output.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_output.cpp.incl"
27
28extern uint size_java_to_interp();
29extern uint reloc_java_to_interp();
30extern uint size_exception_handler();
31extern uint size_deopt_handler();
32
33#ifndef PRODUCT
34#define DEBUG_ARG(x) , x
35#else
36#define DEBUG_ARG(x)
37#endif
38
39extern int emit_exception_handler(CodeBuffer &cbuf);
40extern int emit_deopt_handler(CodeBuffer &cbuf);
41
42//------------------------------Output-----------------------------------------
43// Convert Nodes to instruction bits and pass off to the VM
44void Compile::Output() {
45  // RootNode goes
46  assert( _cfg->_broot->_nodes.size() == 0, "" );
47
48  // Initialize the space for the BufferBlob used to find and verify
49  // instruction size in MachNode::emit_size()
50  init_scratch_buffer_blob();
51  if (failing())  return; // Out of memory
52
53  // The number of new nodes (mostly MachNop) is proportional to
54  // the number of java calls and inner loops which are aligned.
55  if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
56                            C->inner_loops()*(OptoLoopAlignment-1)),
57                           "out of nodes before code generation" ) ) {
58    return;
59  }
60  // Make sure I can find the Start Node
61  Block_Array& bbs = _cfg->_bbs;
62  Block *entry = _cfg->_blocks[1];
63  Block *broot = _cfg->_broot;
64
65  const StartNode *start = entry->_nodes[0]->as_Start();
66
67  // Replace StartNode with prolog
68  MachPrologNode *prolog = new (this) MachPrologNode();
69  entry->_nodes.map( 0, prolog );
70  bbs.map( prolog->_idx, entry );
71  bbs.map( start->_idx, NULL ); // start is no longer in any block
72
73  // Virtual methods need an unverified entry point
74
75  if( is_osr_compilation() ) {
76    if( PoisonOSREntry ) {
77      // TODO: Should use a ShouldNotReachHereNode...
78      _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
79    }
80  } else {
81    if( _method && !_method->flags().is_static() ) {
82      // Insert unvalidated entry point
83      _cfg->insert( broot, 0, new (this) MachUEPNode() );
84    }
85
86  }
87
88
89  // Break before main entry point
90  if( (_method && _method->break_at_execute())
91#ifndef PRODUCT
92    ||(OptoBreakpoint && is_method_compilation())
93    ||(OptoBreakpointOSR && is_osr_compilation())
94    ||(OptoBreakpointC2R && !_method)
95#endif
96    ) {
97    // checking for _method means that OptoBreakpoint does not apply to
98    // runtime stubs or frame converters
99    _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
100  }
101
102  // Insert epilogs before every return
103  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
104    Block *b = _cfg->_blocks[i];
105    if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
106      Node *m = b->end();
107      if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
108        MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
109        b->add_inst( epilog );
110        bbs.map(epilog->_idx, b);
111        //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
112      }
113    }
114  }
115
116# ifdef ENABLE_ZAP_DEAD_LOCALS
117  if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
118# endif
119
120  ScheduleAndBundle();
121
122#ifndef PRODUCT
123  if (trace_opto_output()) {
124    tty->print("\n---- After ScheduleAndBundle ----\n");
125    for (uint i = 0; i < _cfg->_num_blocks; i++) {
126      tty->print("\nBB#%03d:\n", i);
127      Block *bb = _cfg->_blocks[i];
128      for (uint j = 0; j < bb->_nodes.size(); j++) {
129        Node *n = bb->_nodes[j];
130        OptoReg::Name reg = _regalloc->get_reg_first(n);
131        tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
132        n->dump();
133      }
134    }
135  }
136#endif
137
138  if (failing())  return;
139
140  BuildOopMaps();
141
142  if (failing())  return;
143
144  Fill_buffer();
145}
146
147bool Compile::need_stack_bang(int frame_size_in_bytes) const {
148  // Determine if we need to generate a stack overflow check.
149  // Do it if the method is not a stub function and
150  // has java calls or has frame size > vm_page_size/8.
151  return (stub_function() == NULL &&
152          (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
153}
154
155bool Compile::need_register_stack_bang() const {
156  // Determine if we need to generate a register stack overflow check.
157  // This is only used on architectures which have split register
158  // and memory stacks (ie. IA64).
159  // Bang if the method is not a stub function and has java calls
160  return (stub_function() == NULL && has_java_calls());
161}
162
163# ifdef ENABLE_ZAP_DEAD_LOCALS
164
165
166// In order to catch compiler oop-map bugs, we have implemented
167// a debugging mode called ZapDeadCompilerLocals.
168// This mode causes the compiler to insert a call to a runtime routine,
169// "zap_dead_locals", right before each place in compiled code
170// that could potentially be a gc-point (i.e., a safepoint or oop map point).
171// The runtime routine checks that locations mapped as oops are really
172// oops, that locations mapped as values do not look like oops,
173// and that locations mapped as dead are not used later
174// (by zapping them to an invalid address).
175
176int Compile::_CompiledZap_count = 0;
177
178void Compile::Insert_zap_nodes() {
179  bool skip = false;
180
181
182  // Dink with static counts because code code without the extra
183  // runtime calls is MUCH faster for debugging purposes
184
185       if ( CompileZapFirst  ==  0  ) ; // nothing special
186  else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
187  else if ( CompileZapFirst  == CompiledZap_count() )
188    warning("starting zap compilation after skipping");
189
190       if ( CompileZapLast  ==  -1  ) ; // nothing special
191  else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
192  else if ( CompileZapLast  ==  CompiledZap_count() )
193    warning("about to compile last zap");
194
195  ++_CompiledZap_count; // counts skipped zaps, too
196
197  if ( skip )  return;
198
199
200  if ( _method == NULL )
201    return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
202
203  // Insert call to zap runtime stub before every node with an oop map
204  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
205    Block *b = _cfg->_blocks[i];
206    for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
207      Node *n = b->_nodes[j];
208
209      // Determining if we should insert a zap-a-lot node in output.
210      // We do that for all nodes that has oopmap info, except for calls
211      // to allocation.  Calls to allocation passes in the old top-of-eden pointer
212      // and expect the C code to reset it.  Hence, there can be no safepoints between
213      // the inlined-allocation and the call to new_Java, etc.
214      // We also cannot zap monitor calls, as they must hold the microlock
215      // during the call to Zap, which also wants to grab the microlock.
216      bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
217      if ( insert ) { // it is MachSafePoint
218        if ( !n->is_MachCall() ) {
219          insert = false;
220        } else if ( n->is_MachCall() ) {
221          MachCallNode* call = n->as_MachCall();
222          if (call->entry_point() == OptoRuntime::new_instance_Java() ||
223              call->entry_point() == OptoRuntime::new_array_Java() ||
224              call->entry_point() == OptoRuntime::multianewarray2_Java() ||
225              call->entry_point() == OptoRuntime::multianewarray3_Java() ||
226              call->entry_point() == OptoRuntime::multianewarray4_Java() ||
227              call->entry_point() == OptoRuntime::multianewarray5_Java() ||
228              call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
229              call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
230              ) {
231            insert = false;
232          }
233        }
234        if (insert) {
235          Node *zap = call_zap_node(n->as_MachSafePoint(), i);
236          b->_nodes.insert( j, zap );
237          _cfg->_bbs.map( zap->_idx, b );
238          ++j;
239        }
240      }
241    }
242  }
243}
244
245
246Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
247  const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
248  CallStaticJavaNode* ideal_node =
249    new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
250         OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
251                            "call zap dead locals stub", 0, TypePtr::BOTTOM);
252  // We need to copy the OopMap from the site we're zapping at.
253  // We have to make a copy, because the zap site might not be
254  // a call site, and zap_dead is a call site.
255  OopMap* clone = node_to_check->oop_map()->deep_copy();
256
257  // Add the cloned OopMap to the zap node
258  ideal_node->set_oop_map(clone);
259  return _matcher->match_sfpt(ideal_node);
260}
261
262//------------------------------is_node_getting_a_safepoint--------------------
263bool Compile::is_node_getting_a_safepoint( Node* n) {
264  // This code duplicates the logic prior to the call of add_safepoint
265  // below in this file.
266  if( n->is_MachSafePoint() ) return true;
267  return false;
268}
269
270# endif // ENABLE_ZAP_DEAD_LOCALS
271
272//------------------------------compute_loop_first_inst_sizes------------------
273// Compute the size of first NumberOfLoopInstrToAlign instructions at the top
274// of a loop. When aligning a loop we need to provide enough instructions
275// in cpu's fetch buffer to feed decoders. The loop alignment could be
276// avoided if we have enough instructions in fetch buffer at the head of a loop.
277// By default, the size is set to 999999 by Block's constructor so that
278// a loop will be aligned if the size is not reset here.
279//
280// Note: Mach instructions could contain several HW instructions
281// so the size is estimated only.
282//
283void Compile::compute_loop_first_inst_sizes() {
284  // The next condition is used to gate the loop alignment optimization.
285  // Don't aligned a loop if there are enough instructions at the head of a loop
286  // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
287  // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
288  // equal to 11 bytes which is the largest address NOP instruction.
289  if( MaxLoopPad < OptoLoopAlignment-1 ) {
290    uint last_block = _cfg->_num_blocks-1;
291    for( uint i=1; i <= last_block; i++ ) {
292      Block *b = _cfg->_blocks[i];
293      // Check the first loop's block which requires an alignment.
294      if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
295        uint sum_size = 0;
296        uint inst_cnt = NumberOfLoopInstrToAlign;
297        inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
298
299        // Check subsequent fallthrough blocks if the loop's first
300        // block(s) does not have enough instructions.
301        Block *nb = b;
302        while( inst_cnt > 0 &&
303               i < last_block &&
304               !_cfg->_blocks[i+1]->has_loop_alignment() &&
305               !nb->has_successor(b) ) {
306          i++;
307          nb = _cfg->_blocks[i];
308          inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
309        } // while( inst_cnt > 0 && i < last_block  )
310
311        b->set_first_inst_size(sum_size);
312      } // f( b->head()->is_Loop() )
313    } // for( i <= last_block )
314  } // if( MaxLoopPad < OptoLoopAlignment-1 )
315}
316
317//----------------------Shorten_branches---------------------------------------
318// The architecture description provides short branch variants for some long
319// branch instructions. Replace eligible long branches with short branches.
320void Compile::Shorten_branches(Label *labels, int& code_size, int& reloc_size, int& stub_size, int& const_size) {
321
322  // fill in the nop array for bundling computations
323  MachNode *_nop_list[Bundle::_nop_count];
324  Bundle::initialize_nops(_nop_list, this);
325
326  // ------------------
327  // Compute size of each block, method size, and relocation information size
328  uint *jmp_end    = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks);
329  uint *blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
330  DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
331  DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
332  blk_starts[0]    = 0;
333
334  // Initialize the sizes to 0
335  code_size  = 0;          // Size in bytes of generated code
336  stub_size  = 0;          // Size in bytes of all stub entries
337  // Size in bytes of all relocation entries, including those in local stubs.
338  // Start with 2-bytes of reloc info for the unvalidated entry point
339  reloc_size = 1;          // Number of relocation entries
340  const_size = 0;          // size of fp constants in words
341
342  // Make three passes.  The first computes pessimistic blk_starts,
343  // relative jmp_end, reloc_size and const_size information.
344  // The second performs short branch substitution using the pessimistic
345  // sizing. The third inserts nops where needed.
346
347  Node *nj; // tmp
348
349  // Step one, perform a pessimistic sizing pass.
