072  _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
1073#ifdef IA64
1074  if (save_argument_registers()) {
1075    // 4815101: this is a stub with implicit and unknown precision fp args.
1076    // The usual spill mechanism can only generate stfd's in this case, which
1077    // doesn't work if the fp reg to spill contains a single-precision denorm.
1078    // Instead, we hack around the normal spill mechanism using stfspill's and
1079    // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1080    // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1081    //
1082    // If we ever implement 16-byte 'registers' == stack slots, we can
1083    // get rid of this hack and have SpillCopy generate stfspill/ldffill
1084    // instead of stfd/stfs/ldfd/ldfs.
1085    _frame_slots += 8*(16/BytesPerInt);
1086  }
1087#endif
1088  assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1089
1090  if (has_mach_constant_base_node()) {
1091    // Fill the constant table.
1092    // Note:  This must happen before shorten_branches.
1093    for (uint i = 0; i < _cfg->_num_blocks; i++) {
1094      Block* b = _cfg->_blocks[i];
1095
1096      for (uint j = 0; j < b->_nodes.size(); j++) {
1097        Node* n = b->_nodes[j];
1098
1099        // If the node is a MachConstantNode evaluate the constant
1100        // value section.
1101        if (n->is_MachConstant()) {
1102          MachConstantNode* machcon = n->as_MachConstant();
1103          machcon->eval_constant(C);
1104        }
1105      }
1106    }
1107
1108    // Calculate the offsets of the constants and the size of the
1109    // constant table (including the padding to the next section).
1110    constant_table().calculate_offsets_and_size();
1111    const_req = constant_table().size();
1112  }
1113
1114  // Initialize the space for the BufferBlob used to find and verify
1115  // instruction size in MachNode::emit_size()
1116  init_scratch_buffer_blob(const_req);
1117  if (failing())  return NULL; // Out of memory
1118
1119  // Pre-compute the length of blocks and replace
1120  // long branches with short if machine supports it.
1121  shorten_branches(blk_starts, code_req, locs_req, stub_req);
1122
1123  // nmethod and CodeBuffer count stubs & constants as part of method's code.
1124  int exception_handler_req = size_exception_handler();
1125  int deopt_handler_req = size_deopt_handler();
1126  exception_handler_req += MAX_stubs_size; // add marginal slop for handler
1127  deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
1128  stub_req += MAX_stubs_size;   // ensure per-stub margin
1129  code_req += MAX_inst_size;    // ensure per-instruction margin
1130
1131  if (StressCodeBuffers)
1132    code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1133
1134  int total_req =
1135    const_req +
1136    code_req +
1137    pad_req +
1138    stub_req +
1139    exception_handler_req +
1140    deopt_handler_req;               // deopt handler
1141
1142  if (has_method_handle_invokes())
1143    total_req += deopt_handler_req;  // deopt MH handler
1144
1145  CodeBuffer* cb = code_buffer();
1146  cb->initialize(total_req, locs_req);
1147
1148  // Have we run out of code space?
1149  if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1150    turn_off_compiler(this);
1151    return NULL;
1152  }
1153  // Configure the code buffer.
1154  cb->initialize_consts_size(const_req);
1155  cb->initialize_stubs_size(stub_req);
1156  cb->initialize_oop_recorder(env()->oop_recorder());
1157
1158  // fill in the nop array for bundling computations
1159  MachNode *_nop_list[Bundle::_nop_count];
1160  Bundle::initialize_nops(_nop_list, this);
1161
1162  return cb;
1163}
1164
1165//------------------------------fill_buffer------------------------------------
1166void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1167  // blk_starts[] contains offsets calculated during short branches processing,
1168  // offsets should not be increased during following steps.
1169
1170  // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1171  // of a loop. It is used to determine the padding for loop alignment.
1172  compute_loop_first_inst_sizes();
1173
1174  // Create oopmap set.
1175  _oop_map_set = new OopMapSet();
1176
1177  // !!!!! This preserves old handling of oopmaps for now
1178  debug_info()->set_oopmaps(_oop_map_set);
1179
1180  uint nblocks  = _cfg->_num_blocks;
1181  // Count and start of implicit null check instructions
1182  uint inct_cnt = 0;
1183  uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1184
1185  // Count and start of calls
1186  uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1187
1188  uint  return_offset = 0;
1189  int nop_size = (new (this) MachNopNode())->size(_regalloc);
1190
1191  int previous_offset = 0;
1192  int current_offset  = 0;
1193  int last_call_offset = -1;
1194  int last_avoid_back_to_back_offset = -1;
1195#ifdef ASSERT
1196  int block_alignment_padding = 0;
1197
1198  uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1199  uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1200  uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1201  uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1202#endif
1203
1204  // Create an array of unused labels, one for each basic block, if printing is enabled
1205#ifndef PRODUCT
1206  int *node_offsets      = NULL;
1207  uint node_offset_limit = unique();
1208
1209  if (print_assembly())
1210    node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1211#endif
1212
1213  NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1214
1215  // Emit the constant table.
1216  if (has_mach_constant_base_node()) {
1217    constant_table().emit(*cb);
1218  }
1219
1220  // Create an array of labels, one for each basic block
1221  Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1222  for (uint i=0; i <= nblocks; i++) {
1223    blk_labels[i].init();
1224  }
1225
1226  // ------------------
1227  // Now fill in the code buffer
1228  Node *delay_slot = NULL;
1229
1230  for (uint i=0; i < nblocks; i++) {
1231    guarantee(blk_starts[i] >= (uint)cb->insts_size(),"should not increase size");
1232
1233    Block *b = _cfg->_blocks[i];
1234
1235    Node *head = b->head();
1236
1237    // If this block needs to start aligned (i.e, can be reached other
1238    // than by falling-thru from the previous block), then force the
1239    // start of a new bundle.
1240    if (Pipeline::requires_bundling() && starts_bundle(head))
1241      cb->flush_bundle(true);
1242
1243#ifdef ASSERT
1244    if (!b->is_connector()) {
1245      stringStream st;
1246      b->dump_head(&_cfg->_bbs, &st);
1247      MacroAssembler(cb).block_comment(st.as_string());
1248    }
1249    jmp_target[i] = 0;
1250    jmp_offset[i] = 0;
1251    jmp_size[i]   = 0;
1252    jmp_rule[i]   = 0;
1253
1254    // Maximum alignment padding for loop block was used
1255    // during first round of branches shortening, as result
1256    // padding for nodes (sfpt after call) was not added.
1257    // Take this into account for block's size change check
1258    // and allow increase block's size by the difference
1259    // of maximum and actual alignment paddings.
1260    int orig_blk_size = blk_starts[i+1] - blk_starts[i] + block_alignment_padding;
1261#endif
1262    int blk_offset = current_offset;
1263
1264    // Define the label at the beginning of the basic block
1265    MacroAssembler(cb).bind(blk_labels[b->_pre_order]);
1266
1267    uint last_inst = b->_nodes.size();
1268
1269    // Emit block normally, except for last instruction.
1270    // Emit means "dump code bits into code buffer".
1271    for (uint j = 0; j<last_inst; j++) {
1272
1273      // Get the node
1274      Node* n = b->_nodes[j];
1275
1276      // See if delay slots are supported
1277      if (valid_bundle_info(n) &&
1278          node_bundling(n)->used_in_unconditional_delay()) {
1279        assert(delay_slot == NULL, "no use of delay slot node");
1280        assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1281
1282        delay_slot = n;
1283        continue;
1284      }
1285
1286      // If this starts a new instruction group, then flush the current one
1287      // (but allow split bundles)
1288      if (Pipeline::requires_bundling() && starts_bundle(n))
1289        cb->flush_bundle(false);
1290
1291      // The following logic is duplicated in the code ifdeffed for
1292      // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1293      // should be factored out.  Or maybe dispersed to the nodes?
1294
1295      // Special handling for SafePoint/Call Nodes
1296      bool is_mcall = false;
1297      if (n->is_Mach()) {
1298        MachNode *mach = n->as_Mach();
1299        is_mcall = n->is_MachCall();
1300        bool is_sfn = n->is_MachSafePoint();
1301
1302        // If this requires all previous instructions be flushed, then do so
1303        if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1304          cb->flush_bundle(true);
1305          current_offset = cb->insts_size();
1306        }
1307
1308        // A padding may be needed again since a previous instruction
1309        // could be moved to delay slot.
