output.cpp revision 2614:95134e034042
1/*
2 * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/assembler.inline.hpp"
27#include "code/debugInfo.hpp"
28#include "code/debugInfoRec.hpp"
29#include "compiler/compileBroker.hpp"
30#include "compiler/oopMap.hpp"
31#include "memory/allocation.inline.hpp"
32#include "opto/callnode.hpp"
33#include "opto/cfgnode.hpp"
34#include "opto/locknode.hpp"
35#include "opto/machnode.hpp"
36#include "opto/output.hpp"
37#include "opto/regalloc.hpp"
38#include "opto/runtime.hpp"
39#include "opto/subnode.hpp"
40#include "opto/type.hpp"
41#include "runtime/handles.inline.hpp"
42#include "utilities/xmlstream.hpp"
43
44extern uint size_java_to_interp();
45extern uint reloc_java_to_interp();
46extern uint size_exception_handler();
47extern uint size_deopt_handler();
48
49#ifndef PRODUCT
50#define DEBUG_ARG(x) , x
51#else
52#define DEBUG_ARG(x)
53#endif
54
55extern int emit_exception_handler(CodeBuffer &cbuf);
56extern int emit_deopt_handler(CodeBuffer &cbuf);
57
58//------------------------------Output-----------------------------------------
59// Convert Nodes to instruction bits and pass off to the VM
60void Compile::Output() {
61  // RootNode goes
62  assert( _cfg->_broot->_nodes.size() == 0, "" );
63
64  // The number of new nodes (mostly MachNop) is proportional to
65  // the number of java calls and inner loops which are aligned.
66  if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
67                            C->inner_loops()*(OptoLoopAlignment-1)),
68                           "out of nodes before code generation" ) ) {
69    return;
70  }
71  // Make sure I can find the Start Node
72  Block_Array& bbs = _cfg->_bbs;
73  Block *entry = _cfg->_blocks[1];
74  Block *broot = _cfg->_broot;
75
76  const StartNode *start = entry->_nodes[0]->as_Start();
77
78  // Replace StartNode with prolog
79  MachPrologNode *prolog = new (this) MachPrologNode();
80  entry->_nodes.map( 0, prolog );
81  bbs.map( prolog->_idx, entry );
82  bbs.map( start->_idx, NULL ); // start is no longer in any block
83
84  // Virtual methods need an unverified entry point
85
86  if( is_osr_compilation() ) {
87    if( PoisonOSREntry ) {
88      // TODO: Should use a ShouldNotReachHereNode...
89      _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
90    }
91  } else {
92    if( _method && !_method->flags().is_static() ) {
93      // Insert unvalidated entry point
94      _cfg->insert( broot, 0, new (this) MachUEPNode() );
95    }
96
97  }
98
99
100  // Break before main entry point
101  if( (_method && _method->break_at_execute())
102#ifndef PRODUCT
103    ||(OptoBreakpoint && is_method_compilation())
104    ||(OptoBreakpointOSR && is_osr_compilation())
105    ||(OptoBreakpointC2R && !_method)
106#endif
107    ) {
108    // checking for _method means that OptoBreakpoint does not apply to
109    // runtime stubs or frame converters
110    _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
111  }
112
113  // Insert epilogs before every return
114  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
115    Block *b = _cfg->_blocks[i];
116    if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
117      Node *m = b->end();
118      if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
119        MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
120        b->add_inst( epilog );
121        bbs.map(epilog->_idx, b);
122        //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
123      }
124    }
125  }
126
127# ifdef ENABLE_ZAP_DEAD_LOCALS
128  if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
129# endif
130
131  uint* blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
132  blk_starts[0]    = 0;
133
134  // Initialize code buffer and process short branches.
135  CodeBuffer* cb = init_buffer(blk_starts);
136
137  if (cb == NULL || failing())  return;
138
139  ScheduleAndBundle();
140
141#ifndef PRODUCT
142  if (trace_opto_output()) {
143    tty->print("\n---- After ScheduleAndBundle ----\n");
144    for (uint i = 0; i < _cfg->_num_blocks; i++) {
145      tty->print("\nBB#%03d:\n", i);
146      Block *bb = _cfg->_blocks[i];
147      for (uint j = 0; j < bb->_nodes.size(); j++) {
148        Node *n = bb->_nodes[j];
149        OptoReg::Name reg = _regalloc->get_reg_first(n);
150        tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
151        n->dump();
152      }
153    }
154  }
155#endif
156
157  if (failing())  return;
158
159  finalize_offsets_and_shorten(blk_starts);
160
161  BuildOopMaps();
162
163  if (failing())  return;
164
165  fill_buffer(cb, blk_starts);
166}
167
168bool Compile::need_stack_bang(int frame_size_in_bytes) const {
169  // Determine if we need to generate a stack overflow check.
170  // Do it if the method is not a stub function and
171  // has java calls or has frame size > vm_page_size/8.
172  return (stub_function() == NULL &&
173          (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
174}
175
176bool Compile::need_register_stack_bang() const {
177  // Determine if we need to generate a register stack overflow check.
178  // This is only used on architectures which have split register
179  // and memory stacks (ie. IA64).
180  // Bang if the method is not a stub function and has java calls
181  return (stub_function() == NULL && has_java_calls());
182}
183
184# ifdef ENABLE_ZAP_DEAD_LOCALS
185
186
187// In order to catch compiler oop-map bugs, we have implemented
188// a debugging mode called ZapDeadCompilerLocals.
189// This mode causes the compiler to insert a call to a runtime routine,
190// "zap_dead_locals", right before each place in compiled code
191// that could potentially be a gc-point (i.e., a safepoint or oop map point).
192// The runtime routine checks that locations mapped as oops are really
193// oops, that locations mapped as values do not look like oops,
194// and that locations mapped as dead are not used later
195// (by zapping them to an invalid address).
196
197int Compile::_CompiledZap_count = 0;
198
199void Compile::Insert_zap_nodes() {
200  bool skip = false;
201
202
203  // Dink with static counts because code code without the extra
204  // runtime calls is MUCH faster for debugging purposes
205
206       if ( CompileZapFirst  ==  0  ) ; // nothing special
207  else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
208  else if ( CompileZapFirst  == CompiledZap_count() )
209    warning("starting zap compilation after skipping");
210
211       if ( CompileZapLast  ==  -1  ) ; // nothing special
212  else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
213  else if ( CompileZapLast  ==  CompiledZap_count() )
214    warning("about to compile last zap");
215
216  ++_CompiledZap_count; // counts skipped zaps, too
217
218  if ( skip )  return;
219
220
221  if ( _method == NULL )
222    return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
223
224  // Insert call to zap runtime stub before every node with an oop map
225  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
226    Block *b = _cfg->_blocks[i];
227    for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
228      Node *n = b->_nodes[j];
229
230      // Determining if we should insert a zap-a-lot node in output.
231      // We do that for all nodes that has oopmap info, except for calls
232      // to allocation.  Calls to allocation passes in the old top-of-eden pointer
233      // and expect the C code to reset it.  Hence, there can be no safepoints between
234      // the inlined-allocation and the call to new_Java, etc.
235      // We also cannot zap monitor calls, as they must hold the microlock
236      // during the call to Zap, which also wants to grab the microlock.
237      bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
238      if ( insert ) { // it is MachSafePoint
239        if ( !n->is_MachCall() ) {
240          insert = false;
241        } else if ( n->is_MachCall() ) {
242          MachCallNode* call = n->as_MachCall();
243          if (call->entry_point() == OptoRuntime::new_instance_Java() ||
244              call->entry_point() == OptoRuntime::new_array_Java() ||
245              call->entry_point() == OptoRuntime::multianewarray2_Java() ||
246              call->entry_point() == OptoRuntime::multianewarray3_Java() ||
247              call->entry_point() == OptoRuntime::multianewarray4_Java() ||
248              call->entry_point() == OptoRuntime::multianewarray5_Java() ||
249              call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
250              call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
251              ) {
252            insert = false;
253          }
254        }
255        if (insert) {
256          Node *zap = call_zap_node(n->as_MachSafePoint(), i);
257          b->_nodes.insert( j, zap );
258          _cfg->_bbs.map( zap->_idx, b );
259          ++j;
260        }
261      }
262    }
263  }
264}
265
266
267Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
268  const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
269  CallStaticJavaNode* ideal_node =
270    new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
271         OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
272                            "call zap dead locals stub", 0, TypePtr::BOTTOM);
273  // We need to copy the OopMap from the site we're zapping at.
274  // We have to make a copy, because the zap site might not be
275  // a call site, and zap_dead is a call site.
276  OopMap* clone = node_to_check->oop_map()->deep_copy();
277
278  // Add the cloned OopMap to the zap node
279  ideal_node->set_oop_map(clone);
280  return _matcher->match_sfpt(ideal_node);
281}
282
283//------------------------------is_node_getting_a_safepoint--------------------
284bool Compile::is_node_getting_a_safepoint( Node* n) {
285  // This code duplicates the logic prior to the call of add_safepoint
286  // below in this file.
287  if( n->is_MachSafePoint() ) return true;
288  return false;
289}
290
291# endif // ENABLE_ZAP_DEAD_LOCALS
292
293//------------------------------compute_loop_first_inst_sizes------------------
294// Compute the size of first NumberOfLoopInstrToAlign instructions at the top
295// of a loop. When aligning a loop we need to provide enough instructions
296// in cpu's fetch buffer to feed decoders. The loop alignment could be
297// avoided if we have enough instructions in fetch buffer at the head of a loop.
298// By default, the size is set to 999999 by Block's constructor so that
299// a loop will be aligned if the size is not reset here.
300//
301// Note: Mach instructions could contain several HW instructions
302// so the size is estimated only.
303//
304void Compile::compute_loop_first_inst_sizes() {
305  // The next condition is used to gate the loop alignment optimization.
306  // Don't aligned a loop if there are enough instructions at the head of a loop
307  // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
308  // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
309  // equal to 11 bytes which is the largest address NOP instruction.
310  if( MaxLoopPad < OptoLoopAlignment-1 ) {
311    uint last_block = _cfg->_num_blocks-1;
312    for( uint i=1; i <= last_block; i++ ) {
313      Block *b = _cfg->_blocks[i];
314      // Check the first loop's block which requires an alignment.
315      if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
316        uint sum_size = 0;
317        uint inst_cnt = NumberOfLoopInstrToAlign;
318        inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
319
320        // Check subsequent fallthrough blocks if the loop's first
321        // block(s) does not have enough instructions.
322        Block *nb = b;
323        while( inst_cnt > 0 &&
324               i < last_block &&
325               !_cfg->_blocks[i+1]->has_loop_alignment() &&
326               !nb->has_successor(b) ) {
327          i++;
328          nb = _cfg->_blocks[i];
329          inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
330        } // while( inst_cnt > 0 && i < last_block  )
331
332        b->set_first_inst_size(sum_size);
333      } // f( b->head()->is_Loop() )
334    } // for( i <= last_block )
335  } // if( MaxLoopPad < OptoLoopAlignment-1 )
336}
337
338//----------------------shorten_branches---------------------------------------
339// The architecture description provides short branch variants for some long
340// branch instructions. Replace eligible long branches with short branches.
341void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
342
343  // ------------------
344  // Compute size of each block, method size, and relocation information size
345  uint nblocks  = _cfg->_num_blocks;
346
347  uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
348  uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
349  int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
350  DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
351  DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
352
353  bool has_short_branch_candidate = false;
354
355  // Initialize the sizes to 0
356  code_size  = 0;          // Size in bytes of generated code
357  stub_size  = 0;          // Size in bytes of all stub entries
358  // Size in bytes of all relocation entries, including those in local stubs.
359  // Start with 2-bytes of reloc info for the unvalidated entry point
360  reloc_size = 1;          // Number of relocation entries
361
362  // Make three passes.  The first computes pessimistic blk_starts,
363  // relative jmp_offset and reloc_size information.  The second performs
364  // short branch substitution using the pessimistic sizing.  The
365  // third inserts nops where needed.
366
367  // Step one, perform a pessimistic sizing pass.
368  uint last_call_adr = max_uint;
369  uint last_avoid_back_to_back_adr = max_uint;
370  uint nop_size = (new (this) MachNopNode())->size(_regalloc);
371  for (uint i = 0; i < nblocks; i++) { // For all blocks
372    Block *b = _cfg->_blocks[i];
373
374    // During short branch replacement, we store the relative (to blk_starts)
375    // offset of jump in jmp_offset, rather than the absolute offset of jump.
376    // This is so that we do not need to recompute sizes of all nodes when
377    // we compute correct blk_starts in our next sizing pass.
378    jmp_offset[i] = 0;
379    jmp_size[i]   = 0;
380    jmp_nidx[i]   = -1;
381    DEBUG_ONLY( jmp_target[i] = 0; )
382    DEBUG_ONLY( jmp_rule[i]   = 0; )
383
384    // Sum all instruction sizes to compute block size
385    uint last_inst = b->_nodes.size();
386    uint blk_size = 0;
387    for (uint j = 0; j < last_inst; j++) {
388      Node* nj = b->_nodes[j];
389      uint inst_size = nj->size(_regalloc);
390      // Handle machine instruction nodes
391      if (nj->is_Mach()) {
392        MachNode *mach = nj->as_Mach();
393        blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
394        reloc_size += mach->reloc();
395        if( mach->is_MachCall() ) {
396          MachCallNode *mcall = mach->as_MachCall();
397          // This destination address is NOT PC-relative
398
399          mcall->method_set((intptr_t)mcall->entry_point());
400
401          if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
402            stub_size  += size_java_to_interp();
403            reloc_size += reloc_java_to_interp();
404          }
405        } else if (mach->is_MachSafePoint()) {
406          // If call/safepoint are adjacent, account for possible
407          // nop to disambiguate the two safepoints.