350  uint i;
351  uint min_offset_from_last_call = 1;  // init to a positive value
352  uint nop_size = (new (this) MachNopNode())->size(_regalloc);
353  for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
354    Block *b = _cfg->_blocks[i];
355
356    // Sum all instruction sizes to compute block size
357    uint last_inst = b->_nodes.size();
358    uint blk_size = 0;
359    for( uint j = 0; j<last_inst; j++ ) {
360      nj = b->_nodes[j];
361      uint inst_size = nj->size(_regalloc);
362      blk_size += inst_size;
363      // Handle machine instruction nodes
364      if( nj->is_Mach() ) {
365        MachNode *mach = nj->as_Mach();
366        blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
367        reloc_size += mach->reloc();
368        const_size += mach->const_size();
369        if( mach->is_MachCall() ) {
370          MachCallNode *mcall = mach->as_MachCall();
371          // This destination address is NOT PC-relative
372
373          mcall->method_set((intptr_t)mcall->entry_point());
374
375          if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
376            stub_size  += size_java_to_interp();
377            reloc_size += reloc_java_to_interp();
378          }
379        } else if (mach->is_MachSafePoint()) {
380          // If call/safepoint are adjacent, account for possible
381          // nop to disambiguate the two safepoints.
382          if (min_offset_from_last_call == 0) {
383            blk_size += nop_size;
384          }
385        }
386      }
387      min_offset_from_last_call += inst_size;
388      // Remember end of call offset
389      if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
390        min_offset_from_last_call = 0;
391      }
392    }
393
394    // During short branch replacement, we store the relative (to blk_starts)
395    // end of jump in jmp_end, rather than the absolute end of jump.  This
396    // is so that we do not need to recompute sizes of all nodes when we compute
397    // correct blk_starts in our next sizing pass.
398    jmp_end[i] = blk_size;
399    DEBUG_ONLY( jmp_target[i] = 0; )
400
401    // When the next block starts a loop, we may insert pad NOP
402    // instructions.  Since we cannot know our future alignment,
403    // assume the worst.
404    if( i<_cfg->_num_blocks-1 ) {
405      Block *nb = _cfg->_blocks[i+1];
406      int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
407      if( max_loop_pad > 0 ) {
408        assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
409        blk_size += max_loop_pad;
410      }
411    }
412
413    // Save block size; update total method size
414    blk_starts[i+1] = blk_starts[i]+blk_size;
415  }
416
417  // Step two, replace eligible long jumps.
418
419  // Note: this will only get the long branches within short branch
420  //   range. Another pass might detect more branches that became
421  //   candidates because the shortening in the first pass exposed
422  //   more opportunities. Unfortunately, this would require
423  //   recomputing the starting and ending positions for the blocks
424  for( i=0; i<_cfg->_num_blocks; i++ ) {
425    Block *b = _cfg->_blocks[i];
426
427    int j;
428    // Find the branch; ignore trailing NOPs.
429    for( j = b->_nodes.size()-1; j>=0; j-- ) {
430      nj = b->_nodes[j];
431      if( !nj->is_Mach() || nj->as_Mach()->ideal_Opcode() != Op_Con )
432        break;
433    }
434
435    if (j >= 0) {
436      if( nj->is_Mach() && nj->as_Mach()->may_be_short_branch() ) {
437        MachNode *mach = nj->as_Mach();
438        // This requires the TRUE branch target be in succs[0]
439        uint bnum = b->non_connector_successor(0)->_pre_order;
440        uintptr_t target = blk_starts[bnum];
441        if( mach->is_pc_relative() ) {
442          int offset = target-(blk_starts[i] + jmp_end[i]);
443          if (_matcher->is_short_branch_offset(mach->rule(), offset)) {
444            // We've got a winner.  Replace this branch.
445            MachNode* replacement = mach->short_branch_version(this);
446            b->_nodes.map(j, replacement);
447            mach->subsume_by(replacement);
448
449            // Update the jmp_end size to save time in our
450            // next pass.
451            jmp_end[i] -= (mach->size(_regalloc) - replacement->size(_regalloc));
452            DEBUG_ONLY( jmp_target[i] = bnum; );
453            DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
454          }
455        } else {
456#ifndef PRODUCT
457          mach->dump(3);
458#endif
459          Unimplemented();
460        }
461      }
462    }
463  }
464
465  // Compute the size of first NumberOfLoopInstrToAlign instructions at head
466  // of a loop. It is used to determine the padding for loop alignment.
467  compute_loop_first_inst_sizes();
468
469  // Step 3, compute the offsets of all the labels
470  uint last_call_adr = max_uint;
471  for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
472    // copy the offset of the beginning to the corresponding label
473    assert(labels[i].is_unused(), "cannot patch at this point");
474    labels[i].bind_loc(blk_starts[i], CodeBuffer::SECT_INSTS);
475
476    // insert padding for any instructions that need it
477    Block *b = _cfg->_blocks[i];
478    uint last_inst = b->_nodes.size();
479    uint adr = blk_starts[i];
480    for( uint j = 0; j<last_inst; j++ ) {
481      nj = b->_nodes[j];
482      if( nj->is_Mach() ) {
483        int padding = nj->as_Mach()->compute_padding(adr);
484        // If call/safepoint are adjacent insert a nop (5010568)
485        if (padding == 0 && nj->is_MachSafePoint() && !nj->is_MachCall() &&
486            adr == last_call_adr ) {
487          padding = nop_size;
488        }
489        if(padding > 0) {
490          assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
491          int nops_cnt = padding / nop_size;
492          MachNode *nop = new (this) MachNopNode(nops_cnt);
493          b->_nodes.insert(j++, nop);
494          _cfg->_bbs.map( nop->_idx, b );
495          adr += padding;
496          last_inst++;
497        }
498      }
499      adr += nj->size(_regalloc);
500
501      // Remember end of call offset
502      if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
503        last_call_adr = adr;
504      }
505    }
506
507    if ( i != _cfg->_num_blocks-1) {
508      // Get the size of the block
509      uint blk_size = adr - blk_starts[i];
510
511      // When the next block is the top of a loop, we may insert pad NOP
512      // instructions.
513      Block *nb = _cfg->_blocks[i+1];
514      int current_offset = blk_starts[i] + blk_size;
515      current_offset += nb->alignment_padding(current_offset);
516      // Save block size; update total method size
517      blk_starts[i+1] = current_offset;
518    }
519  }
520
521#ifdef ASSERT
522  for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
523    if( jmp_target[i] != 0 ) {
524      int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_end[i]);
525      if (!_matcher->is_short_branch_offset(jmp_rule[i], offset)) {
526        tty->print_cr("target (%d) - jmp_end(%d) = offset (%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_end[i], offset, i, jmp_target[i]);
527      }
528      assert(_matcher->is_short_branch_offset(jmp_rule[i], offset), "Displacement too large for short jmp");
529    }
530  }
531#endif
532
533  // ------------------
534  // Compute size for code buffer
535  code_size   = blk_starts[i-1] + jmp_end[i-1];
536
537  // Relocation records
538  reloc_size += 1;              // Relo entry for exception handler
539
540  // Adjust reloc_size to number of record of relocation info
541  // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
542  // a relocation index.
543  // The CodeBuffer will expand the locs array if this estimate is too low.
544  reloc_size   *= 10 / sizeof(relocInfo);
545
546  // Adjust const_size to number of bytes
547  const_size   *= 2*jintSize; // both float and double take two words per entry
548
549}
550
551//------------------------------FillLocArray-----------------------------------
552// Create a bit of debug info and append it to the array.  The mapping is from
553// Java local or expression stack to constant, register or stack-slot.  For
554// doubles, insert 2 mappings and return 1 (to tell the caller that the next
555// entry has been taken care of and caller should skip it).
556static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
557  // This should never have accepted Bad before
558  assert(OptoReg::is_valid(regnum), "location must be valid");
559  return (OptoReg::is_reg(regnum))
560    ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
561    : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
562}
563
564
565ObjectValue*
566Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
567  for (int i = 0; i < objs->length(); i++) {
568    assert(objs->at(i)->is_object(), "corrupt object cache");
569    ObjectValue* sv = (ObjectValue*) objs->at(i);
570    if (sv->id() == id) {
571      return sv;
572    }
573  }
574  // Otherwise..
575  return NULL;
576}
577
578void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
579                                     ObjectValue* sv ) {
580  assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
581  objs->append(sv);
582}
583
584
585void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
586                            GrowableArray<ScopeValue*> *array,
587                            GrowableArray<ScopeValue*> *objs ) {
588  assert( local, "use _top instead of null" );
589  if (array->length() != idx) {
590    assert(array->length() == idx + 1, "Unexpected array count");
591    // Old functionality:
592    //   return
593    // New functionality:
594    //   Assert if the local is not top. In product mode let the new node
595    //   override the old entry.
596    assert(local == top(), "LocArray collision");
597    if (local == top()) {
598      return;
599    }
600    array->pop();
601  }
602  const Type *t = local->bottom_type();
603
604  // Is it a safepoint scalar object node?
605  if (local->is_SafePointScalarObject()) {
606    SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
607
608    ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
609    if (sv == NULL) {
610      ciKlass* cik = t->is_oopptr()->klass();
611      assert(cik->is_instance_klass() ||
612             cik->is_array_klass(), "Not supported allocation.");
613      sv = new ObjectValue(spobj->_idx,
614                           new ConstantOopWriteValue(cik->constant_encoding()));
615      Compile::set_sv_for_object_node(objs, sv);
616
617      uint first_ind = spobj->first_index();
618      for (uint i = 0; i < spobj->n_fields(); i++) {
619        Node* fld_node = sfpt->in(first_ind+i);
620        (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
621      }
622    }
623    array->append(sv);
624    return;
625  }
626
627  // Grab the register number for the local
628  OptoReg::Name regnum = _regalloc->get_reg_first(local);
629  if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
630    // Record the double as two float registers.
631    // The register mask for such a value always specifies two adjacent
632    // float registers, with the lower register number even.
633    // Normally, the allocation of high and low words to these registers
634    // is irrelevant, because nearly all operations on register pairs
635    // (e.g., StoreD) treat them as a single unit.
636    // Here, we assume in addition that the words in these two registers
637    // stored "naturally" (by operations like StoreD and double stores
638    // within the interpreter) such that the lower-numbered register
639    // is written to the lower memory address.  This may seem like
640    // a machine dependency, but it is not--it is a requirement on
641    // the author of the <arch>.ad file to ensure that, for every
642    // even/odd double-register pair to which a double may be allocated,
643    // the word in the even single-register is stored to the first
644    // memory word.  (Note that register numbers are completely
645    // arbitrary, and are not tied to any machine-level encodings.)
646#ifdef _LP64
647    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
648      array->append(new ConstantIntValue(0));
649      array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
650    } else if ( t->base() == Type::Long ) {
651      array->append(new ConstantIntValue(0));
652      array->append(new_loc_value( _regalloc, regnum, Location::lng ));
653    } else if ( t->base() == Type::RawPtr ) {
654      // jsr/ret return address which must be restored into a the full
655      // width 64-bit stack slot.
656      array->append(new_loc_value( _regalloc, regnum, Location::lng ));
657    }
658#else //_LP64
659#ifdef SPARC
660    if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
661      // For SPARC we have to swap high and low words for
662      // long values stored in a single-register (g0-g7).
663      array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
664      array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
665    } else
666#endif //SPARC
667    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
668      // Repack the double/long as two jints.
669      // The convention the interpreter uses is that the second local
670      // holds the first raw word of the native double representation.
671      // This is actually reasonable, since locals and stack arrays
672      // grow downwards in all implementations.
673      // (If, on some machine, the interpreter's Java locals or stack
674      // were to grow upwards, the embedded doubles would be word-swapped.)
675      array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
676      array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
677    }
678#endif //_LP64
679    else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
680               OptoReg::is_reg(regnum) ) {
681      array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
682                                   ? Location::float_in_dbl : Location::normal ));
683    } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
684      array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
685                                   ? Location::int_in_long : Location::normal ));
686    } else if( t->base() == Type::NarrowOop ) {
687      array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
688    } else {
689      array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
690    }
691    return;
692  }
693
694  // No register.  It must be constant data.
