output.cpp revision 196:d1605aabd0a1
1/*
2 * Copyright 1998-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_output.cpp.incl"
27
28extern uint size_java_to_interp();
29extern uint reloc_java_to_interp();
30extern uint size_exception_handler();
31extern uint size_deopt_handler();
32
33#ifndef PRODUCT
34#define DEBUG_ARG(x) , x
35#else
36#define DEBUG_ARG(x)
37#endif
38
39extern int emit_exception_handler(CodeBuffer &cbuf);
40extern int emit_deopt_handler(CodeBuffer &cbuf);
41
42//------------------------------Output-----------------------------------------
43// Convert Nodes to instruction bits and pass off to the VM
44void Compile::Output() {
45  // RootNode goes
46  assert( _cfg->_broot->_nodes.size() == 0, "" );
47
48  // Initialize the space for the BufferBlob used to find and verify
49  // instruction size in MachNode::emit_size()
50  init_scratch_buffer_blob();
51  if (failing())  return; // Out of memory
52
53  // Make sure I can find the Start Node
54  Block_Array& bbs = _cfg->_bbs;
55  Block *entry = _cfg->_blocks[1];
56  Block *broot = _cfg->_broot;
57
58  const StartNode *start = entry->_nodes[0]->as_Start();
59
60  // Replace StartNode with prolog
61  MachPrologNode *prolog = new (this) MachPrologNode();
62  entry->_nodes.map( 0, prolog );
63  bbs.map( prolog->_idx, entry );
64  bbs.map( start->_idx, NULL ); // start is no longer in any block
65
66  // Virtual methods need an unverified entry point
67
68  if( is_osr_compilation() ) {
69    if( PoisonOSREntry ) {
70      // TODO: Should use a ShouldNotReachHereNode...
71      _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
72    }
73  } else {
74    if( _method && !_method->flags().is_static() ) {
75      // Insert unvalidated entry point
76      _cfg->insert( broot, 0, new (this) MachUEPNode() );
77    }
78
79  }
80
81
82  // Break before main entry point
83  if( (_method && _method->break_at_execute())
84#ifndef PRODUCT
85    ||(OptoBreakpoint && is_method_compilation())
86    ||(OptoBreakpointOSR && is_osr_compilation())
87    ||(OptoBreakpointC2R && !_method)
88#endif
89    ) {
90    // checking for _method means that OptoBreakpoint does not apply to
91    // runtime stubs or frame converters
92    _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
93  }
94
95  // Insert epilogs before every return
96  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
97    Block *b = _cfg->_blocks[i];
98    if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
99      Node *m = b->end();
100      if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
101        MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
102        b->add_inst( epilog );
103        bbs.map(epilog->_idx, b);
104        //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
105      }
106    }
107  }
108
109# ifdef ENABLE_ZAP_DEAD_LOCALS
110  if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
111# endif
112
113  ScheduleAndBundle();
114
115#ifndef PRODUCT
116  if (trace_opto_output()) {
117    tty->print("\n---- After ScheduleAndBundle ----\n");
118    for (uint i = 0; i < _cfg->_num_blocks; i++) {
119      tty->print("\nBB#%03d:\n", i);
120      Block *bb = _cfg->_blocks[i];
121      for (uint j = 0; j < bb->_nodes.size(); j++) {
122        Node *n = bb->_nodes[j];
123        OptoReg::Name reg = _regalloc->get_reg_first(n);
124        tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
125        n->dump();
126      }
127    }
128  }
129#endif
130
131  if (failing())  return;
132
133  BuildOopMaps();
134
135  if (failing())  return;
136
137  Fill_buffer();
138}
139
140bool Compile::need_stack_bang(int frame_size_in_bytes) const {
141  // Determine if we need to generate a stack overflow check.
142  // Do it if the method is not a stub function and
143  // has java calls or has frame size > vm_page_size/8.
144  return (stub_function() == NULL &&
145          (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
146}
147
148bool Compile::need_register_stack_bang() const {
149  // Determine if we need to generate a register stack overflow check.
150  // This is only used on architectures which have split register
151  // and memory stacks (ie. IA64).
152  // Bang if the method is not a stub function and has java calls
153  return (stub_function() == NULL && has_java_calls());
154}
155
156# ifdef ENABLE_ZAP_DEAD_LOCALS
157
158
159// In order to catch compiler oop-map bugs, we have implemented
160// a debugging mode called ZapDeadCompilerLocals.
161// This mode causes the compiler to insert a call to a runtime routine,
162// "zap_dead_locals", right before each place in compiled code
163// that could potentially be a gc-point (i.e., a safepoint or oop map point).
164// The runtime routine checks that locations mapped as oops are really
165// oops, that locations mapped as values do not look like oops,
166// and that locations mapped as dead are not used later
167// (by zapping them to an invalid address).
168
169int Compile::_CompiledZap_count = 0;
170
171void Compile::Insert_zap_nodes() {
172  bool skip = false;
173
174
175  // Dink with static counts because code code without the extra
176  // runtime calls is MUCH faster for debugging purposes
177
178       if ( CompileZapFirst  ==  0  ) ; // nothing special
179  else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
180  else if ( CompileZapFirst  == CompiledZap_count() )
181    warning("starting zap compilation after skipping");
182
183       if ( CompileZapLast  ==  -1  ) ; // nothing special
184  else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
185  else if ( CompileZapLast  ==  CompiledZap_count() )
186    warning("about to compile last zap");
187
188  ++_CompiledZap_count; // counts skipped zaps, too
189
190  if ( skip )  return;
191
192
193  if ( _method == NULL )
194    return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
195
196  // Insert call to zap runtime stub before every node with an oop map
197  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
198    Block *b = _cfg->_blocks[i];
199    for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
200      Node *n = b->_nodes[j];
201
202      // Determining if we should insert a zap-a-lot node in output.
203      // We do that for all nodes that has oopmap info, except for calls
204      // to allocation.  Calls to allocation passes in the old top-of-eden pointer
205      // and expect the C code to reset it.  Hence, there can be no safepoints between
206      // the inlined-allocation and the call to new_Java, etc.
207      // We also cannot zap monitor calls, as they must hold the microlock
208      // during the call to Zap, which also wants to grab the microlock.
209      bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
210      if ( insert ) { // it is MachSafePoint
211        if ( !n->is_MachCall() ) {
212          insert = false;
213        } else if ( n->is_MachCall() ) {
214          MachCallNode* call = n->as_MachCall();
215          if (call->entry_point() == OptoRuntime::new_instance_Java() ||
216              call->entry_point() == OptoRuntime::new_array_Java() ||
217              call->entry_point() == OptoRuntime::multianewarray2_Java() ||
218              call->entry_point() == OptoRuntime::multianewarray3_Java() ||
219              call->entry_point() == OptoRuntime::multianewarray4_Java() ||
220              call->entry_point() == OptoRuntime::multianewarray5_Java() ||
221              call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
222              call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
223              ) {
224            insert = false;
225          }
226        }
227        if (insert) {
228          Node *zap = call_zap_node(n->as_MachSafePoint(), i);
229          b->_nodes.insert( j, zap );
230          _cfg->_bbs.map( zap->_idx, b );
231          ++j;
232        }
233      }
234    }
235  }
236}
237
238
239Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
240  const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
241  CallStaticJavaNode* ideal_node =
242    new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
243         OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
244                            "call zap dead locals stub", 0, TypePtr::BOTTOM);
245  // We need to copy the OopMap from the site we're zapping at.
246  // We have to make a copy, because the zap site might not be
247  // a call site, and zap_dead is a call site.
248  OopMap* clone = node_to_check->oop_map()->deep_copy();
249
250  // Add the cloned OopMap to the zap node
251  ideal_node->set_oop_map(clone);
252  return _matcher->match_sfpt(ideal_node);
253}
254
255//------------------------------is_node_getting_a_safepoint--------------------
256bool Compile::is_node_getting_a_safepoint( Node* n) {
257  // This code duplicates the logic prior to the call of add_safepoint
258  // below in this file.
259  if( n->is_MachSafePoint() ) return true;
260  return false;
261}
262
263# endif // ENABLE_ZAP_DEAD_LOCALS
264
265//------------------------------compute_loop_first_inst_sizes------------------
266// Compute the size of first NumberOfLoopInstrToAlign instructions at head
267// of a loop. When aligning a loop we need to provide enough instructions
268// in cpu's fetch buffer to feed decoders. The loop alignment could be
269// avoided if we have enough instructions in fetch buffer at the head of a loop.
270// By default, the size is set to 999999 by Block's constructor so that
271// a loop will be aligned if the size is not reset here.
272//
273// Note: Mach instructions could contain several HW instructions
274// so the size is estimated only.
275//
276void Compile::compute_loop_first_inst_sizes() {
277  // The next condition is used to gate the loop alignment optimization.
278  // Don't aligned a loop if there are enough instructions at the head of a loop
279  // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
280  // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
281  // equal to 11 bytes which is the largest address NOP instruction.
282  if( MaxLoopPad < OptoLoopAlignment-1 ) {
283    uint last_block = _cfg->_num_blocks-1;
284    for( uint i=1; i <= last_block; i++ ) {
285      Block *b = _cfg->_blocks[i];
286      // Check the first loop's block which requires an alignment.
287      if( b->head()->is_Loop() &&
288          b->code_alignment() > (uint)relocInfo::addr_unit() ) {
289        uint sum_size = 0;
290        uint inst_cnt = NumberOfLoopInstrToAlign;
291        inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt,
292                                              _regalloc);
293        // Check the next fallthrough block if first loop's block does not have
294        // enough instructions.
295        if( inst_cnt > 0 && i < last_block ) {
296          // First, check if the first loop's block contains whole loop.
297          // LoopNode::LoopBackControl == 2.
298          Block *bx = _cfg->_bbs[b->pred(2)->_idx];
299          // Skip connector blocks (with limit in case of irreducible loops).
300          int search_limit = 16;
301          while( bx->is_connector() && search_limit-- > 0) {
302            bx = _cfg->_bbs[bx->pred(1)->_idx];
303          }
304          if( bx != b ) { // loop body is in several blocks.
305            Block *nb = NULL;
306            while( inst_cnt > 0 && i < last_block && nb != bx &&
307                  !_cfg->_blocks[i+1]->head()->is_Loop() ) {
308              i++;
309              nb = _cfg->_blocks[i];
310              inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt,
311                                                      _regalloc);
312            } // while( inst_cnt > 0 && i < last_block  )
313          } // if( bx != b )
314        } // if( inst_cnt > 0 && i < last_block )
315        b->set_first_inst_size(sum_size);
316      } // f( b->head()->is_Loop() )
317    } // for( i <= last_block )
318  } // if( MaxLoopPad < OptoLoopAlignment-1 )
319}
320
321//----------------------Shorten_branches---------------------------------------
322// The architecture description provides short branch variants for some long
323// branch instructions. Replace eligible long branches with short branches.
324void Compile::Shorten_branches(Label *labels, int& code_size, int& reloc_size, int& stub_size, int& const_size) {
325
326  // fill in the nop array for bundling computations
327  MachNode *_nop_list[Bundle::_nop_count];
328  Bundle::initialize_nops(_nop_list, this);
329
330  // ------------------
331  // Compute size of each block, method size, and relocation information size
332  uint *jmp_end    = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks);
333  uint *blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
334  DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
335  blk_starts[0]    = 0;
336
337  // Initialize the sizes to 0
338  code_size  = 0;          // Size in bytes of generated code
339  stub_size  = 0;          // Size in bytes of all stub entries
340  // Size in bytes of all relocation entries, including those in local stubs.
341  // Start with 2-bytes of reloc info for the unvalidated entry point
342  reloc_size = 1;          // Number of relocation entries
343  const_size = 0;          // size of fp constants in words
344
345  // Make three passes.  The first computes pessimistic blk_starts,
346  // relative jmp_end, reloc_size and const_size information.
347  // The second performs short branch substitution using the pessimistic
348  // sizing. The third inserts nops where needed.