408          // ScheduleAndBundle() can rearrange nodes in a block,
409          // check for all offsets inside this block.
410          if (last_call_adr >= blk_starts[i]) {
411            blk_size += nop_size;
412          }
413        }
414        if (mach->avoid_back_to_back()) {
415          // Nop is inserted between "avoid back to back" instructions.
416          // ScheduleAndBundle() can rearrange nodes in a block,
417          // check for all offsets inside this block.
418          if (last_avoid_back_to_back_adr >= blk_starts[i]) {
419            blk_size += nop_size;
420          }
421        }
422        if (mach->may_be_short_branch()) {
423          if (!nj->is_Branch()) {
424#ifndef PRODUCT
425            nj->dump(3);
426#endif
427            Unimplemented();
428          }
429          assert(jmp_nidx[i] == -1, "block should have only one branch");
430          jmp_offset[i] = blk_size;
431          jmp_size[i]   = inst_size;
432          jmp_nidx[i]   = j;
433          has_short_branch_candidate = true;
434        }
435      }
436      blk_size += inst_size;
437      // Remember end of call offset
438      if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
439        last_call_adr = blk_starts[i]+blk_size;
440      }
441      // Remember end of avoid_back_to_back offset
442      if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back()) {
443        last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
444      }
445    }
446
447    // When the next block starts a loop, we may insert pad NOP
448    // instructions.  Since we cannot know our future alignment,
449    // assume the worst.
450    if (i< nblocks-1) {
451      Block *nb = _cfg->_blocks[i+1];
452      int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
453      if (max_loop_pad > 0) {
454        assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
455        blk_size += max_loop_pad;
456      }
457    }
458
459    // Save block size; update total method size
460    blk_starts[i+1] = blk_starts[i]+blk_size;
461  }
462
463  // Step two, replace eligible long jumps.
464  bool progress = true;
465  uint last_may_be_short_branch_adr = max_uint;
466  while (has_short_branch_candidate && progress) {
467    progress = false;
468    has_short_branch_candidate = false;
469    int adjust_block_start = 0;
470    for (uint i = 0; i < nblocks; i++) {
471      Block *b = _cfg->_blocks[i];
472      int idx = jmp_nidx[i];
473      MachNode* mach = (idx == -1) ? NULL: b->_nodes[idx]->as_Mach();
474      if (mach != NULL && mach->may_be_short_branch()) {
475#ifdef ASSERT
476        assert(jmp_size[i] > 0 && mach->is_Branch(), "sanity");
477        int j;
478        // Find the branch; ignore trailing NOPs.
479        for (j = b->_nodes.size()-1; j>=0; j--) {
480          Node* n = b->_nodes[j];
481          if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
482            break;
483        }
484        assert(j >= 0 && j == idx && b->_nodes[j] == (Node*)mach, "sanity");
485#endif
486        int br_size = jmp_size[i];
487        int br_offs = blk_starts[i] + jmp_offset[i];
488
489        // This requires the TRUE branch target be in succs[0]
490        uint bnum = b->non_connector_successor(0)->_pre_order;
491        int offset = blk_starts[bnum] - br_offs;
492        if (bnum > i) { // adjust following block's offset
493          offset -= adjust_block_start;
494        }
495        // In the following code a nop could be inserted before
496        // the branch which will increase the backward distance.
497        bool needs_padding = ((uint)br_offs == last_may_be_short_branch_adr);
498        if (needs_padding && offset <= 0)
499          offset -= nop_size;
500
501        if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
502          // We've got a winner.  Replace this branch.
503          MachNode* replacement = mach->short_branch_version(this);
504
505          // Update the jmp_size.
506          int new_size = replacement->size(_regalloc);
507          int diff     = br_size - new_size;
508          assert(diff >= (int)nop_size, "short_branch size should be smaller");
509          // Conservatively take into accound padding between
510          // avoid_back_to_back branches. Previous branch could be
511          // converted into avoid_back_to_back branch during next
512          // rounds.
513          if (needs_padding && replacement->avoid_back_to_back()) {
514            jmp_offset[i] += nop_size;
515            diff -= nop_size;
516          }
517          adjust_block_start += diff;
518          b->_nodes.map(idx, replacement);
519          mach->subsume_by(replacement);
520          mach = replacement;
521          progress = true;
522
523          jmp_size[i] = new_size;
524          DEBUG_ONLY( jmp_target[i] = bnum; );
525          DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
526        } else {
527          // The jump distance is not short, try again during next iteration.
528          has_short_branch_candidate = true;
529        }
530      } // (mach->may_be_short_branch())
531      if (mach != NULL && (mach->may_be_short_branch() ||
532                           mach->avoid_back_to_back())) {
533        last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
534      }
535      blk_starts[i+1] -= adjust_block_start;
536    }
537  }
538
539#ifdef ASSERT
540  for (uint i = 0; i < nblocks; i++) { // For all blocks
541    if (jmp_target[i] != 0) {
542      int br_size = jmp_size[i];
543      int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
544      if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
545        tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
546      }
547      assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
548    }
549  }
550#endif
551
552  // Step 3, compute the offsets of all blocks, will be done in finalize_offsets_and_shorten()
553  // after ScheduleAndBundle().
554
555  // ------------------
556  // Compute size for code buffer
557  code_size = blk_starts[nblocks];
558
559  // Relocation records
560  reloc_size += 1;              // Relo entry for exception handler
561
562  // Adjust reloc_size to number of record of relocation info
563  // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
564  // a relocation index.
565  // The CodeBuffer will expand the locs array if this estimate is too low.
566  reloc_size *= 10 / sizeof(relocInfo);
567}
568
569//----------------------finalize_offsets_and_shorten-------------------------
570void Compile::finalize_offsets_and_shorten(uint* blk_starts) {
571  // blk_starts[] contains offsets calculated during short branches processing,
572  // offsets should not be increased during following steps.
573
574  // Compute the size of first NumberOfLoopInstrToAlign instructions at head
575  // of a loop. It is used to determine the padding for loop alignment.
576  compute_loop_first_inst_sizes();
577
578  uint nblocks  = _cfg->_num_blocks;
579#ifdef ASSERT
580  uint*      jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
581  uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
582  uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
583  uint*      jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
584#endif
585
586  // Inserts nops where needed and do final short branches replacement.
587  uint nop_size = (new (this) MachNopNode())->size(_regalloc);
588  uint last_call_adr = max_uint;
589  uint last_avoid_back_to_back_adr = max_uint;
590
591  assert(blk_starts[0] == 0, "sanity");
592  uint current_offset = 0;
593  uint block_alignment_padding = 0;
594
595  for (uint i=0; i < nblocks; i++) { // For all blocks
596    Block *b = _cfg->_blocks[i];
597
598#ifdef ASSERT
599    jmp_target[i] = 0;
600    jmp_offset[i] = 0;
601    jmp_size[i]   = 0;
602    jmp_rule[i]   = 0;
603#endif
604
605    // Maximum alignment was added before loop block during
606    // Step One, as result padding for nodes was not added.
607    // Take this into account for block's size change check
608    // and allow increase block's size by the difference
609    // of maximum and actual alignment paddings.
610    DEBUG_ONLY( uint orig_blk_size = blk_starts[i+1] - blk_starts[i] + block_alignment_padding; )
611    uint blk_offset = current_offset;
612
613    uint last_inst = b->_nodes.size();
614    for (uint j = 0; j<last_inst; j++) {
615      Node* nj = b->_nodes[j];
616
617      if (valid_bundle_info(nj) &&
618          node_bundling(nj)->used_in_unconditional_delay()) {
619        continue; // Skip instruction in delay slot
620      }
621
622      uint inst_size = nj->size(_regalloc);
623      if (nj->is_Mach()) {
624        MachNode *mach = nj->as_Mach();
625        int padding = mach->compute_padding(current_offset);
626
627        // If call/safepoint are adjacent insert a nop (5010568)
628        if (padding == 0 && nj->is_MachSafePoint() && !nj->is_MachCall() &&
629            current_offset == last_call_adr) {
630          padding = nop_size;
631        }
632
633        // Inserted a nop between "avoid back to back" instructions.
634        if (padding == 0 && mach->avoid_back_to_back() &&
635            current_offset == last_avoid_back_to_back_adr) {
636          padding = nop_size;
637        }
638
639        if (padding > 0) {
640          assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
641          int nops_cnt = padding / nop_size;
642          MachNode *nop = new (this) MachNopNode(nops_cnt);
643          b->_nodes.insert(j++, nop);
644          _cfg->_bbs.map(nop->_idx, b);
645          last_inst++;
646          current_offset += padding;
647        }
648
649        // Try to replace long branch if delay slot is not used,
650        // it is mostly for back branches since forward branch's
651        // distance is not updated yet.
652        bool delay_slot_is_used = valid_bundle_info(nj) &&
653                                  node_bundling(nj)->use_unconditional_delay();
654        if (!delay_slot_is_used && mach->may_be_short_branch()) {
655          int br_size = inst_size;
656
657          // This requires the TRUE branch target be in succs[0]
658          uint bnum = b->non_connector_successor(0)->_pre_order;
659          int offset = blk_starts[bnum] - current_offset;
660          if (bnum >= i) {
661            // Current and following block's offset are not
662            // finilized yet, adjust distance.
663            offset -= (blk_starts[i] - blk_offset);
664          }
665          // In the following code a nop could be inserted before
666          // the branch which will increase the backward distance.
667          bool needs_padding = (current_offset == last_avoid_back_to_back_adr);
668          if (needs_padding && offset <= 0)
669            offset -= nop_size;
670
671          if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
672            // We've got a winner.  Replace this branch.
673            MachNode* replacement = mach->short_branch_version(this);
674
675            // Update the jmp_size.
676            int new_size = replacement->size(_regalloc);
677            assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
678            // Conservatively take into accound padding between
679            // avoid_back_to_back branches. Previous branch could be
680            // converted into avoid_back_to_back branch during next
681            // rounds.
682            if (needs_padding && replacement->avoid_back_to_back()) {
683              MachNode *nop = new (this) MachNopNode();
684              b->_nodes.insert(j++, nop);
685              _cfg->_bbs.map(nop->_idx, b);
686              last_inst++;
687              current_offset += nop_size;
688            }
689            inst_size = new_size;
690            b->_nodes.map(j, replacement);
691            mach->subsume_by(replacement);
692            nj = replacement;
693#ifdef ASSERT
694            jmp_target[i] = bnum;
695            jmp_offset[i] = current_offset - blk_offset;
696            jmp_size[i]   = new_size;
697            jmp_rule[i]   = mach->rule();
698#endif
699          }
700        }
701      }
702      current_offset += inst_size;
703
704      // Remember end of call offset
705      if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
706        last_call_adr = current_offset;
707      }
708      // Remember end of avoid_back_to_back offset
709      if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back()) {
710        last_avoid_back_to_back_adr = current_offset;
711      }
712    }
713    assert(blk_offset <= blk_starts[i], "shouldn't increase distance");
714    blk_starts[i] = blk_offset;
715
716    // When the next block is the top of a loop, we may insert pad NOP
717    // instructions.
718    if (i < nblocks-1) {
719      Block *nb = _cfg->_blocks[i+1];
720      int padding = nb->alignment_padding(current_offset);
721      if (padding > 0) {
722        assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
723        int nops_cnt = padding / nop_size;
724        MachNode *nop = new (this) MachNopNode(nops_cnt);
725        b->_nodes.insert(b->_nodes.size(), nop);
726        _cfg->_bbs.map(nop->_idx, b);
727        current_offset += padding;
728      }
729      int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
730      assert(max_loop_pad >= padding, "sanity");
731      block_alignment_padding = max_loop_pad - padding;
732    }
733    assert(orig_blk_size >= (current_offset - blk_offset), "shouldn't increase block size");
734  }
735  blk_starts[nblocks] = current_offset;
736
737#ifdef ASSERT
738  for (uint i = 0; i < nblocks; i++) { // For all blocks
739    if (jmp_target[i] != 0) {
740      int br_size = jmp_size[i];
741      int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
742      if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
743        tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
744      }
745      assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
746    }
747  }
748#endif
749}
750
751//------------------------------FillLocArray-----------------------------------
752// Create a bit of debug info and append it to the array.  The mapping is from
753// Java local or expression stack to constant, register or stack-slot.  For
754// doubles, insert 2 mappings and return 1 (to tell the caller that the next
755// entry has been taken care of and caller should skip it).
756static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
757  // This should never have accepted Bad before
758  assert(OptoReg::is_valid(regnum), "location must be valid");
759  return (OptoReg::is_reg(regnum))
760    ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
761    : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
762}
763
764
765ObjectValue*
766Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
767  for (int i = 0; i < objs->length(); i++) {
768    assert(objs->at(i)->is_object(), "corrupt object cache");
769    ObjectValue* sv = (ObjectValue*) objs->at(i);
770    if (sv->id() == id) {
771      return sv;
772    }
773  }
774  // Otherwise..
