output.cpp revision 12408:777aaa19c4b1
1/*
2 * Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/assembler.inline.hpp"
27#include "code/compiledIC.hpp"
28#include "code/debugInfo.hpp"
29#include "code/debugInfoRec.hpp"
30#include "compiler/compileBroker.hpp"
31#include "compiler/compilerDirectives.hpp"
32#include "compiler/oopMap.hpp"
33#include "memory/allocation.inline.hpp"
34#include "opto/ad.hpp"
35#include "opto/callnode.hpp"
36#include "opto/cfgnode.hpp"
37#include "opto/locknode.hpp"
38#include "opto/machnode.hpp"
39#include "opto/optoreg.hpp"
40#include "opto/output.hpp"
41#include "opto/regalloc.hpp"
42#include "opto/runtime.hpp"
43#include "opto/subnode.hpp"
44#include "opto/type.hpp"
45#include "runtime/handles.inline.hpp"
46#include "utilities/xmlstream.hpp"
47
48#ifndef PRODUCT
49#define DEBUG_ARG(x) , x
50#else
51#define DEBUG_ARG(x)
52#endif
53
54// Convert Nodes to instruction bits and pass off to the VM
55void Compile::Output() {
56  // RootNode goes
57  assert( _cfg->get_root_block()->number_of_nodes() == 0, "" );
58
59  // The number of new nodes (mostly MachNop) is proportional to
60  // the number of java calls and inner loops which are aligned.
61  if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
62                            C->inner_loops()*(OptoLoopAlignment-1)),
63                           "out of nodes before code generation" ) ) {
64    return;
65  }
66  // Make sure I can find the Start Node
67  Block *entry = _cfg->get_block(1);
68  Block *broot = _cfg->get_root_block();
69
70  const StartNode *start = entry->head()->as_Start();
71
72  // Replace StartNode with prolog
73  MachPrologNode *prolog = new MachPrologNode();
74  entry->map_node(prolog, 0);
75  _cfg->map_node_to_block(prolog, entry);
76  _cfg->unmap_node_from_block(start); // start is no longer in any block
77
78  // Virtual methods need an unverified entry point
79
80  if( is_osr_compilation() ) {
81    if( PoisonOSREntry ) {
82      // TODO: Should use a ShouldNotReachHereNode...
83      _cfg->insert( broot, 0, new MachBreakpointNode() );
84    }
85  } else {
86    if( _method && !_method->flags().is_static() ) {
87      // Insert unvalidated entry point
88      _cfg->insert( broot, 0, new MachUEPNode() );
89    }
90
91  }
92
93  // Break before main entry point
94  if ((_method && C->directive()->BreakAtExecuteOption) ||
95      (OptoBreakpoint && is_method_compilation())       ||
96      (OptoBreakpointOSR && is_osr_compilation())       ||
97      (OptoBreakpointC2R && !_method)                   ) {
98    // checking for _method means that OptoBreakpoint does not apply to
99    // runtime stubs or frame converters
100    _cfg->insert( entry, 1, new MachBreakpointNode() );
101  }
102
103  // Insert epilogs before every return
104  for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
105    Block* block = _cfg->get_block(i);
106    if (!block->is_connector() && block->non_connector_successor(0) == _cfg->get_root_block()) { // Found a program exit point?
107      Node* m = block->end();
108      if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
109        MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
110        block->add_inst(epilog);
111        _cfg->map_node_to_block(epilog, block);
112      }
113    }
114  }
115
116  uint* blk_starts = NEW_RESOURCE_ARRAY(uint, _cfg->number_of_blocks() + 1);
117  blk_starts[0] = 0;
118
119  // Initialize code buffer and process short branches.
120  CodeBuffer* cb = init_buffer(blk_starts);
121
122  if (cb == NULL || failing()) {
123    return;
124  }
125
126  ScheduleAndBundle();
127
128#ifndef PRODUCT
129  if (trace_opto_output()) {
130    tty->print("\n---- After ScheduleAndBundle ----\n");
131    for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
132      tty->print("\nBB#%03d:\n", i);
133      Block* block = _cfg->get_block(i);
134      for (uint j = 0; j < block->number_of_nodes(); j++) {
135        Node* n = block->get_node(j);
136        OptoReg::Name reg = _regalloc->get_reg_first(n);
137        tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
138        n->dump();
139      }
140    }
141  }
142#endif
143
144  if (failing()) {
145    return;
146  }
147
148  BuildOopMaps();
149
150  if (failing())  {
151    return;
152  }
153
154  fill_buffer(cb, blk_starts);
155}
156
157bool Compile::need_stack_bang(int frame_size_in_bytes) const {
158  // Determine if we need to generate a stack overflow check.