695  switch (t->base()) {
696  case Type::Half:              // Second half of a double
697    ShouldNotReachHere();       // Caller should skip 2nd halves
698    break;
699  case Type::AnyPtr:
700    array->append(new ConstantOopWriteValue(NULL));
701    break;
702  case Type::AryPtr:
703  case Type::InstPtr:
704  case Type::KlassPtr:          // fall through
705    array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
706    break;
707  case Type::NarrowOop:
708    if (t == TypeNarrowOop::NULL_PTR) {
709      array->append(new ConstantOopWriteValue(NULL));
710    } else {
711      array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
712    }
713    break;
714  case Type::Int:
715    array->append(new ConstantIntValue(t->is_int()->get_con()));
716    break;
717  case Type::RawPtr:
718    // A return address (T_ADDRESS).
719    assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
720#ifdef _LP64
721    // Must be restored to the full-width 64-bit stack slot.
722    array->append(new ConstantLongValue(t->is_ptr()->get_con()));
723#else
724    array->append(new ConstantIntValue(t->is_ptr()->get_con()));
725#endif
726    break;
727  case Type::FloatCon: {
728    float f = t->is_float_constant()->getf();
729    array->append(new ConstantIntValue(jint_cast(f)));
730    break;
731  }
732  case Type::DoubleCon: {
733    jdouble d = t->is_double_constant()->getd();
734#ifdef _LP64
735    array->append(new ConstantIntValue(0));
736    array->append(new ConstantDoubleValue(d));
737#else
738    // Repack the double as two jints.
739    // The convention the interpreter uses is that the second local
740    // holds the first raw word of the native double representation.
741    // This is actually reasonable, since locals and stack arrays
742    // grow downwards in all implementations.
743    // (If, on some machine, the interpreter's Java locals or stack
744    // were to grow upwards, the embedded doubles would be word-swapped.)
745    jint   *dp = (jint*)&d;
746    array->append(new ConstantIntValue(dp[1]));
747    array->append(new ConstantIntValue(dp[0]));
748#endif
749    break;
750  }
751  case Type::Long: {
752    jlong d = t->is_long()->get_con();
753#ifdef _LP64
754    array->append(new ConstantIntValue(0));
755    array->append(new ConstantLongValue(d));
756#else
757    // Repack the long as two jints.
758    // The convention the interpreter uses is that the second local
759    // holds the first raw word of the native double representation.
760    // This is actually reasonable, since locals and stack arrays
761    // grow downwards in all implementations.
762    // (If, on some machine, the interpreter's Java locals or stack
763    // were to grow upwards, the embedded doubles would be word-swapped.)
764    jint *dp = (jint*)&d;
765    array->append(new ConstantIntValue(dp[1]));
766    array->append(new ConstantIntValue(dp[0]));
767#endif
768    break;
769  }
770  case Type::Top:               // Add an illegal value here
771    array->append(new LocationValue(Location()));
772    break;
773  default:
774    ShouldNotReachHere();
775    break;
776  }
777}
778
779// Determine if this node starts a bundle
780bool Compile::starts_bundle(const Node *n) const {
781  return (_node_bundling_limit > n->_idx &&
782          _node_bundling_base[n->_idx].starts_bundle());
783}
784
785//--------------------------Process_OopMap_Node--------------------------------
786void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
787
788  // Handle special safepoint nodes for synchronization
789  MachSafePointNode *sfn   = mach->as_MachSafePoint();
790  MachCallNode      *mcall;
791
792#ifdef ENABLE_ZAP_DEAD_LOCALS
793  assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
794#endif
795
796  int safepoint_pc_offset = current_offset;
797  bool is_method_handle_invoke = false;
798  bool return_oop = false;
799
800  // Add the safepoint in the DebugInfoRecorder
801  if( !mach->is_MachCall() ) {
802    mcall = NULL;
803    debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
804  } else {
805    mcall = mach->as_MachCall();
806
807    // Is the call a MethodHandle call?
808    if (mcall->is_MachCallJava()) {
809      if (mcall->as_MachCallJava()->_method_handle_invoke) {
810        assert(has_method_handle_invokes(), "must have been set during call generation");
811        is_method_handle_invoke = true;
812      }
813    }
814
815    // Check if a call returns an object.
816    if (mcall->return_value_is_used() &&
817        mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
818      return_oop = true;
819    }
820    safepoint_pc_offset += mcall->ret_addr_offset();
821    debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
822  }
823
824  // Loop over the JVMState list to add scope information
825  // Do not skip safepoints with a NULL method, they need monitor info
826  JVMState* youngest_jvms = sfn->jvms();
827  int max_depth = youngest_jvms->depth();
828
829  // Allocate the object pool for scalar-replaced objects -- the map from
830  // small-integer keys (which can be recorded in the local and ostack
831  // arrays) to descriptions of the object state.
832  GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
833
834  // Visit scopes from oldest to youngest.
835  for (int depth = 1; depth <= max_depth; depth++) {
836    JVMState* jvms = youngest_jvms->of_depth(depth);
837    int idx;
838    ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
839    // Safepoints that do not have method() set only provide oop-map and monitor info
840    // to support GC; these do not support deoptimization.
841    int num_locs = (method == NULL) ? 0 : jvms->loc_size();
842    int num_exps = (method == NULL) ? 0 : jvms->stk_size();
843    int num_mon  = jvms->nof_monitors();
844    assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
845           "JVMS local count must match that of the method");
846
847    // Add Local and Expression Stack Information
848
849    // Insert locals into the locarray
850    GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
851    for( idx = 0; idx < num_locs; idx++ ) {
852      FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
853    }
854
855    // Insert expression stack entries into the exparray
856    GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
857    for( idx = 0; idx < num_exps; idx++ ) {
858      FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
859    }
860
861    // Add in mappings of the monitors
862    assert( !method ||
863            !method->is_synchronized() ||
864            method->is_native() ||
865            num_mon > 0 ||
866            !GenerateSynchronizationCode,
867            "monitors must always exist for synchronized methods");
868
869    // Build the growable array of ScopeValues for exp stack
870    GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
871
872    // Loop over monitors and insert into array
873    for(idx = 0; idx < num_mon; idx++) {
874      // Grab the node that defines this monitor
875      Node* box_node = sfn->monitor_box(jvms, idx);
876      Node* obj_node = sfn->monitor_obj(jvms, idx);
877
878      // Create ScopeValue for object
879      ScopeValue *scval = NULL;
880
881      if( obj_node->is_SafePointScalarObject() ) {
882        SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
883        scval = Compile::sv_for_node_id(objs, spobj->_idx);
884        if (scval == NULL) {
885          const Type *t = obj_node->bottom_type();
886          ciKlass* cik = t->is_oopptr()->klass();
887          assert(cik->is_instance_klass() ||
888                 cik->is_array_klass(), "Not supported allocation.");
889          ObjectValue* sv = new ObjectValue(spobj->_idx,
890                                new ConstantOopWriteValue(cik->constant_encoding()));
891          Compile::set_sv_for_object_node(objs, sv);
892
893          uint first_ind = spobj->first_index();
894          for (uint i = 0; i < spobj->n_fields(); i++) {
895            Node* fld_node = sfn->in(first_ind+i);
896            (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
897          }
898          scval = sv;
899        }
900      } else if( !obj_node->is_Con() ) {
901        OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
902        if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
903          scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
904        } else {
905          scval = new_loc_value( _regalloc, obj_reg, Location::oop );
906        }
907      } else {
908        const TypePtr *tp = obj_node->bottom_type()->make_ptr();
909        scval = new ConstantOopWriteValue(tp->is_instptr()->const_oop()->constant_encoding());
910      }
911
912      OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node);
913      Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
914      while( !box_node->is_BoxLock() )  box_node = box_node->in(1);
915      monarray->append(new MonitorValue(scval, basic_lock, box_node->as_BoxLock()->is_eliminated()));
916    }
917
918    // We dump the object pool first, since deoptimization reads it in first.
919    debug_info()->dump_object_pool(objs);
920
921    // Build first class objects to pass to scope
922    DebugToken *locvals = debug_info()->create_scope_values(locarray);
923    DebugToken *expvals = debug_info()->create_scope_values(exparray);
924    DebugToken *monvals = debug_info()->create_monitor_values(monarray);
925
926    // Make method available for all Safepoints
927    ciMethod* scope_method = method ? method : _method;
928    // Describe the scope here
929    assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
930    assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
931    // Now we can describe the scope.
932    debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
933  } // End jvms loop
934
935  // Mark the end of the scope set.
936  debug_info()->end_safepoint(safepoint_pc_offset);
937}
938
939
940
941// A simplified version of Process_OopMap_Node, to handle non-safepoints.
942class NonSafepointEmitter {
943  Compile*  C;
944  JVMState* _pending_jvms;
945  int       _pending_offset;
946
947  void emit_non_safepoint();
948
949 public:
950  NonSafepointEmitter(Compile* compile) {
951    this->C = compile;
952    _pending_jvms = NULL;
953    _pending_offset = 0;
954  }
955
956  void observe_instruction(Node* n, int pc_offset) {
957    if (!C->debug_info()->recording_non_safepoints())  return;
958
959    Node_Notes* nn = C->node_notes_at(n->_idx);
960    if (nn == NULL || nn->jvms() == NULL)  return;
961    if (_pending_jvms != NULL &&
962        _pending_jvms->same_calls_as(nn->jvms())) {
963      // Repeated JVMS?  Stretch it up here.
964      _pending_offset = pc_offset;
965    } else {
966      if (_pending_jvms != NULL &&
967          _pending_offset < pc_offset) {
968        emit_non_safepoint();
969      }
970      _pending_jvms = NULL;
971      if (pc_offset > C->debug_info()->last_pc_offset()) {
972        // This is the only way _pending_jvms can become non-NULL:
973        _pending_jvms = nn->jvms();
974        _pending_offset = pc_offset;
975      }
976    }
977  }
978
979  // Stay out of the way of real safepoints:
980  void observe_safepoint(JVMState* jvms, int pc_offset) {
981    if (_pending_jvms != NULL &&
982        !_pending_jvms->same_calls_as(jvms) &&
983        _pending_offset < pc_offset) {
984      emit_non_safepoint();
985    }
986    _pending_jvms = NULL;
987  }
988
989  void flush_at_end() {
990    if (_pending_jvms != NULL) {
991      emit_non_safepoint();
992    }
993    _pending_jvms = NULL;
994  }
995};
996
997void NonSafepointEmitter::emit_non_safepoint() {
998  JVMState* youngest_jvms = _pending_jvms;
999  int       pc_offset     = _pending_offset;
1000
1001  // Clear it now:
1002  _pending_jvms = NULL;
1003
1004  DebugInformationRecorder* debug_info = C->debug_info();
1005  assert(debug_info->recording_non_safepoints(), "sanity");
1006
1007  debug_info->add_non_safepoint(pc_offset);
1008  int max_depth = youngest_jvms->depth();
1009
1010  // Visit scopes from oldest to youngest.
1011  for (int depth = 1; depth <= max_depth; depth++) {
1012    JVMState* jvms = youngest_jvms->of_depth(depth);
1013    ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1014    assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1015    debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
1016  }
1017
1018  // Mark the end of the scope set.
1019  debug_info->end_non_safepoint(pc_offset);
1020}
1021
1022
1023
1024// helper for Fill_buffer bailout logic
1025static void turn_off_compiler(Compile* C) {
1026  if (CodeCache::unallocated_capacity() >= CodeCacheMinimumFreeSpace*10) {
1027    // Do not turn off compilation if a single giant method has
1028    // blown the code cache size.
1029    C->record_failure("excessive request to CodeCache");
1030  } else {
1031    // Let CompilerBroker disable further compilations.
1032    C->record_failure("CodeCache is full");
1033  }
1034}
1035
1036
1037//------------------------------Fill_buffer------------------------------------
1038void Compile::Fill_buffer() {
1039
1040  // Set the initially allocated size
1041  int  code_req   = initial_code_capacity;
1042  int  locs_req   = initial_locs_capacity;
1043  int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
1044  int  const_req  = initial_const_capacity;
1045  bool labels_not_set = true;
1046
1047  int  pad_req    = NativeCall::instruction_size;
1048  // The extra spacing after the code is necessary on some platforms.
1049  // Sometimes we need to patch in a jump after the last instruction,
1050  // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1051
1052  uint i;
1053  // Compute the byte offset where we can store the deopt pc.