349
350  Node *nj; // tmp
351
352  // Step one, perform a pessimistic sizing pass.
353  uint i;
354  uint min_offset_from_last_call = 1;  // init to a positive value
355  uint nop_size = (new (this) MachNopNode())->size(_regalloc);
356  for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
357    Block *b = _cfg->_blocks[i];
358
359    // Sum all instruction sizes to compute block size
360    uint last_inst = b->_nodes.size();
361    uint blk_size = 0;
362    for( uint j = 0; j<last_inst; j++ ) {
363      nj = b->_nodes[j];
364      uint inst_size = nj->size(_regalloc);
365      blk_size += inst_size;
366      // Handle machine instruction nodes
367      if( nj->is_Mach() ) {
368        MachNode *mach = nj->as_Mach();
369        blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
370        reloc_size += mach->reloc();
371        const_size += mach->const_size();
372        if( mach->is_MachCall() ) {
373          MachCallNode *mcall = mach->as_MachCall();
374          // This destination address is NOT PC-relative
375
376          mcall->method_set((intptr_t)mcall->entry_point());
377
378          if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
379            stub_size  += size_java_to_interp();
380            reloc_size += reloc_java_to_interp();
381          }
382        } else if (mach->is_MachSafePoint()) {
383          // If call/safepoint are adjacent, account for possible
384          // nop to disambiguate the two safepoints.
385          if (min_offset_from_last_call == 0) {
386            blk_size += nop_size;
387          }
388        }
389      }
390      min_offset_from_last_call += inst_size;
391      // Remember end of call offset
392      if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
393        min_offset_from_last_call = 0;
394      }
395    }
396
397    // During short branch replacement, we store the relative (to blk_starts)
398    // end of jump in jmp_end, rather than the absolute end of jump.  This
399    // is so that we do not need to recompute sizes of all nodes when we compute
400    // correct blk_starts in our next sizing pass.
401    jmp_end[i] = blk_size;
402    DEBUG_ONLY( jmp_target[i] = 0; )
403
404    // When the next block starts a loop, we may insert pad NOP
405    // instructions.  Since we cannot know our future alignment,
406    // assume the worst.
407    if( i<_cfg->_num_blocks-1 ) {
408      Block *nb = _cfg->_blocks[i+1];
409      int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
410      if( max_loop_pad > 0 ) {
411        assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
412        blk_size += max_loop_pad;
413      }
414    }
415
416    // Save block size; update total method size
417    blk_starts[i+1] = blk_starts[i]+blk_size;
418  }
419
420  // Step two, replace eligible long jumps.
421
422  // Note: this will only get the long branches within short branch
423  //   range. Another pass might detect more branches that became
424  //   candidates because the shortening in the first pass exposed
425  //   more opportunities. Unfortunately, this would require
426  //   recomputing the starting and ending positions for the blocks
427  for( i=0; i<_cfg->_num_blocks; i++ ) {
428    Block *b = _cfg->_blocks[i];
429
430    int j;
431    // Find the branch; ignore trailing NOPs.
432    for( j = b->_nodes.size()-1; j>=0; j-- ) {
433      nj = b->_nodes[j];
434      if( !nj->is_Mach() || nj->as_Mach()->ideal_Opcode() != Op_Con )
435        break;
436    }
437
438    if (j >= 0) {
439      if( nj->is_Mach() && nj->as_Mach()->may_be_short_branch() ) {
440        MachNode *mach = nj->as_Mach();
441        // This requires the TRUE branch target be in succs[0]
442        uint bnum = b->non_connector_successor(0)->_pre_order;
443        uintptr_t target = blk_starts[bnum];
444        if( mach->is_pc_relative() ) {
445          int offset = target-(blk_starts[i] + jmp_end[i]);
446          if (_matcher->is_short_branch_offset(offset)) {
447            // We've got a winner.  Replace this branch.
448            MachNode *replacement = mach->short_branch_version(this);
449            b->_nodes.map(j, replacement);
450
451            // Update the jmp_end size to save time in our
452            // next pass.
453            jmp_end[i] -= (mach->size(_regalloc) - replacement->size(_regalloc));
454            DEBUG_ONLY( jmp_target[i] = bnum; );
455          }
456        } else {
457#ifndef PRODUCT
458          mach->dump(3);
459#endif
460          Unimplemented();
461        }
462      }
463    }
464  }
465
466  // Compute the size of first NumberOfLoopInstrToAlign instructions at head
467  // of a loop. It is used to determine the padding for loop alignment.
468  compute_loop_first_inst_sizes();
469
470  // Step 3, compute the offsets of all the labels
471  uint last_call_adr = max_uint;
472  for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
473    // copy the offset of the beginning to the corresponding label
474    assert(labels[i].is_unused(), "cannot patch at this point");
475    labels[i].bind_loc(blk_starts[i], CodeBuffer::SECT_INSTS);
476
477    // insert padding for any instructions that need it
478    Block *b = _cfg->_blocks[i];
479    uint last_inst = b->_nodes.size();
480    uint adr = blk_starts[i];
481    for( uint j = 0; j<last_inst; j++ ) {
482      nj = b->_nodes[j];
483      if( nj->is_Mach() ) {
484        int padding = nj->as_Mach()->compute_padding(adr);
485        // If call/safepoint are adjacent insert a nop (5010568)
486        if (padding == 0 && nj->is_MachSafePoint() && !nj->is_MachCall() &&
487            adr == last_call_adr ) {
488          padding = nop_size;
489        }
490        if(padding > 0) {
491          assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
492          int nops_cnt = padding / nop_size;
493          MachNode *nop = new (this) MachNopNode(nops_cnt);
494          b->_nodes.insert(j++, nop);
495          _cfg->_bbs.map( nop->_idx, b );
496          adr += padding;
497          last_inst++;
498        }
499      }
500      adr += nj->size(_regalloc);
501
502      // Remember end of call offset
503      if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
504        last_call_adr = adr;
505      }
506    }
507
508    if ( i != _cfg->_num_blocks-1) {
509      // Get the size of the block
510      uint blk_size = adr - blk_starts[i];
511
512      // When the next block starts a loop, we may insert pad NOP
513      // instructions.
514      Block *nb = _cfg->_blocks[i+1];
515      int current_offset = blk_starts[i] + blk_size;
516      current_offset += nb->alignment_padding(current_offset);
517      // Save block size; update total method size
518      blk_starts[i+1] = current_offset;
519    }
520  }
521
522#ifdef ASSERT
523  for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
524    if( jmp_target[i] != 0 ) {
525      int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_end[i]);
526      if (!_matcher->is_short_branch_offset(offset)) {
527        tty->print_cr("target (%d) - jmp_end(%d) = offset (%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_end[i], offset, i, jmp_target[i]);
528      }
529      assert(_matcher->is_short_branch_offset(offset), "Displacement too large for short jmp");
530    }
531  }
532#endif
533
534  // ------------------
535  // Compute size for code buffer
536  code_size   = blk_starts[i-1] + jmp_end[i-1];
537
538  // Relocation records
539  reloc_size += 1;              // Relo entry for exception handler
540
541  // Adjust reloc_size to number of record of relocation info
542  // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
543  // a relocation index.
544  // The CodeBuffer will expand the locs array if this estimate is too low.
545  reloc_size   *= 10 / sizeof(relocInfo);
546
547  // Adjust const_size to number of bytes
548  const_size   *= 2*jintSize; // both float and double take two words per entry
549
550}
551
552//------------------------------FillLocArray-----------------------------------
553// Create a bit of debug info and append it to the array.  The mapping is from
554// Java local or expression stack to constant, register or stack-slot.  For
555// doubles, insert 2 mappings and return 1 (to tell the caller that the next
556// entry has been taken care of and caller should skip it).
557static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
558  // This should never have accepted Bad before
559  assert(OptoReg::is_valid(regnum), "location must be valid");
560  return (OptoReg::is_reg(regnum))
561    ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
562    : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
563}
564
565
566ObjectValue*
567Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
568  for (int i = 0; i < objs->length(); i++) {
569    assert(objs->at(i)->is_object(), "corrupt object cache");
570    ObjectValue* sv = (ObjectValue*) objs->at(i);
571    if (sv->id() == id) {
572      return sv;
573    }
574  }
575  // Otherwise..
576  return NULL;
577}
578
579void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
580                                     ObjectValue* sv ) {
581  assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
582  objs->append(sv);
583}
584
585
586void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
587                            GrowableArray<ScopeValue*> *array,
588                            GrowableArray<ScopeValue*> *objs ) {
589  assert( local, "use _top instead of null" );
590  if (array->length() != idx) {
591    assert(array->length() == idx + 1, "Unexpected array count");
592    // Old functionality:
593    //   return
594    // New functionality:
595    //   Assert if the local is not top. In product mode let the new node
596    //   override the old entry.
597    assert(local == top(), "LocArray collision");
598    if (local == top()) {
599      return;
600    }
601    array->pop();
602  }
603  const Type *t = local->bottom_type();
604
605  // Is it a safepoint scalar object node?
606  if (local->is_SafePointScalarObject()) {
607    SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
608
609    ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
610    if (sv == NULL) {
611      ciKlass* cik = t->is_oopptr()->klass();
612      assert(cik->is_instance_klass() ||
613             cik->is_array_klass(), "Not supported allocation.");
614      sv = new ObjectValue(spobj->_idx,
615                           new ConstantOopWriteValue(cik->encoding()));
616      Compile::set_sv_for_object_node(objs, sv);
617
618      uint first_ind = spobj->first_index();
619      for (uint i = 0; i < spobj->n_fields(); i++) {
620        Node* fld_node = sfpt->in(first_ind+i);
621        (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
622      }
623    }
624    array->append(sv);
625    return;
626  }
627
628  // Grab the register number for the local
629  OptoReg::Name regnum = _regalloc->get_reg_first(local);
630  if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
631    // Record the double as two float registers.
632    // The register mask for such a value always specifies two adjacent
633    // float registers, with the lower register number even.
634    // Normally, the allocation of high and low words to these registers
635    // is irrelevant, because nearly all operations on register pairs
636    // (e.g., StoreD) treat them as a single unit.
637    // Here, we assume in addition that the words in these two registers
638    // stored "naturally" (by operations like StoreD and double stores
639    // within the interpreter) such that the lower-numbered register
640    // is written to the lower memory address.  This may seem like
641    // a machine dependency, but it is not--it is a requirement on
642    // the author of the <arch>.ad file to ensure that, for every
643    // even/odd double-register pair to which a double may be allocated,
644    // the word in the even single-register is stored to the first
645    // memory word.  (Note that register numbers are completely
646    // arbitrary, and are not tied to any machine-level encodings.)
647#ifdef _LP64
648    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
649      array->append(new ConstantIntValue(0));
650      array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
651    } else if ( t->base() == Type::Long ) {
652      array->append(new ConstantIntValue(0));
653      array->append(new_loc_value( _regalloc, regnum, Location::lng ));
654    } else if ( t->base() == Type::RawPtr ) {
655      // jsr/ret return address which must be restored into a the full
656      // width 64-bit stack slot.
657      array->append(new_loc_value( _regalloc, regnum, Location::lng ));
658    }
659#else //_LP64
660#ifdef SPARC
661    if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
662      // For SPARC we have to swap high and low words for
663      // long values stored in a single-register (g0-g7).
664      array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
665      array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
666    } else
667#endif //SPARC
668    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
669      // Repack the double/long as two jints.
670      // The convention the interpreter uses is that the second local
671      // holds the first raw word of the native double representation.
672      // This is actually reasonable, since locals and stack arrays
673      // grow downwards in all implementations.
674      // (If, on some machine, the interpreter's Java locals or stack
675      // were to grow upwards, the embedded doubles would be word-swapped.)
676      array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
677      array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
678    }
679#endif //_LP64
680    else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
681               OptoReg::is_reg(regnum) ) {
682      array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double
683                                   ? Location::float_in_dbl : Location::normal ));
684    } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
685      array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
686                                   ? Location::int_in_long : Location::normal ));
687    } else {
688      array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
689    }
690    return;
691  }
692
693  // No register.  It must be constant data.