159  // Do it if the method is not a stub function and
160  // has java calls or has frame size > vm_page_size/8.
161  // The debug VM checks that deoptimization doesn't trigger an
162  // unexpected stack overflow (compiled method stack banging should
163  // guarantee it doesn't happen) so we always need the stack bang in
164  // a debug VM.
165  return (UseStackBanging && stub_function() == NULL &&
166          (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3
167           DEBUG_ONLY(|| true)));
168}
169
170bool Compile::need_register_stack_bang() const {
171  // Determine if we need to generate a register stack overflow check.
172  // This is only used on architectures which have split register
173  // and memory stacks (ie. IA64).
174  // Bang if the method is not a stub function and has java calls
175  return (stub_function() == NULL && has_java_calls());
176}
177
178
179// Compute the size of first NumberOfLoopInstrToAlign instructions at the top
180// of a loop. When aligning a loop we need to provide enough instructions
181// in cpu's fetch buffer to feed decoders. The loop alignment could be
182// avoided if we have enough instructions in fetch buffer at the head of a loop.
183// By default, the size is set to 999999 by Block's constructor so that
184// a loop will be aligned if the size is not reset here.
185//
186// Note: Mach instructions could contain several HW instructions
187// so the size is estimated only.
188//
189void Compile::compute_loop_first_inst_sizes() {
190  // The next condition is used to gate the loop alignment optimization.
191  // Don't aligned a loop if there are enough instructions at the head of a loop
192  // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
193  // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
194  // equal to 11 bytes which is the largest address NOP instruction.
195  if (MaxLoopPad < OptoLoopAlignment - 1) {
196    uint last_block = _cfg->number_of_blocks() - 1;
197    for (uint i = 1; i <= last_block; i++) {
198      Block* block = _cfg->get_block(i);
199      // Check the first loop's block which requires an alignment.
200      if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
201        uint sum_size = 0;
202        uint inst_cnt = NumberOfLoopInstrToAlign;
203        inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
204
205        // Check subsequent fallthrough blocks if the loop's first
206        // block(s) does not have enough instructions.
207        Block *nb = block;
208        while(inst_cnt > 0 &&
209              i < last_block &&
210              !_cfg->get_block(i + 1)->has_loop_alignment() &&
211              !nb->has_successor(block)) {
212          i++;
213          nb = _cfg->get_block(i);
214          inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
215        } // while( inst_cnt > 0 && i < last_block  )
216
217        block->set_first_inst_size(sum_size);
218      } // f( b->head()->is_Loop() )
219    } // for( i <= last_block )
220  } // if( MaxLoopPad < OptoLoopAlignment-1 )
221}
222
223// The architecture description provides short branch variants for some long
224// branch instructions. Replace eligible long branches with short branches.
225void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
226  // Compute size of each block, method size, and relocation information size
227  uint nblocks  = _cfg->number_of_blocks();
228
229  uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
230  uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
231  int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
232
233  // Collect worst case block paddings
234  int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks);
235  memset(block_worst_case_pad, 0, nblocks * sizeof(int));
236
237  DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
238  DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
239
240  bool has_short_branch_candidate = false;
241
242  // Initialize the sizes to 0
243  code_size  = 0;          // Size in bytes of generated code
244  stub_size  = 0;          // Size in bytes of all stub entries
245  // Size in bytes of all relocation entries, including those in local stubs.
246  // Start with 2-bytes of reloc info for the unvalidated entry point
247  reloc_size = 1;          // Number of relocation entries
248
249  // Make three passes.  The first computes pessimistic blk_starts,
250  // relative jmp_offset and reloc_size information.  The second performs
251  // short branch substitution using the pessimistic sizing.  The
252  // third inserts nops where needed.
253
254  // Step one, perform a pessimistic sizing pass.
255  uint last_call_adr = max_juint;
256  uint last_avoid_back_to_back_adr = max_juint;
257  uint nop_size = (new MachNopNode())->size(_regalloc);
258  for (uint i = 0; i < nblocks; i++) { // For all blocks
259    Block* block = _cfg->get_block(i);
260
261    // During short branch replacement, we store the relative (to blk_starts)
262    // offset of jump in jmp_offset, rather than the absolute offset of jump.
263    // This is so that we do not need to recompute sizes of all nodes when
264    // we compute correct blk_starts in our next sizing pass.