1054  if (fixed_slots() != 0) {
1055    _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1056  }
1057
1058  // Compute prolog code size
1059  _method_size = 0;
1060  _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
1061#ifdef IA64
1062  if (save_argument_registers()) {
1063    // 4815101: this is a stub with implicit and unknown precision fp args.
1064    // The usual spill mechanism can only generate stfd's in this case, which
1065    // doesn't work if the fp reg to spill contains a single-precision denorm.
1066    // Instead, we hack around the normal spill mechanism using stfspill's and
1067    // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1068    // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1069    //
1070    // If we ever implement 16-byte 'registers' == stack slots, we can
1071    // get rid of this hack and have SpillCopy generate stfspill/ldffill
1072    // instead of stfd/stfs/ldfd/ldfs.
1073    _frame_slots += 8*(16/BytesPerInt);
1074  }
1075#endif
1076  assert( _frame_slots >= 0 && _frame_slots < 1000000, "sanity check" );
1077
1078  // Create an array of unused labels, one for each basic block
1079  Label *blk_labels = NEW_RESOURCE_ARRAY(Label, _cfg->_num_blocks+1);
1080
1081  for( i=0; i <= _cfg->_num_blocks; i++ ) {
1082    blk_labels[i].init();
1083  }
1084
1085  // If this machine supports different size branch offsets, then pre-compute
1086  // the length of the blocks
1087  if( _matcher->is_short_branch_offset(-1, 0) ) {
1088    Shorten_branches(blk_labels, code_req, locs_req, stub_req, const_req);
1089    labels_not_set = false;
1090  }
1091
1092  // nmethod and CodeBuffer count stubs & constants as part of method's code.
1093  int exception_handler_req = size_exception_handler();
1094  int deopt_handler_req = size_deopt_handler();
1095  exception_handler_req += MAX_stubs_size; // add marginal slop for handler
1096  deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
1097  stub_req += MAX_stubs_size;   // ensure per-stub margin
1098  code_req += MAX_inst_size;    // ensure per-instruction margin
1099
1100  if (StressCodeBuffers)
1101    code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1102
1103  int total_req =
1104    code_req +
1105    pad_req +
1106    stub_req +
1107    exception_handler_req +
1108    deopt_handler_req +              // deopt handler
1109    const_req;
1110
1111  if (has_method_handle_invokes())
1112    total_req += deopt_handler_req;  // deopt MH handler
1113
1114  CodeBuffer* cb = code_buffer();
1115  cb->initialize(total_req, locs_req);
1116
1117  // Have we run out of code space?
1118  if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1119    turn_off_compiler(this);
1120    return;
1121  }
1122  // Configure the code buffer.
1123  cb->initialize_consts_size(const_req);
1124  cb->initialize_stubs_size(stub_req);
1125  cb->initialize_oop_recorder(env()->oop_recorder());
1126
1127  // fill in the nop array for bundling computations
1128  MachNode *_nop_list[Bundle::_nop_count];
1129  Bundle::initialize_nops(_nop_list, this);
1130
1131  // Create oopmap set.
1132  _oop_map_set = new OopMapSet();
1133
1134  // !!!!! This preserves old handling of oopmaps for now
1135  debug_info()->set_oopmaps(_oop_map_set);
1136
1137  // Count and start of implicit null check instructions
1138  uint inct_cnt = 0;
1139  uint *inct_starts = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
1140
1141  // Count and start of calls
1142  uint *call_returns = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
1143
1144  uint  return_offset = 0;
1145  int nop_size = (new (this) MachNopNode())->size(_regalloc);
1146
1147  int previous_offset = 0;
1148  int current_offset  = 0;
1149  int last_call_offset = -1;
1150
1151  // Create an array of unused labels, one for each basic block, if printing is enabled
1152#ifndef PRODUCT
1153  int *node_offsets      = NULL;
1154  uint  node_offset_limit = unique();
1155
1156
1157  if ( print_assembly() )
1158    node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1159#endif
1160
1161  NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1162
1163  // ------------------
1164  // Now fill in the code buffer
1165  Node *delay_slot = NULL;
1166
1167  for( i=0; i < _cfg->_num_blocks; i++ ) {
1168    Block *b = _cfg->_blocks[i];
1169
1170    Node *head = b->head();
1171
1172    // If this block needs to start aligned (i.e, can be reached other
1173    // than by falling-thru from the previous block), then force the
1174    // start of a new bundle.
1175    if( Pipeline::requires_bundling() && starts_bundle(head) )
1176      cb->flush_bundle(true);
1177
1178    // Define the label at the beginning of the basic block
1179    if( labels_not_set )
1180      MacroAssembler(cb).bind( blk_labels[b->_pre_order] );
1181
1182    else
1183      assert( blk_labels[b->_pre_order].loc_pos() == cb->code_size(),
1184              "label position does not match code offset" );
1185
1186    uint last_inst = b->_nodes.size();
1187
1188    // Emit block normally, except for last instruction.
1189    // Emit means "dump code bits into code buffer".
1190    for( uint j = 0; j<last_inst; j++ ) {
1191
1192      // Get the node
1193      Node* n = b->_nodes[j];
1194
1195      // See if delay slots are supported
1196      if (valid_bundle_info(n) &&
1197          node_bundling(n)->used_in_unconditional_delay()) {
1198        assert(delay_slot == NULL, "no use of delay slot node");
1199        assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1200
1201        delay_slot = n;
1202        continue;
1203      }
1204
1205      // If this starts a new instruction group, then flush the current one
1206      // (but allow split bundles)
1207      if( Pipeline::requires_bundling() && starts_bundle(n) )
1208        cb->flush_bundle(false);
1209
1210      // The following logic is duplicated in the code ifdeffed for
1211      // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1212      // should be factored out.  Or maybe dispersed to the nodes?
1213
1214      // Special handling for SafePoint/Call Nodes
1215      bool is_mcall = false;
1216      if( n->is_Mach() ) {
1217        MachNode *mach = n->as_Mach();
1218        is_mcall = n->is_MachCall();
1219        bool is_sfn = n->is_MachSafePoint();
1220
1221        // If this requires all previous instructions be flushed, then do so
1222        if( is_sfn || is_mcall || mach->alignment_required() != 1) {
1223          cb->flush_bundle(true);
1224          current_offset = cb->code_size();
1225        }
1226
1227        // align the instruction if necessary
1228        int padding = mach->compute_padding(current_offset);
1229        // Make sure safepoint node for polling is distinct from a call's
1230        // return by adding a nop if needed.
1231        if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset ) {
1232          padding = nop_size;
1233        }
1234        assert( labels_not_set || padding == 0, "instruction should already be aligned");
1235
1236        if(padding > 0) {
1237          assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1238          int nops_cnt = padding / nop_size;
1239          MachNode *nop = new (this) MachNopNode(nops_cnt);
1240          b->_nodes.insert(j++, nop);
1241          last_inst++;
1242          _cfg->_bbs.map( nop->_idx, b );
1243          nop->emit(*cb, _regalloc);
1244          cb->flush_bundle(true);
1245          current_offset = cb->code_size();
1246        }
1247
1248        // Remember the start of the last call in a basic block
1249        if (is_mcall) {
1250          MachCallNode *mcall = mach->as_MachCall();
1251
1252          // This destination address is NOT PC-relative
1253          mcall->method_set((intptr_t)mcall->entry_point());
1254
1255          // Save the return address
1256          call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
1257
1258          if (!mcall->is_safepoint_node()) {
1259            is_mcall = false;
1260            is_sfn = false;
1261          }
1262        }
1263
1264        // sfn will be valid whenever mcall is valid now because of inheritance
1265        if( is_sfn || is_mcall ) {
1266
1267          // Handle special safepoint nodes for synchronization
1268          if( !is_mcall ) {
1269            MachSafePointNode *sfn = mach->as_MachSafePoint();
1270            // !!!!! Stubs only need an oopmap right now, so bail out
1271            if( sfn->jvms()->method() == NULL) {
1272              // Write the oopmap directly to the code blob??!!
1273#             ifdef ENABLE_ZAP_DEAD_LOCALS
1274              assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1275#             endif
1276              continue;
1277            }
1278          } // End synchronization
1279
1280          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1281                                           current_offset);
1282          Process_OopMap_Node(mach, current_offset);
1283        } // End if safepoint
1284
1285        // If this is a null check, then add the start of the previous instruction to the list
1286        else if( mach->is_MachNullCheck() ) {
1287          inct_starts[inct_cnt++] = previous_offset;
1288        }
1289
1290        // If this is a branch, then fill in the label with the target BB's label
1291        else if ( mach->is_Branch() ) {
1292
1293          if ( mach->ideal_Opcode() == Op_Jump ) {
1294            for (uint h = 0; h < b->_num_succs; h++ ) {
1295              Block* succs_block = b->_succs[h];
1296              for (uint j = 1; j < succs_block->num_preds(); j++) {
1297                Node* jpn = succs_block->pred(j);
1298                if ( jpn->is_JumpProj() && jpn->in(0) == mach ) {
1299                  uint block_num = succs_block->non_connector()->_pre_order;
1300                  Label *blkLabel = &blk_labels[block_num];
1301                  mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1302                }
1303              }
1304            }
1305          } else {
1306            // For Branchs
1307            // This requires the TRUE branch target be in succs[0]
1308            uint block_num = b->non_connector_successor(0)->_pre_order;
1309            mach->label_set( blk_labels[block_num], block_num );
1310          }
1311        }
1312
1313#ifdef ASSERT
1314        // Check that oop-store precedes the card-mark
1315        else if( mach->ideal_Opcode() == Op_StoreCM ) {
1316          uint storeCM_idx = j;
1317          Node *oop_store = mach->in(mach->_cnt);  // First precedence edge
1318          assert( oop_store != NULL, "storeCM expects a precedence edge");
1319          uint i4;
1320          for( i4 = 0; i4 < last_inst; ++i4 ) {
1321            if( b->_nodes[i4] == oop_store ) break;
1322          }
1323          // Note: This test can provide a false failure if other precedence
1324          // edges have been added to the storeCMNode.
1325          assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1326        }
1327#endif
1328
1329        else if( !n->is_Proj() ) {
1330          // Remember the beginning of the previous instruction, in case
1331          // it's followed by a flag-kill and a null-check.  Happens on
1332          // Intel all the time, with add-to-memory kind of opcodes.
1333          previous_offset = current_offset;
1334        }
1335      }
1336
1337      // Verify that there is sufficient space remaining
1338      cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1339      if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1340        turn_off_compiler(this);
1341        return;
1342      }
1343
1344      // Save the offset for the listing
1345#ifndef PRODUCT
1346      if( node_offsets && n->_idx < node_offset_limit )
1347        node_offsets[n->_idx] = cb->code_size();
1348#endif
1349
1350      // "Normal" instruction case
1351      n->emit(*cb, _regalloc);
1352      current_offset  = cb->code_size();
1353      non_safepoints.observe_instruction(n, current_offset);
1354
1355      // mcall is last "call" that can be a safepoint
1356      // record it so we can see if a poll will directly follow it
1357      // in which case we'll need a pad to make the PcDesc sites unique
1358      // see  5010568. This can be slightly inaccurate but conservative
1359      // in the case that return address is not actually at current_offset.
1360      // This is a small price to pay.
1361
1362      if (is_mcall) {
1363        last_call_offset = current_offset;
1364      }
1365
1366      // See if this instruction has a delay slot
1367      if ( valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1368        assert(delay_slot != NULL, "expecting delay slot node");
1369
1370        // Back up 1 instruction
1371        cb->set_code_end(
1372          cb->code_end()-Pipeline::instr_unit_size());
1373
1374        // Save the offset for the listing
1375#ifndef PRODUCT
1376        if( node_offsets && delay_slot->_idx < node_offset_limit )
1377          node_offsets[delay_slot->_idx] = cb->code_size();
1378#endif
1379
1380        // Support a SafePoint in the delay slot
1381        if( delay_slot->is_MachSafePoint() ) {
1382          MachNode *mach = delay_slot->as_Mach();
1383          // !!!!! Stubs only need an oopmap right now, so bail out
1384          if( !mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL ) {
1385            // Write the oopmap directly to the code blob??!!