1310
1311        // align the instruction if necessary
1312        int padding = mach->compute_padding(current_offset);
1313        // Make sure safepoint node for polling is distinct from a call's
1314        // return by adding a nop if needed.
1315        if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1316          padding = nop_size;
1317        }
1318        if (padding == 0 && mach->avoid_back_to_back() &&
1319            current_offset == last_avoid_back_to_back_offset) {
1320          // Avoid back to back some instructions.
1321          padding = nop_size;
1322        }
1323
1324        if(padding > 0) {
1325          assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1326          int nops_cnt = padding / nop_size;
1327          MachNode *nop = new (this) MachNopNode(nops_cnt);
1328          b->_nodes.insert(j++, nop);
1329          last_inst++;
1330          _cfg->_bbs.map( nop->_idx, b );
1331          nop->emit(*cb, _regalloc);
1332          cb->flush_bundle(true);
1333          current_offset = cb->insts_size();
1334        }
1335
1336        // Remember the start of the last call in a basic block
1337        if (is_mcall) {
1338          MachCallNode *mcall = mach->as_MachCall();
1339
1340          // This destination address is NOT PC-relative
1341          mcall->method_set((intptr_t)mcall->entry_point());
1342
1343          // Save the return address
1344          call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
1345
1346          if (mcall->is_MachCallLeaf()) {
1347            is_mcall = false;
1348            is_sfn = false;
1349          }
1350        }
1351
1352        // sfn will be valid whenever mcall is valid now because of inheritance
1353        if (is_sfn || is_mcall) {
1354
1355          // Handle special safepoint nodes for synchronization
1356          if (!is_mcall) {
1357            MachSafePointNode *sfn = mach->as_MachSafePoint();
1358            // !!!!! Stubs only need an oopmap right now, so bail out
1359            if (sfn->jvms()->method() == NULL) {
1360              // Write the oopmap directly to the code blob??!!
1361#             ifdef ENABLE_ZAP_DEAD_LOCALS
1362              assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1363#             endif
1364              continue;
1365            }
1366          } // End synchronization
1367
1368          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1369                                           current_offset);
1370          Process_OopMap_Node(mach, current_offset);
1371        } // End if safepoint
1372
1373        // If this is a null check, then add the start of the previous instruction to the list
1374        else if( mach->is_MachNullCheck() ) {
1375          inct_starts[inct_cnt++] = previous_offset;
1376        }
1377
1378        // If this is a branch, then fill in the label with the target BB's label
1379        else if (mach->is_MachBranch()) {
1380          // This requires the TRUE branch target be in succs[0]
1381          uint block_num = b->non_connector_successor(0)->_pre_order;
1382
1383          // Try to replace long branch if delay slot is not used,
1384          // it is mostly for back branches since forward branch's
1385          // distance is not updated yet.
1386          bool delay_slot_is_used = valid_bundle_info(n) &&
1387                                    node_bundling(n)->use_unconditional_delay();
1388          if (!delay_slot_is_used && mach->may_be_short_branch()) {
1389           assert(delay_slot == NULL, "not expecting delay slot node");
1390           int br_size = n->size(_regalloc);
1391            int offset = blk_starts[block_num] - current_offset;
1392            if (block_num >= i) {
1393              // Current and following block's offset are not
1394              // finilized yet, adjust distance by the difference
1395              // between calculated and final offsets of current block.
1396              offset -= (blk_starts[i] - blk_offset);
1397            }
1398            // In the following code a nop could be inserted before
1399            // the branch which will increase the backward distance.
1400            bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1401            if (needs_padding && offset <= 0)
1402              offset -= nop_size;
1403
1404            if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
1405              // We've got a winner.  Replace this branch.
1406              MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
1407
1408              // Update the jmp_size.
1409              int new_size = replacement->size(_regalloc);
1410              assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1411              // Insert padding between avoid_back_to_back branches.
1412              if (needs_padding && replacement->avoid_back_to_back()) {
1413                MachNode *nop = new (this) MachNopNode();
1414                b->_nodes.insert(j++, nop);
1415                _cfg->_bbs.map(nop->_idx, b);
1416                last_inst++;
1417                nop->emit(*cb, _regalloc);
1418                cb->flush_bundle(true);
1419                current_offset = cb->insts_size();
1420              }
1421#ifdef ASSERT
1422              jmp_target[i] = block_num;
1423              jmp_offset[i] = current_offset - blk_offset;
1424              jmp_size[i]   = new_size;
1425              jmp_rule[i]   = mach->rule();
1426#endif
1427              b->_nodes.map(j, replacement);
1428              mach->subsume_by(replacement);
1429              n    = replacement;
1430              mach = replacement;
1431            }
1432          }
1433          mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1434        } else if (mach->ideal_Opcode() == Op_Jump) {
1435          for (uint h = 0; h < b->_num_succs; h++) {
1436            Block* succs_block = b->_succs[h];
1437            for (uint j = 1; j < succs_block->num_preds(); j++) {
1438              Node* jpn = succs_block->pred(j);
1439              if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1440                uint block_num = succs_block->non_connector()->_pre_order;
1441                Label *blkLabel = &blk_labels[block_num];
1442                mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1443              }
1444            }
1445          }
1446        }
1447
1448#ifdef ASSERT
1449        // Check that oop-store precedes the card-mark
1450        else if (mach->ideal_Opcode() == Op_StoreCM) {
1451          uint storeCM_idx = j;
1452          int count = 0;
1453          for (uint prec = mach->req(); prec < mach->len(); prec++) {
1454            Node *oop_store = mach->in(prec);  // Precedence edge
1455            if (oop_store == NULL) continue;
1456            count++;
1457            uint i4;
1458            for( i4 = 0; i4 < last_inst; ++i4 ) {
1459              if( b->_nodes[i4] == oop_store ) break;
1460            }
1461            // Note: This test can provide a false failure if other precedence
1462            // edges have been added to the storeCMNode.
1463            assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1464          }
1465          assert(count > 0, "storeCM expects at least one precedence edge");
1466        }
1467#endif
1468
1469        else if (!n->is_Proj()) {
1470          // Remember the beginning of the previous instruction, in case
1471          // it's followed by a flag-kill and a null-check.  Happens on
1472          // Intel all the time, with add-to-memory kind of opcodes.
1473          previous_offset = current_offset;
1474        }
1475      }
1476
1477      // Verify that there is sufficient space remaining
1478      cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1479      if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1480        turn_off_compiler(this);
1481        return;
1482      }
1483
1484      // Save the offset for the listing
1485#ifndef PRODUCT
1486      if (node_offsets && n->_idx < node_offset_limit)
1487        node_offsets[n->_idx] = cb->insts_size();
1488#endif
1489
1490      // "Normal" instruction case
1491      DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
1492      n->emit(*cb, _regalloc);
1493      current_offset  = cb->insts_size();
1494
1495#ifdef ASSERT
1496      if (n->size(_regalloc) < (current_offset-instr_offset)) {
1497        n->dump();
1498        assert(false, "wrong size of mach node");
1499      }
1500#endif
1501      non_safepoints.observe_instruction(n, current_offset);
1502
1503      // mcall is last "call" that can be a safepoint
1504      // record it so we can see if a poll will directly follow it
1505      // in which case we'll need a pad to make the PcDesc sites unique
1506      // see  5010568. This can be slightly inaccurate but conservative
1507      // in the case that return address is not actually at current_offset.
1508      // This is a small price to pay.
1509
1510      if (is_mcall) {
1511        last_call_offset = current_offset;
1512      }
1513
1514      if (n->is_Mach() && n->as_Mach()->avoid_back_to_back()) {
1515        // Avoid back to back some instructions.
1516        last_avoid_back_to_back_offset = current_offset;
1517      }
1518
1519      // See if this instruction has a delay slot
1520      if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1521        assert(delay_slot != NULL, "expecting delay slot node");
1522
1523        // Back up 1 instruction
1524        cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1525
1526        // Save the offset for the listing
1527#ifndef PRODUCT
1528        if (node_offsets && delay_slot->_idx < node_offset_limit)
1529          node_offsets[delay_slot->_idx] = cb->insts_size();
1530#endif
1531
1532        // Support a SafePoint in the delay slot
1533        if (delay_slot->is_MachSafePoint()) {
1534          MachNode *mach = delay_slot->as_Mach();
1535          // !!!!! Stubs only need an oopmap right now, so bail out
1536          if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
1537            // Write the oopmap directly to the code blob??!!