694  switch (t->base()) {
695  case Type::Half:              // Second half of a double
696    ShouldNotReachHere();       // Caller should skip 2nd halves
697    break;
698  case Type::AnyPtr:
699    array->append(new ConstantOopWriteValue(NULL));
700    break;
701  case Type::AryPtr:
702  case Type::InstPtr:
703  case Type::KlassPtr:          // fall through
704    array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->encoding()));
705    break;
706  case Type::Int:
707    array->append(new ConstantIntValue(t->is_int()->get_con()));
708    break;
709  case Type::RawPtr:
710    // A return address (T_ADDRESS).
711    assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
712#ifdef _LP64
713    // Must be restored to the full-width 64-bit stack slot.
714    array->append(new ConstantLongValue(t->is_ptr()->get_con()));
715#else
716    array->append(new ConstantIntValue(t->is_ptr()->get_con()));
717#endif
718    break;
719  case Type::FloatCon: {
720    float f = t->is_float_constant()->getf();
721    array->append(new ConstantIntValue(jint_cast(f)));
722    break;
723  }
724  case Type::DoubleCon: {
725    jdouble d = t->is_double_constant()->getd();
726#ifdef _LP64
727    array->append(new ConstantIntValue(0));
728    array->append(new ConstantDoubleValue(d));
729#else
730    // Repack the double as two jints.
731    // The convention the interpreter uses is that the second local
732    // holds the first raw word of the native double representation.
733    // This is actually reasonable, since locals and stack arrays
734    // grow downwards in all implementations.
735    // (If, on some machine, the interpreter's Java locals or stack
736    // were to grow upwards, the embedded doubles would be word-swapped.)
737    jint   *dp = (jint*)&d;
738    array->append(new ConstantIntValue(dp[1]));
739    array->append(new ConstantIntValue(dp[0]));
740#endif
741    break;
742  }
743  case Type::Long: {
744    jlong d = t->is_long()->get_con();
745#ifdef _LP64
746    array->append(new ConstantIntValue(0));
747    array->append(new ConstantLongValue(d));
748#else
749    // Repack the long as two jints.
750    // The convention the interpreter uses is that the second local
751    // holds the first raw word of the native double representation.
752    // This is actually reasonable, since locals and stack arrays
753    // grow downwards in all implementations.
754    // (If, on some machine, the interpreter's Java locals or stack
755    // were to grow upwards, the embedded doubles would be word-swapped.)
756    jint *dp = (jint*)&d;
757    array->append(new ConstantIntValue(dp[1]));
758    array->append(new ConstantIntValue(dp[0]));
759#endif
760    break;
761  }
762  case Type::Top:               // Add an illegal value here
763    array->append(new LocationValue(Location()));
764    break;
765  default:
766    ShouldNotReachHere();
767    break;
768  }
769}
770
771// Determine if this node starts a bundle
772bool Compile::starts_bundle(const Node *n) const {
773  return (_node_bundling_limit > n->_idx &&
774          _node_bundling_base[n->_idx].starts_bundle());
775}
776
777//--------------------------Process_OopMap_Node--------------------------------
778void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
779
780  // Handle special safepoint nodes for synchronization
781  MachSafePointNode *sfn   = mach->as_MachSafePoint();
782  MachCallNode      *mcall;
783
784#ifdef ENABLE_ZAP_DEAD_LOCALS
785  assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
786#endif
787
788  int safepoint_pc_offset = current_offset;
789
790  // Add the safepoint in the DebugInfoRecorder
791  if( !mach->is_MachCall() ) {
792    mcall = NULL;
793    debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
794  } else {
795    mcall = mach->as_MachCall();
796    safepoint_pc_offset += mcall->ret_addr_offset();
797    debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
798  }
799
800  // Loop over the JVMState list to add scope information
801  // Do not skip safepoints with a NULL method, they need monitor info
802  JVMState* youngest_jvms = sfn->jvms();
803  int max_depth = youngest_jvms->depth();
804
805  // Allocate the object pool for scalar-replaced objects -- the map from
806  // small-integer keys (which can be recorded in the local and ostack
807  // arrays) to descriptions of the object state.
808  GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
809
810  // Visit scopes from oldest to youngest.
811  for (int depth = 1; depth <= max_depth; depth++) {
812    JVMState* jvms = youngest_jvms->of_depth(depth);
813    int idx;
814    ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
815    // Safepoints that do not have method() set only provide oop-map and monitor info
816    // to support GC; these do not support deoptimization.
817    int num_locs = (method == NULL) ? 0 : jvms->loc_size();
818    int num_exps = (method == NULL) ? 0 : jvms->stk_size();
819    int num_mon  = jvms->nof_monitors();
820    assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
821           "JVMS local count must match that of the method");
822
823    // Add Local and Expression Stack Information
824
825    // Insert locals into the locarray
826    GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
827    for( idx = 0; idx < num_locs; idx++ ) {
828      FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
829    }
830
831    // Insert expression stack entries into the exparray
832    GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
833    for( idx = 0; idx < num_exps; idx++ ) {
834      FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
835    }
836
837    // Add in mappings of the monitors
838    assert( !method ||
839            !method->is_synchronized() ||
840            method->is_native() ||
841            num_mon > 0 ||
842            !GenerateSynchronizationCode,
843            "monitors must always exist for synchronized methods");
844
845    // Build the growable array of ScopeValues for exp stack
846    GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
847
848    // Loop over monitors and insert into array
849    for(idx = 0; idx < num_mon; idx++) {
850      // Grab the node that defines this monitor
851      Node* box_node;
852      Node* obj_node;
853      box_node = sfn->monitor_box(jvms, idx);
854      obj_node = sfn->monitor_obj(jvms, idx);
855
856      // Create ScopeValue for object
857      ScopeValue *scval = NULL;
858
859      if( obj_node->is_SafePointScalarObject() ) {
860        SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
861        scval = Compile::sv_for_node_id(objs, spobj->_idx);
862        if (scval == NULL) {
863          const Type *t = obj_node->bottom_type();
864          ciKlass* cik = t->is_oopptr()->klass();
865          assert(cik->is_instance_klass() ||
866                 cik->is_array_klass(), "Not supported allocation.");
867          ObjectValue* sv = new ObjectValue(spobj->_idx,
868                                new ConstantOopWriteValue(cik->encoding()));
869          Compile::set_sv_for_object_node(objs, sv);
870
871          uint first_ind = spobj->first_index();
872          for (uint i = 0; i < spobj->n_fields(); i++) {
873            Node* fld_node = sfn->in(first_ind+i);
874            (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
875          }
876          scval = sv;
877        }
878      } else if( !obj_node->is_Con() ) {
879        OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
880        scval = new_loc_value( _regalloc, obj_reg, Location::oop );
881      } else {
882        scval = new ConstantOopWriteValue(obj_node->bottom_type()->is_instptr()->const_oop()->encoding());
883      }
884
885      OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node);
886      Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
887      monarray->append(new MonitorValue(scval, basic_lock, box_node->as_BoxLock()->is_eliminated()));
888    }
889
890    // We dump the object pool first, since deoptimization reads it in first.
891    debug_info()->dump_object_pool(objs);
892
893    // Build first class objects to pass to scope
894    DebugToken *locvals = debug_info()->create_scope_values(locarray);
895    DebugToken *expvals = debug_info()->create_scope_values(exparray);
896    DebugToken *monvals = debug_info()->create_monitor_values(monarray);
897
898    // Make method available for all Safepoints
899    ciMethod* scope_method = method ? method : _method;
900    // Describe the scope here
901    assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
902    // Now we can describe the scope.
903    debug_info()->describe_scope(safepoint_pc_offset,scope_method,jvms->bci(),locvals,expvals,monvals);
904  } // End jvms loop
905
906  // Mark the end of the scope set.
907  debug_info()->end_safepoint(safepoint_pc_offset);
908}
909
910
911
912// A simplified version of Process_OopMap_Node, to handle non-safepoints.
913class NonSafepointEmitter {
914  Compile*  C;
915  JVMState* _pending_jvms;
916  int       _pending_offset;
917
918  void emit_non_safepoint();
919
920 public:
921  NonSafepointEmitter(Compile* compile) {
922    this->C = compile;
923    _pending_jvms = NULL;
924    _pending_offset = 0;
925  }
926
927  void observe_instruction(Node* n, int pc_offset) {
928    if (!C->debug_info()->recording_non_safepoints())  return;
929
930    Node_Notes* nn = C->node_notes_at(n->_idx);
931    if (nn == NULL || nn->jvms() == NULL)  return;
932    if (_pending_jvms != NULL &&
933        _pending_jvms->same_calls_as(nn->jvms())) {
934      // Repeated JVMS?  Stretch it up here.
935      _pending_offset = pc_offset;
936    } else {
937      if (_pending_jvms != NULL &&
938          _pending_offset < pc_offset) {
939        emit_non_safepoint();
940      }
941      _pending_jvms = NULL;
942      if (pc_offset > C->debug_info()->last_pc_offset()) {
943        // This is the only way _pending_jvms can become non-NULL:
944        _pending_jvms = nn->jvms();
945        _pending_offset = pc_offset;
946      }
947    }
948  }
949
950  // Stay out of the way of real safepoints:
951  void observe_safepoint(JVMState* jvms, int pc_offset) {
952    if (_pending_jvms != NULL &&
953        !_pending_jvms->same_calls_as(jvms) &&
954        _pending_offset < pc_offset) {
955      emit_non_safepoint();
956    }
957    _pending_jvms = NULL;
958  }
959
960  void flush_at_end() {
961    if (_pending_jvms != NULL) {
962      emit_non_safepoint();
963    }
964    _pending_jvms = NULL;
965  }
966};
967
968void NonSafepointEmitter::emit_non_safepoint() {
969  JVMState* youngest_jvms = _pending_jvms;
970  int       pc_offset     = _pending_offset;
971
972  // Clear it now:
973  _pending_jvms = NULL;
974
975  DebugInformationRecorder* debug_info = C->debug_info();
976  assert(debug_info->recording_non_safepoints(), "sanity");
977
978  debug_info->add_non_safepoint(pc_offset);
979  int max_depth = youngest_jvms->depth();
980
981  // Visit scopes from oldest to youngest.
982  for (int depth = 1; depth <= max_depth; depth++) {
983    JVMState* jvms = youngest_jvms->of_depth(depth);
984    ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
985    debug_info->describe_scope(pc_offset, method, jvms->bci());
986  }
987
988  // Mark the end of the scope set.
989  debug_info->end_non_safepoint(pc_offset);
990}
991
992
993
994// helper for Fill_buffer bailout logic
995static void turn_off_compiler(Compile* C) {
996  if (CodeCache::unallocated_capacity() >= CodeCacheMinimumFreeSpace*10) {
997    // Do not turn off compilation if a single giant method has
998    // blown the code cache size.
999    C->record_failure("excessive request to CodeCache");
1000  } else {
1001    // Let CompilerBroker disable further compilations.
1002    C->record_failure("CodeCache is full");
1003  }
1004}
1005
1006
1007//------------------------------Fill_buffer------------------------------------
1008void Compile::Fill_buffer() {
1009
1010  // Set the initially allocated size
1011  int  code_req   = initial_code_capacity;
1012  int  locs_req   = initial_locs_capacity;
1013  int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
1014  int  const_req  = initial_const_capacity;
1015  bool labels_not_set = true;
1016
1017  int  pad_req    = NativeCall::instruction_size;
1018  // The extra spacing after the code is necessary on some platforms.
1019  // Sometimes we need to patch in a jump after the last instruction,
1020  // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1021
1022  uint i;
1023  // Compute the byte offset where we can store the deopt pc.
1024  if (fixed_slots() != 0) {
1025    _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1026  }
1027
1028  // Compute prolog code size
1029  _method_size = 0;
1030  _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
1031#ifdef IA64
1032  if (save_argument_registers()) {
1033    // 4815101: this is a stub with implicit and unknown precision fp args.