1386#           ifdef ENABLE_ZAP_DEAD_LOCALS
1387            assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1388#           endif
1389            delay_slot = NULL;
1390            continue;
1391          }
1392
1393          int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1394          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1395                                           adjusted_offset);
1396          // Generate an OopMap entry
1397          Process_OopMap_Node(mach, adjusted_offset);
1398        }
1399
1400        // Insert the delay slot instruction
1401        delay_slot->emit(*cb, _regalloc);
1402
1403        // Don't reuse it
1404        delay_slot = NULL;
1405      }
1406
1407    } // End for all instructions in block
1408
1409    // If the next block is the top of a loop, pad this block out to align
1410    // the loop top a little. Helps prevent pipe stalls at loop back branches.
1411    if( i<_cfg->_num_blocks-1 ) {
1412      Block *nb = _cfg->_blocks[i+1];
1413      uint padding = nb->alignment_padding(current_offset);
1414      if( padding > 0 ) {
1415        MachNode *nop = new (this) MachNopNode(padding / nop_size);
1416        b->_nodes.insert( b->_nodes.size(), nop );
1417        _cfg->_bbs.map( nop->_idx, b );
1418        nop->emit(*cb, _regalloc);
1419        current_offset = cb->code_size();
1420      }
1421    }
1422
1423  } // End of for all blocks
1424
1425  non_safepoints.flush_at_end();
1426
1427  // Offset too large?
1428  if (failing())  return;
1429
1430  // Define a pseudo-label at the end of the code
1431  MacroAssembler(cb).bind( blk_labels[_cfg->_num_blocks] );
1432
1433  // Compute the size of the first block
1434  _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1435
1436  assert(cb->code_size() < 500000, "method is unreasonably large");
1437
1438  // ------------------
1439
1440#ifndef PRODUCT
1441  // Information on the size of the method, without the extraneous code
1442  Scheduling::increment_method_size(cb->code_size());
1443#endif
1444
1445  // ------------------
1446  // Fill in exception table entries.
1447  FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1448
1449  // Only java methods have exception handlers and deopt handlers
1450  if (_method) {
1451    // Emit the exception handler code.
1452    _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
1453    // Emit the deopt handler code.
1454    _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
1455
1456    // Emit the MethodHandle deopt handler code (if required).
1457    if (has_method_handle_invokes()) {
1458      // We can use the same code as for the normal deopt handler, we
1459      // just need a different entry point address.
1460      _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
1461    }
1462  }
1463
1464  // One last check for failed CodeBuffer::expand:
1465  if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1466    turn_off_compiler(this);
1467    return;
1468  }
1469
1470#ifndef PRODUCT
1471  // Dump the assembly code, including basic-block numbers
1472  if (print_assembly()) {
1473    ttyLocker ttyl;  // keep the following output all in one block
1474    if (!VMThread::should_terminate()) {  // test this under the tty lock
1475      // This output goes directly to the tty, not the compiler log.
1476      // To enable tools to match it up with the compilation activity,
1477      // be sure to tag this tty output with the compile ID.
1478      if (xtty != NULL) {
1479        xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1480                   is_osr_compilation()    ? " compile_kind='osr'" :
1481                   "");
1482      }
1483      if (method() != NULL) {
1484        method()->print_oop();
1485        print_codes();
1486      }
1487      dump_asm(node_offsets, node_offset_limit);
1488      if (xtty != NULL) {
1489        xtty->tail("opto_assembly");
1490      }
1491    }
1492  }
1493#endif
1494
1495}
1496
1497void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1498  _inc_table.set_size(cnt);
1499
1500  uint inct_cnt = 0;
1501  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1502    Block *b = _cfg->_blocks[i];
1503    Node *n = NULL;
1504    int j;
1505
1506    // Find the branch; ignore trailing NOPs.
1507    for( j = b->_nodes.size()-1; j>=0; j-- ) {
1508      n = b->_nodes[j];
1509      if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
1510        break;
1511    }
1512
1513    // If we didn't find anything, continue
1514    if( j < 0 ) continue;
1515
1516    // Compute ExceptionHandlerTable subtable entry and add it
1517    // (skip empty blocks)
1518    if( n->is_Catch() ) {
1519
1520      // Get the offset of the return from the call
1521      uint call_return = call_returns[b->_pre_order];
1522#ifdef ASSERT
1523      assert( call_return > 0, "no call seen for this basic block" );
1524      while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
1525      assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
1526#endif
1527      // last instruction is a CatchNode, find it's CatchProjNodes
1528      int nof_succs = b->_num_succs;
1529      // allocate space
1530      GrowableArray<intptr_t> handler_bcis(nof_succs);
1531      GrowableArray<intptr_t> handler_pcos(nof_succs);
1532      // iterate through all successors
1533      for (int j = 0; j < nof_succs; j++) {
1534        Block* s = b->_succs[j];
1535        bool found_p = false;
1536        for( uint k = 1; k < s->num_preds(); k++ ) {
1537          Node *pk = s->pred(k);
1538          if( pk->is_CatchProj() && pk->in(0) == n ) {
1539            const CatchProjNode* p = pk->as_CatchProj();
1540            found_p = true;
1541            // add the corresponding handler bci & pco information
1542            if( p->_con != CatchProjNode::fall_through_index ) {
1543              // p leads to an exception handler (and is not fall through)
1544              assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
1545              // no duplicates, please
1546              if( !handler_bcis.contains(p->handler_bci()) ) {
1547                uint block_num = s->non_connector()->_pre_order;
1548                handler_bcis.append(p->handler_bci());
1549                handler_pcos.append(blk_labels[block_num].loc_pos());
1550              }
1551            }
1552          }
1553        }
1554        assert(found_p, "no matching predecessor found");
1555        // Note:  Due to empty block removal, one block may have
1556        // several CatchProj inputs, from the same Catch.
1557      }
1558
1559      // Set the offset of the return from the call
1560      _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1561      continue;
1562    }
1563
1564    // Handle implicit null exception table updates
1565    if( n->is_MachNullCheck() ) {
1566      uint block_num = b->non_connector_successor(0)->_pre_order;
1567      _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
1568      continue;
1569    }
1570  } // End of for all blocks fill in exception table entries
1571}
1572
1573// Static Variables
1574#ifndef PRODUCT
1575uint Scheduling::_total_nop_size = 0;
1576uint Scheduling::_total_method_size = 0;
1577uint Scheduling::_total_branches = 0;
1578uint Scheduling::_total_unconditional_delays = 0;
1579uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1580#endif
1581
1582// Initializer for class Scheduling
1583
1584Scheduling::Scheduling(Arena *arena, Compile &compile)
1585  : _arena(arena),
1586    _cfg(compile.cfg()),
1587    _bbs(compile.cfg()->_bbs),
1588    _regalloc(compile.regalloc()),
1589    _reg_node(arena),
1590    _bundle_instr_count(0),
1591    _bundle_cycle_number(0),
1592    _scheduled(arena),
1593    _available(arena),
1594    _next_node(NULL),
1595    _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1596    _pinch_free_list(arena)
1597#ifndef PRODUCT
1598  , _branches(0)
1599  , _unconditional_delays(0)
1600#endif
1601{
1602  // Create a MachNopNode
1603  _nop = new (&compile) MachNopNode();
1604
1605  // Now that the nops are in the array, save the count
1606  // (but allow entries for the nops)
1607  _node_bundling_limit = compile.unique();
1608  uint node_max = _regalloc->node_regs_max_index();
1609
1610  compile.set_node_bundling_limit(_node_bundling_limit);
1611
1612  // This one is persistent within the Compile class
1613  _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1614
1615  // Allocate space for fixed-size arrays
1616  _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1617  _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1618  _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1619
1620  // Clear the arrays
1621  memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1622  memset(_node_latency,       0, node_max * sizeof(unsigned short));
1623  memset(_uses,               0, node_max * sizeof(short));
1624  memset(_current_latency,    0, node_max * sizeof(unsigned short));
1625
1626  // Clear the bundling information
1627  memcpy(_bundle_use_elements,
1628    Pipeline_Use::elaborated_elements,
1629    sizeof(Pipeline_Use::elaborated_elements));
1630
1631  // Get the last node
1632  Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
1633
1634  _next_node = bb->_nodes[bb->_nodes.size()-1];
1635}
1636
1637#ifndef PRODUCT
1638// Scheduling destructor
1639Scheduling::~Scheduling() {
1640  _total_branches             += _branches;
1641  _total_unconditional_delays += _unconditional_delays;
1642}
1643#endif
1644
1645// Step ahead "i" cycles
1646void Scheduling::step(uint i) {
1647
1648  Bundle *bundle = node_bundling(_next_node);
1649  bundle->set_starts_bundle();
1650
1651  // Update the bundle record, but leave the flags information alone
1652  if (_bundle_instr_count > 0) {
1653    bundle->set_instr_count(_bundle_instr_count);
1654    bundle->set_resources_used(_bundle_use.resourcesUsed());
1655  }
1656
1657  // Update the state information
1658  _bundle_instr_count = 0;
1659  _bundle_cycle_number += i;
1660  _bundle_use.step(i);
1661}
1662
1663void Scheduling::step_and_clear() {
1664  Bundle *bundle = node_bundling(_next_node);
1665  bundle->set_starts_bundle();
1666
1667  // Update the bundle record
1668  if (_bundle_instr_count > 0) {
1669    bundle->set_instr_count(_bundle_instr_count);
1670    bundle->set_resources_used(_bundle_use.resourcesUsed());
1671
1672    _bundle_cycle_number += 1;
1673  }
1674
1675  // Clear the bundling information
1676  _bundle_instr_count = 0;
1677  _bundle_use.reset();
1678
1679  memcpy(_bundle_use_elements,
1680    Pipeline_Use::elaborated_elements,
1681    sizeof(Pipeline_Use::elaborated_elements));
1682}
1683
1684//------------------------------ScheduleAndBundle------------------------------
1685// Perform instruction scheduling and bundling over the sequence of
1686// instructions in backwards order.
1687void Compile::ScheduleAndBundle() {
1688
1689  // Don't optimize this if it isn't a method
1690  if (!_method)
1691    return;
1692
1693  // Don't optimize this if scheduling is disabled
1694  if (!do_scheduling())
1695    return;
1696
1697  NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1698
1699  // Create a data structure for all the scheduling information
1700  Scheduling scheduling(Thread::current()->resource_area(), *this);
1701
1702  // Walk backwards over each basic block, computing the needed alignment
1703  // Walk over all the basic blocks
1704  scheduling.DoScheduling();
1705}
1706
1707//------------------------------ComputeLocalLatenciesForward-------------------
1708// Compute the latency of all the instructions.  This is fairly simple,
1709// because we already have a legal ordering.  Walk over the instructions
1710// from first to last, and compute the latency of the instruction based
1711// on the latency of the preceding instruction(s).
1712void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1713#ifndef PRODUCT
1714  if (_cfg->C->trace_opto_output())
1715    tty->print("# -> ComputeLocalLatenciesForward\n");
1716#endif
1717
1718  // Walk over all the schedulable instructions
1719  for( uint j=_bb_start; j < _bb_end; j++ ) {
1720
1721    // This is a kludge, forcing all latency calculations to start at 1.