1538#           ifdef ENABLE_ZAP_DEAD_LOCALS
1539            assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1540#           endif
1541            delay_slot = NULL;
1542            continue;
1543          }
1544
1545          int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1546          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1547                                           adjusted_offset);
1548          // Generate an OopMap entry
1549          Process_OopMap_Node(mach, adjusted_offset);
1550        }
1551
1552        // Insert the delay slot instruction
1553        delay_slot->emit(*cb, _regalloc);
1554
1555        // Don't reuse it
1556        delay_slot = NULL;
1557      }
1558
1559    } // End for all instructions in block
1560    assert((uint)blk_offset <= blk_starts[i], "shouldn't increase distance");
1561    blk_starts[i] = blk_offset;
1562
1563    // If the next block is the top of a loop, pad this block out to align
1564    // the loop top a little. Helps prevent pipe stalls at loop back branches.
1565    if (i < nblocks-1) {
1566      Block *nb = _cfg->_blocks[i+1];
1567      int padding = nb->alignment_padding(current_offset);
1568      if( padding > 0 ) {
1569        MachNode *nop = new (this) MachNopNode(padding / nop_size);
1570        b->_nodes.insert( b->_nodes.size(), nop );
1571        _cfg->_bbs.map( nop->_idx, b );
1572        nop->emit(*cb, _regalloc);
1573        current_offset = cb->insts_size();
1574      }
1575#ifdef ASSERT
1576      int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
1577      block_alignment_padding = (max_loop_pad - padding);
1578      assert(block_alignment_padding >= 0, "sanity");
1579#endif
1580    }
1581    // Verify that the distance for generated before forward
1582    // short branches is still valid.
1583    assert(orig_blk_size >= (current_offset - blk_offset), "shouldn't increase block size");
1584
1585  } // End of for all blocks
1586  blk_starts[nblocks] = current_offset;
1587
1588  non_safepoints.flush_at_end();
1589
1590  // Offset too large?
1591  if (failing())  return;
1592
1593  // Define a pseudo-label at the end of the code
1594  MacroAssembler(cb).bind( blk_labels[nblocks] );
1595
1596  // Compute the size of the first block
1597  _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1598
1599  assert(cb->insts_size() < 500000, "method is unreasonably large");
1600
1601#ifdef ASSERT
1602  for (uint i = 0; i < nblocks; i++) { // For all blocks
1603    if (jmp_target[i] != 0) {
1604      int br_size = jmp_size[i];
1605      int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1606      if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1607        tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1608        assert(false, "Displacement too large for short jmp");
1609      }
1610    }
1611  }
1612#endif
1613
1614  // ------------------
1615
1616#ifndef PRODUCT
1617  // Information on the size of the method, without the extraneous code
1618  Scheduling::increment_method_size(cb->insts_size());
1619#endif
1620
1621  // ------------------
1622  // Fill in exception table entries.
1623  FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1624
1625  // Only java methods have exception handlers and deopt handlers
1626  if (_method) {
1627    // Emit the exception handler code.
1628    _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
1629    // Emit the deopt handler code.
1630    _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
1631
1632    // Emit the MethodHandle deopt handler code (if required).
1633    if (has_method_handle_invokes()) {
1634      // We can use the same code as for the normal deopt handler, we
1635      // just need a different entry point address.
1636      _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
1637    }
1638  }
1639
1640  // One last check for failed CodeBuffer::expand:
1641  if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1642    turn_off_compiler(this);
1643    return;
1644  }
1645
1646#ifndef PRODUCT
1647  // Dump the assembly code, including basic-block numbers
1648  if (print_assembly()) {
1649    ttyLocker ttyl;  // keep the following output all in one block
1650    if (!VMThread::should_terminate()) {  // test this under the tty lock
1651      // This output goes directly to the tty, not the compiler log.
1652      // To enable tools to match it up with the compilation activity,
1653      // be sure to tag this tty output with the compile ID.
1654      if (xtty != NULL) {
1655        xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1656                   is_osr_compilation()    ? " compile_kind='osr'" :
1657                   "");
1658      }
1659      if (method() != NULL) {
1660        method()->print_metadata();
1661      }
1662      dump_asm(node_offsets, node_offset_limit);
1663      if (xtty != NULL) {
1664        xtty->tail("opto_assembly");
1665      }
1666    }
1667  }
1668#endif
1669
1670}
1671
1672void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1673  _inc_table.set_size(cnt);
1674
1675  uint inct_cnt = 0;
1676  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1677    Block *b = _cfg->_blocks[i];
1678    Node *n = NULL;
1679    int j;
1680
1681    // Find the branch; ignore trailing NOPs.
1682    for( j = b->_nodes.size()-1; j>=0; j-- ) {
1683      n = b->_nodes[j];
1684      if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
1685        break;
1686    }
1687
1688    // If we didn't find anything, continue
1689    if( j < 0 ) continue;
1690
1691    // Compute ExceptionHandlerTable subtable entry and add it
1692    // (skip empty blocks)
1693    if( n->is_Catch() ) {
1694
1695      // Get the offset of the return from the call
1696      uint call_return = call_returns[b->_pre_order];
1697#ifdef ASSERT
1698      assert( call_return > 0, "no call seen for this basic block" );
1699      while( b->_nodes[--j]->is_MachProj() ) ;
1700      assert( b->_nodes[j]->is_MachCall(), "CatchProj must follow call" );
1701#endif
1702      // last instruction is a CatchNode, find it's CatchProjNodes
1703      int nof_succs = b->_num_succs;
1704      // allocate space
1705      GrowableArray<intptr_t> handler_bcis(nof_succs);
1706      GrowableArray<intptr_t> handler_pcos(nof_succs);
1707      // iterate through all successors
1708      for (int j = 0; j < nof_succs; j++) {
1709        Block* s = b->_succs[j];
1710        bool found_p = false;
1711        for( uint k = 1; k < s->num_preds(); k++ ) {
1712          Node *pk = s->pred(k);
1713          if( pk->is_CatchProj() && pk->in(0) == n ) {
1714            const CatchProjNode* p = pk->as_CatchProj();
1715            found_p = true;
1716            // add the corresponding handler bci & pco information
1717            if( p->_con != CatchProjNode::fall_through_index ) {
1718              // p leads to an exception handler (and is not fall through)
1719              assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
1720              // no duplicates, please
1721              if( !handler_bcis.contains(p->handler_bci()) ) {
1722                uint block_num = s->non_connector()->_pre_order;
1723                handler_bcis.append(p->handler_bci());
1724                handler_pcos.append(blk_labels[block_num].loc_pos());
1725              }
1726            }
1727          }
1728        }
1729        assert(found_p, "no matching predecessor found");
1730        // Note:  Due to empty block removal, one block may have
1731        // several CatchProj inputs, from the same Catch.