775  return NULL;
776}
777
778void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
779                                     ObjectValue* sv ) {
780  assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
781  objs->append(sv);
782}
783
784
785void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
786                            GrowableArray<ScopeValue*> *array,
787                            GrowableArray<ScopeValue*> *objs ) {
788  assert( local, "use _top instead of null" );
789  if (array->length() != idx) {
790    assert(array->length() == idx + 1, "Unexpected array count");
791    // Old functionality:
792    //   return
793    // New functionality:
794    //   Assert if the local is not top. In product mode let the new node
795    //   override the old entry.
796    assert(local == top(), "LocArray collision");
797    if (local == top()) {
798      return;
799    }
800    array->pop();
801  }
802  const Type *t = local->bottom_type();
803
804  // Is it a safepoint scalar object node?
805  if (local->is_SafePointScalarObject()) {
806    SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
807
808    ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
809    if (sv == NULL) {
810      ciKlass* cik = t->is_oopptr()->klass();
811      assert(cik->is_instance_klass() ||
812             cik->is_array_klass(), "Not supported allocation.");
813      sv = new ObjectValue(spobj->_idx,
814                           new ConstantOopWriteValue(cik->constant_encoding()));
815      Compile::set_sv_for_object_node(objs, sv);
816
817      uint first_ind = spobj->first_index();
818      for (uint i = 0; i < spobj->n_fields(); i++) {
819        Node* fld_node = sfpt->in(first_ind+i);
820        (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
821      }
822    }
823    array->append(sv);
824    return;
825  }
826
827  // Grab the register number for the local
828  OptoReg::Name regnum = _regalloc->get_reg_first(local);
829  if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
830    // Record the double as two float registers.
831    // The register mask for such a value always specifies two adjacent
832    // float registers, with the lower register number even.
833    // Normally, the allocation of high and low words to these registers
834    // is irrelevant, because nearly all operations on register pairs
835    // (e.g., StoreD) treat them as a single unit.
836    // Here, we assume in addition that the words in these two registers
837    // stored "naturally" (by operations like StoreD and double stores
838    // within the interpreter) such that the lower-numbered register
839    // is written to the lower memory address.  This may seem like
840    // a machine dependency, but it is not--it is a requirement on
841    // the author of the <arch>.ad file to ensure that, for every
842    // even/odd double-register pair to which a double may be allocated,
843    // the word in the even single-register is stored to the first
844    // memory word.  (Note that register numbers are completely
845    // arbitrary, and are not tied to any machine-level encodings.)
846#ifdef _LP64
847    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
848      array->append(new ConstantIntValue(0));
849      array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
850    } else if ( t->base() == Type::Long ) {
851      array->append(new ConstantIntValue(0));
852      array->append(new_loc_value( _regalloc, regnum, Location::lng ));
853    } else if ( t->base() == Type::RawPtr ) {
854      // jsr/ret return address which must be restored into a the full
855      // width 64-bit stack slot.
856      array->append(new_loc_value( _regalloc, regnum, Location::lng ));
857    }
858#else //_LP64
859#ifdef SPARC
860    if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
861      // For SPARC we have to swap high and low words for
862      // long values stored in a single-register (g0-g7).
863      array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
864      array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
865    } else
866#endif //SPARC
867    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
868      // Repack the double/long as two jints.
869      // The convention the interpreter uses is that the second local
870      // holds the first raw word of the native double representation.
871      // This is actually reasonable, since locals and stack arrays
872      // grow downwards in all implementations.
873      // (If, on some machine, the interpreter's Java locals or stack
874      // were to grow upwards, the embedded doubles would be word-swapped.)
875      array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
876      array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
877    }
878#endif //_LP64
879    else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
880               OptoReg::is_reg(regnum) ) {
881      array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
882                                   ? Location::float_in_dbl : Location::normal ));
883    } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
884      array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
885                                   ? Location::int_in_long : Location::normal ));
886    } else if( t->base() == Type::NarrowOop ) {
887      array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
888    } else {
889      array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
890    }
891    return;
892  }
893
894  // No register.  It must be constant data.
895  switch (t->base()) {
896  case Type::Half:              // Second half of a double
897    ShouldNotReachHere();       // Caller should skip 2nd halves
898    break;
899  case Type::AnyPtr:
900    array->append(new ConstantOopWriteValue(NULL));
901    break;
902  case Type::AryPtr:
903  case Type::InstPtr:
904  case Type::KlassPtr:          // fall through
905    array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
906    break;
907  case Type::NarrowOop:
908    if (t == TypeNarrowOop::NULL_PTR) {
909      array->append(new ConstantOopWriteValue(NULL));
910    } else {
911      array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
912    }
913    break;
914  case Type::Int:
915    array->append(new ConstantIntValue(t->is_int()->get_con()));
916    break;
917  case Type::RawPtr:
918    // A return address (T_ADDRESS).
919    assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
920#ifdef _LP64
921    // Must be restored to the full-width 64-bit stack slot.
922    array->append(new ConstantLongValue(t->is_ptr()->get_con()));
923#else
924    array->append(new ConstantIntValue(t->is_ptr()->get_con()));
925#endif
926    break;
927  case Type::FloatCon: {
928    float f = t->is_float_constant()->getf();
929    array->append(new ConstantIntValue(jint_cast(f)));
930    break;
931  }
932  case Type::DoubleCon: {
933    jdouble d = t->is_double_constant()->getd();
934#ifdef _LP64
935    array->append(new ConstantIntValue(0));
936    array->append(new ConstantDoubleValue(d));
937#else
938    // Repack the double as two jints.
939    // The convention the interpreter uses is that the second local
940    // holds the first raw word of the native double representation.
941    // This is actually reasonable, since locals and stack arrays
942    // grow downwards in all implementations.
943    // (If, on some machine, the interpreter's Java locals or stack
944    // were to grow upwards, the embedded doubles would be word-swapped.)
945    jint   *dp = (jint*)&d;
946    array->append(new ConstantIntValue(dp[1]));
947    array->append(new ConstantIntValue(dp[0]));
948#endif
949    break;
950  }
951  case Type::Long: {
952    jlong d = t->is_long()->get_con();
953#ifdef _LP64
954    array->append(new ConstantIntValue(0));
955    array->append(new ConstantLongValue(d));
956#else
957    // Repack the long as two jints.
958    // The convention the interpreter uses is that the second local
959    // holds the first raw word of the native double representation.
960    // This is actually reasonable, since locals and stack arrays
961    // grow downwards in all implementations.
962    // (If, on some machine, the interpreter's Java locals or stack
963    // were to grow upwards, the embedded doubles would be word-swapped.)
964    jint *dp = (jint*)&d;
965    array->append(new ConstantIntValue(dp[1]));
966    array->append(new ConstantIntValue(dp[0]));
967#endif
968    break;
969  }
970  case Type::Top:               // Add an illegal value here
971    array->append(new LocationValue(Location()));
972    break;
973  default:
974    ShouldNotReachHere();
975    break;
976  }
977}
978
979// Determine if this node starts a bundle
980bool Compile::starts_bundle(const Node *n) const {
981  return (_node_bundling_limit > n->_idx &&
982          _node_bundling_base[n->_idx].starts_bundle());
983}
984
985//--------------------------Process_OopMap_Node--------------------------------
986void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
987
988  // Handle special safepoint nodes for synchronization
989  MachSafePointNode *sfn   = mach->as_MachSafePoint();
990  MachCallNode      *mcall;
991
992#ifdef ENABLE_ZAP_DEAD_LOCALS
993  assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
994#endif
995
996  int safepoint_pc_offset = current_offset;
997  bool is_method_handle_invoke = false;
998  bool return_oop = false;
999
1000  // Add the safepoint in the DebugInfoRecorder
1001  if( !mach->is_MachCall() ) {
1002    mcall = NULL;
1003    debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
1004  } else {
1005    mcall = mach->as_MachCall();
1006
1007    // Is the call a MethodHandle call?
1008    if (mcall->is_MachCallJava()) {
1009      if (mcall->as_MachCallJava()->_method_handle_invoke) {
1010        assert(has_method_handle_invokes(), "must have been set during call generation");
1011        is_method_handle_invoke = true;
1012      }
1013    }
1014
1015    // Check if a call returns an object.
1016    if (mcall->return_value_is_used() &&
1017        mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
1018      return_oop = true;
1019    }
1020    safepoint_pc_offset += mcall->ret_addr_offset();
1021    debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
1022  }
1023
1024  // Loop over the JVMState list to add scope information
1025  // Do not skip safepoints with a NULL method, they need monitor info
1026  JVMState* youngest_jvms = sfn->jvms();
1027  int max_depth = youngest_jvms->depth();
1028
1029  // Allocate the object pool for scalar-replaced objects -- the map from
1030  // small-integer keys (which can be recorded in the local and ostack
1031  // arrays) to descriptions of the object state.
1032  GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
1033
1034  // Visit scopes from oldest to youngest.
1035  for (int depth = 1; depth <= max_depth; depth++) {
1036    JVMState* jvms = youngest_jvms->of_depth(depth);
1037    int idx;
1038    ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1039    // Safepoints that do not have method() set only provide oop-map and monitor info
1040    // to support GC; these do not support deoptimization.
1041    int num_locs = (method == NULL) ? 0 : jvms->loc_size();
1042    int num_exps = (method == NULL) ? 0 : jvms->stk_size();
1043    int num_mon  = jvms->nof_monitors();
1044    assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
1045           "JVMS local count must match that of the method");
1046
1047    // Add Local and Expression Stack Information
1048
1049    // Insert locals into the locarray
1050    GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
1051    for( idx = 0; idx < num_locs; idx++ ) {
1052      FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
1053    }
1054
1055    // Insert expression stack entries into the exparray
1056    GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
1057    for( idx = 0; idx < num_exps; idx++ ) {
1058      FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
1059    }
1060
1061    // Add in mappings of the monitors
1062    assert( !method ||
1063            !method->is_synchronized() ||
1064            method->is_native() ||
1065            num_mon > 0 ||
1066            !GenerateSynchronizationCode,
1067            "monitors must always exist for synchronized methods");
1068
1069    // Build the growable array of ScopeValues for exp stack
1070    GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
1071
1072    // Loop over monitors and insert into array
1073    for(idx = 0; idx < num_mon; idx++) {
1074      // Grab the node that defines this monitor
1075      Node* box_node = sfn->monitor_box(jvms, idx);
1076      Node* obj_node = sfn->monitor_obj(jvms, idx);
1077
1078      // Create ScopeValue for object
1079      ScopeValue *scval = NULL;
1080
1081      if( obj_node->is_SafePointScalarObject() ) {
1082        SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
1083        scval = Compile::sv_for_node_id(objs, spobj->_idx);
1084        if (scval == NULL) {
1085          const Type *t = obj_node->bottom_type();
1086          ciKlass* cik = t->is_oopptr()->klass();
1087          assert(cik->is_instance_klass() ||
1088                 cik->is_array_klass(), "Not supported allocation.");
1089          ObjectValue* sv = new ObjectValue(spobj->_idx,
1090                                new ConstantOopWriteValue(cik->constant_encoding()));
1091          Compile::set_sv_for_object_node(objs, sv);
1092
1093          uint first_ind = spobj->first_index();
1094          for (uint i = 0; i < spobj->n_fields(); i++) {
1095            Node* fld_node = sfn->in(first_ind+i);
1096            (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
1097          }
1098          scval = sv;
1099        }
1100      } else if( !obj_node->is_Con() ) {
1101        OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
1102        if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
1103          scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
1104        } else {
1105          scval = new_loc_value( _regalloc, obj_reg, Location::oop );
1106        }
1107      } else {
1108        const TypePtr *tp = obj_node->bottom_type()->make_ptr();
1109        scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
1110      }
1111
1112      OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node);
1113      Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
1114      while( !box_node->is_BoxLock() )  box_node = box_node->in(1);
1115      monarray->append(new MonitorValue(scval, basic_lock, box_node->as_BoxLock()->is_eliminated()));
1116    }
1117
1118    // We dump the object pool first, since deoptimization reads it in first.
1119    debug_info()->dump_object_pool(objs);
1120
1121    // Build first class objects to pass to scope
1122    DebugToken *locvals = debug_info()->create_scope_values(locarray);
1123    DebugToken *expvals = debug_info()->create_scope_values(exparray);
1124    DebugToken *monvals = debug_info()->create_monitor_values(monarray);
1125
1126    // Make method available for all Safepoints
1127    ciMethod* scope_method = method ? method : _method;
1128    // Describe the scope here
1129    assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
1130    assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
1131    // Now we can describe the scope.
1132    debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
1133  } // End jvms loop
1134
1135  // Mark the end of the scope set.
1136  debug_info()->end_safepoint(safepoint_pc_offset);
1137}
1138
1139
1140
1141// A simplified version of Process_OopMap_Node, to handle non-safepoints.