1722    // Used to allow latency 0 to force an instruction to the beginning
1723    // of the bb
1724    uint latency = 1;
1725    Node *use = bb->_nodes[j];
1726    uint nlen = use->len();
1727
1728    // Walk over all the inputs
1729    for ( uint k=0; k < nlen; k++ ) {
1730      Node *def = use->in(k);
1731      if (!def)
1732        continue;
1733
1734      uint l = _node_latency[def->_idx] + use->latency(k);
1735      if (latency < l)
1736        latency = l;
1737    }
1738
1739    _node_latency[use->_idx] = latency;
1740
1741#ifndef PRODUCT
1742    if (_cfg->C->trace_opto_output()) {
1743      tty->print("# latency %4d: ", latency);
1744      use->dump();
1745    }
1746#endif
1747  }
1748
1749#ifndef PRODUCT
1750  if (_cfg->C->trace_opto_output())
1751    tty->print("# <- ComputeLocalLatenciesForward\n");
1752#endif
1753
1754} // end ComputeLocalLatenciesForward
1755
1756// See if this node fits into the present instruction bundle
1757bool Scheduling::NodeFitsInBundle(Node *n) {
1758  uint n_idx = n->_idx;
1759
1760  // If this is the unconditional delay instruction, then it fits
1761  if (n == _unconditional_delay_slot) {
1762#ifndef PRODUCT
1763    if (_cfg->C->trace_opto_output())
1764      tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1765#endif
1766    return (true);
1767  }
1768
1769  // If the node cannot be scheduled this cycle, skip it
1770  if (_current_latency[n_idx] > _bundle_cycle_number) {
1771#ifndef PRODUCT
1772    if (_cfg->C->trace_opto_output())
1773      tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1774        n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1775#endif
1776    return (false);
1777  }
1778
1779  const Pipeline *node_pipeline = n->pipeline();
1780
1781  uint instruction_count = node_pipeline->instructionCount();
1782  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1783    instruction_count = 0;
1784  else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1785    instruction_count++;
1786
1787  if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1788#ifndef PRODUCT
1789    if (_cfg->C->trace_opto_output())
1790      tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1791        n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1792#endif
1793    return (false);
1794  }
1795
1796  // Don't allow non-machine nodes to be handled this way
1797  if (!n->is_Mach() && instruction_count == 0)
1798    return (false);
1799
1800  // See if there is any overlap
1801  uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1802
1803  if (delay > 0) {
1804#ifndef PRODUCT
1805    if (_cfg->C->trace_opto_output())
1806      tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1807#endif
1808    return false;
1809  }
1810
1811#ifndef PRODUCT
1812  if (_cfg->C->trace_opto_output())
1813    tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
1814#endif
1815
1816  return true;
1817}
1818
1819Node * Scheduling::ChooseNodeToBundle() {
1820  uint siz = _available.size();
1821
1822  if (siz == 0) {
1823
1824#ifndef PRODUCT
1825    if (_cfg->C->trace_opto_output())
1826      tty->print("#   ChooseNodeToBundle: NULL\n");
1827#endif
1828    return (NULL);
1829  }
1830
1831  // Fast path, if only 1 instruction in the bundle
1832  if (siz == 1) {
1833#ifndef PRODUCT
1834    if (_cfg->C->trace_opto_output()) {
1835      tty->print("#   ChooseNodeToBundle (only 1): ");
1836      _available[0]->dump();
1837    }
1838#endif
1839    return (_available[0]);
1840  }
1841
1842  // Don't bother, if the bundle is already full
1843  if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
1844    for ( uint i = 0; i < siz; i++ ) {
1845      Node *n = _available[i];
1846
1847      // Skip projections, we'll handle them another way
1848      if (n->is_Proj())
1849        continue;
1850
1851      // This presupposed that instructions are inserted into the
1852      // available list in a legality order; i.e. instructions that
1853      // must be inserted first are at the head of the list
1854      if (NodeFitsInBundle(n)) {
1855#ifndef PRODUCT
1856        if (_cfg->C->trace_opto_output()) {
1857          tty->print("#   ChooseNodeToBundle: ");
1858          n->dump();
1859        }
1860#endif
1861        return (n);
1862      }
1863    }
1864  }
1865
1866  // Nothing fits in this bundle, choose the highest priority
1867#ifndef PRODUCT
1868  if (_cfg->C->trace_opto_output()) {
1869    tty->print("#   ChooseNodeToBundle: ");
1870    _available[0]->dump();
1871  }
1872#endif
1873
1874  return _available[0];
1875}
1876
1877//------------------------------AddNodeToAvailableList-------------------------
1878void Scheduling::AddNodeToAvailableList(Node *n) {
1879  assert( !n->is_Proj(), "projections never directly made available" );
1880#ifndef PRODUCT
1881  if (_cfg->C->trace_opto_output()) {
1882    tty->print("#   AddNodeToAvailableList: ");
1883    n->dump();
1884  }
1885#endif
1886
1887  int latency = _current_latency[n->_idx];
1888
1889  // Insert in latency order (insertion sort)
1890  uint i;
1891  for ( i=0; i < _available.size(); i++ )
1892    if (_current_latency[_available[i]->_idx] > latency)
1893      break;
1894
1895  // Special Check for compares following branches
1896  if( n->is_Mach() && _scheduled.size() > 0 ) {
1897    int op = n->as_Mach()->ideal_Opcode();
1898    Node *last = _scheduled[0];
1899    if( last->is_MachIf() && last->in(1) == n &&
1900        ( op == Op_CmpI ||
1901          op == Op_CmpU ||
1902          op == Op_CmpP ||
1903          op == Op_CmpF ||
1904          op == Op_CmpD ||
1905          op == Op_CmpL ) ) {
1906
1907      // Recalculate position, moving to front of same latency
1908      for ( i=0 ; i < _available.size(); i++ )
1909        if (_current_latency[_available[i]->_idx] >= latency)
1910          break;
1911    }
1912  }
1913
1914  // Insert the node in the available list
1915  _available.insert(i, n);
1916
1917#ifndef PRODUCT
1918  if (_cfg->C->trace_opto_output())
1919    dump_available();
1920#endif
1921}
1922
1923//------------------------------DecrementUseCounts-----------------------------
1924void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
1925  for ( uint i=0; i < n->len(); i++ ) {
1926    Node *def = n->in(i);
1927    if (!def) continue;
1928    if( def->is_Proj() )        // If this is a machine projection, then
1929      def = def->in(0);         // propagate usage thru to the base instruction
1930
1931    if( _bbs[def->_idx] != bb ) // Ignore if not block-local
1932      continue;
1933
1934    // Compute the latency
1935    uint l = _bundle_cycle_number + n->latency(i);
1936    if (_current_latency[def->_idx] < l)
1937      _current_latency[def->_idx] = l;
1938
1939    // If this does not have uses then schedule it
1940    if ((--_uses[def->_idx]) == 0)
1941      AddNodeToAvailableList(def);
1942  }
1943}
1944
1945//------------------------------AddNodeToBundle--------------------------------
1946void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
1947#ifndef PRODUCT
1948  if (_cfg->C->trace_opto_output()) {
1949    tty->print("#   AddNodeToBundle: ");
1950    n->dump();
1951  }
1952#endif
1953
1954  // Remove this from the available list
1955  uint i;
1956  for (i = 0; i < _available.size(); i++)
1957    if (_available[i] == n)
1958      break;
1959  assert(i < _available.size(), "entry in _available list not found");
1960  _available.remove(i);
1961
1962  // See if this fits in the current bundle
1963  const Pipeline *node_pipeline = n->pipeline();
1964  const Pipeline_Use& node_usage = node_pipeline->resourceUse();
1965
1966  // Check for instructions to be placed in the delay slot. We
1967  // do this before we actually schedule the current instruction,
1968  // because the delay slot follows the current instruction.
1969  if (Pipeline::_branch_has_delay_slot &&
1970      node_pipeline->hasBranchDelay() &&
1971      !_unconditional_delay_slot) {
1972
1973    uint siz = _available.size();
1974
1975    // Conditional branches can support an instruction that
1976    // is unconditionally executed and not dependent by the
1977    // branch, OR a conditionally executed instruction if
1978    // the branch is taken.  In practice, this means that
1979    // the first instruction at the branch target is
1980    // copied to the delay slot, and the branch goes to
1981    // the instruction after that at the branch target
1982    if ( n->is_Mach() && n->is_Branch() ) {
1983
1984      assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
1985      assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
1986
1987#ifndef PRODUCT
1988      _branches++;
1989#endif
1990
1991      // At least 1 instruction is on the available list
1992      // that is not dependent on the branch
1993      for (uint i = 0; i < siz; i++) {
1994        Node *d = _available[i];
1995        const Pipeline *avail_pipeline = d->pipeline();
1996
1997        // Don't allow safepoints in the branch shadow, that will
1998        // cause a number of difficulties
1999        if ( avail_pipeline->instructionCount() == 1 &&
2000            !avail_pipeline->hasMultipleBundles() &&
2001            !avail_pipeline->hasBranchDelay() &&
2002            Pipeline::instr_has_unit_size() &&
2003            d->size(_regalloc) == Pipeline::instr_unit_size() &&
2004            NodeFitsInBundle(d) &&
2005            !node_bundling(d)->used_in_delay()) {
2006
2007          if (d->is_Mach() && !d->is_MachSafePoint()) {
2008            // A node that fits in the delay slot was found, so we need to
2009            // set the appropriate bits in the bundle pipeline information so
2010            // that it correctly indicates resource usage.  Later, when we
2011            // attempt to add this instruction to the bundle, we will skip
2012            // setting the resource usage.
2013            _unconditional_delay_slot = d;
2014            node_bundling(n)->set_use_unconditional_delay();
2015            node_bundling(d)->set_used_in_unconditional_delay();
2016            _bundle_use.add_usage(avail_pipeline->resourceUse());
2017            _current_latency[d->_idx] = _bundle_cycle_number;
2018            _next_node = d;
2019            ++_bundle_instr_count;
2020#ifndef PRODUCT
2021            _unconditional_delays++;
2022#endif
2023            break;
2024          }
2025        }
2026      }
2027    }
2028
2029    // No delay slot, add a nop to the usage
2030    if (!_unconditional_delay_slot) {
2031      // See if adding an instruction in the delay slot will overflow
2032      // the bundle.
2033      if (!NodeFitsInBundle(_nop)) {
2034#ifndef PRODUCT
2035        if (_cfg->C->trace_opto_output())
2036          tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2037#endif
2038        step(1);
2039      }
2040
2041      _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2042      _next_node = _nop;
2043      ++_bundle_instr_count;
2044    }
2045
2046    // See if the instruction in the delay slot requires a
2047    // step of the bundles
2048    if (!NodeFitsInBundle(n)) {
2049#ifndef PRODUCT
2050        if (_cfg->C->trace_opto_output())
2051          tty->print("#  *** STEP(branch won't fit) ***\n");
2052#endif
2053        // Update the state information
2054        _bundle_instr_count = 0;
2055        _bundle_cycle_number += 1;
2056        _bundle_use.step(1);
2057    }
2058  }
2059
2060  // Get the number of instructions
2061  uint instruction_count = node_pipeline->instructionCount();
2062  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2063    instruction_count = 0;
2064
2065  // Compute the latency information
2066  uint delay = 0;
2067
2068  if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2069    int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2070    if (relative_latency < 0)
2071      relative_latency = 0;
2072
2073    delay = _bundle_use.full_latency(relative_latency, node_usage);
2074
2075    // Does not fit in this bundle, start a new one
2076    if (delay > 0) {
2077      step(delay);
2078
2079#ifndef PRODUCT
2080      if (_cfg->C->trace_opto_output())
2081        tty->print("#  *** STEP(%d) ***\n", delay);
2082#endif
2083    }
2084  }
2085
2086  // If this was placed in the delay slot, ignore it
2087  if (n != _unconditional_delay_slot) {
2088
2089    if (delay == 0) {
2090      if (node_pipeline->hasMultipleBundles()) {
2091#ifndef PRODUCT
2092        if (_cfg->C->trace_opto_output())
2093          tty->print("#  *** STEP(multiple instructions) ***\n");
2094#endif
2095        step(1);
2096      }
2097
2098      else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2099#ifndef PRODUCT
2100        if (_cfg->C->trace_opto_output())
2101          tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2102            instruction_count + _bundle_instr_count,
2103            Pipeline::_max_instrs_per_cycle);
2104#endif
2105        step(1);
2106      }
2107    }
2108
2109    if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2110      _bundle_instr_count++;
2111
2112    // Set the node's latency
2113    _current_latency[n->_idx] = _bundle_cycle_number;
2114
2115    // Now merge the functional unit information
2116    if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2117      _bundle_use.add_usage(node_usage);
2118
2119    // Increment the number of instructions in this bundle
2120    _bundle_instr_count += instruction_count;
2121
2122    // Remember this node for later
2123    if (n->is_Mach())
2124      _next_node = n;
2125  }
2126
2127  // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2128  // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2129  // 'Schedule' them (basically ignore in the schedule) but do not insert them
2130  // into the block.  All other scheduled nodes get put in the schedule here.