1732      }
1733
1734      // Set the offset of the return from the call
1735      _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1736      continue;
1737    }
1738
1739    // Handle implicit null exception table updates
1740    if( n->is_MachNullCheck() ) {
1741      uint block_num = b->non_connector_successor(0)->_pre_order;
1742      _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
1743      continue;
1744    }
1745  } // End of for all blocks fill in exception table entries
1746}
1747
1748// Static Variables
1749#ifndef PRODUCT
1750uint Scheduling::_total_nop_size = 0;
1751uint Scheduling::_total_method_size = 0;
1752uint Scheduling::_total_branches = 0;
1753uint Scheduling::_total_unconditional_delays = 0;
1754uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1755#endif
1756
1757// Initializer for class Scheduling
1758
1759Scheduling::Scheduling(Arena *arena, Compile &compile)
1760  : _arena(arena),
1761    _cfg(compile.cfg()),
1762    _bbs(compile.cfg()->_bbs),
1763    _regalloc(compile.regalloc()),
1764    _reg_node(arena),
1765    _bundle_instr_count(0),
1766    _bundle_cycle_number(0),
1767    _scheduled(arena),
1768    _available(arena),
1769    _next_node(NULL),
1770    _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1771    _pinch_free_list(arena)
1772#ifndef PRODUCT
1773  , _branches(0)
1774  , _unconditional_delays(0)
1775#endif
1776{
1777  // Create a MachNopNode
1778  _nop = new (&compile) MachNopNode();
1779
1780  // Now that the nops are in the array, save the count
1781  // (but allow entries for the nops)
1782  _node_bundling_limit = compile.unique();
1783  uint node_max = _regalloc->node_regs_max_index();
1784
1785  compile.set_node_bundling_limit(_node_bundling_limit);
1786
1787  // This one is persistent within the Compile class
1788  _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1789
1790  // Allocate space for fixed-size arrays
1791  _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1792  _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1793  _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1794
1795  // Clear the arrays
1796  memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1797  memset(_node_latency,       0, node_max * sizeof(unsigned short));
1798  memset(_uses,               0, node_max * sizeof(short));
1799  memset(_current_latency,    0, node_max * sizeof(unsigned short));
1800
1801  // Clear the bundling information
1802  memcpy(_bundle_use_elements,
1803    Pipeline_Use::elaborated_elements,
1804    sizeof(Pipeline_Use::elaborated_elements));
1805
1806  // Get the last node
1807  Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
1808
1809  _next_node = bb->_nodes[bb->_nodes.size()-1];
1810}
1811
1812#ifndef PRODUCT
1813// Scheduling destructor
1814Scheduling::~Scheduling() {
1815  _total_branches             += _branches;
1816  _total_unconditional_delays += _unconditional_delays;
1817}
1818#endif
1819
1820// Step ahead "i" cycles
1821void Scheduling::step(uint i) {
1822
1823  Bundle *bundle = node_bundling(_next_node);
1824  bundle->set_starts_bundle();
1825
1826  // Update the bundle record, but leave the flags information alone
1827  if (_bundle_instr_count > 0) {
1828    bundle->set_instr_count(_bundle_instr_count);
1829    bundle->set_resources_used(_bundle_use.resourcesUsed());
1830  }
1831
1832  // Update the state information
1833  _bundle_instr_count = 0;
1834  _bundle_cycle_number += i;
1835  _bundle_use.step(i);
1836}
1837
1838void Scheduling::step_and_clear() {
1839  Bundle *bundle = node_bundling(_next_node);
1840  bundle->set_starts_bundle();
1841
1842  // Update the bundle record
1843  if (_bundle_instr_count > 0) {
1844    bundle->set_instr_count(_bundle_instr_count);
1845    bundle->set_resources_used(_bundle_use.resourcesUsed());
1846
1847    _bundle_cycle_number += 1;
1848  }
1849
1850  // Clear the bundling information
1851  _bundle_instr_count = 0;
1852  _bundle_use.reset();
1853
1854  memcpy(_bundle_use_elements,
1855    Pipeline_Use::elaborated_elements,
1856    sizeof(Pipeline_Use::elaborated_elements));
1857}
1858
1859//------------------------------ScheduleAndBundle------------------------------
1860// Perform instruction scheduling and bundling over the sequence of
1861// instructions in backwards order.
1862void Compile::ScheduleAndBundle() {
1863
1864  // Don't optimize this if it isn't a method
1865  if (!_method)
1866    return;
1867
1868  // Don't optimize this if scheduling is disabled
1869  if (!do_scheduling())
1870    return;
1871
1872  assert(MaxVectorSize <= 8, "scheduling code works only with pairs");
1873
1874  NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1875
1876  // Create a data structure for all the scheduling information
1877  Scheduling scheduling(Thread::current()->resource_area(), *this);
1878
1879  // Walk backwards over each basic block, computing the needed alignment
1880  // Walk over all the basic blocks
1881  scheduling.DoScheduling();
1882}
1883
1884//------------------------------ComputeLocalLatenciesForward-------------------
1885// Compute the latency of all the instructions.  This is fairly simple,
1886// because we already have a legal ordering.  Walk over the instructions
1887// from first to last, and compute the latency of the instruction based
1888// on the latency of the preceding instruction(s).
1889void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1890#ifndef PRODUCT
1891  if (_cfg->C->trace_opto_output())
1892    tty->print("# -> ComputeLocalLatenciesForward\n");
1893#endif
1894
1895  // Walk over all the schedulable instructions
1896  for( uint j=_bb_start; j < _bb_end; j++ ) {
1897
1898    // This is a kludge, forcing all latency calculations to start at 1.
1899    // Used to allow latency 0 to force an instruction to the beginning
1900    // of the bb
1901    uint latency = 1;
1902    Node *use = bb->_nodes[j];
1903    uint nlen = use->len();
1904
1905    // Walk over all the inputs
1906    for ( uint k=0; k < nlen; k++ ) {
1907      Node *def = use->in(k);
1908      if (!def)
1909        continue;
1910
1911      uint l = _node_latency[def->_idx] + use->latency(k);
1912      if (latency < l)
1913        latency = l;
1914    }
1915
1916    _node_latency[use->_idx] = latency;
1917
1918#ifndef PRODUCT
1919    if (_cfg->C->trace_opto_output()) {
1920      tty->print("# latency %4d: ", latency);
1921      use->dump();
1922    }
1923#endif
1924  }
1925
1926#ifndef PRODUCT
1927  if (_cfg->C->trace_opto_output())
1928    tty->print("# <- ComputeLocalLatenciesForward\n");
1929#endif
1930
1931} // end ComputeLocalLatenciesForward
1932
1933// See if this node fits into the present instruction bundle
1934bool Scheduling::NodeFitsInBundle(Node *n) {
1935  uint n_idx = n->_idx;
1936
1937  // If this is the unconditional delay instruction, then it fits
1938  if (n == _unconditional_delay_slot) {
1939#ifndef PRODUCT
1940    if (_cfg->C->trace_opto_output())
1941      tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1942#endif
1943    return (true);
1944  }
1945
1946  // If the node cannot be scheduled this cycle, skip it
1947  if (_current_latency[n_idx] > _bundle_cycle_number) {
1948#ifndef PRODUCT
1949    if (_cfg->C->trace_opto_output())
1950      tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1951        n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1952#endif
1953    return (false);
1954  }
1955
1956  const Pipeline *node_pipeline = n->pipeline();
1957
1958  uint instruction_count = node_pipeline->instructionCount();
1959  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1960    instruction_count = 0;
1961  else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1962    instruction_count++;
1963
1964  if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1965#ifndef PRODUCT
1966    if (_cfg->C->trace_opto_output())
1967      tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1968        n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1969#endif
1970    return (false);
1971  }
1972
1973  // Don't allow non-machine nodes to be handled this way
1974  if (!n->is_Mach() && instruction_count == 0)
1975    return (false);
1976
1977  // See if there is any overlap
1978  uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1979
1980  if (delay > 0) {
1981#ifndef PRODUCT
1982    if (_cfg->C->trace_opto_output())
1983      tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1984#endif
1985    return false;
1986  }
1987
1988#ifndef PRODUCT
1989  if (_cfg->C->trace_opto_output())
1990    tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
1991#endif
1992
1993  return true;
1994}
1995
1996Node * Scheduling::ChooseNodeToBundle() {
1997  uint siz = _available.size();
1998
1999  if (siz == 0) {
2000
2001#ifndef PRODUCT
2002    if (_cfg->C->trace_opto_output())
2003      tty->print("#   ChooseNodeToBundle: NULL\n");
2004#endif
2005    return (NULL);
2006  }
2007
2008  // Fast path, if only 1 instruction in the bundle
2009  if (siz == 1) {
2010#ifndef PRODUCT
2011    if (_cfg->C->trace_opto_output()) {
2012      tty->print("#   ChooseNodeToBundle (only 1): ");
2013      _available[0]->dump();
2014    }
2015#endif
2016    return (_available[0]);
2017  }
2018
2019  // Don't bother, if the bundle is already full
2020  if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2021    for ( uint i = 0; i < siz; i++ ) {
2022      Node *n = _available[i];
2023
2024      // Skip projections, we'll handle them another way
2025      if (n->is_Proj())
2026        continue;
2027
2028      // This presupposed that instructions are inserted into the
2029      // available list in a legality order; i.e. instructions that
2030      // must be inserted first are at the head of the list