1142class NonSafepointEmitter {
1143  Compile*  C;
1144  JVMState* _pending_jvms;
1145  int       _pending_offset;
1146
1147  void emit_non_safepoint();
1148
1149 public:
1150  NonSafepointEmitter(Compile* compile) {
1151    this->C = compile;
1152    _pending_jvms = NULL;
1153    _pending_offset = 0;
1154  }
1155
1156  void observe_instruction(Node* n, int pc_offset) {
1157    if (!C->debug_info()->recording_non_safepoints())  return;
1158
1159    Node_Notes* nn = C->node_notes_at(n->_idx);
1160    if (nn == NULL || nn->jvms() == NULL)  return;
1161    if (_pending_jvms != NULL &&
1162        _pending_jvms->same_calls_as(nn->jvms())) {
1163      // Repeated JVMS?  Stretch it up here.
1164      _pending_offset = pc_offset;
1165    } else {
1166      if (_pending_jvms != NULL &&
1167          _pending_offset < pc_offset) {
1168        emit_non_safepoint();
1169      }
1170      _pending_jvms = NULL;
1171      if (pc_offset > C->debug_info()->last_pc_offset()) {
1172        // This is the only way _pending_jvms can become non-NULL:
1173        _pending_jvms = nn->jvms();
1174        _pending_offset = pc_offset;
1175      }
1176    }
1177  }
1178
1179  // Stay out of the way of real safepoints:
1180  void observe_safepoint(JVMState* jvms, int pc_offset) {
1181    if (_pending_jvms != NULL &&
1182        !_pending_jvms->same_calls_as(jvms) &&
1183        _pending_offset < pc_offset) {
1184      emit_non_safepoint();
1185    }
1186    _pending_jvms = NULL;
1187  }
1188
1189  void flush_at_end() {
1190    if (_pending_jvms != NULL) {
1191      emit_non_safepoint();
1192    }
1193    _pending_jvms = NULL;
1194  }
1195};
1196
1197void NonSafepointEmitter::emit_non_safepoint() {
1198  JVMState* youngest_jvms = _pending_jvms;
1199  int       pc_offset     = _pending_offset;
1200
1201  // Clear it now:
1202  _pending_jvms = NULL;
1203
1204  DebugInformationRecorder* debug_info = C->debug_info();
1205  assert(debug_info->recording_non_safepoints(), "sanity");
1206
1207  debug_info->add_non_safepoint(pc_offset);
1208  int max_depth = youngest_jvms->depth();
1209
1210  // Visit scopes from oldest to youngest.
1211  for (int depth = 1; depth <= max_depth; depth++) {
1212    JVMState* jvms = youngest_jvms->of_depth(depth);
1213    ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1214    assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1215    debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
1216  }
1217
1218  // Mark the end of the scope set.
1219  debug_info->end_non_safepoint(pc_offset);
1220}
1221
1222
1223
1224// helper for fill_buffer bailout logic
1225static void turn_off_compiler(Compile* C) {
1226  if (CodeCache::largest_free_block() >= CodeCacheMinimumFreeSpace*10) {
1227    // Do not turn off compilation if a single giant method has
1228    // blown the code cache size.
1229    C->record_failure("excessive request to CodeCache");
1230  } else {
1231    // Let CompilerBroker disable further compilations.
1232    C->record_failure("CodeCache is full");
1233  }
1234}
1235
1236
1237//------------------------------init_buffer------------------------------------
1238CodeBuffer* Compile::init_buffer(uint* blk_starts) {
1239
1240  // Set the initially allocated size
1241  int  code_req   = initial_code_capacity;
1242  int  locs_req   = initial_locs_capacity;
1243  int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
1244  int  const_req  = initial_const_capacity;
1245
1246  int  pad_req    = NativeCall::instruction_size;
1247  // The extra spacing after the code is necessary on some platforms.
1248  // Sometimes we need to patch in a jump after the last instruction,
1249  // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1250
1251  // Compute the byte offset where we can store the deopt pc.
1252  if (fixed_slots() != 0) {
1253    _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1254  }
1255
1256  // Compute prolog code size
1257  _method_size = 0;
1258  _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
1259#ifdef IA64
1260  if (save_argument_registers()) {
1261    // 4815101: this is a stub with implicit and unknown precision fp args.
1262    // The usual spill mechanism can only generate stfd's in this case, which
1263    // doesn't work if the fp reg to spill contains a single-precision denorm.
1264    // Instead, we hack around the normal spill mechanism using stfspill's and
1265    // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1266    // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1267    //
1268    // If we ever implement 16-byte 'registers' == stack slots, we can
1269    // get rid of this hack and have SpillCopy generate stfspill/ldffill
1270    // instead of stfd/stfs/ldfd/ldfs.
1271    _frame_slots += 8*(16/BytesPerInt);
1272  }
1273#endif
1274  assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1275
1276  if (has_mach_constant_base_node()) {
1277    // Fill the constant table.
1278    // Note:  This must happen before shorten_branches.
1279    for (uint i = 0; i < _cfg->_num_blocks; i++) {
1280      Block* b = _cfg->_blocks[i];
1281
1282      for (uint j = 0; j < b->_nodes.size(); j++) {
1283        Node* n = b->_nodes[j];
1284
1285        // If the node is a MachConstantNode evaluate the constant
1286        // value section.
1287        if (n->is_MachConstant()) {
1288          MachConstantNode* machcon = n->as_MachConstant();
1289          machcon->eval_constant(C);
1290        }
1291      }
1292    }
1293
1294    // Calculate the offsets of the constants and the size of the
1295    // constant table (including the padding to the next section).
1296    constant_table().calculate_offsets_and_size();
1297    const_req = constant_table().size();
1298  }
1299
1300  // Initialize the space for the BufferBlob used to find and verify
1301  // instruction size in MachNode::emit_size()
1302  init_scratch_buffer_blob(const_req);
1303  if (failing())  return NULL; // Out of memory
1304
1305  // Pre-compute the length of blocks and replace
1306  // long branches with short if machine supports it.
1307  shorten_branches(blk_starts, code_req, locs_req, stub_req);
1308
1309  // nmethod and CodeBuffer count stubs & constants as part of method's code.
1310  int exception_handler_req = size_exception_handler();
1311  int deopt_handler_req = size_deopt_handler();
1312  exception_handler_req += MAX_stubs_size; // add marginal slop for handler
1313  deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
1314  stub_req += MAX_stubs_size;   // ensure per-stub margin
1315  code_req += MAX_inst_size;    // ensure per-instruction margin
1316
1317  if (StressCodeBuffers)
1318    code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1319
1320  int total_req =
1321    const_req +
1322    code_req +
1323    pad_req +
1324    stub_req +
1325    exception_handler_req +
1326    deopt_handler_req;               // deopt handler
1327
1328  if (has_method_handle_invokes())
1329    total_req += deopt_handler_req;  // deopt MH handler
1330
1331  CodeBuffer* cb = code_buffer();
1332  cb->initialize(total_req, locs_req);
1333
1334  // Have we run out of code space?
1335  if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1336    turn_off_compiler(this);
1337    return NULL;
1338  }
1339  // Configure the code buffer.
1340  cb->initialize_consts_size(const_req);
1341  cb->initialize_stubs_size(stub_req);
1342  cb->initialize_oop_recorder(env()->oop_recorder());
1343
1344  // fill in the nop array for bundling computations
1345  MachNode *_nop_list[Bundle::_nop_count];
1346  Bundle::initialize_nops(_nop_list, this);
1347
1348  return cb;
1349}
1350
1351//------------------------------fill_buffer------------------------------------
1352void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1353
1354  // Create oopmap set.
1355  _oop_map_set = new OopMapSet();
1356
1357  // !!!!! This preserves old handling of oopmaps for now
1358  debug_info()->set_oopmaps(_oop_map_set);
1359
1360  // Count and start of implicit null check instructions
1361  uint inct_cnt = 0;
1362  uint *inct_starts = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
1363
1364  // Count and start of calls
1365  uint *call_returns = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
1366
1367  uint  return_offset = 0;
1368  int nop_size = (new (this) MachNopNode())->size(_regalloc);
1369
1370  int previous_offset = 0;
1371  int current_offset  = 0;
1372#ifdef ASSERT
1373  int last_call_offset = -1;
1374  int last_avoid_back_to_back_offset = -1;
1375#endif
1376  // Create an array of unused labels, one for each basic block, if printing is enabled
1377#ifndef PRODUCT
1378  int *node_offsets      = NULL;
1379  uint node_offset_limit = unique();
1380
1381  if (print_assembly())
1382    node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1383#endif
1384
1385  NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1386
1387  // Emit the constant table.
1388  if (has_mach_constant_base_node()) {
1389    constant_table().emit(*cb);
1390  }
1391
1392  // Create an array of labels, one for each basic block
1393  Label *blk_labels = NEW_RESOURCE_ARRAY(Label, _cfg->_num_blocks+1);
1394  for (uint i=0; i <= _cfg->_num_blocks; i++) {
1395    blk_labels[i].init();
1396  }
1397
1398  // ------------------
1399  // Now fill in the code buffer
1400  Node *delay_slot = NULL;
1401
1402  for (uint i=0; i < _cfg->_num_blocks; i++) {
1403    guarantee(blk_starts[i] == (uint)cb->insts_size(),"should not change size");
1404
1405    Block *b = _cfg->_blocks[i];
1406
1407    Node *head = b->head();
1408
1409    // If this block needs to start aligned (i.e, can be reached other
1410    // than by falling-thru from the previous block), then force the
1411    // start of a new bundle.
1412    if (Pipeline::requires_bundling() && starts_bundle(head))
1413      cb->flush_bundle(true);
1414
1415#ifdef ASSERT
1416    if (!b->is_connector()) {
1417      stringStream st;
1418      b->dump_head(&_cfg->_bbs, &st);
1419      MacroAssembler(cb).block_comment(st.as_string());
1420    }
1421#endif
1422
1423    // Define the label at the beginning of the basic block
1424    MacroAssembler(cb).bind(blk_labels[b->_pre_order]);
1425
1426    uint last_inst = b->_nodes.size();
1427
1428    // Emit block normally, except for last instruction.
1429    // Emit means "dump code bits into code buffer".
1430    for (uint j = 0; j<last_inst; j++) {
1431
1432      // Get the node
1433      Node* n = b->_nodes[j];
1434
1435      // See if delay slots are supported
1436      if (valid_bundle_info(n) &&
1437          node_bundling(n)->used_in_unconditional_delay()) {
1438        assert(delay_slot == NULL, "no use of delay slot node");
1439        assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1440
1441        delay_slot = n;
1442        continue;
1443      }
1444
1445      // If this starts a new instruction group, then flush the current one
1446      // (but allow split bundles)
1447      if (Pipeline::requires_bundling() && starts_bundle(n))
1448        cb->flush_bundle(false);
1449
1450      // The following logic is duplicated in the code ifdeffed for
1451      // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1452      // should be factored out.  Or maybe dispersed to the nodes?
1453
1454      // Special handling for SafePoint/Call Nodes
1455      bool is_mcall = false;
1456      if (n->is_Mach()) {
1457        MachNode *mach = n->as_Mach();
1458        is_mcall = n->is_MachCall();
1459        bool is_sfn = n->is_MachSafePoint();
1460
1461        // If this requires all previous instructions be flushed, then do so
1462        if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1463          cb->flush_bundle(true);
1464          current_offset = cb->insts_size();
1465        }
1466
1467#ifdef ASSERT
1468        // A padding may be needed again since a previous instruction
1469        // could be moved to delay slot.
1470
1471        // align the instruction if necessary
1472        int padding = mach->compute_padding(current_offset);
1473        // Make sure safepoint node for polling is distinct from a call's
1474        // return by adding a nop if needed.
1475        if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1476          padding = nop_size;
1477        }
1478        if (padding == 0 && mach->avoid_back_to_back() &&
1479            current_offset == last_avoid_back_to_back_offset) {
1480          // Avoid back to back some instructions.
1481          padding = nop_size;
1482        }
1483        assert(padding == 0, "padding should be added already");
1484#endif
1485        // Remember the start of the last call in a basic block
1486        if (is_mcall) {
1487          MachCallNode *mcall = mach->as_MachCall();
1488
1489          // This destination address is NOT PC-relative
1490          mcall->method_set((intptr_t)mcall->entry_point());
1491
1492          // Save the return address
1493          call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
1494
1495          if (mcall->is_MachCallLeaf()) {
1496            is_mcall = false;
1497            is_sfn = false;
1498          }
1499        }
1500
1501        // sfn will be valid whenever mcall is valid now because of inheritance
1502        if (is_sfn || is_mcall) {
1503
1504          // Handle special safepoint nodes for synchronization
1505          if (!is_mcall) {
1506            MachSafePointNode *sfn = mach->as_MachSafePoint();
1507            // !!!!! Stubs only need an oopmap right now, so bail out
1508            if (sfn->jvms()->method() == NULL) {
1509              // Write the oopmap directly to the code blob??!!