1034    // The usual spill mechanism can only generate stfd's in this case, which
1035    // doesn't work if the fp reg to spill contains a single-precision denorm.
1036    // Instead, we hack around the normal spill mechanism using stfspill's and
1037    // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1038    // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1039    //
1040    // If we ever implement 16-byte 'registers' == stack slots, we can
1041    // get rid of this hack and have SpillCopy generate stfspill/ldffill
1042    // instead of stfd/stfs/ldfd/ldfs.
1043    _frame_slots += 8*(16/BytesPerInt);
1044  }
1045#endif
1046  assert( _frame_slots >= 0 && _frame_slots < 1000000, "sanity check" );
1047
1048  // Create an array of unused labels, one for each basic block
1049  Label *blk_labels = NEW_RESOURCE_ARRAY(Label, _cfg->_num_blocks+1);
1050
1051  for( i=0; i <= _cfg->_num_blocks; i++ ) {
1052    blk_labels[i].init();
1053  }
1054
1055  // If this machine supports different size branch offsets, then pre-compute
1056  // the length of the blocks
1057  if( _matcher->is_short_branch_offset(0) ) {
1058    Shorten_branches(blk_labels, code_req, locs_req, stub_req, const_req);
1059    labels_not_set = false;
1060  }
1061
1062  // nmethod and CodeBuffer count stubs & constants as part of method's code.
1063  int exception_handler_req = size_exception_handler();
1064  int deopt_handler_req = size_deopt_handler();
1065  exception_handler_req += MAX_stubs_size; // add marginal slop for handler
1066  deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
1067  stub_req += MAX_stubs_size;   // ensure per-stub margin
1068  code_req += MAX_inst_size;    // ensure per-instruction margin
1069  if (StressCodeBuffers)
1070    code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1071  int total_req = code_req + pad_req + stub_req + exception_handler_req + deopt_handler_req + const_req;
1072  CodeBuffer* cb = code_buffer();
1073  cb->initialize(total_req, locs_req);
1074
1075  // Have we run out of code space?
1076  if (cb->blob() == NULL) {
1077    turn_off_compiler(this);
1078    return;
1079  }
1080  // Configure the code buffer.
1081  cb->initialize_consts_size(const_req);
1082  cb->initialize_stubs_size(stub_req);
1083  cb->initialize_oop_recorder(env()->oop_recorder());
1084
1085  // fill in the nop array for bundling computations
1086  MachNode *_nop_list[Bundle::_nop_count];
1087  Bundle::initialize_nops(_nop_list, this);
1088
1089  // Create oopmap set.
1090  _oop_map_set = new OopMapSet();
1091
1092  // !!!!! This preserves old handling of oopmaps for now
1093  debug_info()->set_oopmaps(_oop_map_set);
1094
1095  // Count and start of implicit null check instructions
1096  uint inct_cnt = 0;
1097  uint *inct_starts = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
1098
1099  // Count and start of calls
1100  uint *call_returns = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
1101
1102  uint  return_offset = 0;
1103  MachNode *nop = new (this) MachNopNode();
1104
1105  int previous_offset = 0;
1106  int current_offset  = 0;
1107  int last_call_offset = -1;
1108
1109  // Create an array of unused labels, one for each basic block, if printing is enabled
1110#ifndef PRODUCT
1111  int *node_offsets      = NULL;
1112  uint  node_offset_limit = unique();
1113
1114
1115  if ( print_assembly() )
1116    node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1117#endif
1118
1119  NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1120
1121  // ------------------
1122  // Now fill in the code buffer
1123  Node *delay_slot = NULL;
1124
1125  for( i=0; i < _cfg->_num_blocks; i++ ) {
1126    Block *b = _cfg->_blocks[i];
1127
1128    Node *head = b->head();
1129
1130    // If this block needs to start aligned (i.e, can be reached other
1131    // than by falling-thru from the previous block), then force the
1132    // start of a new bundle.
1133    if( Pipeline::requires_bundling() && starts_bundle(head) )
1134      cb->flush_bundle(true);
1135
1136    // Define the label at the beginning of the basic block
1137    if( labels_not_set )
1138      MacroAssembler(cb).bind( blk_labels[b->_pre_order] );
1139
1140    else
1141      assert( blk_labels[b->_pre_order].loc_pos() == cb->code_size(),
1142              "label position does not match code offset" );
1143
1144    uint last_inst = b->_nodes.size();
1145
1146    // Emit block normally, except for last instruction.
1147    // Emit means "dump code bits into code buffer".
1148    for( uint j = 0; j<last_inst; j++ ) {
1149
1150      // Get the node
1151      Node* n = b->_nodes[j];
1152
1153      // See if delay slots are supported
1154      if (valid_bundle_info(n) &&
1155          node_bundling(n)->used_in_unconditional_delay()) {
1156        assert(delay_slot == NULL, "no use of delay slot node");
1157        assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1158
1159        delay_slot = n;
1160        continue;
1161      }
1162
1163      // If this starts a new instruction group, then flush the current one
1164      // (but allow split bundles)
1165      if( Pipeline::requires_bundling() && starts_bundle(n) )
1166        cb->flush_bundle(false);
1167
1168      // The following logic is duplicated in the code ifdeffed for
1169      // ENABLE_ZAP_DEAD_LOCALS which apppears above in this file.  It
1170      // should be factored out.  Or maybe dispersed to the nodes?
1171
1172      // Special handling for SafePoint/Call Nodes
1173      bool is_mcall = false;
1174      if( n->is_Mach() ) {
1175        MachNode *mach = n->as_Mach();
1176        is_mcall = n->is_MachCall();
1177        bool is_sfn = n->is_MachSafePoint();
1178
1179        // If this requires all previous instructions be flushed, then do so
1180        if( is_sfn || is_mcall || mach->alignment_required() != 1) {
1181          cb->flush_bundle(true);
1182          current_offset = cb->code_size();
1183        }
1184
1185        // align the instruction if necessary
1186        int nop_size = nop->size(_regalloc);
1187        int padding = mach->compute_padding(current_offset);
1188        // Make sure safepoint node for polling is distinct from a call's
1189        // return by adding a nop if needed.
1190        if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset ) {
1191          padding = nop_size;
1192        }
1193        assert( labels_not_set || padding == 0, "instruction should already be aligned")
1194
1195        if(padding > 0) {
1196          assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1197          int nops_cnt = padding / nop_size;
1198          MachNode *nop = new (this) MachNopNode(nops_cnt);
1199          b->_nodes.insert(j++, nop);
1200          last_inst++;
1201          _cfg->_bbs.map( nop->_idx, b );
1202          nop->emit(*cb, _regalloc);
1203          cb->flush_bundle(true);
1204          current_offset = cb->code_size();
1205        }
1206
1207        // Remember the start of the last call in a basic block
1208        if (is_mcall) {
1209          MachCallNode *mcall = mach->as_MachCall();
1210
1211          // This destination address is NOT PC-relative
1212          mcall->method_set((intptr_t)mcall->entry_point());
1213
1214          // Save the return address
1215          call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
1216
1217          if (!mcall->is_safepoint_node()) {
1218            is_mcall = false;
1219            is_sfn = false;
1220          }
1221        }
1222
1223        // sfn will be valid whenever mcall is valid now because of inheritance
1224        if( is_sfn || is_mcall ) {
1225
1226          // Handle special safepoint nodes for synchronization
1227          if( !is_mcall ) {
1228            MachSafePointNode *sfn = mach->as_MachSafePoint();
1229            // !!!!! Stubs only need an oopmap right now, so bail out
1230            if( sfn->jvms()->method() == NULL) {
1231              // Write the oopmap directly to the code blob??!!
1232#             ifdef ENABLE_ZAP_DEAD_LOCALS
1233              assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1234#             endif
1235              continue;
1236            }
1237          } // End synchronization
1238
1239          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1240                                           current_offset);
1241          Process_OopMap_Node(mach, current_offset);
1242        } // End if safepoint
1243
1244        // If this is a null check, then add the start of the previous instruction to the list
1245        else if( mach->is_MachNullCheck() ) {
1246          inct_starts[inct_cnt++] = previous_offset;
1247        }
1248
1249        // If this is a branch, then fill in the label with the target BB's label
1250        else if ( mach->is_Branch() ) {
1251
1252          if ( mach->ideal_Opcode() == Op_Jump ) {
1253            for (uint h = 0; h < b->_num_succs; h++ ) {
1254              Block* succs_block = b->_succs[h];
1255              for (uint j = 1; j < succs_block->num_preds(); j++) {
1256                Node* jpn = succs_block->pred(j);
1257                if ( jpn->is_JumpProj() && jpn->in(0) == mach ) {
1258                  uint block_num = succs_block->non_connector()->_pre_order;
1259                  Label *blkLabel = &blk_labels[block_num];
1260                  mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1261                }
1262              }
1263            }
1264          } else {
1265            // For Branchs
1266            // This requires the TRUE branch target be in succs[0]
1267            uint block_num = b->non_connector_successor(0)->_pre_order;
1268            mach->label_set( blk_labels[block_num], block_num );
1269          }
1270        }
1271
1272#ifdef ASSERT
1273        // Check that oop-store preceeds the card-mark
1274        else if( mach->ideal_Opcode() == Op_StoreCM ) {
1275          uint storeCM_idx = j;
1276          Node *oop_store = mach->in(mach->_cnt);  // First precedence edge
1277          assert( oop_store != NULL, "storeCM expects a precedence edge");
1278          uint i4;
1279          for( i4 = 0; i4 < last_inst; ++i4 ) {
1280            if( b->_nodes[i4] == oop_store ) break;
1281          }
1282          // Note: This test can provide a false failure if other precedence
1283          // edges have been added to the storeCMNode.
1284          assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1285        }
1286#endif
1287
1288        else if( !n->is_Proj() ) {
1289          // Remember the begining of the previous instruction, in case
1290          // it's followed by a flag-kill and a null-check.  Happens on
1291          // Intel all the time, with add-to-memory kind of opcodes.
1292          previous_offset = current_offset;
1293        }
1294      }
1295
1296      // Verify that there is sufficient space remaining
1297      cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1298      if (cb->blob() == NULL) {
1299        turn_off_compiler(this);
1300        return;
1301      }
1302
1303      // Save the offset for the listing
1304#ifndef PRODUCT
1305      if( node_offsets && n->_idx < node_offset_limit )
1306        node_offsets[n->_idx] = cb->code_size();
1307#endif
1308
1309      // "Normal" instruction case
1310      n->emit(*cb, _regalloc);
1311      current_offset  = cb->code_size();
1312      non_safepoints.observe_instruction(n, current_offset);
1313
1314      // mcall is last "call" that can be a safepoint
1315      // record it so we can see if a poll will directly follow it
1316      // in which case we'll need a pad to make the PcDesc sites unique
1317      // see  5010568. This can be slightly inaccurate but conservative
1318      // in the case that return address is not actually at current_offset.
1319      // This is a small price to pay.
1320
1321      if (is_mcall) {
1322        last_call_offset = current_offset;
1323      }
1324
1325      // See if this instruction has a delay slot
1326      if ( valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1327        assert(delay_slot != NULL, "expecting delay slot node");
1328
1329        // Back up 1 instruction
1330        cb->set_code_end(
1331          cb->code_end()-Pipeline::instr_unit_size());
1332
1333        // Save the offset for the listing
1334#ifndef PRODUCT
1335        if( node_offsets && delay_slot->_idx < node_offset_limit )
1336          node_offsets[delay_slot->_idx] = cb->code_size();
1337#endif
1338
1339        // Support a SafePoint in the delay slot
1340        if( delay_slot->is_MachSafePoint() ) {
1341          MachNode *mach = delay_slot->as_Mach();
1342          // !!!!! Stubs only need an oopmap right now, so bail out
1343          if( !mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL ) {
1344            // Write the oopmap directly to the code blob??!!