2031      if (NodeFitsInBundle(n)) {
2032#ifndef PRODUCT
2033        if (_cfg->C->trace_opto_output()) {
2034          tty->print("#   ChooseNodeToBundle: ");
2035          n->dump();
2036        }
2037#endif
2038        return (n);
2039      }
2040    }
2041  }
2042
2043  // Nothing fits in this bundle, choose the highest priority
2044#ifndef PRODUCT
2045  if (_cfg->C->trace_opto_output()) {
2046    tty->print("#   ChooseNodeToBundle: ");
2047    _available[0]->dump();
2048  }
2049#endif
2050
2051  return _available[0];
2052}
2053
2054//------------------------------AddNodeToAvailableList-------------------------
2055void Scheduling::AddNodeToAvailableList(Node *n) {
2056  assert( !n->is_Proj(), "projections never directly made available" );
2057#ifndef PRODUCT
2058  if (_cfg->C->trace_opto_output()) {
2059    tty->print("#   AddNodeToAvailableList: ");
2060    n->dump();
2061  }
2062#endif
2063
2064  int latency = _current_latency[n->_idx];
2065
2066  // Insert in latency order (insertion sort)
2067  uint i;
2068  for ( i=0; i < _available.size(); i++ )
2069    if (_current_latency[_available[i]->_idx] > latency)
2070      break;
2071
2072  // Special Check for compares following branches
2073  if( n->is_Mach() && _scheduled.size() > 0 ) {
2074    int op = n->as_Mach()->ideal_Opcode();
2075    Node *last = _scheduled[0];
2076    if( last->is_MachIf() && last->in(1) == n &&
2077        ( op == Op_CmpI ||
2078          op == Op_CmpU ||
2079          op == Op_CmpP ||
2080          op == Op_CmpF ||
2081          op == Op_CmpD ||
2082          op == Op_CmpL ) ) {
2083
2084      // Recalculate position, moving to front of same latency
2085      for ( i=0 ; i < _available.size(); i++ )
2086        if (_current_latency[_available[i]->_idx] >= latency)
2087          break;
2088    }
2089  }
2090
2091  // Insert the node in the available list
2092  _available.insert(i, n);
2093
2094#ifndef PRODUCT
2095  if (_cfg->C->trace_opto_output())
2096    dump_available();
2097#endif
2098}
2099
2100//------------------------------DecrementUseCounts-----------------------------
2101void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2102  for ( uint i=0; i < n->len(); i++ ) {
2103    Node *def = n->in(i);
2104    if (!def) continue;
2105    if( def->is_Proj() )        // If this is a machine projection, then
2106      def = def->in(0);         // propagate usage thru to the base instruction
2107
2108    if( _bbs[def->_idx] != bb ) // Ignore if not block-local
2109      continue;
2110
2111    // Compute the latency
2112    uint l = _bundle_cycle_number + n->latency(i);
2113    if (_current_latency[def->_idx] < l)
2114      _current_latency[def->_idx] = l;
2115
2116    // If this does not have uses then schedule it
2117    if ((--_uses[def->_idx]) == 0)
2118      AddNodeToAvailableList(def);
2119  }
2120}
2121
2122//------------------------------AddNodeToBundle--------------------------------
2123void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2124#ifndef PRODUCT
2125  if (_cfg->C->trace_opto_output()) {
2126    tty->print("#   AddNodeToBundle: ");
2127    n->dump();
2128  }
2129#endif
2130
2131  // Remove this from the available list
2132  uint i;
2133  for (i = 0; i < _available.size(); i++)
2134    if (_available[i] == n)
2135      break;
2136  assert(i < _available.size(), "entry in _available list not found");
2137  _available.remove(i);
2138
2139  // See if this fits in the current bundle
2140  const Pipeline *node_pipeline = n->pipeline();
2141  const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2142
2143  // Check for instructions to be placed in the delay slot. We
2144  // do this before we actually schedule the current instruction,
2145  // because the delay slot follows the current instruction.
2146  if (Pipeline::_branch_has_delay_slot &&
2147      node_pipeline->hasBranchDelay() &&
2148      !_unconditional_delay_slot) {
2149
2150    uint siz = _available.size();
2151
2152    // Conditional branches can support an instruction that
2153    // is unconditionally executed and not dependent by the
2154    // branch, OR a conditionally executed instruction if
2155    // the branch is taken.  In practice, this means that
2156    // the first instruction at the branch target is
2157    // copied to the delay slot, and the branch goes to
2158    // the instruction after that at the branch target
2159    if ( n->is_MachBranch() ) {
2160
2161      assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2162      assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2163
2164#ifndef PRODUCT
2165      _branches++;
2166#endif
2167
2168      // At least 1 instruction is on the available list
2169      // that is not dependent on the branch
2170      for (uint i = 0; i < siz; i++) {
2171        Node *d = _available[i];
2172        const Pipeline *avail_pipeline = d->pipeline();
2173
2174        // Don't allow safepoints in the branch shadow, that will
2175        // cause a number of difficulties
2176        if ( avail_pipeline->instructionCount() == 1 &&
2177            !avail_pipeline->hasMultipleBundles() &&
2178            !avail_pipeline->hasBranchDelay() &&
2179            Pipeline::instr_has_unit_size() &&
2180            d->size(_regalloc) == Pipeline::instr_unit_size() &&
2181            NodeFitsInBundle(d) &&
2182            !node_bundling(d)->used_in_delay()) {
2183
2184          if (d->is_Mach() && !d->is_MachSafePoint()) {
2185            // A node that fits in the delay slot was found, so we need to
2186            // set the appropriate bits in the bundle pipeline information so
2187            // that it correctly indicates resource usage.  Later, when we
2188            // attempt to add this instruction to the bundle, we will skip
2189            // setting the resource usage.
2190            _unconditional_delay_slot = d;
2191            node_bundling(n)->set_use_unconditional_delay();
2192            node_bundling(d)->set_used_in_unconditional_delay();
2193            _bundle_use.add_usage(avail_pipeline->resourceUse());
2194            _current_latency[d->_idx] = _bundle_cycle_number;
2195            _next_node = d;
2196            ++_bundle_instr_count;
2197#ifndef PRODUCT
2198            _unconditional_delays++;
2199#endif
2200            break;
2201          }
2202        }
2203      }
2204    }
2205
2206    // No delay slot, add a nop to the usage
2207    if (!_unconditional_delay_slot) {
2208      // See if adding an instruction in the delay slot will overflow
2209      // the bundle.
2210      if (!NodeFitsInBundle(_nop)) {
2211#ifndef PRODUCT
2212        if (_cfg->C->trace_opto_output())
2213          tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2214#endif
2215        step(1);
2216      }
2217
2218      _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2219      _next_node = _nop;
2220      ++_bundle_instr_count;
2221    }
2222
2223    // See if the instruction in the delay slot requires a
2224    // step of the bundles
2225    if (!NodeFitsInBundle(n)) {
2226#ifndef PRODUCT
2227        if (_cfg->C->trace_opto_output())
2228          tty->print("#  *** STEP(branch won't fit) ***\n");
2229#endif
2230        // Update the state information
2231        _bundle_instr_count = 0;
2232        _bundle_cycle_number += 1;
2233        _bundle_use.step(1);
2234    }
2235  }
2236
2237  // Get the number of instructions
2238  uint instruction_count = node_pipeline->instructionCount();
2239  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2240    instruction_count = 0;
2241
2242  // Compute the latency information
2243  uint delay = 0;
2244
2245  if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2246    int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2247    if (relative_latency < 0)
2248      relative_latency = 0;
2249
2250    delay = _bundle_use.full_latency(relative_latency, node_usage);
2251
2252    // Does not fit in this bundle, start a new one
2253    if (delay > 0) {
2254      step(delay);
2255
2256#ifndef PRODUCT
2257      if (_cfg->C->trace_opto_output())
2258        tty->print("#  *** STEP(%d) ***\n", delay);
2259#endif
2260    }
2261  }
2262
2263  // If this was placed in the delay slot, ignore it
2264  if (n != _unconditional_delay_slot) {
2265
2266    if (delay == 0) {
2267      if (node_pipeline->hasMultipleBundles()) {
2268#ifndef PRODUCT
2269        if (_cfg->C->trace_opto_output())
2270          tty->print("#  *** STEP(multiple instructions) ***\n");
2271#endif
2272        step(1);
2273      }
2274
2275      else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2276#ifndef PRODUCT
2277        if (_cfg->C->trace_opto_output())
2278          tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2279            instruction_count + _bundle_instr_count,
2280            Pipeline::_max_instrs_per_cycle);
2281#endif
2282        step(1);
2283      }
2284    }
2285
2286    if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2287      _bundle_instr_count++;
2288
2289    // Set the node's latency
2290    _current_latency[n->_idx] = _bundle_cycle_number;
2291
2292    // Now merge the functional unit information
2293    if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2294      _bundle_use.add_usage(node_usage);
2295
2296    // Increment the number of instructions in this bundle
2297    _bundle_instr_count += instruction_count;
2298
2299    // Remember this node for later
2300    if (n->is_Mach())
2301      _next_node = n;
2302  }
2303
2304  // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2305  // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2306  // 'Schedule' them (basically ignore in the schedule) but do not insert them
2307  // into the block.  All other scheduled nodes get put in the schedule here.