1510#             ifdef ENABLE_ZAP_DEAD_LOCALS
1511              assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1512#             endif
1513              continue;
1514            }
1515          } // End synchronization
1516
1517          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1518                                           current_offset);
1519          Process_OopMap_Node(mach, current_offset);
1520        } // End if safepoint
1521
1522        // If this is a null check, then add the start of the previous instruction to the list
1523        else if( mach->is_MachNullCheck() ) {
1524          inct_starts[inct_cnt++] = previous_offset;
1525        }
1526
1527        // If this is a branch, then fill in the label with the target BB's label
1528        else if (mach->is_Branch()) {
1529
1530          if (mach->ideal_Opcode() == Op_Jump) {
1531            for (uint h = 0; h < b->_num_succs; h++) {
1532              Block* succs_block = b->_succs[h];
1533              for (uint j = 1; j < succs_block->num_preds(); j++) {
1534                Node* jpn = succs_block->pred(j);
1535                if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1536                  uint block_num = succs_block->non_connector()->_pre_order;
1537                  Label *blkLabel = &blk_labels[block_num];
1538                  mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1539                }
1540              }
1541            }
1542          } else {
1543            // For Branchs
1544            // This requires the TRUE branch target be in succs[0]
1545            uint block_num = b->non_connector_successor(0)->_pre_order;
1546            mach->label_set( &blk_labels[block_num], block_num );
1547          }
1548        }
1549
1550#ifdef ASSERT
1551        // Check that oop-store precedes the card-mark
1552        else if (mach->ideal_Opcode() == Op_StoreCM) {
1553          uint storeCM_idx = j;
1554          int count = 0;
1555          for (uint prec = mach->req(); prec < mach->len(); prec++) {
1556            Node *oop_store = mach->in(prec);  // Precedence edge
1557            if (oop_store == NULL) continue;
1558            count++;
1559            uint i4;
1560            for( i4 = 0; i4 < last_inst; ++i4 ) {
1561              if( b->_nodes[i4] == oop_store ) break;
1562            }
1563            // Note: This test can provide a false failure if other precedence
1564            // edges have been added to the storeCMNode.
1565            assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1566          }
1567          assert(count > 0, "storeCM expects at least one precedence edge");
1568        }
1569#endif
1570
1571        else if (!n->is_Proj()) {
1572          // Remember the beginning of the previous instruction, in case
1573          // it's followed by a flag-kill and a null-check.  Happens on
1574          // Intel all the time, with add-to-memory kind of opcodes.
1575          previous_offset = current_offset;
1576        }
1577      }
1578
1579      // Verify that there is sufficient space remaining
1580      cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1581      if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1582        turn_off_compiler(this);
1583        return;
1584      }
1585
1586      // Save the offset for the listing
1587#ifndef PRODUCT
1588      if (node_offsets && n->_idx < node_offset_limit)
1589        node_offsets[n->_idx] = cb->insts_size();
1590#endif
1591
1592      // "Normal" instruction case
1593      DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
1594      n->emit(*cb, _regalloc);
1595      current_offset  = cb->insts_size();
1596
1597#ifdef ASSERT
1598      if (n->size(_regalloc) != (current_offset-instr_offset)) {
1599        n->dump();
1600        assert(n->size(_regalloc) == (current_offset-instr_offset), "wrong size of mach node");
1601      }
1602#endif
1603      non_safepoints.observe_instruction(n, current_offset);
1604
1605#ifdef ASSERT
1606      // mcall is last "call" that can be a safepoint
1607      // record it so we can see if a poll will directly follow it
1608      // in which case we'll need a pad to make the PcDesc sites unique
1609      // see  5010568. This can be slightly inaccurate but conservative
1610      // in the case that return address is not actually at current_offset.
1611      // This is a small price to pay.
1612
1613      if (is_mcall) {
1614        last_call_offset = current_offset;
1615      }
1616
1617      if (n->is_Mach() && n->as_Mach()->avoid_back_to_back()) {
1618        // Avoid back to back some instructions.
1619        last_avoid_back_to_back_offset = current_offset;
1620      }
1621#endif
1622
1623      // See if this instruction has a delay slot
1624      if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1625        assert(delay_slot != NULL, "expecting delay slot node");
1626
1627        // Back up 1 instruction
1628        cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1629
1630        // Save the offset for the listing
1631#ifndef PRODUCT
1632        if (node_offsets && delay_slot->_idx < node_offset_limit)
1633          node_offsets[delay_slot->_idx] = cb->insts_size();
1634#endif
1635
1636        // Support a SafePoint in the delay slot
1637        if (delay_slot->is_MachSafePoint()) {
1638          MachNode *mach = delay_slot->as_Mach();
1639          // !!!!! Stubs only need an oopmap right now, so bail out
1640          if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
1641            // Write the oopmap directly to the code blob??!!
1642#           ifdef ENABLE_ZAP_DEAD_LOCALS
1643            assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1644#           endif
1645            delay_slot = NULL;
1646            continue;
1647          }
1648
1649          int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1650          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1651                                           adjusted_offset);
1652          // Generate an OopMap entry
1653          Process_OopMap_Node(mach, adjusted_offset);
1654        }
1655
1656        // Insert the delay slot instruction
1657        delay_slot->emit(*cb, _regalloc);
1658
1659        // Don't reuse it
1660        delay_slot = NULL;
1661      }
1662
1663    } // End for all instructions in block
1664#ifdef ASSERT
1665    // If the next block is the top of a loop, pad this block out to align
1666    // the loop top a little. Helps prevent pipe stalls at loop back branches.
1667    if (i < _cfg->_num_blocks-1) {
1668      Block *nb = _cfg->_blocks[i+1];
1669      uint padding = nb->alignment_padding(current_offset);
1670      assert(padding == 0, "alignment should be added already");
1671    }
1672#endif
1673  } // End of for all blocks
1674
1675  non_safepoints.flush_at_end();
1676
1677  // Offset too large?
1678  if (failing())  return;
1679
1680  // Define a pseudo-label at the end of the code
1681  MacroAssembler(cb).bind( blk_labels[_cfg->_num_blocks] );
1682
1683  // Compute the size of the first block
1684  _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1685
1686  assert(cb->insts_size() < 500000, "method is unreasonably large");
1687
1688  // ------------------
1689
1690#ifndef PRODUCT
1691  // Information on the size of the method, without the extraneous code
1692  Scheduling::increment_method_size(cb->insts_size());
1693#endif
1694
1695  // ------------------
1696  // Fill in exception table entries.
1697  FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1698
1699  // Only java methods have exception handlers and deopt handlers
1700  if (_method) {
1701    // Emit the exception handler code.
1702    _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
1703    // Emit the deopt handler code.
1704    _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
1705
1706    // Emit the MethodHandle deopt handler code (if required).
1707    if (has_method_handle_invokes()) {
1708      // We can use the same code as for the normal deopt handler, we
1709      // just need a different entry point address.
1710      _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
1711    }
1712  }
1713
1714  // One last check for failed CodeBuffer::expand:
1715  if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1716    turn_off_compiler(this);
1717    return;
1718  }
1719
1720#ifndef PRODUCT
1721  // Dump the assembly code, including basic-block numbers
1722  if (print_assembly()) {
1723    ttyLocker ttyl;  // keep the following output all in one block
1724    if (!VMThread::should_terminate()) {  // test this under the tty lock
1725      // This output goes directly to the tty, not the compiler log.
1726      // To enable tools to match it up with the compilation activity,
1727      // be sure to tag this tty output with the compile ID.
1728      if (xtty != NULL) {
1729        xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1730                   is_osr_compilation()    ? " compile_kind='osr'" :
1731                   "");
1732      }
1733      if (method() != NULL) {
1734        method()->print_oop();
1735        print_codes();
1736      }
1737      dump_asm(node_offsets, node_offset_limit);
1738      if (xtty != NULL) {
1739        xtty->tail("opto_assembly");
1740      }
1741    }
1742  }
1743#endif
1744
1745}
1746
1747void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1748  _inc_table.set_size(cnt);
1749
1750  uint inct_cnt = 0;
1751  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1752    Block *b = _cfg->_blocks[i];
1753    Node *n = NULL;
1754    int j;
1755
1756    // Find the branch; ignore trailing NOPs.
1757    for( j = b->_nodes.size()-1; j>=0; j-- ) {
1758      n = b->_nodes[j];
1759      if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
1760        break;
1761    }
1762
1763    // If we didn't find anything, continue
1764    if( j < 0 ) continue;
1765
1766    // Compute ExceptionHandlerTable subtable entry and add it
1767    // (skip empty blocks)
1768    if( n->is_Catch() ) {
1769
1770      // Get the offset of the return from the call
1771      uint call_return = call_returns[b->_pre_order];
1772#ifdef ASSERT
1773      assert( call_return > 0, "no call seen for this basic block" );
1774      while( b->_nodes[--j]->is_MachProj() ) ;
1775      assert( b->_nodes[j]->is_MachCall(), "CatchProj must follow call" );
1776#endif
1777      // last instruction is a CatchNode, find it's CatchProjNodes
1778      int nof_succs = b->_num_succs;
1779      // allocate space
1780      GrowableArray<intptr_t> handler_bcis(nof_succs);
1781      GrowableArray<intptr_t> handler_pcos(nof_succs);
1782      // iterate through all successors
1783      for (int j = 0; j < nof_succs; j++) {
1784        Block* s = b->_succs[j];
1785        bool found_p = false;
1786        for( uint k = 1; k < s->num_preds(); k++ ) {
1787          Node *pk = s->pred(k);
1788          if( pk->is_CatchProj() && pk->in(0) == n ) {
1789            const CatchProjNode* p = pk->as_CatchProj();
1790            found_p = true;
1791            // add the corresponding handler bci & pco information
1792            if( p->_con != CatchProjNode::fall_through_index ) {
1793              // p leads to an exception handler (and is not fall through)
1794              assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
1795              // no duplicates, please
1796              if( !handler_bcis.contains(p->handler_bci()) ) {
1797                uint block_num = s->non_connector()->_pre_order;
1798                handler_bcis.append(p->handler_bci());
1799                handler_pcos.append(blk_labels[block_num].loc_pos());
1800              }
1801            }
1802          }
1803        }
1804        assert(found_p, "no matching predecessor found");
1805        // Note:  Due to empty block removal, one block may have
1806        // several CatchProj inputs, from the same Catch.
1807      }
1808
1809      // Set the offset of the return from the call
1810      _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1811      continue;
1812    }
1813
1814    // Handle implicit null exception table updates
1815    if( n->is_MachNullCheck() ) {
1816      uint block_num = b->non_connector_successor(0)->_pre_order;
1817      _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
1818      continue;
1819    }
1820  } // End of for all blocks fill in exception table entries
1821}
1822
1823// Static Variables
1824#ifndef PRODUCT
1825uint Scheduling::_total_nop_size = 0;
1826uint Scheduling::_total_method_size = 0;
1827uint Scheduling::_total_branches = 0;
1828uint Scheduling::_total_unconditional_delays = 0;
1829uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1830#endif
1831
1832// Initializer for class Scheduling
1833
1834Scheduling::Scheduling(Arena *arena, Compile &compile)
1835  : _arena(arena),
1836    _cfg(compile.cfg()),
1837    _bbs(compile.cfg()->_bbs),
1838    _regalloc(compile.regalloc()),
1839    _reg_node(arena),
1840    _bundle_instr_count(0),
1841    _bundle_cycle_number(0),
1842    _scheduled(arena),
1843    _available(arena),
1844    _next_node(NULL),
1845    _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1846    _pinch_free_list(arena)
1847#ifndef PRODUCT
1848  , _branches(0)
1849  , _unconditional_delays(0)
1850#endif
1851{
1852  // Create a MachNopNode
1853  _nop = new (&compile) MachNopNode();
1854
1855  // Now that the nops are in the array, save the count
1856  // (but allow entries for the nops)
1857  _node_bundling_limit = compile.unique();
1858  uint node_max = _regalloc->node_regs_max_index();
1859
1860  compile.set_node_bundling_limit(_node_bundling_limit);
1861
1862  // This one is persistent within the Compile class
1863  _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1864
1865  // Allocate space for fixed-size arrays
1866  _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1867  _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1868  _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1869
1870  // Clear the arrays
1871  memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1872  memset(_node_latency,       0, node_max * sizeof(unsigned short));
1873  memset(_uses,               0, node_max * sizeof(short));
1874  memset(_current_latency,    0, node_max * sizeof(unsigned short));
1875
1876  // Clear the bundling information
1877  memcpy(_bundle_use_elements,
1878    Pipeline_Use::elaborated_elements,
1879    sizeof(Pipeline_Use::elaborated_elements));
1880
1881  // Get the last node
1882  Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
1883
1884  _next_node = bb->_nodes[bb->_nodes.size()-1];
1885}
1886
1887#ifndef PRODUCT
1888// Scheduling destructor
1889Scheduling::~Scheduling() {
1890  _total_branches             += _branches;
1891  _total_unconditional_delays += _unconditional_delays;
1892}
1893#endif
1894
1895// Step ahead "i" cycles
1896void Scheduling::step(uint i) {
1897
1898  Bundle *bundle = node_bundling(_next_node);
1899  bundle->set_starts_bundle();
1900
1901  // Update the bundle record, but leave the flags information alone
1902  if (_bundle_instr_count > 0) {
1903    bundle->set_instr_count(_bundle_instr_count);
1904    bundle->set_resources_used(_bundle_use.resourcesUsed());
1905  }
1906
1907  // Update the state information
1908  _bundle_instr_count = 0;
1909  _bundle_cycle_number += i;
1910  _bundle_use.step(i);
1911}
1912
1913void Scheduling::step_and_clear() {
1914  Bundle *bundle = node_bundling(_next_node);
1915  bundle->set_starts_bundle();
1916
1917  // Update the bundle record
1918  if (_bundle_instr_count > 0) {
1919    bundle->set_instr_count(_bundle_instr_count);
1920    bundle->set_resources_used(_bundle_use.resourcesUsed());
1921
1922    _bundle_cycle_number += 1;
1923  }
1924
1925  // Clear the bundling information
1926  _bundle_instr_count = 0;
1927  _bundle_use.reset();
1928
1929  memcpy(_bundle_use_elements,
1930    Pipeline_Use::elaborated_elements,
1931    sizeof(Pipeline_Use::elaborated_elements));
1932}
1933
1934//------------------------------ScheduleAndBundle------------------------------
1935// Perform instruction scheduling and bundling over the sequence of
1936// instructions in backwards order.