2131  int op = n->Opcode();
2132  if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2133      (op != Op_Node &&         // Not an unused antidepedence node and
2134       // not an unallocated boxlock
2135       (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2136
2137    // Push any trailing projections
2138    if( bb->_nodes[bb->_nodes.size()-1] != n ) {
2139      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2140        Node *foi = n->fast_out(i);
2141        if( foi->is_Proj() )
2142          _scheduled.push(foi);
2143      }
2144    }
2145
2146    // Put the instruction in the schedule list
2147    _scheduled.push(n);
2148  }
2149
2150#ifndef PRODUCT
2151  if (_cfg->C->trace_opto_output())
2152    dump_available();
2153#endif
2154
2155  // Walk all the definitions, decrementing use counts, and
2156  // if a definition has a 0 use count, place it in the available list.
2157  DecrementUseCounts(n,bb);
2158}
2159
2160//------------------------------ComputeUseCount--------------------------------
2161// This method sets the use count within a basic block.  We will ignore all
2162// uses outside the current basic block.  As we are doing a backwards walk,
2163// any node we reach that has a use count of 0 may be scheduled.  This also
2164// avoids the problem of cyclic references from phi nodes, as long as phi
2165// nodes are at the front of the basic block.  This method also initializes
2166// the available list to the set of instructions that have no uses within this
2167// basic block.
2168void Scheduling::ComputeUseCount(const Block *bb) {
2169#ifndef PRODUCT
2170  if (_cfg->C->trace_opto_output())
2171    tty->print("# -> ComputeUseCount\n");
2172#endif
2173
2174  // Clear the list of available and scheduled instructions, just in case
2175  _available.clear();
2176  _scheduled.clear();
2177
2178  // No delay slot specified
2179  _unconditional_delay_slot = NULL;
2180
2181#ifdef ASSERT
2182  for( uint i=0; i < bb->_nodes.size(); i++ )
2183    assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
2184#endif
2185
2186  // Force the _uses count to never go to zero for unscheduable pieces
2187  // of the block
2188  for( uint k = 0; k < _bb_start; k++ )
2189    _uses[bb->_nodes[k]->_idx] = 1;
2190  for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
2191    _uses[bb->_nodes[l]->_idx] = 1;
2192
2193  // Iterate backwards over the instructions in the block.  Don't count the
2194  // branch projections at end or the block header instructions.
2195  for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2196    Node *n = bb->_nodes[j];
2197    if( n->is_Proj() ) continue; // Projections handled another way
2198
2199    // Account for all uses
2200    for ( uint k = 0; k < n->len(); k++ ) {
2201      Node *inp = n->in(k);
2202      if (!inp) continue;
2203      assert(inp != n, "no cycles allowed" );
2204      if( _bbs[inp->_idx] == bb ) { // Block-local use?
2205        if( inp->is_Proj() )    // Skip through Proj's
2206          inp = inp->in(0);
2207        ++_uses[inp->_idx];     // Count 1 block-local use
2208      }
2209    }
2210
2211    // If this instruction has a 0 use count, then it is available
2212    if (!_uses[n->_idx]) {
2213      _current_latency[n->_idx] = _bundle_cycle_number;
2214      AddNodeToAvailableList(n);
2215    }
2216
2217#ifndef PRODUCT
2218    if (_cfg->C->trace_opto_output()) {
2219      tty->print("#   uses: %3d: ", _uses[n->_idx]);
2220      n->dump();
2221    }
2222#endif
2223  }
2224
2225#ifndef PRODUCT
2226  if (_cfg->C->trace_opto_output())
2227    tty->print("# <- ComputeUseCount\n");
2228#endif
2229}
2230
2231// This routine performs scheduling on each basic block in reverse order,
2232// using instruction latencies and taking into account function unit
2233// availability.
2234void Scheduling::DoScheduling() {
2235#ifndef PRODUCT
2236  if (_cfg->C->trace_opto_output())
2237    tty->print("# -> DoScheduling\n");
2238#endif
2239
2240  Block *succ_bb = NULL;
2241  Block *bb;
2242
2243  // Walk over all the basic blocks in reverse order
2244  for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
2245    bb = _cfg->_blocks[i];
2246
2247#ifndef PRODUCT
2248    if (_cfg->C->trace_opto_output()) {
2249      tty->print("#  Schedule BB#%03d (initial)\n", i);
2250      for (uint j = 0; j < bb->_nodes.size(); j++)
2251        bb->_nodes[j]->dump();
2252    }
2253#endif
2254
2255    // On the head node, skip processing
2256    if( bb == _cfg->_broot )
2257      continue;
2258
2259    // Skip empty, connector blocks
2260    if (bb->is_connector())
2261      continue;
2262
2263    // If the following block is not the sole successor of
2264    // this one, then reset the pipeline information
2265    if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2266#ifndef PRODUCT
2267      if (_cfg->C->trace_opto_output()) {
2268        tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2269                   _next_node->_idx, _bundle_instr_count);
2270      }
2271#endif
2272      step_and_clear();
2273    }
2274
2275    // Leave untouched the starting instruction, any Phis, a CreateEx node
2276    // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
2277    _bb_end = bb->_nodes.size()-1;
2278    for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2279      Node *n = bb->_nodes[_bb_start];
2280      // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2281      // Also, MachIdealNodes do not get scheduled
2282      if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2283      MachNode *mach = n->as_Mach();
2284      int iop = mach->ideal_Opcode();
2285      if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2286      if( iop == Op_Con ) continue;      // Do not schedule Top
2287      if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2288          mach->pipeline() == MachNode::pipeline_class() &&
2289          !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2290        continue;
2291      break;                    // Funny loop structure to be sure...
2292    }
2293    // Compute last "interesting" instruction in block - last instruction we
2294    // might schedule.  _bb_end points just after last schedulable inst.  We
2295    // normally schedule conditional branches (despite them being forced last
2296    // in the block), because they have delay slots we can fill.  Calls all
2297    // have their delay slots filled in the template expansions, so we don't
2298    // bother scheduling them.
2299    Node *last = bb->_nodes[_bb_end];
2300    if( last->is_Catch() ||
2301       // Exclude unreachable path case when Halt node is in a separate block.
2302       (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2303      // There must be a prior call.  Skip it.
2304      while( !bb->_nodes[--_bb_end]->is_Call() ) {
2305        assert( bb->_nodes[_bb_end]->is_Proj(), "skipping projections after expected call" );
2306      }
2307    } else if( last->is_MachNullCheck() ) {
2308      // Backup so the last null-checked memory instruction is
2309      // outside the schedulable range. Skip over the nullcheck,
2310      // projection, and the memory nodes.
2311      Node *mem = last->in(1);
2312      do {
2313        _bb_end--;
2314      } while (mem != bb->_nodes[_bb_end]);
2315    } else {
2316      // Set _bb_end to point after last schedulable inst.
2317      _bb_end++;
2318    }
2319
2320    assert( _bb_start <= _bb_end, "inverted block ends" );
2321
2322    // Compute the register antidependencies for the basic block
2323    ComputeRegisterAntidependencies(bb);
2324    if (_cfg->C->failing())  return;  // too many D-U pinch points
2325
2326    // Compute intra-bb latencies for the nodes
2327    ComputeLocalLatenciesForward(bb);
2328
2329    // Compute the usage within the block, and set the list of all nodes
2330    // in the block that have no uses within the block.
2331    ComputeUseCount(bb);
2332
2333    // Schedule the remaining instructions in the block
2334    while ( _available.size() > 0 ) {
2335      Node *n = ChooseNodeToBundle();
2336      AddNodeToBundle(n,bb);
2337    }
2338
2339    assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2340#ifdef ASSERT
2341    for( uint l = _bb_start; l < _bb_end; l++ ) {
2342      Node *n = bb->_nodes[l];
2343      uint m;
2344      for( m = 0; m < _bb_end-_bb_start; m++ )
2345        if( _scheduled[m] == n )
2346          break;
2347      assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2348    }
2349#endif
2350
2351    // Now copy the instructions (in reverse order) back to the block
2352    for ( uint k = _bb_start; k < _bb_end; k++ )
2353      bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
2354
2355#ifndef PRODUCT
2356    if (_cfg->C->trace_opto_output()) {
2357      tty->print("#  Schedule BB#%03d (final)\n", i);
2358      uint current = 0;
2359      for (uint j = 0; j < bb->_nodes.size(); j++) {
2360        Node *n = bb->_nodes[j];
2361        if( valid_bundle_info(n) ) {
2362          Bundle *bundle = node_bundling(n);
2363          if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2364            tty->print("*** Bundle: ");
2365            bundle->dump();
2366          }
2367          n->dump();
2368        }
2369      }
2370    }
2371#endif
2372#ifdef ASSERT
2373  verify_good_schedule(bb,"after block local scheduling");
2374#endif
2375  }
2376
2377#ifndef PRODUCT
2378  if (_cfg->C->trace_opto_output())
2379    tty->print("# <- DoScheduling\n");
2380#endif
2381
2382  // Record final node-bundling array location
2383  _regalloc->C->set_node_bundling_base(_node_bundling_base);
2384
2385} // end DoScheduling
2386
2387//------------------------------verify_good_schedule---------------------------
2388// Verify that no live-range used in the block is killed in the block by a
2389// wrong DEF.  This doesn't verify live-ranges that span blocks.
2390
2391// Check for edge existence.  Used to avoid adding redundant precedence edges.
2392static bool edge_from_to( Node *from, Node *to ) {
2393  for( uint i=0; i<from->len(); i++ )
2394    if( from->in(i) == to )
2395      return true;
2396  return false;
2397}
2398
2399#ifdef ASSERT
2400//------------------------------verify_do_def----------------------------------
2401void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2402  // Check for bad kills
2403  if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2404    Node *prior_use = _reg_node[def];
2405    if( prior_use && !edge_from_to(prior_use,n) ) {
2406      tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2407      n->dump();
2408      tty->print_cr("...");
2409      prior_use->dump();
2410      assert(edge_from_to(prior_use,n),msg);
2411    }
2412    _reg_node.map(def,NULL); // Kill live USEs
2413  }
2414}
2415
2416//------------------------------verify_good_schedule---------------------------
2417void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2418
2419  // Zap to something reasonable for the verify code
2420  _reg_node.clear();
2421
2422  // Walk over the block backwards.  Check to make sure each DEF doesn't
2423  // kill a live value (other than the one it's supposed to).  Add each
2424  // USE to the live set.
2425  for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
2426    Node *n = b->_nodes[i];
2427    int n_op = n->Opcode();
2428    if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2429      // Fat-proj kills a slew of registers
2430      RegMask rm = n->out_RegMask();// Make local copy
2431      while( rm.is_NotEmpty() ) {
2432        OptoReg::Name kill = rm.find_first_elem();
2433        rm.Remove(kill);
2434        verify_do_def( n, kill, msg );
2435      }
2436    } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2437      // Get DEF'd registers the normal way
2438      verify_do_def( n, _regalloc->get_reg_first(n), msg );
2439      verify_do_def( n, _regalloc->get_reg_second(n), msg );
2440    }
2441
2442    // Now make all USEs live
2443    for( uint i=1; i<n->req(); i++ ) {
2444      Node *def = n->in(i);
2445      assert(def != 0, "input edge required");
2446      OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2447      OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2448      if( OptoReg::is_valid(reg_lo) ) {
2449        assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
2450        _reg_node.map(reg_lo,n);
2451      }
2452      if( OptoReg::is_valid(reg_hi) ) {
2453        assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
2454        _reg_node.map(reg_hi,n);
2455      }
2456    }
2457
2458  }
2459
2460  // Zap to something reasonable for the Antidependence code
2461  _reg_node.clear();
2462}
2463#endif
2464
2465// Conditionally add precedence edges.  Avoid putting edges on Projs.