2308  int op = n->Opcode();
2309  if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2310      (op != Op_Node &&         // Not an unused antidepedence node and
2311       // not an unallocated boxlock
2312       (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2313
2314    // Push any trailing projections
2315    if( bb->_nodes[bb->_nodes.size()-1] != n ) {
2316      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2317        Node *foi = n->fast_out(i);
2318        if( foi->is_Proj() )
2319          _scheduled.push(foi);
2320      }
2321    }
2322
2323    // Put the instruction in the schedule list
2324    _scheduled.push(n);
2325  }
2326
2327#ifndef PRODUCT
2328  if (_cfg->C->trace_opto_output())
2329    dump_available();
2330#endif
2331
2332  // Walk all the definitions, decrementing use counts, and
2333  // if a definition has a 0 use count, place it in the available list.
2334  DecrementUseCounts(n,bb);
2335}
2336
2337//------------------------------ComputeUseCount--------------------------------
2338// This method sets the use count within a basic block.  We will ignore all
2339// uses outside the current basic block.  As we are doing a backwards walk,
2340// any node we reach that has a use count of 0 may be scheduled.  This also
2341// avoids the problem of cyclic references from phi nodes, as long as phi
2342// nodes are at the front of the basic block.  This method also initializes
2343// the available list to the set of instructions that have no uses within this
2344// basic block.
2345void Scheduling::ComputeUseCount(const Block *bb) {
2346#ifndef PRODUCT
2347  if (_cfg->C->trace_opto_output())
2348    tty->print("# -> ComputeUseCount\n");
2349#endif
2350
2351  // Clear the list of available and scheduled instructions, just in case
2352  _available.clear();
2353  _scheduled.clear();
2354
2355  // No delay slot specified
2356  _unconditional_delay_slot = NULL;
2357
2358#ifdef ASSERT
2359  for( uint i=0; i < bb->_nodes.size(); i++ )
2360    assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
2361#endif
2362
2363  // Force the _uses count to never go to zero for unscheduable pieces
2364  // of the block
2365  for( uint k = 0; k < _bb_start; k++ )
2366    _uses[bb->_nodes[k]->_idx] = 1;
2367  for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
2368    _uses[bb->_nodes[l]->_idx] = 1;
2369
2370  // Iterate backwards over the instructions in the block.  Don't count the
2371  // branch projections at end or the block header instructions.
2372  for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2373    Node *n = bb->_nodes[j];
2374    if( n->is_Proj() ) continue; // Projections handled another way
2375
2376    // Account for all uses
2377    for ( uint k = 0; k < n->len(); k++ ) {
2378      Node *inp = n->in(k);
2379      if (!inp) continue;
2380      assert(inp != n, "no cycles allowed" );
2381      if( _bbs[inp->_idx] == bb ) { // Block-local use?
2382        if( inp->is_Proj() )    // Skip through Proj's
2383          inp = inp->in(0);
2384        ++_uses[inp->_idx];     // Count 1 block-local use
2385      }
2386    }
2387
2388    // If this instruction has a 0 use count, then it is available
2389    if (!_uses[n->_idx]) {
2390      _current_latency[n->_idx] = _bundle_cycle_number;
2391      AddNodeToAvailableList(n);
2392    }
2393
2394#ifndef PRODUCT
2395    if (_cfg->C->trace_opto_output()) {
2396      tty->print("#   uses: %3d: ", _uses[n->_idx]);
2397      n->dump();
2398    }
2399#endif
2400  }
2401
2402#ifndef PRODUCT
2403  if (_cfg->C->trace_opto_output())
2404    tty->print("# <- ComputeUseCount\n");
2405#endif
2406}
2407
2408// This routine performs scheduling on each basic block in reverse order,
2409// using instruction latencies and taking into account function unit
2410// availability.
2411void Scheduling::DoScheduling() {
2412#ifndef PRODUCT
2413  if (_cfg->C->trace_opto_output())
2414    tty->print("# -> DoScheduling\n");
2415#endif
2416
2417  Block *succ_bb = NULL;
2418  Block *bb;
2419
2420  // Walk over all the basic blocks in reverse order
2421  for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
2422    bb = _cfg->_blocks[i];
2423
2424#ifndef PRODUCT
2425    if (_cfg->C->trace_opto_output()) {
2426      tty->print("#  Schedule BB#%03d (initial)\n", i);
2427      for (uint j = 0; j < bb->_nodes.size(); j++)
2428        bb->_nodes[j]->dump();
2429    }
2430#endif
2431
2432    // On the head node, skip processing
2433    if( bb == _cfg->_broot )
2434      continue;
2435
2436    // Skip empty, connector blocks
2437    if (bb->is_connector())
2438      continue;
2439
2440    // If the following block is not the sole successor of
2441    // this one, then reset the pipeline information
2442    if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2443#ifndef PRODUCT
2444      if (_cfg->C->trace_opto_output()) {
2445        tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2446                   _next_node->_idx, _bundle_instr_count);
2447      }
2448#endif
2449      step_and_clear();
2450    }
2451
2452    // Leave untouched the starting instruction, any Phis, a CreateEx node
2453    // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
2454    _bb_end = bb->_nodes.size()-1;
2455    for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2456      Node *n = bb->_nodes[_bb_start];
2457      // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2458      // Also, MachIdealNodes do not get scheduled
2459      if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2460      MachNode *mach = n->as_Mach();
2461      int iop = mach->ideal_Opcode();
2462      if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2463      if( iop == Op_Con ) continue;      // Do not schedule Top
2464      if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2465          mach->pipeline() == MachNode::pipeline_class() &&
2466          !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2467        continue;
2468      break;                    // Funny loop structure to be sure...
2469    }
2470    // Compute last "interesting" instruction in block - last instruction we
2471    // might schedule.  _bb_end points just after last schedulable inst.  We
2472    // normally schedule conditional branches (despite them being forced last
2473    // in the block), because they have delay slots we can fill.  Calls all
2474    // have their delay slots filled in the template expansions, so we don't
2475    // bother scheduling them.
2476    Node *last = bb->_nodes[_bb_end];
2477    // Ignore trailing NOPs.
2478    while (_bb_end > 0 && last->is_Mach() &&
2479           last->as_Mach()->ideal_Opcode() == Op_Con) {
2480      last = bb->_nodes[--_bb_end];
2481    }
2482    assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2483    if( last->is_Catch() ||
2484       // Exclude unreachable path case when Halt node is in a separate block.
2485       (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2486      // There must be a prior call.  Skip it.
2487      while( !bb->_nodes[--_bb_end]->is_MachCall() ) {
2488        assert( bb->_nodes[_bb_end]->is_MachProj(), "skipping projections after expected call" );
2489      }
2490    } else if( last->is_MachNullCheck() ) {
2491      // Backup so the last null-checked memory instruction is
2492      // outside the schedulable range. Skip over the nullcheck,
2493      // projection, and the memory nodes.
2494      Node *mem = last->in(1);
2495      do {
2496        _bb_end--;
2497      } while (mem != bb->_nodes[_bb_end]);
2498    } else {
2499      // Set _bb_end to point after last schedulable inst.
2500      _bb_end++;
2501    }
2502
2503    assert( _bb_start <= _bb_end, "inverted block ends" );
2504
2505    // Compute the register antidependencies for the basic block
2506    ComputeRegisterAntidependencies(bb);
2507    if (_cfg->C->failing())  return;  // too many D-U pinch points
2508
2509    // Compute intra-bb latencies for the nodes
2510    ComputeLocalLatenciesForward(bb);
2511
2512    // Compute the usage within the block, and set the list of all nodes
2513    // in the block that have no uses within the block.