1345#           ifdef ENABLE_ZAP_DEAD_LOCALS
1346            assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1347#           endif
1348            delay_slot = NULL;
1349            continue;
1350          }
1351
1352          int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1353          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1354                                           adjusted_offset);
1355          // Generate an OopMap entry
1356          Process_OopMap_Node(mach, adjusted_offset);
1357        }
1358
1359        // Insert the delay slot instruction
1360        delay_slot->emit(*cb, _regalloc);
1361
1362        // Don't reuse it
1363        delay_slot = NULL;
1364      }
1365
1366    } // End for all instructions in block
1367
1368    // If the next block _starts_ a loop, pad this block out to align
1369    // the loop start a little. Helps prevent pipe stalls at loop starts
1370    int nop_size = (new (this) MachNopNode())->size(_regalloc);
1371    if( i<_cfg->_num_blocks-1 ) {
1372      Block *nb = _cfg->_blocks[i+1];
1373      uint padding = nb->alignment_padding(current_offset);
1374      if( padding > 0 ) {
1375        MachNode *nop = new (this) MachNopNode(padding / nop_size);
1376        b->_nodes.insert( b->_nodes.size(), nop );
1377        _cfg->_bbs.map( nop->_idx, b );
1378        nop->emit(*cb, _regalloc);
1379        current_offset = cb->code_size();
1380      }
1381    }
1382
1383  } // End of for all blocks
1384
1385  non_safepoints.flush_at_end();
1386
1387  // Offset too large?
1388  if (failing())  return;
1389
1390  // Define a pseudo-label at the end of the code
1391  MacroAssembler(cb).bind( blk_labels[_cfg->_num_blocks] );
1392
1393  // Compute the size of the first block
1394  _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1395
1396  assert(cb->code_size() < 500000, "method is unreasonably large");
1397
1398  // ------------------
1399
1400#ifndef PRODUCT
1401  // Information on the size of the method, without the extraneous code
1402  Scheduling::increment_method_size(cb->code_size());
1403#endif
1404
1405  // ------------------
1406  // Fill in exception table entries.
1407  FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1408
1409  // Only java methods have exception handlers and deopt handlers
1410  if (_method) {
1411    // Emit the exception handler code.
1412    _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
1413    // Emit the deopt handler code.
1414    _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
1415  }
1416
1417  // One last check for failed CodeBuffer::expand:
1418  if (cb->blob() == NULL) {
1419    turn_off_compiler(this);
1420    return;
1421  }
1422
1423#ifndef PRODUCT
1424  // Dump the assembly code, including basic-block numbers
1425  if (print_assembly()) {
1426    ttyLocker ttyl;  // keep the following output all in one block
1427    if (!VMThread::should_terminate()) {  // test this under the tty lock
1428      // This output goes directly to the tty, not the compiler log.
1429      // To enable tools to match it up with the compilation activity,
1430      // be sure to tag this tty output with the compile ID.
1431      if (xtty != NULL) {
1432        xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1433                   is_osr_compilation()    ? " compile_kind='osr'" :
1434                   "");
1435      }
1436      if (method() != NULL) {
1437        method()->print_oop();
1438        print_codes();
1439      }
1440      dump_asm(node_offsets, node_offset_limit);
1441      if (xtty != NULL) {
1442        xtty->tail("opto_assembly");
1443      }
1444    }
1445  }
1446#endif
1447
1448}
1449
1450void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1451  _inc_table.set_size(cnt);
1452
1453  uint inct_cnt = 0;
1454  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1455    Block *b = _cfg->_blocks[i];
1456    Node *n = NULL;
1457    int j;
1458
1459    // Find the branch; ignore trailing NOPs.
1460    for( j = b->_nodes.size()-1; j>=0; j-- ) {
1461      n = b->_nodes[j];
1462      if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
1463        break;
1464    }
1465
1466    // If we didn't find anything, continue
1467    if( j < 0 ) continue;
1468
1469    // Compute ExceptionHandlerTable subtable entry and add it
1470    // (skip empty blocks)
1471    if( n->is_Catch() ) {
1472
1473      // Get the offset of the return from the call
1474      uint call_return = call_returns[b->_pre_order];
1475#ifdef ASSERT
1476      assert( call_return > 0, "no call seen for this basic block" );
1477      while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
1478      assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
1479#endif
1480      // last instruction is a CatchNode, find it's CatchProjNodes
1481      int nof_succs = b->_num_succs;
1482      // allocate space
1483      GrowableArray<intptr_t> handler_bcis(nof_succs);
1484      GrowableArray<intptr_t> handler_pcos(nof_succs);
1485      // iterate through all successors
1486      for (int j = 0; j < nof_succs; j++) {
1487        Block* s = b->_succs[j];
1488        bool found_p = false;
1489        for( uint k = 1; k < s->num_preds(); k++ ) {
1490          Node *pk = s->pred(k);
1491          if( pk->is_CatchProj() && pk->in(0) == n ) {
1492            const CatchProjNode* p = pk->as_CatchProj();
1493            found_p = true;
1494            // add the corresponding handler bci & pco information
1495            if( p->_con != CatchProjNode::fall_through_index ) {
1496              // p leads to an exception handler (and is not fall through)
1497              assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
1498              // no duplicates, please
1499              if( !handler_bcis.contains(p->handler_bci()) ) {
1500                uint block_num = s->non_connector()->_pre_order;
1501                handler_bcis.append(p->handler_bci());
1502                handler_pcos.append(blk_labels[block_num].loc_pos());
1503              }
1504            }
1505          }
1506        }
1507        assert(found_p, "no matching predecessor found");
1508        // Note:  Due to empty block removal, one block may have
1509        // several CatchProj inputs, from the same Catch.
1510      }
1511
1512      // Set the offset of the return from the call
1513      _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1514      continue;
1515    }
1516
1517    // Handle implicit null exception table updates
1518    if( n->is_MachNullCheck() ) {
1519      uint block_num = b->non_connector_successor(0)->_pre_order;
1520      _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
1521      continue;
1522    }
1523  } // End of for all blocks fill in exception table entries
1524}
1525
1526// Static Variables
1527#ifndef PRODUCT
1528uint Scheduling::_total_nop_size = 0;
1529uint Scheduling::_total_method_size = 0;
1530uint Scheduling::_total_branches = 0;
1531uint Scheduling::_total_unconditional_delays = 0;
1532uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1533#endif
1534
1535// Initializer for class Scheduling
1536
1537Scheduling::Scheduling(Arena *arena, Compile &compile)
1538  : _arena(arena),
1539    _cfg(compile.cfg()),
1540    _bbs(compile.cfg()->_bbs),
1541    _regalloc(compile.regalloc()),
1542    _reg_node(arena),
1543    _bundle_instr_count(0),
1544    _bundle_cycle_number(0),
1545    _scheduled(arena),
1546    _available(arena),
1547    _next_node(NULL),
1548    _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1549    _pinch_free_list(arena)
1550#ifndef PRODUCT
1551  , _branches(0)
1552  , _unconditional_delays(0)
1553#endif
1554{
1555  // Create a MachNopNode
1556  _nop = new (&compile) MachNopNode();
1557
1558  // Now that the nops are in the array, save the count
1559  // (but allow entries for the nops)
1560  _node_bundling_limit = compile.unique();
1561  uint node_max = _regalloc->node_regs_max_index();
1562
1563  compile.set_node_bundling_limit(_node_bundling_limit);
1564
1565  // This one is persistant within the Compile class
1566  _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1567
1568  // Allocate space for fixed-size arrays
1569  _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1570  _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1571  _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1572
1573  // Clear the arrays
1574  memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1575  memset(_node_latency,       0, node_max * sizeof(unsigned short));
1576  memset(_uses,               0, node_max * sizeof(short));
1577  memset(_current_latency,    0, node_max * sizeof(unsigned short));
1578
1579  // Clear the bundling information
1580  memcpy(_bundle_use_elements,
1581    Pipeline_Use::elaborated_elements,
1582    sizeof(Pipeline_Use::elaborated_elements));
1583
1584  // Get the last node
1585  Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
1586
1587  _next_node = bb->_nodes[bb->_nodes.size()-1];
1588}
1589
1590#ifndef PRODUCT
1591// Scheduling destructor
1592Scheduling::~Scheduling() {
1593  _total_branches             += _branches;
1594  _total_unconditional_delays += _unconditional_delays;
1595}
1596#endif
1597
1598// Step ahead "i" cycles
1599void Scheduling::step(uint i) {
1600
1601  Bundle *bundle = node_bundling(_next_node);
1602  bundle->set_starts_bundle();
1603
1604  // Update the bundle record, but leave the flags information alone
1605  if (_bundle_instr_count > 0) {
1606    bundle->set_instr_count(_bundle_instr_count);
1607    bundle->set_resources_used(_bundle_use.resourcesUsed());
1608  }
1609
1610  // Update the state information
1611  _bundle_instr_count = 0;
1612  _bundle_cycle_number += i;
1613  _bundle_use.step(i);
1614}
1615
1616void Scheduling::step_and_clear() {
1617  Bundle *bundle = node_bundling(_next_node);
1618  bundle->set_starts_bundle();
1619
1620  // Update the bundle record
1621  if (_bundle_instr_count > 0) {
1622    bundle->set_instr_count(_bundle_instr_count);
1623    bundle->set_resources_used(_bundle_use.resourcesUsed());
1624
1625    _bundle_cycle_number += 1;
1626  }
1627
1628  // Clear the bundling information
1629  _bundle_instr_count = 0;
1630  _bundle_use.reset();
1631
1632  memcpy(_bundle_use_elements,
1633    Pipeline_Use::elaborated_elements,
1634    sizeof(Pipeline_Use::elaborated_elements));
1635}
1636
1637//------------------------------ScheduleAndBundle------------------------------
1638// Perform instruction scheduling and bundling over the sequence of
1639// instructions in backwards order.
1640void Compile::ScheduleAndBundle() {
1641
1642  // Don't optimize this if it isn't a method
1643  if (!_method)
1644    return;
1645
1646  // Don't optimize this if scheduling is disabled
1647  if (!do_scheduling())
1648    return;
1649
1650  NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1651
1652  // Create a data structure for all the scheduling information
1653  Scheduling scheduling(Thread::current()->resource_area(), *this);
1654
1655  // Walk backwards over each basic block, computing the needed alignment
1656  // Walk over all the basic blocks
1657  scheduling.DoScheduling();
1658}
1659
1660//------------------------------ComputeLocalLatenciesForward-------------------
1661// Compute the latency of all the instructions.  This is fairly simple,
1662// because we already have a legal ordering.  Walk over the instructions
1663// from first to last, and compute the latency of the instruction based
1664// on the latency of the preceeding instruction(s).
1665void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1666#ifndef PRODUCT
1667  if (_cfg->C->trace_opto_output())
1668    tty->print("# -> ComputeLocalLatenciesForward\n");
1669#endif
1670
1671  // Walk over all the schedulable instructions
1672  for( uint j=_bb_start; j < _bb_end; j++ ) {
1673
1674    // This is a kludge, forcing all latency calculations to start at 1.