2466static void add_prec_edge_from_to( Node *from, Node *to ) {
2467  if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2468    assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2469    from = from->in(0);
2470  }
2471  if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2472      !edge_from_to( from, to ) ) // Avoid duplicate edge
2473    from->add_prec(to);
2474}
2475
2476//------------------------------anti_do_def------------------------------------
2477void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2478  if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2479    return;
2480
2481  Node *pinch = _reg_node[def_reg]; // Get pinch point
2482  if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
2483      is_def ) {    // Check for a true def (not a kill)
2484    _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2485    return;
2486  }
2487
2488  Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2489  debug_only( def = (Node*)0xdeadbeef; )
2490
2491  // After some number of kills there _may_ be a later def
2492  Node *later_def = NULL;
2493
2494  // Finding a kill requires a real pinch-point.
2495  // Check for not already having a pinch-point.
2496  // Pinch points are Op_Node's.
2497  if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2498    later_def = pinch;            // Must be def/kill as optimistic pinch-point
2499    if ( _pinch_free_list.size() > 0) {
2500      pinch = _pinch_free_list.pop();
2501    } else {
2502      pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
2503    }
2504    if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2505      _cfg->C->record_method_not_compilable("too many D-U pinch points");
2506      return;
2507    }
2508    _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
2509    _reg_node.map(def_reg,pinch); // Record pinch-point
2510    //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2511    if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2512      pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2513      add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2514      later_def = NULL;           // and no later def
2515    }
2516    pinch->set_req(0,later_def);  // Hook later def so we can find it
2517  } else {                        // Else have valid pinch point
2518    if( pinch->in(0) )            // If there is a later-def
2519      later_def = pinch->in(0);   // Get it
2520  }
2521
2522  // Add output-dependence edge from later def to kill
2523  if( later_def )               // If there is some original def
2524    add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2525
2526  // See if current kill is also a use, and so is forced to be the pinch-point.
2527  if( pinch->Opcode() == Op_Node ) {
2528    Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2529    for( uint i=1; i<uses->req(); i++ ) {
2530      if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2531          _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2532        // Yes, found a use/kill pinch-point
2533        pinch->set_req(0,NULL);  //
2534        pinch->replace_by(kill); // Move anti-dep edges up
2535        pinch = kill;
2536        _reg_node.map(def_reg,pinch);
2537        return;
2538      }
2539    }
2540  }
2541
2542  // Add edge from kill to pinch-point
2543  add_prec_edge_from_to(kill,pinch);
2544}
2545
2546//------------------------------anti_do_use------------------------------------
2547void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2548  if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2549    return;
2550  Node *pinch = _reg_node[use_reg]; // Get pinch point
2551  // Check for no later def_reg/kill in block
2552  if( pinch && _bbs[pinch->_idx] == b &&
2553      // Use has to be block-local as well
2554      _bbs[use->_idx] == b ) {
2555    if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2556        pinch->req() == 1 ) {   // pinch not yet in block?
2557      pinch->del_req(0);        // yank pointer to later-def, also set flag
2558      // Insert the pinch-point in the block just after the last use
2559      b->_nodes.insert(b->find_node(use)+1,pinch);
2560      _bb_end++;                // Increase size scheduled region in block
2561    }
2562
2563    add_prec_edge_from_to(pinch,use);
2564  }
2565}
2566
2567//------------------------------ComputeRegisterAntidependences-----------------
2568// We insert antidependences between the reads and following write of
2569// allocated registers to prevent illegal code motion. Hopefully, the
2570// number of added references should be fairly small, especially as we
2571// are only adding references within the current basic block.
2572void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2573
2574#ifdef ASSERT
2575  verify_good_schedule(b,"before block local scheduling");
2576#endif
2577
2578  // A valid schedule, for each register independently, is an endless cycle
2579  // of: a def, then some uses (connected to the def by true dependencies),
2580  // then some kills (defs with no uses), finally the cycle repeats with a new
2581  // def.  The uses are allowed to float relative to each other, as are the
2582  // kills.  No use is allowed to slide past a kill (or def).  This requires
2583  // antidependencies between all uses of a single def and all kills that
2584  // follow, up to the next def.  More edges are redundant, because later defs
2585  // & kills are already serialized with true or antidependencies.  To keep
2586  // the edge count down, we add a 'pinch point' node if there's more than
2587  // one use or more than one kill/def.
2588
2589  // We add dependencies in one bottom-up pass.
2590
2591  // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2592
2593  // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2594  // register.  If not, we record the DEF/KILL in _reg_node, the
2595  // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2596  // "pinch point", a new Node that's in the graph but not in the block.
2597  // We put edges from the prior and current DEF/KILLs to the pinch point.
2598  // We put the pinch point in _reg_node.  If there's already a pinch point
2599  // we merely add an edge from the current DEF/KILL to the pinch point.
2600
2601  // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2602  // put an edge from the pinch point to the USE.
2603
2604  // To be expedient, the _reg_node array is pre-allocated for the whole
2605  // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2606  // or a valid def/kill/pinch-point, or a leftover node from some prior
2607  // block.  Leftover node from some prior block is treated like a NULL (no
2608  // prior def, so no anti-dependence needed).  Valid def is distinguished by
2609  // it being in the current block.
2610  bool fat_proj_seen = false;
2611  uint last_safept = _bb_end-1;
2612  Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
2613  Node* last_safept_node = end_node;
2614  for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2615    Node *n = b->_nodes[i];
2616    int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2617    if( n->Opcode() == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2618      // Fat-proj kills a slew of registers
2619      // This can add edges to 'n' and obscure whether or not it was a def,
2620      // hence the is_def flag.
2621      fat_proj_seen = true;
2622      RegMask rm = n->out_RegMask();// Make local copy
2623      while( rm.is_NotEmpty() ) {
2624        OptoReg::Name kill = rm.find_first_elem();
2625        rm.Remove(kill);
2626        anti_do_def( b, n, kill, is_def );
2627      }
2628    } else {
2629      // Get DEF'd registers the normal way
2630      anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2631      anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2632    }
2633
2634    // Check each register used by this instruction for a following DEF/KILL
2635    // that must occur afterward and requires an anti-dependence edge.
2636    for( uint j=0; j<n->req(); j++ ) {
2637      Node *def = n->in(j);
2638      if( def ) {
2639        assert( def->Opcode() != Op_MachProj || def->ideal_reg() != MachProjNode::fat_proj, "" );
2640        anti_do_use( b, n, _regalloc->get_reg_first(def) );
2641        anti_do_use( b, n, _regalloc->get_reg_second(def) );
2642      }
2643    }
2644    // Do not allow defs of new derived values to float above GC
2645    // points unless the base is definitely available at the GC point.
2646
2647    Node *m = b->_nodes[i];
2648
2649    // Add precedence edge from following safepoint to use of derived pointer
2650    if( last_safept_node != end_node &&
2651        m != last_safept_node) {
2652      for (uint k = 1; k < m->req(); k++) {
2653        const Type *t = m->in(k)->bottom_type();
2654        if( t->isa_oop_ptr() &&
2655            t->is_ptr()->offset() != 0 ) {
2656          last_safept_node->add_prec( m );
2657          break;
2658        }
2659      }
2660    }
2661
2662    if( n->jvms() ) {           // Precedence edge from derived to safept
2663      // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2664      if( b->_nodes[last_safept] != last_safept_node ) {
2665        last_safept = b->find_node(last_safept_node);
2666      }
2667      for( uint j=last_safept; j > i; j-- ) {
2668        Node *mach = b->_nodes[j];
2669        if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2670          mach->add_prec( n );
2671      }
2672      last_safept = i;
2673      last_safept_node = m;
2674    }
2675  }
2676
2677  if (fat_proj_seen) {
2678    // Garbage collect pinch nodes that were not consumed.
2679    // They are usually created by a fat kill MachProj for a call.
2680    garbage_collect_pinch_nodes();
2681  }
2682}
2683
2684//------------------------------garbage_collect_pinch_nodes-------------------------------
2685
2686// Garbage collect pinch nodes for reuse by other blocks.
2687//
2688// The block scheduler's insertion of anti-dependence
2689// edges creates many pinch nodes when the block contains
2690// 2 or more Calls.  A pinch node is used to prevent a
2691// combinatorial explosion of edges.  If a set of kills for a
2692// register is anti-dependent on a set of uses (or defs), rather
2693// than adding an edge in the graph between each pair of kill
2694// and use (or def), a pinch is inserted between them:
2695//
2696//            use1   use2  use3
2697//                \   |   /
2698//                 \  |  /
2699//                  pinch
2700//                 /  |  \
2701//                /   |   \
2702//            kill1 kill2 kill3
2703//
2704// One pinch node is created per register killed when
2705// the second call is encountered during a backwards pass
2706// over the block.  Most of these pinch nodes are never
2707// wired into the graph because the register is never
2708// used or def'ed in the block.
2709//
2710void Scheduling::garbage_collect_pinch_nodes() {
2711#ifndef PRODUCT
2712    if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2713#endif
2714    int trace_cnt = 0;
2715    for (uint k = 0; k < _reg_node.Size(); k++) {
2716      Node* pinch = _reg_node[k];
2717      if (pinch != NULL && pinch->Opcode() == Op_Node &&
2718          // no predecence input edges
2719          (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2720        cleanup_pinch(pinch);
2721        _pinch_free_list.push(pinch);
2722        _reg_node.map(k, NULL);
2723#ifndef PRODUCT
2724        if (_cfg->C->trace_opto_output()) {
2725          trace_cnt++;
2726          if (trace_cnt > 40) {
2727            tty->print("\n");
2728            trace_cnt = 0;
2729          }
2730          tty->print(" %d", pinch->_idx);
2731        }
2732#endif
2733      }
2734    }
2735#ifndef PRODUCT
2736    if (_cfg->C->trace_opto_output()) tty->print("\n");
2737#endif
2738}
2739
2740// Clean up a pinch node for reuse.
2741void Scheduling::cleanup_pinch( Node *pinch ) {
2742  assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2743
2744  for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2745    Node* use = pinch->last_out(i);
2746    uint uses_found = 0;
2747    for (uint j = use->req(); j < use->len(); j++) {
2748      if (use->in(j) == pinch) {
2749        use->rm_prec(j);
2750        uses_found++;
2751      }
2752    }
2753    assert(uses_found > 0, "must be a precedence edge");
2754    i -= uses_found;    // we deleted 1 or more copies of this edge
2755  }
2756  // May have a later_def entry
2757  pinch->set_req(0, NULL);
2758}
2759
2760//------------------------------print_statistics-------------------------------
2761#ifndef PRODUCT
2762
2763void Scheduling::dump_available() const {
2764  tty->print("#Availist  ");
2765  for (uint i = 0; i < _available.size(); i++)
2766    tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2767  tty->cr();
2768}
2769
2770// Print Scheduling Statistics
2771void Scheduling::print_statistics() {
2772  // Print the size added by nops for bundling
2773  tty->print("Nops added %d bytes to total of %d bytes",
2774    _total_nop_size, _total_method_size);
2775  if (_total_method_size > 0)
2776    tty->print(", for %.2f%%",
2777      ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2778  tty->print("\n");
2779
2780  // Print the number of branch shadows filled
2781  if (Pipeline::_branch_has_delay_slot) {
2782    tty->print("Of %d branches, %d had unconditional delay slots filled",
2783      _total_branches, _total_unconditional_delays);
2784    if (_total_branches > 0)
2785      tty->print(", for %.2f%%",
2786        ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2787    tty->print("\n");
2788  }
2789
2790  uint total_instructions = 0, total_bundles = 0;
2791
2792  for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2793    uint bundle_count   = _total_instructions_per_bundle[i];
2794    total_instructions += bundle_count * i;
2795    total_bundles      += bundle_count;
2796  }
2797
2798  if (total_bundles > 0)
2799    tty->print("Average ILP (excluding nops) is %.2f\n",
2800      ((double)total_instructions) / ((double)total_bundles));
2801}
2802#endif
2803