2514    ComputeUseCount(bb);
2515
2516    // Schedule the remaining instructions in the block
2517    while ( _available.size() > 0 ) {
2518      Node *n = ChooseNodeToBundle();
2519      AddNodeToBundle(n,bb);
2520    }
2521
2522    assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2523#ifdef ASSERT
2524    for( uint l = _bb_start; l < _bb_end; l++ ) {
2525      Node *n = bb->_nodes[l];
2526      uint m;
2527      for( m = 0; m < _bb_end-_bb_start; m++ )
2528        if( _scheduled[m] == n )
2529          break;
2530      assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2531    }
2532#endif
2533
2534    // Now copy the instructions (in reverse order) back to the block
2535    for ( uint k = _bb_start; k < _bb_end; k++ )
2536      bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
2537
2538#ifndef PRODUCT
2539    if (_cfg->C->trace_opto_output()) {
2540      tty->print("#  Schedule BB#%03d (final)\n", i);
2541      uint current = 0;
2542      for (uint j = 0; j < bb->_nodes.size(); j++) {
2543        Node *n = bb->_nodes[j];
2544        if( valid_bundle_info(n) ) {
2545          Bundle *bundle = node_bundling(n);
2546          if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2547            tty->print("*** Bundle: ");
2548            bundle->dump();
2549          }
2550          n->dump();
2551        }
2552      }
2553    }
2554#endif
2555#ifdef ASSERT
2556  verify_good_schedule(bb,"after block local scheduling");
2557#endif
2558  }
2559
2560#ifndef PRODUCT
2561  if (_cfg->C->trace_opto_output())
2562    tty->print("# <- DoScheduling\n");
2563#endif
2564
2565  // Record final node-bundling array location
2566  _regalloc->C->set_node_bundling_base(_node_bundling_base);
2567
2568} // end DoScheduling
2569
2570//------------------------------verify_good_schedule---------------------------
2571// Verify that no live-range used in the block is killed in the block by a
2572// wrong DEF.  This doesn't verify live-ranges that span blocks.
2573
2574// Check for edge existence.  Used to avoid adding redundant precedence edges.
2575static bool edge_from_to( Node *from, Node *to ) {
2576  for( uint i=0; i<from->len(); i++ )
2577    if( from->in(i) == to )
2578      return true;
2579  return false;
2580}
2581
2582#ifdef ASSERT
2583//------------------------------verify_do_def----------------------------------
2584void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2585  // Check for bad kills
2586  if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2587    Node *prior_use = _reg_node[def];
2588    if( prior_use && !edge_from_to(prior_use,n) ) {
2589      tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2590      n->dump();
2591      tty->print_cr("...");
2592      prior_use->dump();
2593      assert(edge_from_to(prior_use,n),msg);
2594    }
2595    _reg_node.map(def,NULL); // Kill live USEs
2596  }
2597}
2598
2599//------------------------------verify_good_schedule---------------------------
2600void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2601
2602  // Zap to something reasonable for the verify code
2603  _reg_node.clear();
2604
2605  // Walk over the block backwards.  Check to make sure each DEF doesn't
2606  // kill a live value (other than the one it's supposed to).  Add each
2607  // USE to the live set.
2608  for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
2609    Node *n = b->_nodes[i];
2610    int n_op = n->Opcode();
2611    if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2612      // Fat-proj kills a slew of registers
2613      RegMask rm = n->out_RegMask();// Make local copy
2614      while( rm.is_NotEmpty() ) {
2615        OptoReg::Name kill = rm.find_first_elem();
2616        rm.Remove(kill);
2617        verify_do_def( n, kill, msg );
2618      }
2619    } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2620      // Get DEF'd registers the normal way
2621      verify_do_def( n, _regalloc->get_reg_first(n), msg );
2622      verify_do_def( n, _regalloc->get_reg_second(n), msg );
2623    }
2624
2625    // Now make all USEs live
2626    for( uint i=1; i<n->req(); i++ ) {
2627      Node *def = n->in(i);
2628      assert(def != 0, "input edge required");
2629      OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2630      OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2631      if( OptoReg::is_valid(reg_lo) ) {
2632        assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
2633        _reg_node.map(reg_lo,n);
2634      }
2635      if( OptoReg::is_valid(reg_hi) ) {
2636        assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
2637        _reg_node.map(reg_hi,n);
2638      }
2639    }
2640
2641  }
2642
2643  // Zap to something reasonable for the Antidependence code
2644  _reg_node.clear();
2645}
2646#endif
2647
2648// Conditionally add precedence edges.  Avoid putting edges on Projs.
2649static void add_prec_edge_from_to( Node *from, Node *to ) {
2650  if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2651    assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2652    from = from->in(0);
2653  }
2654  if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2655      !edge_from_to( from, to ) ) // Avoid duplicate edge
2656    from->add_prec(to);
2657}
2658
2659//------------------------------anti_do_def------------------------------------
2660void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2661  if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2662    return;
2663
2664  Node *pinch = _reg_node[def_reg]; // Get pinch point
2665  if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
2666      is_def ) {    // Check for a true def (not a kill)
2667    _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2668    return;
2669  }
2670
2671  Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2672  debug_only( def = (Node*)0xdeadbeef; )
2673
2674  // After some number of kills there _may_ be a later def
2675  Node *later_def = NULL;
2676
2677  // Finding a kill requires a real pinch-point.
2678  // Check for not already having a pinch-point.
2679  // Pinch points are Op_Node's.
2680  if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2681    later_def = pinch;            // Must be def/kill as optimistic pinch-point
2682    if ( _pinch_free_list.size() > 0) {
2683      pinch = _pinch_free_list.pop();
2684    } else {
2685      pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
2686    }
2687    if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2688      _cfg->C->record_method_not_compilable("too many D-U pinch points");
2689      return;
2690    }
2691    _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
2692    _reg_node.map(def_reg,pinch); // Record pinch-point
2693    //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2694    if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2695      pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2696      add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2697      later_def = NULL;           // and no later def
2698    }
2699    pinch->set_req(0,later_def);  // Hook later def so we can find it
2700  } else {                        // Else have valid pinch point
2701    if( pinch->in(0) )            // If there is a later-def
2702      later_def = pinch->in(0);   // Get it
2703  }
2704
2705  // Add output-dependence edge from later def to kill
2706  if( later_def )               // If there is some original def
2707    add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2708
2709  // See if current kill is also a use, and so is forced to be the pinch-point.
2710  if( pinch->Opcode() == Op_Node ) {
2711    Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2712    for( uint i=1; i<uses->req(); i++ ) {
2713      if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2714          _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2715        // Yes, found a use/kill pinch-point
2716        pinch->set_req(0,NULL);  //
2717        pinch->replace_by(kill); // Move anti-dep edges up
2718        pinch = kill;
2719        _reg_node.map(def_reg,pinch);
2720        return;
2721      }
2722    }
2723  }
2724
2725  // Add edge from kill to pinch-point
2726  add_prec_edge_from_to(kill,pinch);
2727}
2728
2729//------------------------------anti_do_use------------------------------------
2730void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2731  if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2732    return;
2733  Node *pinch = _reg_node[use_reg]; // Get pinch point
2734  // Check for no later def_reg/kill in block
2735  if( pinch && _bbs[pinch->_idx] == b &&
2736      // Use has to be block-local as well
2737      _bbs[use->_idx] == b ) {
2738    if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2739        pinch->req() == 1 ) {   // pinch not yet in block?
2740      pinch->del_req(0);        // yank pointer to later-def, also set flag
2741      // Insert the pinch-point in the block just after the last use
2742      b->_nodes.insert(b->find_node(use)+1,pinch);
2743      _bb_end++;                // Increase size scheduled region in block
2744    }
2745
2746    add_prec_edge_from_to(pinch,use);
2747  }
2748}
2749
2750//------------------------------ComputeRegisterAntidependences-----------------
2751// We insert antidependences between the reads and following write of
2752// allocated registers to prevent illegal code motion. Hopefully, the
2753// number of added references should be fairly small, especially as we
2754// are only adding references within the current basic block.
2755void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2756
2757#ifdef ASSERT
2758  verify_good_schedule(b,"before block local scheduling");
2759#endif
2760
2761  // A valid schedule, for each register independently, is an endless cycle
2762  // of: a def, then some uses (connected to the def by true dependencies),
2763  // then some kills (defs with no uses), finally the cycle repeats with a new
2764  // def.  The uses are allowed to float relative to each other, as are the
2765  // kills.  No use is allowed to slide past a kill (or def).  This requires
2766  // antidependencies between all uses of a single def and all kills that
2767  // follow, up to the next def.  More edges are redundant, because later defs
2768  // & kills are already serialized with true or antidependencies.  To keep
2769  // the edge count down, we add a 'pinch point' node if there's more than
2770  // one use or more than one kill/def.