1675    // Used to allow latency 0 to force an instruction to the beginning
1676    // of the bb
1677    uint latency = 1;
1678    Node *use = bb->_nodes[j];
1679    uint nlen = use->len();
1680
1681    // Walk over all the inputs
1682    for ( uint k=0; k < nlen; k++ ) {
1683      Node *def = use->in(k);
1684      if (!def)
1685        continue;
1686
1687      uint l = _node_latency[def->_idx] + use->latency(k);
1688      if (latency < l)
1689        latency = l;
1690    }
1691
1692    _node_latency[use->_idx] = latency;
1693
1694#ifndef PRODUCT
1695    if (_cfg->C->trace_opto_output()) {
1696      tty->print("# latency %4d: ", latency);
1697      use->dump();
1698    }
1699#endif
1700  }
1701
1702#ifndef PRODUCT
1703  if (_cfg->C->trace_opto_output())
1704    tty->print("# <- ComputeLocalLatenciesForward\n");
1705#endif
1706
1707} // end ComputeLocalLatenciesForward
1708
1709// See if this node fits into the present instruction bundle
1710bool Scheduling::NodeFitsInBundle(Node *n) {
1711  uint n_idx = n->_idx;
1712
1713  // If this is the unconditional delay instruction, then it fits
1714  if (n == _unconditional_delay_slot) {
1715#ifndef PRODUCT
1716    if (_cfg->C->trace_opto_output())
1717      tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1718#endif
1719    return (true);
1720  }
1721
1722  // If the node cannot be scheduled this cycle, skip it
1723  if (_current_latency[n_idx] > _bundle_cycle_number) {
1724#ifndef PRODUCT
1725    if (_cfg->C->trace_opto_output())
1726      tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1727        n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1728#endif
1729    return (false);
1730  }
1731
1732  const Pipeline *node_pipeline = n->pipeline();
1733
1734  uint instruction_count = node_pipeline->instructionCount();
1735  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1736    instruction_count = 0;
1737  else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1738    instruction_count++;
1739
1740  if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1741#ifndef PRODUCT
1742    if (_cfg->C->trace_opto_output())
1743      tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1744        n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1745#endif
1746    return (false);
1747  }
1748
1749  // Don't allow non-machine nodes to be handled this way
1750  if (!n->is_Mach() && instruction_count == 0)
1751    return (false);
1752
1753  // See if there is any overlap
1754  uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1755
1756  if (delay > 0) {
1757#ifndef PRODUCT
1758    if (_cfg->C->trace_opto_output())
1759      tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1760#endif
1761    return false;
1762  }
1763
1764#ifndef PRODUCT
1765  if (_cfg->C->trace_opto_output())
1766    tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
1767#endif
1768
1769  return true;
1770}
1771
1772Node * Scheduling::ChooseNodeToBundle() {
1773  uint siz = _available.size();
1774
1775  if (siz == 0) {
1776
1777#ifndef PRODUCT
1778    if (_cfg->C->trace_opto_output())
1779      tty->print("#   ChooseNodeToBundle: NULL\n");
1780#endif
1781    return (NULL);
1782  }
1783
1784  // Fast path, if only 1 instruction in the bundle
1785  if (siz == 1) {
1786#ifndef PRODUCT
1787    if (_cfg->C->trace_opto_output()) {
1788      tty->print("#   ChooseNodeToBundle (only 1): ");
1789      _available[0]->dump();
1790    }
1791#endif
1792    return (_available[0]);
1793  }
1794
1795  // Don't bother, if the bundle is already full
1796  if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
1797    for ( uint i = 0; i < siz; i++ ) {
1798      Node *n = _available[i];
1799
1800      // Skip projections, we'll handle them another way
1801      if (n->is_Proj())
1802        continue;
1803
1804      // This presupposed that instructions are inserted into the
1805      // available list in a legality order; i.e. instructions that
1806      // must be inserted first are at the head of the list
1807      if (NodeFitsInBundle(n)) {
1808#ifndef PRODUCT
1809        if (_cfg->C->trace_opto_output()) {
1810          tty->print("#   ChooseNodeToBundle: ");
1811          n->dump();
1812        }
1813#endif
1814        return (n);
1815      }
1816    }
1817  }
1818
1819  // Nothing fits in this bundle, choose the highest priority
1820#ifndef PRODUCT
1821  if (_cfg->C->trace_opto_output()) {
1822    tty->print("#   ChooseNodeToBundle: ");
1823    _available[0]->dump();
1824  }
1825#endif
1826
1827  return _available[0];
1828}
1829
1830//------------------------------AddNodeToAvailableList-------------------------
1831void Scheduling::AddNodeToAvailableList(Node *n) {
1832  assert( !n->is_Proj(), "projections never directly made available" );
1833#ifndef PRODUCT
1834  if (_cfg->C->trace_opto_output()) {
1835    tty->print("#   AddNodeToAvailableList: ");
1836    n->dump();
1837  }
1838#endif
1839
1840  int latency = _current_latency[n->_idx];
1841
1842  // Insert in latency order (insertion sort)
1843  uint i;
1844  for ( i=0; i < _available.size(); i++ )
1845    if (_current_latency[_available[i]->_idx] > latency)
1846      break;
1847
1848  // Special Check for compares following branches
1849  if( n->is_Mach() && _scheduled.size() > 0 ) {
1850    int op = n->as_Mach()->ideal_Opcode();
1851    Node *last = _scheduled[0];
1852    if( last->is_MachIf() && last->in(1) == n &&
1853        ( op == Op_CmpI ||
1854          op == Op_CmpU ||
1855          op == Op_CmpP ||
1856          op == Op_CmpF ||
1857          op == Op_CmpD ||
1858          op == Op_CmpL ) ) {
1859
1860      // Recalculate position, moving to front of same latency
1861      for ( i=0 ; i < _available.size(); i++ )
1862        if (_current_latency[_available[i]->_idx] >= latency)
1863          break;
1864    }
1865  }
1866
1867  // Insert the node in the available list
1868  _available.insert(i, n);
1869
1870#ifndef PRODUCT
1871  if (_cfg->C->trace_opto_output())
1872    dump_available();
1873#endif
1874}
1875
1876//------------------------------DecrementUseCounts-----------------------------
1877void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
1878  for ( uint i=0; i < n->len(); i++ ) {
1879    Node *def = n->in(i);
1880    if (!def) continue;
1881    if( def->is_Proj() )        // If this is a machine projection, then
1882      def = def->in(0);         // propagate usage thru to the base instruction
1883
1884    if( _bbs[def->_idx] != bb ) // Ignore if not block-local
1885      continue;
1886
1887    // Compute the latency
1888    uint l = _bundle_cycle_number + n->latency(i);
1889    if (_current_latency[def->_idx] < l)
1890      _current_latency[def->_idx] = l;
1891
1892    // If this does not have uses then schedule it
1893    if ((--_uses[def->_idx]) == 0)
1894      AddNodeToAvailableList(def);
1895  }
1896}
1897
1898//------------------------------AddNodeToBundle--------------------------------
1899void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
1900#ifndef PRODUCT
1901  if (_cfg->C->trace_opto_output()) {
1902    tty->print("#   AddNodeToBundle: ");
1903    n->dump();
1904  }
1905#endif
1906
1907  // Remove this from the available list
1908  uint i;
1909  for (i = 0; i < _available.size(); i++)
1910    if (_available[i] == n)
1911      break;
1912  assert(i < _available.size(), "entry in _available list not found");
1913  _available.remove(i);
1914
1915  // See if this fits in the current bundle
1916  const Pipeline *node_pipeline = n->pipeline();
1917  const Pipeline_Use& node_usage = node_pipeline->resourceUse();
1918
1919  // Check for instructions to be placed in the delay slot. We
1920  // do this before we actually schedule the current instruction,
1921  // because the delay slot follows the current instruction.
1922  if (Pipeline::_branch_has_delay_slot &&
1923      node_pipeline->hasBranchDelay() &&
1924      !_unconditional_delay_slot) {
1925
1926    uint siz = _available.size();
1927
1928    // Conditional branches can support an instruction that
1929    // is unconditionally executed and not dependant by the
1930    // branch, OR a conditionally executed instruction if
1931    // the branch is taken.  In practice, this means that
1932    // the first instruction at the branch target is
1933    // copied to the delay slot, and the branch goes to
1934    // the instruction after that at the branch target
1935    if ( n->is_Mach() && n->is_Branch() ) {
1936
1937      assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
1938      assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
1939
1940#ifndef PRODUCT
1941      _branches++;
1942#endif
1943
1944      // At least 1 instruction is on the available list
1945      // that is not dependant on the branch
1946      for (uint i = 0; i < siz; i++) {
1947        Node *d = _available[i];
1948        const Pipeline *avail_pipeline = d->pipeline();
1949
1950        // Don't allow safepoints in the branch shadow, that will
1951        // cause a number of difficulties
1952        if ( avail_pipeline->instructionCount() == 1 &&
1953            !avail_pipeline->hasMultipleBundles() &&
1954            !avail_pipeline->hasBranchDelay() &&
1955            Pipeline::instr_has_unit_size() &&
1956            d->size(_regalloc) == Pipeline::instr_unit_size() &&
1957            NodeFitsInBundle(d) &&
1958            !node_bundling(d)->used_in_delay()) {
1959
1960          if (d->is_Mach() && !d->is_MachSafePoint()) {
1961            // A node that fits in the delay slot was found, so we need to
1962            // set the appropriate bits in the bundle pipeline information so
1963            // that it correctly indicates resource usage.  Later, when we
1964            // attempt to add this instruction to the bundle, we will skip
1965            // setting the resource usage.
1966            _unconditional_delay_slot = d;
1967            node_bundling(n)->set_use_unconditional_delay();
1968            node_bundling(d)->set_used_in_unconditional_delay();
1969            _bundle_use.add_usage(avail_pipeline->resourceUse());
1970            _current_latency[d->_idx] = _bundle_cycle_number;
1971            _next_node = d;
1972            ++_bundle_instr_count;
1973#ifndef PRODUCT
1974            _unconditional_delays++;
1975#endif
1976            break;
1977          }
1978        }
1979      }
1980    }
1981
1982    // No delay slot, add a nop to the usage
1983    if (!_unconditional_delay_slot) {
1984      // See if adding an instruction in the delay slot will overflow
1985      // the bundle.
1986      if (!NodeFitsInBundle(_nop)) {
1987#ifndef PRODUCT
1988        if (_cfg->C->trace_opto_output())
1989          tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
1990#endif
1991        step(1);
1992      }
1993
1994      _bundle_use.add_usage(_nop->pipeline()->resourceUse());
1995      _next_node = _nop;
1996      ++_bundle_instr_count;
1997    }
1998
1999    // See if the instruction in the delay slot requires a
2000    // step of the bundles
2001    if (!NodeFitsInBundle(n)) {
2002#ifndef PRODUCT
2003        if (_cfg->C->trace_opto_output())
2004          tty->print("#  *** STEP(branch won't fit) ***\n");
2005#endif
2006        // Update the state information
2007        _bundle_instr_count = 0;
2008        _bundle_cycle_number += 1;
2009        _bundle_use.step(1);
2010    }
2011  }
2012
2013  // Get the number of instructions
2014  uint instruction_count = node_pipeline->instructionCount();
2015  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2016    instruction_count = 0;
2017
2018  // Compute the latency information
2019  uint delay = 0;
2020
2021  if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2022    int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2023    if (relative_latency < 0)
2024      relative_latency = 0;
2025
2026    delay = _bundle_use.full_latency(relative_latency, node_usage);
2027
2028    // Does not fit in this bundle, start a new one
2029    if (delay > 0) {
2030      step(delay);
2031
2032#ifndef PRODUCT
2033      if (_cfg->C->trace_opto_output())
2034        tty->print("#  *** STEP(%d) ***\n", delay);
2035#endif
2036    }
2037  }
2038
2039  // If this was placed in the delay slot, ignore it
2040  if (n != _unconditional_delay_slot) {
2041
2042    if (delay == 0) {
2043      if (node_pipeline->hasMultipleBundles()) {
2044#ifndef PRODUCT
2045        if (_cfg->C->trace_opto_output())
2046          tty->print("#  *** STEP(multiple instructions) ***\n");
2047#endif
2048        step(1);
2049      }
2050
2051      else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2052#ifndef PRODUCT
2053        if (_cfg->C->trace_opto_output())
2054          tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2055            instruction_count + _bundle_instr_count,
2056            Pipeline::_max_instrs_per_cycle);
2057#endif
2058        step(1);
2059      }
2060    }
2061
2062    if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2063      _bundle_instr_count++;
2064
2065    // Set the node's latency
2066    _current_latency[n->_idx] = _bundle_cycle_number;
2067
2068    // Now merge the functional unit information
2069    if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2070      _bundle_use.add_usage(node_usage);
2071
2072    // Increment the number of instructions in this bundle
2073    _bundle_instr_count += instruction_count;
2074
2075    // Remember this node for later
2076    if (n->is_Mach())
2077      _next_node = n;
2078  }
2079
2080  // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2081  // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2082  // 'Schedule' them (basically ignore in the schedule) but do not insert them
2083  // into the block.  All other scheduled nodes get put in the schedule here.