265    jmp_offset[i] = 0;
266    jmp_size[i]   = 0;
267    jmp_nidx[i]   = -1;
268    DEBUG_ONLY( jmp_target[i] = 0; )
269    DEBUG_ONLY( jmp_rule[i]   = 0; )
270
271    // Sum all instruction sizes to compute block size
272    uint last_inst = block->number_of_nodes();
273    uint blk_size = 0;
274    for (uint j = 0; j < last_inst; j++) {
275      Node* nj = block->get_node(j);
276      // Handle machine instruction nodes
277      if (nj->is_Mach()) {
278        MachNode *mach = nj->as_Mach();
279        blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
280        reloc_size += mach->reloc();
281        if (mach->is_MachCall()) {
282          // add size information for trampoline stub
283          // class CallStubImpl is platform-specific and defined in the *.ad files.
284          stub_size  += CallStubImpl::size_call_trampoline();
285          reloc_size += CallStubImpl::reloc_call_trampoline();
286
287          MachCallNode *mcall = mach->as_MachCall();
288          // This destination address is NOT PC-relative
289
290          mcall->method_set((intptr_t)mcall->entry_point());
291
292          if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
293            stub_size  += CompiledStaticCall::to_interp_stub_size();
294            reloc_size += CompiledStaticCall::reloc_to_interp_stub();
295#if INCLUDE_AOT
296            stub_size  += CompiledStaticCall::to_aot_stub_size();
297            reloc_size += CompiledStaticCall::reloc_to_aot_stub();
298#endif
299          }
300        } else if (mach->is_MachSafePoint()) {
301          // If call/safepoint are adjacent, account for possible
302          // nop to disambiguate the two safepoints.
303          // ScheduleAndBundle() can rearrange nodes in a block,
304          // check for all offsets inside this block.
305          if (last_call_adr >= blk_starts[i]) {
306            blk_size += nop_size;
307          }
308        }
309        if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
310          // Nop is inserted between "avoid back to back" instructions.
311          // ScheduleAndBundle() can rearrange nodes in a block,
312          // check for all offsets inside this block.
313          if (last_avoid_back_to_back_adr >= blk_starts[i]) {
314            blk_size += nop_size;
315          }
316        }
317        if (mach->may_be_short_branch()) {
318          if (!nj->is_MachBranch()) {
319#ifndef PRODUCT
320            nj->dump(3);
321#endif
322            Unimplemented();
323          }
324          assert(jmp_nidx[i] == -1, "block should have only one branch");
325          jmp_offset[i] = blk_size;
326          jmp_size[i]   = nj->size(_regalloc);
327          jmp_nidx[i]   = j;
328          has_short_branch_candidate = true;
329        }
330      }
331      blk_size += nj->size(_regalloc);
332      // Remember end of call offset
333      if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
334        last_call_adr = blk_starts[i]+blk_size;
335      }
336      // Remember end of avoid_back_to_back offset
337      if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
338        last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
339      }
340    }
341
342    // When the next block starts a loop, we may insert pad NOP
343    // instructions.  Since we cannot know our future alignment,
344    // assume the worst.
345    if (i < nblocks - 1) {
346      Block* nb = _cfg->get_block(i + 1);
347      int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
348      if (max_loop_pad > 0) {
349        assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
350        // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
351        // If either is the last instruction in this block, bump by
352        // max_loop_pad in lock-step with blk_size, so sizing
353        // calculations in subsequent blocks still can conservatively
354        // detect that it may the last instruction in this block.
355        if (last_call_adr == blk_starts[i]+blk_size) {
356          last_call_adr += max_loop_pad;
357        }
358        if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
359          last_avoid_back_to_back_adr += max_loop_pad;
360        }
361        blk_size += max_loop_pad;
362        block_worst_case_pad[i + 1] = max_loop_pad;
363      }
364    }
365
366    // Save block size; update total method size
367    blk_starts[i+1] = blk_starts[i]+blk_size;
368  }
369
370  // Step two, replace eligible long jumps.
371  bool progress = true;
372  uint last_may_be_short_branch_adr = max_juint;
373  while (has_short_branch_candidate && progress) {
374    progress = false;
375    has_short_branch_candidate = false;
376    int adjust_block_start = 0;
377    for (uint i = 0; i < nblocks; i++) {
378      Block* block = _cfg->get_block(i);
379      int idx = jmp_nidx[i];
380      MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach();
381      if (mach != NULL && mach->may_be_short_branch()) {
382#ifdef ASSERT
383        assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
384        int j;
385        // Find the branch; ignore trailing NOPs.
386        for (j = block->number_of_nodes()-1; j>=0; j--) {
387          Node* n = block->get_node(j);
388          if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
389            break;
390        }
391        assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
392#endif
393        int br_size = jmp_size[i];
394        int br_offs = blk_starts[i] + jmp_offset[i];
395
396        // This requires the TRUE branch target be in succs[0]
397        uint bnum = block->non_connector_successor(0)->_pre_order;
398        int offset = blk_starts[bnum] - br_offs;
399        if (bnum > i) { // adjust following block's offset
400          offset -= adjust_block_start;
401        }
402
403        // This block can be a loop header, account for the padding
404        // in the previous block.