1937void Compile::ScheduleAndBundle() {
1938
1939  // Don't optimize this if it isn't a method
1940  if (!_method)
1941    return;
1942
1943  // Don't optimize this if scheduling is disabled
1944  if (!do_scheduling())
1945    return;
1946
1947  NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1948
1949  // Create a data structure for all the scheduling information
1950  Scheduling scheduling(Thread::current()->resource_area(), *this);
1951
1952  // Walk backwards over each basic block, computing the needed alignment
1953  // Walk over all the basic blocks
1954  scheduling.DoScheduling();
1955}
1956
1957//------------------------------ComputeLocalLatenciesForward-------------------
1958// Compute the latency of all the instructions.  This is fairly simple,
1959// because we already have a legal ordering.  Walk over the instructions
1960// from first to last, and compute the latency of the instruction based
1961// on the latency of the preceding instruction(s).
1962void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1963#ifndef PRODUCT
1964  if (_cfg->C->trace_opto_output())
1965    tty->print("# -> ComputeLocalLatenciesForward\n");
1966#endif
1967
1968  // Walk over all the schedulable instructions
1969  for( uint j=_bb_start; j < _bb_end; j++ ) {
1970
1971    // This is a kludge, forcing all latency calculations to start at 1.
1972    // Used to allow latency 0 to force an instruction to the beginning
1973    // of the bb
1974    uint latency = 1;
1975    Node *use = bb->_nodes[j];
1976    uint nlen = use->len();
1977
1978    // Walk over all the inputs
1979    for ( uint k=0; k < nlen; k++ ) {
1980      Node *def = use->in(k);
1981      if (!def)
1982        continue;
1983
1984      uint l = _node_latency[def->_idx] + use->latency(k);
1985      if (latency < l)
1986        latency = l;
1987    }
1988
1989    _node_latency[use->_idx] = latency;
1990
1991#ifndef PRODUCT
1992    if (_cfg->C->trace_opto_output()) {
1993      tty->print("# latency %4d: ", latency);
1994      use->dump();
1995    }
1996#endif
1997  }
1998
1999#ifndef PRODUCT
2000  if (_cfg->C->trace_opto_output())
2001    tty->print("# <- ComputeLocalLatenciesForward\n");
2002#endif
2003
2004} // end ComputeLocalLatenciesForward
2005
2006// See if this node fits into the present instruction bundle
2007bool Scheduling::NodeFitsInBundle(Node *n) {
2008  uint n_idx = n->_idx;
2009
2010  // If this is the unconditional delay instruction, then it fits
2011  if (n == _unconditional_delay_slot) {
2012#ifndef PRODUCT
2013    if (_cfg->C->trace_opto_output())
2014      tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
2015#endif
2016    return (true);
2017  }
2018
2019  // If the node cannot be scheduled this cycle, skip it
2020  if (_current_latency[n_idx] > _bundle_cycle_number) {
2021#ifndef PRODUCT
2022    if (_cfg->C->trace_opto_output())
2023      tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
2024        n->_idx, _current_latency[n_idx], _bundle_cycle_number);
2025#endif
2026    return (false);
2027  }
2028
2029  const Pipeline *node_pipeline = n->pipeline();
2030
2031  uint instruction_count = node_pipeline->instructionCount();
2032  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2033    instruction_count = 0;
2034  else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2035    instruction_count++;
2036
2037  if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
2038#ifndef PRODUCT
2039    if (_cfg->C->trace_opto_output())
2040      tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
2041        n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
2042#endif
2043    return (false);
2044  }
2045
2046  // Don't allow non-machine nodes to be handled this way
2047  if (!n->is_Mach() && instruction_count == 0)
2048    return (false);
2049
2050  // See if there is any overlap
2051  uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
2052
2053  if (delay > 0) {
2054#ifndef PRODUCT
2055    if (_cfg->C->trace_opto_output())
2056      tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
2057#endif
2058    return false;
2059  }
2060
2061#ifndef PRODUCT
2062  if (_cfg->C->trace_opto_output())
2063    tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
2064#endif
2065
2066  return true;
2067}
2068
2069Node * Scheduling::ChooseNodeToBundle() {
2070  uint siz = _available.size();
2071
2072  if (siz == 0) {
2073
2074#ifndef PRODUCT
2075    if (_cfg->C->trace_opto_output())
2076      tty->print("#   ChooseNodeToBundle: NULL\n");
2077#endif
2078    return (NULL);
2079  }
2080
2081  // Fast path, if only 1 instruction in the bundle
2082  if (siz == 1) {
2083#ifndef PRODUCT
2084    if (_cfg->C->trace_opto_output()) {
2085      tty->print("#   ChooseNodeToBundle (only 1): ");
2086      _available[0]->dump();
2087    }
2088#endif
2089    return (_available[0]);
2090  }
2091
2092  // Don't bother, if the bundle is already full
2093  if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2094    for ( uint i = 0; i < siz; i++ ) {
2095      Node *n = _available[i];
2096
2097      // Skip projections, we'll handle them another way
2098      if (n->is_Proj())
2099        continue;
2100
2101      // This presupposed that instructions are inserted into the
2102      // available list in a legality order; i.e. instructions that
2103      // must be inserted first are at the head of the list
2104      if (NodeFitsInBundle(n)) {
2105#ifndef PRODUCT
2106        if (_cfg->C->trace_opto_output()) {
2107          tty->print("#   ChooseNodeToBundle: ");
2108          n->dump();
2109        }
2110#endif
2111        return (n);
2112      }
2113    }
2114  }
2115
2116  // Nothing fits in this bundle, choose the highest priority
2117#ifndef PRODUCT
2118  if (_cfg->C->trace_opto_output()) {
2119    tty->print("#   ChooseNodeToBundle: ");
2120    _available[0]->dump();
2121  }
2122#endif
2123
2124  return _available[0];
2125}
2126
2127//------------------------------AddNodeToAvailableList-------------------------
2128void Scheduling::AddNodeToAvailableList(Node *n) {
2129  assert( !n->is_Proj(), "projections never directly made available" );
2130#ifndef PRODUCT
2131  if (_cfg->C->trace_opto_output()) {
2132    tty->print("#   AddNodeToAvailableList: ");
2133    n->dump();
2134  }
2135#endif
2136
2137  int latency = _current_latency[n->_idx];
2138
2139  // Insert in latency order (insertion sort)
2140  uint i;
2141  for ( i=0; i < _available.size(); i++ )
2142    if (_current_latency[_available[i]->_idx] > latency)
2143      break;
2144
2145  // Special Check for compares following branches
2146  if( n->is_Mach() && _scheduled.size() > 0 ) {
2147    int op = n->as_Mach()->ideal_Opcode();
2148    Node *last = _scheduled[0];
2149    if( last->is_MachIf() && last->in(1) == n &&
2150        ( op == Op_CmpI ||
2151          op == Op_CmpU ||
2152          op == Op_CmpP ||
2153          op == Op_CmpF ||
2154          op == Op_CmpD ||
2155          op == Op_CmpL ) ) {
2156
2157      // Recalculate position, moving to front of same latency
2158      for ( i=0 ; i < _available.size(); i++ )
2159        if (_current_latency[_available[i]->_idx] >= latency)
2160          break;
2161    }
2162  }
2163
2164  // Insert the node in the available list
2165  _available.insert(i, n);
2166
2167#ifndef PRODUCT
2168  if (_cfg->C->trace_opto_output())
2169    dump_available();
2170#endif
2171}
2172
2173//------------------------------DecrementUseCounts-----------------------------
2174void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2175  for ( uint i=0; i < n->len(); i++ ) {
2176    Node *def = n->in(i);
2177    if (!def) continue;
2178    if( def->is_Proj() )        // If this is a machine projection, then
2179      def = def->in(0);         // propagate usage thru to the base instruction
2180
2181    if( _bbs[def->_idx] != bb ) // Ignore if not block-local
2182      continue;
2183
2184    // Compute the latency
2185    uint l = _bundle_cycle_number + n->latency(i);
2186    if (_current_latency[def->_idx] < l)
2187      _current_latency[def->_idx] = l;
2188
2189    // If this does not have uses then schedule it
2190    if ((--_uses[def->_idx]) == 0)
2191      AddNodeToAvailableList(def);
2192  }
2193}
2194
2195//------------------------------AddNodeToBundle--------------------------------
2196void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2197#ifndef PRODUCT
2198  if (_cfg->C->trace_opto_output()) {
2199    tty->print("#   AddNodeToBundle: ");
2200    n->dump();
2201  }
2202#endif
2203
2204  // Remove this from the available list
2205  uint i;
2206  for (i = 0; i < _available.size(); i++)
2207    if (_available[i] == n)
2208      break;
2209  assert(i < _available.size(), "entry in _available list not found");
2210  _available.remove(i);
2211
2212  // See if this fits in the current bundle
2213  const Pipeline *node_pipeline = n->pipeline();
2214  const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2215
2216  // Check for instructions to be placed in the delay slot. We
2217  // do this before we actually schedule the current instruction,
2218  // because the delay slot follows the current instruction.
2219  if (Pipeline::_branch_has_delay_slot &&
2220      node_pipeline->hasBranchDelay() &&
2221      !_unconditional_delay_slot) {
2222
2223    uint siz = _available.size();
2224
2225    // Conditional branches can support an instruction that
2226    // is unconditionally executed and not dependent by the
2227    // branch, OR a conditionally executed instruction if
2228    // the branch is taken.  In practice, this means that
2229    // the first instruction at the branch target is
2230    // copied to the delay slot, and the branch goes to
2231    // the instruction after that at the branch target
2232    if ( n->is_Mach() && n->is_Branch() ) {
2233
2234      assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2235      assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2236
2237#ifndef PRODUCT
2238      _branches++;
2239#endif
2240
2241      // At least 1 instruction is on the available list
2242      // that is not dependent on the branch
2243      for (uint i = 0; i < siz; i++) {
2244        Node *d = _available[i];
2245        const Pipeline *avail_pipeline = d->pipeline();
2246
2247        // Don't allow safepoints in the branch shadow, that will
2248        // cause a number of difficulties
2249        if ( avail_pipeline->instructionCount() == 1 &&
2250            !avail_pipeline->hasMultipleBundles() &&
2251            !avail_pipeline->hasBranchDelay() &&
2252            Pipeline::instr_has_unit_size() &&
2253            d->size(_regalloc) == Pipeline::instr_unit_size() &&
2254            NodeFitsInBundle(d) &&
2255            !node_bundling(d)->used_in_delay()) {
2256
2257          if (d->is_Mach() && !d->is_MachSafePoint()) {
2258            // A node that fits in the delay slot was found, so we need to
2259            // set the appropriate bits in the bundle pipeline information so
2260            // that it correctly indicates resource usage.  Later, when we
2261            // attempt to add this instruction to the bundle, we will skip
2262            // setting the resource usage.
2263            _unconditional_delay_slot = d;
2264            node_bundling(n)->set_use_unconditional_delay();
2265            node_bundling(d)->set_used_in_unconditional_delay();
2266            _bundle_use.add_usage(avail_pipeline->resourceUse());
2267            _current_latency[d->_idx] = _bundle_cycle_number;
2268            _next_node = d;
2269            ++_bundle_instr_count;
2270#ifndef PRODUCT
2271            _unconditional_delays++;
2272#endif
2273            break;
2274          }
2275        }
2276      }
2277    }
2278
2279    // No delay slot, add a nop to the usage
2280    if (!_unconditional_delay_slot) {
2281      // See if adding an instruction in the delay slot will overflow
2282      // the bundle.