2771
2772  // We add dependencies in one bottom-up pass.
2773
2774  // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2775
2776  // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2777  // register.  If not, we record the DEF/KILL in _reg_node, the
2778  // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2779  // "pinch point", a new Node that's in the graph but not in the block.
2780  // We put edges from the prior and current DEF/KILLs to the pinch point.
2781  // We put the pinch point in _reg_node.  If there's already a pinch point
2782  // we merely add an edge from the current DEF/KILL to the pinch point.
2783
2784  // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2785  // put an edge from the pinch point to the USE.
2786
2787  // To be expedient, the _reg_node array is pre-allocated for the whole
2788  // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2789  // or a valid def/kill/pinch-point, or a leftover node from some prior
2790  // block.  Leftover node from some prior block is treated like a NULL (no
2791  // prior def, so no anti-dependence needed).  Valid def is distinguished by
2792  // it being in the current block.
2793  bool fat_proj_seen = false;
2794  uint last_safept = _bb_end-1;
2795  Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
2796  Node* last_safept_node = end_node;
2797  for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2798    Node *n = b->_nodes[i];
2799    int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2800    if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2801      // Fat-proj kills a slew of registers
2802      // This can add edges to 'n' and obscure whether or not it was a def,
2803      // hence the is_def flag.
2804      fat_proj_seen = true;
2805      RegMask rm = n->out_RegMask();// Make local copy
2806      while( rm.is_NotEmpty() ) {
2807        OptoReg::Name kill = rm.find_first_elem();
2808        rm.Remove(kill);
2809        anti_do_def( b, n, kill, is_def );
2810      }
2811    } else {
2812      // Get DEF'd registers the normal way
2813      anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2814      anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2815    }
2816
2817    // Kill projections on a branch should appear to occur on the
2818    // branch, not afterwards, so grab the masks from the projections
2819    // and process them.
2820    if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
2821      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2822        Node* use = n->fast_out(i);
2823        if (use->is_Proj()) {
2824          RegMask rm = use->out_RegMask();// Make local copy
2825          while( rm.is_NotEmpty() ) {
2826            OptoReg::Name kill = rm.find_first_elem();
2827            rm.Remove(kill);
2828            anti_do_def( b, n, kill, false );
2829          }
2830        }
2831      }
2832    }
2833
2834    // Check each register used by this instruction for a following DEF/KILL
2835    // that must occur afterward and requires an anti-dependence edge.
2836    for( uint j=0; j<n->req(); j++ ) {
2837      Node *def = n->in(j);
2838      if( def ) {
2839        assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
2840        anti_do_use( b, n, _regalloc->get_reg_first(def) );
2841        anti_do_use( b, n, _regalloc->get_reg_second(def) );
2842      }
2843    }
2844    // Do not allow defs of new derived values to float above GC
2845    // points unless the base is definitely available at the GC point.
2846
2847    Node *m = b->_nodes[i];
2848
2849    // Add precedence edge from following safepoint to use of derived pointer
2850    if( last_safept_node != end_node &&
2851        m != last_safept_node) {
2852      for (uint k = 1; k < m->req(); k++) {
2853        const Type *t = m->in(k)->bottom_type();
2854        if( t->isa_oop_ptr() &&
2855            t->is_ptr()->offset() != 0 ) {
2856          last_safept_node->add_prec( m );
2857          break;
2858        }
2859      }
2860    }
2861
2862    if( n->jvms() ) {           // Precedence edge from derived to safept
2863      // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2864      if( b->_nodes[last_safept] != last_safept_node ) {
2865        last_safept = b->find_node(last_safept_node);
2866      }
2867      for( uint j=last_safept; j > i; j-- ) {
2868        Node *mach = b->_nodes[j];
2869        if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2870          mach->add_prec( n );
2871      }
2872      last_safept = i;
2873      last_safept_node = m;
2874    }
2875  }
2876
2877  if (fat_proj_seen) {
2878    // Garbage collect pinch nodes that were not consumed.
2879    // They are usually created by a fat kill MachProj for a call.
2880    garbage_collect_pinch_nodes();
2881  }
2882}
2883
2884//------------------------------garbage_collect_pinch_nodes-------------------------------
2885
2886// Garbage collect pinch nodes for reuse by other blocks.
2887//
2888// The block scheduler's insertion of anti-dependence
2889// edges creates many pinch nodes when the block contains
2890// 2 or more Calls.  A pinch node is used to prevent a
2891// combinatorial explosion of edges.  If a set of kills for a
2892// register is anti-dependent on a set of uses (or defs), rather
2893// than adding an edge in the graph between each pair of kill
2894// and use (or def), a pinch is inserted between them:
2895//
2896//            use1   use2  use3
2897//                \   |   /
2898//                 \  |  /
2899//                  pinch
2900//                 /  |  \
2901//                /   |   \
2902//            kill1 kill2 kill3
2903//
2904// One pinch node is created per register killed when
2905// the second call is encountered during a backwards pass
2906// over the block.  Most of these pinch nodes are never
2907// wired into the graph because the register is never
2908// used or def'ed in the block.
2909//
2910void Scheduling::garbage_collect_pinch_nodes() {
2911#ifndef PRODUCT
2912    if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2913#endif
2914    int trace_cnt = 0;
2915    for (uint k = 0; k < _reg_node.Size(); k++) {
2916      Node* pinch = _reg_node[k];
2917      if (pinch != NULL && pinch->Opcode() == Op_Node &&
2918          // no predecence input edges
2919          (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2920        cleanup_pinch(pinch);
2921        _pinch_free_list.push(pinch);
2922        _reg_node.map(k, NULL);
2923#ifndef PRODUCT
2924        if (_cfg->C->trace_opto_output()) {
2925          trace_cnt++;
2926          if (trace_cnt > 40) {
2927            tty->print("\n");
2928            trace_cnt = 0;
2929          }
2930          tty->print(" %d", pinch->_idx);
2931        }
2932#endif
2933      }
2934    }
2935#ifndef PRODUCT
2936    if (_cfg->C->trace_opto_output()) tty->print("\n");
2937#endif
2938}
2939
2940// Clean up a pinch node for reuse.
2941void Scheduling::cleanup_pinch( Node *pinch ) {
2942  assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2943
2944  for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2945    Node* use = pinch->last_out(i);
2946    uint uses_found = 0;
2947    for (uint j = use->req(); j < use->len(); j++) {
2948      if (use->in(j) == pinch) {
2949        use->rm_prec(j);
2950        uses_found++;
2951      }
2952    }
2953    assert(uses_found > 0, "must be a precedence edge");
2954    i -= uses_found;    // we deleted 1 or more copies of this edge
2955  }
2956  // May have a later_def entry
2957  pinch->set_req(0, NULL);
2958}
2959
2960//------------------------------print_statistics-------------------------------
2961#ifndef PRODUCT
2962
2963void Scheduling::dump_available() const {
2964  tty->print("#Availist  ");
2965  for (uint i = 0; i < _available.size(); i++)
2966    tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2967  tty->cr();
2968}
2969
2970// Print Scheduling Statistics
2971void Scheduling::print_statistics() {
2972  // Print the size added by nops for bundling
2973  tty->print("Nops added %d bytes to total of %d bytes",
2974    _total_nop_size, _total_method_size);
2975  if (_total_method_size > 0)
2976    tty->print(", for %.2f%%",
2977      ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2978  tty->print("\n");
2979
2980  // Print the number of branch shadows filled
2981  if (Pipeline::_branch_has_delay_slot) {
2982    tty->print("Of %d branches, %d had unconditional delay slots filled",
2983      _total_branches, _total_unconditional_delays);
2984    if (_total_branches > 0)
2985      tty->print(", for %.2f%%",
2986        ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2987    tty->print("\n");
2988  }
2989
2990  uint total_instructions = 0, total_bundles = 0;
2991
2992  for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2993    uint bundle_count   = _total_instructions_per_bundle[i];
2994    total_instructions += bundle_count * i;
2995    total_bundles      += bundle_count;
2996  }
2997
2998  if (total_bundles > 0)
2999    tty->print("Average ILP (excluding nops) is %.2f\n",
3000      ((double)total_instructions) / ((double)total_bundles));
3001}
3002#endif
3003