2084  int op = n->Opcode();
2085  if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2086      (op != Op_Node &&         // Not an unused antidepedence node and
2087       // not an unallocated boxlock
2088       (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2089
2090    // Push any trailing projections
2091    if( bb->_nodes[bb->_nodes.size()-1] != n ) {
2092      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2093        Node *foi = n->fast_out(i);
2094        if( foi->is_Proj() )
2095          _scheduled.push(foi);
2096      }
2097    }
2098
2099    // Put the instruction in the schedule list
2100    _scheduled.push(n);
2101  }
2102
2103#ifndef PRODUCT
2104  if (_cfg->C->trace_opto_output())
2105    dump_available();
2106#endif
2107
2108  // Walk all the definitions, decrementing use counts, and
2109  // if a definition has a 0 use count, place it in the available list.
2110  DecrementUseCounts(n,bb);
2111}
2112
2113//------------------------------ComputeUseCount--------------------------------
2114// This method sets the use count within a basic block.  We will ignore all
2115// uses outside the current basic block.  As we are doing a backwards walk,
2116// any node we reach that has a use count of 0 may be scheduled.  This also
2117// avoids the problem of cyclic references from phi nodes, as long as phi
2118// nodes are at the front of the basic block.  This method also initializes
2119// the available list to the set of instructions that have no uses within this
2120// basic block.
2121void Scheduling::ComputeUseCount(const Block *bb) {
2122#ifndef PRODUCT
2123  if (_cfg->C->trace_opto_output())
2124    tty->print("# -> ComputeUseCount\n");
2125#endif
2126
2127  // Clear the list of available and scheduled instructions, just in case
2128  _available.clear();
2129  _scheduled.clear();
2130
2131  // No delay slot specified
2132  _unconditional_delay_slot = NULL;
2133
2134#ifdef ASSERT
2135  for( uint i=0; i < bb->_nodes.size(); i++ )
2136    assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
2137#endif
2138
2139  // Force the _uses count to never go to zero for unscheduable pieces
2140  // of the block
2141  for( uint k = 0; k < _bb_start; k++ )
2142    _uses[bb->_nodes[k]->_idx] = 1;
2143  for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
2144    _uses[bb->_nodes[l]->_idx] = 1;
2145
2146  // Iterate backwards over the instructions in the block.  Don't count the
2147  // branch projections at end or the block header instructions.
2148  for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2149    Node *n = bb->_nodes[j];
2150    if( n->is_Proj() ) continue; // Projections handled another way
2151
2152    // Account for all uses
2153    for ( uint k = 0; k < n->len(); k++ ) {
2154      Node *inp = n->in(k);
2155      if (!inp) continue;
2156      assert(inp != n, "no cycles allowed" );
2157      if( _bbs[inp->_idx] == bb ) { // Block-local use?
2158        if( inp->is_Proj() )    // Skip through Proj's
2159          inp = inp->in(0);
2160        ++_uses[inp->_idx];     // Count 1 block-local use
2161      }
2162    }
2163
2164    // If this instruction has a 0 use count, then it is available
2165    if (!_uses[n->_idx]) {
2166      _current_latency[n->_idx] = _bundle_cycle_number;
2167      AddNodeToAvailableList(n);
2168    }
2169
2170#ifndef PRODUCT
2171    if (_cfg->C->trace_opto_output()) {
2172      tty->print("#   uses: %3d: ", _uses[n->_idx]);
2173      n->dump();
2174    }
2175#endif
2176  }
2177
2178#ifndef PRODUCT
2179  if (_cfg->C->trace_opto_output())
2180    tty->print("# <- ComputeUseCount\n");
2181#endif
2182}
2183
2184// This routine performs scheduling on each basic block in reverse order,
2185// using instruction latencies and taking into account function unit
2186// availability.
2187void Scheduling::DoScheduling() {
2188#ifndef PRODUCT
2189  if (_cfg->C->trace_opto_output())
2190    tty->print("# -> DoScheduling\n");
2191#endif
2192
2193  Block *succ_bb = NULL;
2194  Block *bb;
2195
2196  // Walk over all the basic blocks in reverse order
2197  for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
2198    bb = _cfg->_blocks[i];
2199
2200#ifndef PRODUCT
2201    if (_cfg->C->trace_opto_output()) {
2202      tty->print("#  Schedule BB#%03d (initial)\n", i);
2203      for (uint j = 0; j < bb->_nodes.size(); j++)
2204        bb->_nodes[j]->dump();
2205    }
2206#endif
2207
2208    // On the head node, skip processing
2209    if( bb == _cfg->_broot )
2210      continue;
2211
2212    // Skip empty, connector blocks
2213    if (bb->is_connector())
2214      continue;
2215
2216    // If the following block is not the sole successor of
2217    // this one, then reset the pipeline information
2218    if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2219#ifndef PRODUCT
2220      if (_cfg->C->trace_opto_output()) {
2221        tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2222                   _next_node->_idx, _bundle_instr_count);
2223      }
2224#endif
2225      step_and_clear();
2226    }
2227
2228    // Leave untouched the starting instruction, any Phis, a CreateEx node
2229    // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
2230    _bb_end = bb->_nodes.size()-1;
2231    for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2232      Node *n = bb->_nodes[_bb_start];
2233      // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2234      // Also, MachIdealNodes do not get scheduled
2235      if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2236      MachNode *mach = n->as_Mach();
2237      int iop = mach->ideal_Opcode();
2238      if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2239      if( iop == Op_Con ) continue;      // Do not schedule Top
2240      if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2241          mach->pipeline() == MachNode::pipeline_class() &&
2242          !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2243        continue;
2244      break;                    // Funny loop structure to be sure...
2245    }
2246    // Compute last "interesting" instruction in block - last instruction we
2247    // might schedule.  _bb_end points just after last schedulable inst.  We
2248    // normally schedule conditional branches (despite them being forced last
2249    // in the block), because they have delay slots we can fill.  Calls all
2250    // have their delay slots filled in the template expansions, so we don't
2251    // bother scheduling them.
2252    Node *last = bb->_nodes[_bb_end];
2253    if( last->is_Catch() ||
2254       (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2255      // There must be a prior call.  Skip it.
2256      while( !bb->_nodes[--_bb_end]->is_Call() ) {
2257        assert( bb->_nodes[_bb_end]->is_Proj(), "skipping projections after expected call" );
2258      }
2259    } else if( last->is_MachNullCheck() ) {
2260      // Backup so the last null-checked memory instruction is
2261      // outside the schedulable range. Skip over the nullcheck,
2262      // projection, and the memory nodes.
2263      Node *mem = last->in(1);
2264      do {
2265        _bb_end--;
2266      } while (mem != bb->_nodes[_bb_end]);
2267    } else {
2268      // Set _bb_end to point after last schedulable inst.
2269      _bb_end++;
2270    }
2271
2272    assert( _bb_start <= _bb_end, "inverted block ends" );
2273
2274    // Compute the register antidependencies for the basic block
2275    ComputeRegisterAntidependencies(bb);
2276    if (_cfg->C->failing())  return;  // too many D-U pinch points
2277
2278    // Compute intra-bb latencies for the nodes
2279    ComputeLocalLatenciesForward(bb);
2280
2281    // Compute the usage within the block, and set the list of all nodes
2282    // in the block that have no uses within the block.
2283    ComputeUseCount(bb);
2284
2285    // Schedule the remaining instructions in the block
2286    while ( _available.size() > 0 ) {
2287      Node *n = ChooseNodeToBundle();
2288      AddNodeToBundle(n,bb);
2289    }
2290
2291    assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2292#ifdef ASSERT
2293    for( uint l = _bb_start; l < _bb_end; l++ ) {
2294      Node *n = bb->_nodes[l];
2295      uint m;
2296      for( m = 0; m < _bb_end-_bb_start; m++ )
2297        if( _scheduled[m] == n )
2298          break;
2299      assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2300    }
2301#endif
2302
2303    // Now copy the instructions (in reverse order) back to the block
2304    for ( uint k = _bb_start; k < _bb_end; k++ )
2305      bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
2306
2307#ifndef PRODUCT
2308    if (_cfg->C->trace_opto_output()) {
2309      tty->print("#  Schedule BB#%03d (final)\n", i);
2310      uint current = 0;
2311      for (uint j = 0; j < bb->_nodes.size(); j++) {
2312        Node *n = bb->_nodes[j];
2313        if( valid_bundle_info(n) ) {
2314          Bundle *bundle = node_bundling(n);
2315          if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2316            tty->print("*** Bundle: ");
2317            bundle->dump();
2318          }
2319          n->dump();
2320        }
2321      }
2322    }
2323#endif
2324#ifdef ASSERT
2325  verify_good_schedule(bb,"after block local scheduling");
2326#endif
2327  }
2328
2329#ifndef PRODUCT
2330  if (_cfg->C->trace_opto_output())
2331    tty->print("# <- DoScheduling\n");
2332#endif
2333
2334  // Record final node-bundling array location
2335  _regalloc->C->set_node_bundling_base(_node_bundling_base);
2336
2337} // end DoScheduling
2338
2339//------------------------------verify_good_schedule---------------------------
2340// Verify that no live-range used in the block is killed in the block by a
2341// wrong DEF.  This doesn't verify live-ranges that span blocks.
2342
2343// Check for edge existence.  Used to avoid adding redundant precedence edges.
2344static bool edge_from_to( Node *from, Node *to ) {
2345  for( uint i=0; i<from->len(); i++ )
2346    if( from->in(i) == to )
2347      return true;
2348  return false;
2349}
2350
2351#ifdef ASSERT
2352//------------------------------verify_do_def----------------------------------
2353void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2354  // Check for bad kills
2355  if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2356    Node *prior_use = _reg_node[def];
2357    if( prior_use && !edge_from_to(prior_use,n) ) {
2358      tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2359      n->dump();
2360      tty->print_cr("...");
2361      prior_use->dump();
2362      assert_msg(edge_from_to(prior_use,n),msg);
2363    }
2364    _reg_node.map(def,NULL); // Kill live USEs
2365  }
2366}
2367
2368//------------------------------verify_good_schedule---------------------------
2369void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2370
2371  // Zap to something reasonable for the verify code
2372  _reg_node.clear();
2373
2374  // Walk over the block backwards.  Check to make sure each DEF doesn't
2375  // kill a live value (other than the one it's supposed to).  Add each
2376  // USE to the live set.
2377  for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
2378    Node *n = b->_nodes[i];
2379    int n_op = n->Opcode();
2380    if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2381      // Fat-proj kills a slew of registers
2382      RegMask rm = n->out_RegMask();// Make local copy
2383      while( rm.is_NotEmpty() ) {
2384        OptoReg::Name kill = rm.find_first_elem();
2385        rm.Remove(kill);
2386        verify_do_def( n, kill, msg );
2387      }
2388    } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2389      // Get DEF'd registers the normal way
2390      verify_do_def( n, _regalloc->get_reg_first(n), msg );
2391      verify_do_def( n, _regalloc->get_reg_second(n), msg );
2392    }
2393
2394    // Now make all USEs live
2395    for( uint i=1; i<n->req(); i++ ) {
2396      Node *def = n->in(i);
2397      assert(def != 0, "input edge required");
2398      OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2399      OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2400      if( OptoReg::is_valid(reg_lo) ) {
2401        assert_msg(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg );
2402        _reg_node.map(reg_lo,n);
2403      }
2404      if( OptoReg::is_valid(reg_hi) ) {
2405        assert_msg(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg );
2406        _reg_node.map(reg_hi,n);
2407      }
2408    }
2409
2410  }
2411
2412  // Zap to something reasonable for the Antidependence code
2413  _reg_node.clear();
2414}
2415#endif
2416
2417// Conditionally add precedence edges.  Avoid putting edges on Projs.