2283      if (!NodeFitsInBundle(_nop)) {
2284#ifndef PRODUCT
2285        if (_cfg->C->trace_opto_output())
2286          tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2287#endif
2288        step(1);
2289      }
2290
2291      _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2292      _next_node = _nop;
2293      ++_bundle_instr_count;
2294    }
2295
2296    // See if the instruction in the delay slot requires a
2297    // step of the bundles
2298    if (!NodeFitsInBundle(n)) {
2299#ifndef PRODUCT
2300        if (_cfg->C->trace_opto_output())
2301          tty->print("#  *** STEP(branch won't fit) ***\n");
2302#endif
2303        // Update the state information
2304        _bundle_instr_count = 0;
2305        _bundle_cycle_number += 1;
2306        _bundle_use.step(1);
2307    }
2308  }
2309
2310  // Get the number of instructions
2311  uint instruction_count = node_pipeline->instructionCount();
2312  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2313    instruction_count = 0;
2314
2315  // Compute the latency information
2316  uint delay = 0;
2317
2318  if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2319    int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2320    if (relative_latency < 0)
2321      relative_latency = 0;
2322
2323    delay = _bundle_use.full_latency(relative_latency, node_usage);
2324
2325    // Does not fit in this bundle, start a new one
2326    if (delay > 0) {
2327      step(delay);
2328
2329#ifndef PRODUCT
2330      if (_cfg->C->trace_opto_output())
2331        tty->print("#  *** STEP(%d) ***\n", delay);
2332#endif
2333    }
2334  }
2335
2336  // If this was placed in the delay slot, ignore it
2337  if (n != _unconditional_delay_slot) {
2338
2339    if (delay == 0) {
2340      if (node_pipeline->hasMultipleBundles()) {
2341#ifndef PRODUCT
2342        if (_cfg->C->trace_opto_output())
2343          tty->print("#  *** STEP(multiple instructions) ***\n");
2344#endif
2345        step(1);
2346      }
2347
2348      else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2349#ifndef PRODUCT
2350        if (_cfg->C->trace_opto_output())
2351          tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2352            instruction_count + _bundle_instr_count,
2353            Pipeline::_max_instrs_per_cycle);
2354#endif
2355        step(1);
2356      }
2357    }
2358
2359    if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2360      _bundle_instr_count++;
2361
2362    // Set the node's latency
2363    _current_latency[n->_idx] = _bundle_cycle_number;
2364
2365    // Now merge the functional unit information
2366    if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2367      _bundle_use.add_usage(node_usage);
2368
2369    // Increment the number of instructions in this bundle
2370    _bundle_instr_count += instruction_count;
2371
2372    // Remember this node for later
2373    if (n->is_Mach())
2374      _next_node = n;
2375  }
2376
2377  // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2378  // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2379  // 'Schedule' them (basically ignore in the schedule) but do not insert them
2380  // into the block.  All other scheduled nodes get put in the schedule here.
2381  int op = n->Opcode();
2382  if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2383      (op != Op_Node &&         // Not an unused antidepedence node and
2384       // not an unallocated boxlock
2385       (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2386
2387    // Push any trailing projections
2388    if( bb->_nodes[bb->_nodes.size()-1] != n ) {
2389      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2390        Node *foi = n->fast_out(i);
2391        if( foi->is_Proj() )
2392          _scheduled.push(foi);
2393      }
2394    }
2395
2396    // Put the instruction in the schedule list
2397    _scheduled.push(n);
2398  }
2399
2400#ifndef PRODUCT
2401  if (_cfg->C->trace_opto_output())
2402    dump_available();
2403#endif
2404
2405  // Walk all the definitions, decrementing use counts, and
2406  // if a definition has a 0 use count, place it in the available list.
2407  DecrementUseCounts(n,bb);
2408}
2409
2410//------------------------------ComputeUseCount--------------------------------
2411// This method sets the use count within a basic block.  We will ignore all
2412// uses outside the current basic block.  As we are doing a backwards walk,
2413// any node we reach that has a use count of 0 may be scheduled.  This also
2414// avoids the problem of cyclic references from phi nodes, as long as phi
2415// nodes are at the front of the basic block.  This method also initializes
2416// the available list to the set of instructions that have no uses within this
2417// basic block.
2418void Scheduling::ComputeUseCount(const Block *bb) {
2419#ifndef PRODUCT
2420  if (_cfg->C->trace_opto_output())
2421    tty->print("# -> ComputeUseCount\n");
2422#endif
2423
2424  // Clear the list of available and scheduled instructions, just in case
2425  _available.clear();
2426  _scheduled.clear();
2427
2428  // No delay slot specified
2429  _unconditional_delay_slot = NULL;
2430
2431#ifdef ASSERT
2432  for( uint i=0; i < bb->_nodes.size(); i++ )
2433    assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
2434#endif
2435
2436  // Force the _uses count to never go to zero for unscheduable pieces
2437  // of the block
2438  for( uint k = 0; k < _bb_start; k++ )
2439    _uses[bb->_nodes[k]->_idx] = 1;
2440  for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
2441    _uses[bb->_nodes[l]->_idx] = 1;
2442
2443  // Iterate backwards over the instructions in the block.  Don't count the
2444  // branch projections at end or the block header instructions.
2445  for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2446    Node *n = bb->_nodes[j];
2447    if( n->is_Proj() ) continue; // Projections handled another way
2448
2449    // Account for all uses
2450    for ( uint k = 0; k < n->len(); k++ ) {
2451      Node *inp = n->in(k);
2452      if (!inp) continue;
2453      assert(inp != n, "no cycles allowed" );
2454      if( _bbs[inp->_idx] == bb ) { // Block-local use?
2455        if( inp->is_Proj() )    // Skip through Proj's
2456          inp = inp->in(0);
2457        ++_uses[inp->_idx];     // Count 1 block-local use
2458      }
2459    }
2460
2461    // If this instruction has a 0 use count, then it is available
2462    if (!_uses[n->_idx]) {
2463      _current_latency[n->_idx] = _bundle_cycle_number;
2464      AddNodeToAvailableList(n);
2465    }
2466
2467#ifndef PRODUCT
2468    if (_cfg->C->trace_opto_output()) {
2469      tty->print("#   uses: %3d: ", _uses[n->_idx]);
2470      n->dump();
2471    }
2472#endif
2473  }
2474
2475#ifndef PRODUCT
2476  if (_cfg->C->trace_opto_output())
2477    tty->print("# <- ComputeUseCount\n");
2478#endif
2479}
2480
2481// This routine performs scheduling on each basic block in reverse order,
2482// using instruction latencies and taking into account function unit
2483// availability.
2484void Scheduling::DoScheduling() {
2485#ifndef PRODUCT
2486  if (_cfg->C->trace_opto_output())
2487    tty->print("# -> DoScheduling\n");
2488#endif
2489
2490  Block *succ_bb = NULL;
2491  Block *bb;
2492
2493  // Walk over all the basic blocks in reverse order
2494  for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
2495    bb = _cfg->_blocks[i];
2496
2497#ifndef PRODUCT
2498    if (_cfg->C->trace_opto_output()) {
2499      tty->print("#  Schedule BB#%03d (initial)\n", i);
2500      for (uint j = 0; j < bb->_nodes.size(); j++)
2501        bb->_nodes[j]->dump();
2502    }
2503#endif
2504
2505    // On the head node, skip processing
2506    if( bb == _cfg->_broot )
2507      continue;
2508
2509    // Skip empty, connector blocks
2510    if (bb->is_connector())
2511      continue;
2512
2513    // If the following block is not the sole successor of
2514    // this one, then reset the pipeline information
2515    if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2516#ifndef PRODUCT
2517      if (_cfg->C->trace_opto_output()) {
2518        tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2519                   _next_node->_idx, _bundle_instr_count);
2520      }
2521#endif
2522      step_and_clear();
2523    }
2524
2525    // Leave untouched the starting instruction, any Phis, a CreateEx node
2526    // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
2527    _bb_end = bb->_nodes.size()-1;
2528    for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2529      Node *n = bb->_nodes[_bb_start];
2530      // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2531      // Also, MachIdealNodes do not get scheduled
2532      if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2533      MachNode *mach = n->as_Mach();
2534      int iop = mach->ideal_Opcode();
2535      if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2536      if( iop == Op_Con ) continue;      // Do not schedule Top
2537      if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2538          mach->pipeline() == MachNode::pipeline_class() &&
2539          !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2540        continue;
2541      break;                    // Funny loop structure to be sure...
2542    }
2543    // Compute last "interesting" instruction in block - last instruction we
2544    // might schedule.  _bb_end points just after last schedulable inst.  We
2545    // normally schedule conditional branches (despite them being forced last
2546    // in the block), because they have delay slots we can fill.  Calls all
2547    // have their delay slots filled in the template expansions, so we don't
2548    // bother scheduling them.
2549    Node *last = bb->_nodes[_bb_end];
2550    // Ignore trailing NOPs.
2551    while (_bb_end > 0 && last->is_Mach() &&
2552           last->as_Mach()->ideal_Opcode() == Op_Con) {
2553      last = bb->_nodes[--_bb_end];
2554    }
2555    assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2556    if( last->is_Catch() ||
2557       // Exclude unreachable path case when Halt node is in a separate block.
2558       (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2559      // There must be a prior call.  Skip it.
2560      while( !bb->_nodes[--_bb_end]->is_MachCall() ) {
2561        assert( bb->_nodes[_bb_end]->is_MachProj(), "skipping projections after expected call" );
2562      }
2563    } else if( last->is_MachNullCheck() ) {
2564      // Backup so the last null-checked memory instruction is
2565      // outside the schedulable range. Skip over the nullcheck,
2566      // projection, and the memory nodes.
2567      Node *mem = last->in(1);
2568      do {
2569        _bb_end--;
2570      } while (mem != bb->_nodes[_bb_end]);
2571    } else {
2572      // Set _bb_end to point after last schedulable inst.
2573      _bb_end++;
2574    }
2575
2576    assert( _bb_start <= _bb_end, "inverted block ends" );
2577
2578    // Compute the register antidependencies for the basic block
2579    ComputeRegisterAntidependencies(bb);
2580    if (_cfg->C->failing())  return;  // too many D-U pinch points
2581
2582    // Compute intra-bb latencies for the nodes
2583    ComputeLocalLatenciesForward(bb);
2584
2585    // Compute the usage within the block, and set the list of all nodes
2586    // in the block that have no uses within the block.
2587    ComputeUseCount(bb);
2588
2589    // Schedule the remaining instructions in the block
2590    while ( _available.size() > 0 ) {
2591      Node *n = ChooseNodeToBundle();
2592      AddNodeToBundle(n,bb);
2593    }
2594
2595    assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2596#ifdef ASSERT
2597    for( uint l = _bb_start; l < _bb_end; l++ ) {
2598      Node *n = bb->_nodes[l];
2599      uint m;
2600      for( m = 0; m < _bb_end-_bb_start; m++ )
2601        if( _scheduled[m] == n )
2602          break;
2603      assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2604    }
2605#endif
2606
2607    // Now copy the instructions (in reverse order) back to the block
2608    for ( uint k = _bb_start; k < _bb_end; k++ )
2609      bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
2610
2611#ifndef PRODUCT
2612    if (_cfg->C->trace_opto_output()) {
2613      tty->print("#  Schedule BB#%03d (final)\n", i);
2614      uint current = 0;
2615      for (uint j = 0; j < bb->_nodes.size(); j++) {
2616        Node *n = bb->_nodes[j];
2617        if( valid_bundle_info(n) ) {
2618          Bundle *bundle = node_bundling(n);
2619          if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2620            tty->print("*** Bundle: ");
2621            bundle->dump();
2622          }
2623          n->dump();
2624        }
2625      }
2626    }
2627#endif
2628#ifdef ASSERT
2629  verify_good_schedule(bb,"after block local scheduling");
2630#endif
2631  }
2632
2633#ifndef PRODUCT
2634  if (_cfg->C->trace_opto_output())
2635    tty->print("# <- DoScheduling\n");
2636#endif
2637
2638  // Record final node-bundling array location
2639  _regalloc->C->set_node_bundling_base(_node_bundling_base);
2640
2641} // end DoScheduling
2642
2643//------------------------------verify_good_schedule---------------------------
2644// Verify that no live-range used in the block is killed in the block by a
2645// wrong DEF.  This doesn't verify live-ranges that span blocks.
2646
2647// Check for edge existence.  Used to avoid adding redundant precedence edges.
2648static bool edge_from_to( Node *from, Node *to ) {
2649  for( uint i=0; i<from->len(); i++ )
2650    if( from->in(i) == to )
2651      return true;
2652  return false;
2653}
2654
2655#ifdef ASSERT
2656//------------------------------verify_do_def----------------------------------
2657void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2658  // Check for bad kills
2659  if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2660    Node *prior_use = _reg_node[def];
2661    if( prior_use && !edge_from_to(prior_use,n) ) {
2662      tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2663      n->dump();
2664      tty->print_cr("...");
2665      prior_use->dump();
2666      assert(edge_from_to(prior_use,n),msg);
2667    }
2668    _reg_node.map(def,NULL); // Kill live USEs
2669  }
2670}
2671
2672//------------------------------verify_good_schedule---------------------------
2673void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2674
2675  // Zap to something reasonable for the verify code
2676  _reg_node.clear();
2677
2678  // Walk over the block backwards.  Check to make sure each DEF doesn't
2679  // kill a live value (other than the one it's supposed to).  Add each
2680  // USE to the live set.
2681  for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
2682    Node *n = b->_nodes[i];
2683    int n_op = n->Opcode();
2684    if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2685      // Fat-proj kills a slew of registers
2686      RegMask rm = n->out_RegMask();// Make local copy
2687      while( rm.is_NotEmpty() ) {
2688        OptoReg::Name kill = rm.find_first_elem();
2689        rm.Remove(kill);
2690        verify_do_def( n, kill, msg );
2691      }
2692    } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2693      // Get DEF'd registers the normal way
2694      verify_do_def( n, _regalloc->get_reg_first(n), msg );
2695      verify_do_def( n, _regalloc->get_reg_second(n), msg );
2696    }
2697
2698    // Now make all USEs live
2699    for( uint i=1; i<n->req(); i++ ) {
2700      Node *def = n->in(i);
2701      assert(def != 0, "input edge required");
2702      OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2703      OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2704      if( OptoReg::is_valid(reg_lo) ) {
2705        assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
2706        _reg_node.map(reg_lo,n);
2707      }
2708      if( OptoReg::is_valid(reg_hi) ) {
2709        assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
2710        _reg_node.map(reg_hi,n);
2711      }
2712    }
2713
2714  }
2715
2716  // Zap to something reasonable for the Antidependence code
2717  _reg_node.clear();
2718}
2719#endif
2720
2721// Conditionally add precedence edges.  Avoid putting edges on Projs.
2722static void add_prec_edge_from_to( Node *from, Node *to ) {
2723  if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2724    assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2725    from = from->in(0);
2726  }
2727  if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2728      !edge_from_to( from, to ) ) // Avoid duplicate edge
2729    from->add_prec(to);
2730}
2731
2732//------------------------------anti_do_def------------------------------------
2733void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2734  if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2735    return;
2736
2737  Node *pinch = _reg_node[def_reg]; // Get pinch point
2738  if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
2739      is_def ) {    // Check for a true def (not a kill)
2740    _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2741    return;
2742  }
2743
2744  Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2745  debug_only( def = (Node*)0xdeadbeef; )
2746
2747  // After some number of kills there _may_ be a later def
2748  Node *later_def = NULL;
2749
2750  // Finding a kill requires a real pinch-point.
2751  // Check for not already having a pinch-point.
2752  // Pinch points are Op_Node's.
2753  if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2754    later_def = pinch;            // Must be def/kill as optimistic pinch-point
2755    if ( _pinch_free_list.size() > 0) {
2756      pinch = _pinch_free_list.pop();
2757    } else {
2758      pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
2759    }
2760    if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2761      _cfg->C->record_method_not_compilable("too many D-U pinch points");
2762      return;
2763    }
2764    _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
2765    _reg_node.map(def_reg,pinch); // Record pinch-point
2766    //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2767    if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2768      pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2769      add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2770      later_def = NULL;           // and no later def
2771    }
2772    pinch->set_req(0,later_def);  // Hook later def so we can find it
2773  } else {                        // Else have valid pinch point
2774    if( pinch->in(0) )            // If there is a later-def
2775      later_def = pinch->in(0);   // Get it
2776  }
2777
2778  // Add output-dependence edge from later def to kill
2779  if( later_def )               // If there is some original def
2780    add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2781
2782  // See if current kill is also a use, and so is forced to be the pinch-point.
2783  if( pinch->Opcode() == Op_Node ) {
2784    Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2785    for( uint i=1; i<uses->req(); i++ ) {
2786      if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2787          _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2788        // Yes, found a use/kill pinch-point
2789        pinch->set_req(0,NULL);  //
2790        pinch->replace_by(kill); // Move anti-dep edges up
2791        pinch = kill;
2792        _reg_node.map(def_reg,pinch);
2793        return;
2794      }
2795    }
2796  }
2797
2798  // Add edge from kill to pinch-point
2799  add_prec_edge_from_to(kill,pinch);
2800}
2801
2802//------------------------------anti_do_use------------------------------------
2803void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2804  if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2805    return;
2806  Node *pinch = _reg_node[use_reg]; // Get pinch point
2807  // Check for no later def_reg/kill in block
2808  if( pinch && _bbs[pinch->_idx] == b &&
2809      // Use has to be block-local as well
2810      _bbs[use->_idx] == b ) {
2811    if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2812        pinch->req() == 1 ) {   // pinch not yet in block?
2813      pinch->del_req(0);        // yank pointer to later-def, also set flag
2814      // Insert the pinch-point in the block just after the last use
2815      b->_nodes.insert(b->find_node(use)+1,pinch);
2816      _bb_end++;                // Increase size scheduled region in block
2817    }
2818
2819    add_prec_edge_from_to(pinch,use);
2820  }
2821}
2822
2823//------------------------------ComputeRegisterAntidependences-----------------
2824// We insert antidependences between the reads and following write of
2825// allocated registers to prevent illegal code motion. Hopefully, the
2826// number of added references should be fairly small, especially as we
2827// are only adding references within the current basic block.
2828void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2829
2830#ifdef ASSERT
2831  verify_good_schedule(b,"before block local scheduling");
2832#endif
2833
2834  // A valid schedule, for each register independently, is an endless cycle
2835  // of: a def, then some uses (connected to the def by true dependencies),
2836  // then some kills (defs with no uses), finally the cycle repeats with a new
2837  // def.  The uses are allowed to float relative to each other, as are the
2838  // kills.  No use is allowed to slide past a kill (or def).  This requires
2839  // antidependencies between all uses of a single def and all kills that
2840  // follow, up to the next def.  More edges are redundant, because later defs
2841  // & kills are already serialized with true or antidependencies.  To keep
2842  // the edge count down, we add a 'pinch point' node if there's more than
2843  // one use or more than one kill/def.
2844
2845  // We add dependencies in one bottom-up pass.
2846
2847  // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2848
2849  // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2850  // register.  If not, we record the DEF/KILL in _reg_node, the
2851  // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2852  // "pinch point", a new Node that's in the graph but not in the block.
2853  // We put edges from the prior and current DEF/KILLs to the pinch point.
2854  // We put the pinch point in _reg_node.  If there's already a pinch point
2855  // we merely add an edge from the current DEF/KILL to the pinch point.
2856
2857  // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2858  // put an edge from the pinch point to the USE.
2859
2860  // To be expedient, the _reg_node array is pre-allocated for the whole
2861  // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2862  // or a valid def/kill/pinch-point, or a leftover node from some prior
2863  // block.  Leftover node from some prior block is treated like a NULL (no
2864  // prior def, so no anti-dependence needed).  Valid def is distinguished by
2865  // it being in the current block.
2866  bool fat_proj_seen = false;
2867  uint last_safept = _bb_end-1;
2868  Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
2869  Node* last_safept_node = end_node;
2870  for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2871    Node *n = b->_nodes[i];
2872    int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2873    if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2874      // Fat-proj kills a slew of registers
2875      // This can add edges to 'n' and obscure whether or not it was a def,
2876      // hence the is_def flag.
2877      fat_proj_seen = true;
2878      RegMask rm = n->out_RegMask();// Make local copy
2879      while( rm.is_NotEmpty() ) {
2880        OptoReg::Name kill = rm.find_first_elem();
2881        rm.Remove(kill);
2882        anti_do_def( b, n, kill, is_def );
2883      }
2884    } else {
2885      // Get DEF'd registers the normal way
2886      anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2887      anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2888    }
2889
2890    // Kill projections on a branch should appear to occur on the
2891    // branch, not afterwards, so grab the masks from the projections
2892    // and process them.
2893    if (n->is_Branch()) {
2894      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2895        Node* use = n->fast_out(i);
2896        if (use->is_Proj()) {
2897          RegMask rm = use->out_RegMask();// Make local copy
2898          while( rm.is_NotEmpty() ) {
2899            OptoReg::Name kill = rm.find_first_elem();
2900            rm.Remove(kill);
2901            anti_do_def( b, n, kill, false );
2902          }
2903        }
2904      }
2905    }
2906
2907    // Check each register used by this instruction for a following DEF/KILL
2908    // that must occur afterward and requires an anti-dependence edge.
2909    for( uint j=0; j<n->req(); j++ ) {
2910      Node *def = n->in(j);
2911      if( def ) {
2912        assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
2913        anti_do_use( b, n, _regalloc->get_reg_first(def) );
2914        anti_do_use( b, n, _regalloc->get_reg_second(def) );
2915      }
2916    }
2917    // Do not allow defs of new derived values to float above GC
2918    // points unless the base is definitely available at the GC point.
2919
2920    Node *m = b->_nodes[i];
2921
2922    // Add precedence edge from following safepoint to use of derived pointer
2923    if( last_safept_node != end_node &&
2924        m != last_safept_node) {
2925      for (uint k = 1; k < m->req(); k++) {
2926        const Type *t = m->in(k)->bottom_type();
2927        if( t->isa_oop_ptr() &&
2928            t->is_ptr()->offset() != 0 ) {
2929          last_safept_node->add_prec( m );
2930          break;
2931        }
2932      }
2933    }
2934
2935    if( n->jvms() ) {           // Precedence edge from derived to safept
2936      // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2937      if( b->_nodes[last_safept] != last_safept_node ) {
2938        last_safept = b->find_node(last_safept_node);
2939      }
2940      for( uint j=last_safept; j > i; j-- ) {
2941        Node *mach = b->_nodes[j];
2942        if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2943          mach->add_prec( n );
2944      }
2945      last_safept = i;
2946      last_safept_node = m;
2947    }
2948  }
2949
2950  if (fat_proj_seen) {
2951    // Garbage collect pinch nodes that were not consumed.
2952    // They are usually created by a fat kill MachProj for a call.
2953    garbage_collect_pinch_nodes();
2954  }
2955}
2956
2957//------------------------------garbage_collect_pinch_nodes-------------------------------
2958
2959// Garbage collect pinch nodes for reuse by other blocks.
2960//
2961// The block scheduler's insertion of anti-dependence
2962// edges creates many pinch nodes when the block contains
2963// 2 or more Calls.  A pinch node is used to prevent a
2964// combinatorial explosion of edges.  If a set of kills for a
2965// register is anti-dependent on a set of uses (or defs), rather
2966// than adding an edge in the graph between each pair of kill
2967// and use (or def), a pinch is inserted between them:
2968//
2969//            use1   use2  use3
2970//                \   |   /
2971//                 \  |  /
2972//                  pinch
2973//                 /  |  \
2974//                /   |   \
2975//            kill1 kill2 kill3
2976//
2977// One pinch node is created per register killed when
2978// the second call is encountered during a backwards pass
2979// over the block.  Most of these pinch nodes are never
2980// wired into the graph because the register is never
2981// used or def'ed in the block.
2982//
2983void Scheduling::garbage_collect_pinch_nodes() {
2984#ifndef PRODUCT
2985    if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2986#endif
2987    int trace_cnt = 0;
2988    for (uint k = 0; k < _reg_node.Size(); k++) {
2989      Node* pinch = _reg_node[k];
2990      if (pinch != NULL && pinch->Opcode() == Op_Node &&
2991          // no predecence input edges
2992          (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2993        cleanup_pinch(pinch);
2994        _pinch_free_list.push(pinch);
2995        _reg_node.map(k, NULL);
2996#ifndef PRODUCT
2997        if (_cfg->C->trace_opto_output()) {
2998          trace_cnt++;
2999          if (trace_cnt > 40) {
3000            tty->print("\n");
3001            trace_cnt = 0;
3002          }
3003          tty->print(" %d", pinch->_idx);
3004        }
3005#endif
3006      }
3007    }
3008#ifndef PRODUCT
3009    if (_cfg->C->trace_opto_output()) tty->print("\n");
3010#endif
3011}
3012
3013// Clean up a pinch node for reuse.
3014void Scheduling::cleanup_pinch( Node *pinch ) {
3015  assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
3016
3017  for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
3018    Node* use = pinch->last_out(i);
3019    uint uses_found = 0;
3020    for (uint j = use->req(); j < use->len(); j++) {
3021      if (use->in(j) == pinch) {
3022        use->rm_prec(j);
3023        uses_found++;
3024      }
3025    }
3026    assert(uses_found > 0, "must be a precedence edge");
3027    i -= uses_found;    // we deleted 1 or more copies of this edge
3028  }
3029  // May have a later_def entry
3030  pinch->set_req(0, NULL);
3031}
3032
3033//------------------------------print_statistics-------------------------------
3034#ifndef PRODUCT
3035
3036void Scheduling::dump_available() const {
3037  tty->print("#Availist  ");
3038  for (uint i = 0; i < _available.size(); i++)
3039    tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
3040  tty->cr();
3041}
3042
3043// Print Scheduling Statistics
3044void Scheduling::print_statistics() {
3045  // Print the size added by nops for bundling
3046  tty->print("Nops added %d bytes to total of %d bytes",
3047    _total_nop_size, _total_method_size);
3048  if (_total_method_size > 0)
3049    tty->print(", for %.2f%%",
3050      ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
3051  tty->print("\n");
3052
3053  // Print the number of branch shadows filled
3054  if (Pipeline::_branch_has_delay_slot) {
3055    tty->print("Of %d branches, %d had unconditional delay slots filled",
3056      _total_branches, _total_unconditional_delays);
3057    if (_total_branches > 0)
3058      tty->print(", for %.2f%%",
3059        ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
3060    tty->print("\n");
3061  }
3062
3063  uint total_instructions = 0, total_bundles = 0;
3064
3065  for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
3066    uint bundle_count   = _total_instructions_per_bundle[i];
3067    total_instructions += bundle_count * i;
3068    total_bundles      += bundle_count;
3069  }
3070
3071  if (total_bundles > 0)
3072    tty->print("Average ILP (excluding nops) is %.2f\n",
3073      ((double)total_instructions) / ((double)total_bundles));
3074}
3075#endif
3076