2418static void add_prec_edge_from_to( Node *from, Node *to ) {
2419  if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2420    assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2421    from = from->in(0);
2422  }
2423  if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2424      !edge_from_to( from, to ) ) // Avoid duplicate edge
2425    from->add_prec(to);
2426}
2427
2428//------------------------------anti_do_def------------------------------------
2429void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2430  if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2431    return;
2432
2433  Node *pinch = _reg_node[def_reg]; // Get pinch point
2434  if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
2435      is_def ) {    // Check for a true def (not a kill)
2436    _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2437    return;
2438  }
2439
2440  Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2441  debug_only( def = (Node*)0xdeadbeef; )
2442
2443  // After some number of kills there _may_ be a later def
2444  Node *later_def = NULL;
2445
2446  // Finding a kill requires a real pinch-point.
2447  // Check for not already having a pinch-point.
2448  // Pinch points are Op_Node's.
2449  if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2450    later_def = pinch;            // Must be def/kill as optimistic pinch-point
2451    if ( _pinch_free_list.size() > 0) {
2452      pinch = _pinch_free_list.pop();
2453    } else {
2454      pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
2455    }
2456    if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2457      _cfg->C->record_method_not_compilable("too many D-U pinch points");
2458      return;
2459    }
2460    _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
2461    _reg_node.map(def_reg,pinch); // Record pinch-point
2462    //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2463    if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2464      pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2465      add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2466      later_def = NULL;           // and no later def
2467    }
2468    pinch->set_req(0,later_def);  // Hook later def so we can find it
2469  } else {                        // Else have valid pinch point
2470    if( pinch->in(0) )            // If there is a later-def
2471      later_def = pinch->in(0);   // Get it
2472  }
2473
2474  // Add output-dependence edge from later def to kill
2475  if( later_def )               // If there is some original def
2476    add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2477
2478  // See if current kill is also a use, and so is forced to be the pinch-point.
2479  if( pinch->Opcode() == Op_Node ) {
2480    Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2481    for( uint i=1; i<uses->req(); i++ ) {
2482      if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2483          _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2484        // Yes, found a use/kill pinch-point
2485        pinch->set_req(0,NULL);  //
2486        pinch->replace_by(kill); // Move anti-dep edges up
2487        pinch = kill;
2488        _reg_node.map(def_reg,pinch);
2489        return;
2490      }
2491    }
2492  }
2493
2494  // Add edge from kill to pinch-point
2495  add_prec_edge_from_to(kill,pinch);
2496}
2497
2498//------------------------------anti_do_use------------------------------------
2499void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2500  if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2501    return;
2502  Node *pinch = _reg_node[use_reg]; // Get pinch point
2503  // Check for no later def_reg/kill in block
2504  if( pinch && _bbs[pinch->_idx] == b &&
2505      // Use has to be block-local as well
2506      _bbs[use->_idx] == b ) {
2507    if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2508        pinch->req() == 1 ) {   // pinch not yet in block?
2509      pinch->del_req(0);        // yank pointer to later-def, also set flag
2510      // Insert the pinch-point in the block just after the last use
2511      b->_nodes.insert(b->find_node(use)+1,pinch);
2512      _bb_end++;                // Increase size scheduled region in block
2513    }
2514
2515    add_prec_edge_from_to(pinch,use);
2516  }
2517}
2518
2519//------------------------------ComputeRegisterAntidependences-----------------
2520// We insert antidependences between the reads and following write of
2521// allocated registers to prevent illegal code motion. Hopefully, the
2522// number of added references should be fairly small, especially as we
2523// are only adding references within the current basic block.
2524void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2525
2526#ifdef ASSERT
2527  verify_good_schedule(b,"before block local scheduling");
2528#endif
2529
2530  // A valid schedule, for each register independently, is an endless cycle
2531  // of: a def, then some uses (connected to the def by true dependencies),
2532  // then some kills (defs with no uses), finally the cycle repeats with a new
2533  // def.  The uses are allowed to float relative to each other, as are the
2534  // kills.  No use is allowed to slide past a kill (or def).  This requires
2535  // antidependencies between all uses of a single def and all kills that
2536  // follow, up to the next def.  More edges are redundant, because later defs
2537  // & kills are already serialized with true or antidependencies.  To keep
2538  // the edge count down, we add a 'pinch point' node if there's more than
2539  // one use or more than one kill/def.
2540
2541  // We add dependencies in one bottom-up pass.
2542
2543  // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2544
2545  // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2546  // register.  If not, we record the DEF/KILL in _reg_node, the
2547  // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2548  // "pinch point", a new Node that's in the graph but not in the block.
2549  // We put edges from the prior and current DEF/KILLs to the pinch point.
2550  // We put the pinch point in _reg_node.  If there's already a pinch point
2551  // we merely add an edge from the current DEF/KILL to the pinch point.
2552
2553  // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2554  // put an edge from the pinch point to the USE.
2555
2556  // To be expedient, the _reg_node array is pre-allocated for the whole
2557  // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2558  // or a valid def/kill/pinch-point, or a leftover node from some prior
2559  // block.  Leftover node from some prior block is treated like a NULL (no
2560  // prior def, so no anti-dependence needed).  Valid def is distinguished by
2561  // it being in the current block.
2562  bool fat_proj_seen = false;
2563  uint last_safept = _bb_end-1;
2564  Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
2565  Node* last_safept_node = end_node;
2566  for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2567    Node *n = b->_nodes[i];
2568    int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2569    if( n->Opcode() == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2570      // Fat-proj kills a slew of registers
2571      // This can add edges to 'n' and obscure whether or not it was a def,
2572      // hence the is_def flag.
2573      fat_proj_seen = true;
2574      RegMask rm = n->out_RegMask();// Make local copy
2575      while( rm.is_NotEmpty() ) {
2576        OptoReg::Name kill = rm.find_first_elem();
2577        rm.Remove(kill);
2578        anti_do_def( b, n, kill, is_def );
2579      }
2580    } else {
2581      // Get DEF'd registers the normal way
2582      anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2583      anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2584    }
2585
2586    // Check each register used by this instruction for a following DEF/KILL
2587    // that must occur afterward and requires an anti-dependence edge.
2588    for( uint j=0; j<n->req(); j++ ) {
2589      Node *def = n->in(j);
2590      if( def ) {
2591        assert( def->Opcode() != Op_MachProj || def->ideal_reg() != MachProjNode::fat_proj, "" );
2592        anti_do_use( b, n, _regalloc->get_reg_first(def) );
2593        anti_do_use( b, n, _regalloc->get_reg_second(def) );
2594      }
2595    }
2596    // Do not allow defs of new derived values to float above GC
2597    // points unless the base is definitely available at the GC point.
2598
2599    Node *m = b->_nodes[i];
2600
2601    // Add precedence edge from following safepoint to use of derived pointer
2602    if( last_safept_node != end_node &&
2603        m != last_safept_node) {
2604      for (uint k = 1; k < m->req(); k++) {
2605        const Type *t = m->in(k)->bottom_type();
2606        if( t->isa_oop_ptr() &&
2607            t->is_ptr()->offset() != 0 ) {
2608          last_safept_node->add_prec( m );
2609          break;
2610        }
2611      }
2612    }
2613
2614    if( n->jvms() ) {           // Precedence edge from derived to safept
2615      // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2616      if( b->_nodes[last_safept] != last_safept_node ) {
2617        last_safept = b->find_node(last_safept_node);
2618      }
2619      for( uint j=last_safept; j > i; j-- ) {
2620        Node *mach = b->_nodes[j];
2621        if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2622          mach->add_prec( n );
2623      }
2624      last_safept = i;
2625      last_safept_node = m;
2626    }
2627  }
2628
2629  if (fat_proj_seen) {
2630    // Garbage collect pinch nodes that were not consumed.
2631    // They are usually created by a fat kill MachProj for a call.
2632    garbage_collect_pinch_nodes();
2633  }
2634}
2635
2636//------------------------------garbage_collect_pinch_nodes-------------------------------
2637
2638// Garbage collect pinch nodes for reuse by other blocks.
2639//
2640// The block scheduler's insertion of anti-dependence
2641// edges creates many pinch nodes when the block contains
2642// 2 or more Calls.  A pinch node is used to prevent a
2643// combinatorial explosion of edges.  If a set of kills for a
2644// register is anti-dependent on a set of uses (or defs), rather
2645// than adding an edge in the graph between each pair of kill
2646// and use (or def), a pinch is inserted between them:
2647//
2648//            use1   use2  use3
2649//                \   |   /
2650//                 \  |  /
2651//                  pinch
2652//                 /  |  \
2653//                /   |   \
2654//            kill1 kill2 kill3
2655//
2656// One pinch node is created per register killed when
2657// the second call is encountered during a backwards pass
2658// over the block.  Most of these pinch nodes are never
2659// wired into the graph because the register is never
2660// used or def'ed in the block.
2661//
2662void Scheduling::garbage_collect_pinch_nodes() {
2663#ifndef PRODUCT
2664    if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2665#endif
2666    int trace_cnt = 0;
2667    for (uint k = 0; k < _reg_node.Size(); k++) {
2668      Node* pinch = _reg_node[k];
2669      if (pinch != NULL && pinch->Opcode() == Op_Node &&
2670          // no predecence input edges
2671          (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2672        cleanup_pinch(pinch);
2673        _pinch_free_list.push(pinch);
2674        _reg_node.map(k, NULL);
2675#ifndef PRODUCT
2676        if (_cfg->C->trace_opto_output()) {
2677          trace_cnt++;
2678          if (trace_cnt > 40) {
2679            tty->print("\n");
2680            trace_cnt = 0;
2681          }
2682          tty->print(" %d", pinch->_idx);
2683        }
2684#endif
2685      }
2686    }
2687#ifndef PRODUCT
2688    if (_cfg->C->trace_opto_output()) tty->print("\n");
2689#endif
2690}
2691
2692// Clean up a pinch node for reuse.
2693void Scheduling::cleanup_pinch( Node *pinch ) {
2694  assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2695
2696  for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2697    Node* use = pinch->last_out(i);
2698    uint uses_found = 0;
2699    for (uint j = use->req(); j < use->len(); j++) {
2700      if (use->in(j) == pinch) {
2701        use->rm_prec(j);
2702        uses_found++;
2703      }
2704    }
2705    assert(uses_found > 0, "must be a precedence edge");
2706    i -= uses_found;    // we deleted 1 or more copies of this edge
2707  }
2708  // May have a later_def entry
2709  pinch->set_req(0, NULL);
2710}
2711
2712//------------------------------print_statistics-------------------------------
2713#ifndef PRODUCT
2714
2715void Scheduling::dump_available() const {
2716  tty->print("#Availist  ");
2717  for (uint i = 0; i < _available.size(); i++)
2718    tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2719  tty->cr();
2720}
2721
2722// Print Scheduling Statistics
2723void Scheduling::print_statistics() {
2724  // Print the size added by nops for bundling
2725  tty->print("Nops added %d bytes to total of %d bytes",
2726    _total_nop_size, _total_method_size);
2727  if (_total_method_size > 0)
2728    tty->print(", for %.2f%%",
2729      ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2730  tty->print("\n");
2731
2732  // Print the number of branch shadows filled
2733  if (Pipeline::_branch_has_delay_slot) {
2734    tty->print("Of %d branches, %d had unconditional delay slots filled",
2735      _total_branches, _total_unconditional_delays);
2736    if (_total_branches > 0)
2737      tty->print(", for %.2f%%",
2738        ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2739    tty->print("\n");
2740  }
2741
2742  uint total_instructions = 0, total_bundles = 0;
2743
2744  for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2745    uint bundle_count   = _total_instructions_per_bundle[i];
2746    total_instructions += bundle_count * i;
2747    total_bundles      += bundle_count;
2748  }
2749
2750  if (total_bundles > 0)
2751    tty->print("Average ILP (excluding nops) is %.2f\n",
2752      ((double)total_instructions) / ((double)total_bundles));
2753}
2754#endif
2755