405        int block_padding = block_worst_case_pad[i];
406        assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top");
407        // In the following code a nop could be inserted before
408        // the branch which will increase the backward distance.
409        bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr);
410        assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block");
411
412        if (needs_padding && offset <= 0)
413          offset -= nop_size;
414
415        if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
416          // We've got a winner.  Replace this branch.
417          MachNode* replacement = mach->as_MachBranch()->short_branch_version();
418
419          // Update the jmp_size.
420          int new_size = replacement->size(_regalloc);
421          int diff     = br_size - new_size;
422          assert(diff >= (int)nop_size, "short_branch size should be smaller");
423          // Conservatively take into account padding between
424          // avoid_back_to_back branches. Previous branch could be
425          // converted into avoid_back_to_back branch during next
426          // rounds.
427          if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
428            jmp_offset[i] += nop_size;
429            diff -= nop_size;
430          }
431          adjust_block_start += diff;
432          block->map_node(replacement, idx);
433          mach->subsume_by(replacement, C);
434          mach = replacement;
435          progress = true;
436
437          jmp_size[i] = new_size;
438          DEBUG_ONLY( jmp_target[i] = bnum; );
439          DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
440        } else {
441          // The jump distance is not short, try again during next iteration.
442          has_short_branch_candidate = true;
443        }
444      } // (mach->may_be_short_branch())
445      if (mach != NULL && (mach->may_be_short_branch() ||
446                           mach->avoid_back_to_back(MachNode::AVOID_AFTER))) {
447        last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
448      }
449      blk_starts[i+1] -= adjust_block_start;
450    }
451  }
452
453#ifdef ASSERT
454  for (uint i = 0; i < nblocks; i++) { // For all blocks
455    if (jmp_target[i] != 0) {
456      int br_size = jmp_size[i];
457      int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
458      if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
459        tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
460      }
461      assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
462    }
463  }
464#endif
465
466  // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
467  // after ScheduleAndBundle().
468
469  // ------------------
470  // Compute size for code buffer
471  code_size = blk_starts[nblocks];
472
473  // Relocation records
474  reloc_size += 1;              // Relo entry for exception handler
475
476  // Adjust reloc_size to number of record of relocation info
477  // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
478  // a relocation index.
479  // The CodeBuffer will expand the locs array if this estimate is too low.
480  reloc_size *= 10 / sizeof(relocInfo);
481}
482
483//------------------------------FillLocArray-----------------------------------
484// Create a bit of debug info and append it to the array.  The mapping is from
485// Java local or expression stack to constant, register or stack-slot.  For
486// doubles, insert 2 mappings and return 1 (to tell the caller that the next
487// entry has been taken care of and caller should skip it).
488static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
489  // This should never have accepted Bad before
490  assert(OptoReg::is_valid(regnum), "location must be valid");
491  return (OptoReg::is_reg(regnum))
492    ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
493    : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
494}
495
496
497ObjectValue*
498Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
499  for (int i = 0; i < objs->length(); i++) {
500    assert(objs->at(i)->is_object(), "corrupt object cache");
501    ObjectValue* sv = (ObjectValue*) objs->at(i);
502    if (sv->id() == id) {
503      return sv;
504    }
505  }
506  // Otherwise..
507  return NULL;
508}
509
510void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
511                                     ObjectValue* sv ) {
512  assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
513  objs->append(sv);
514}
515
516
517void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
518                            GrowableArray<ScopeValue*> *array,
519                            GrowableArray<ScopeValue*> *objs ) {
520  assert( local, "use _top instead of null" );
521  if (array->length() != idx) {
522    assert(array->length() == idx + 1, "Unexpected array count");
523    // Old functionality:
524    //   return
525    // New functionality:
526    //   Assert if the local is not top. In product mode let the new node
527    //   override the old entry.
528    assert(local == top(), "LocArray collision");
529    if (local == top()) {
530      return;
531    }
532    array->pop();
533  }
534  const Type *t = local->bottom_type();
535
536  // Is it a safepoint scalar object node?
537  if (local->is_SafePointScalarObject()) {
538    SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
539
540    ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
541    if (sv == NULL) {
542      ciKlass* cik = t->is_oopptr()->klass();
543      assert(cik->is_instance_klass() ||
544             cik->is_array_klass(), "Not supported allocation.");
545      sv = new ObjectValue(spobj->_idx,
546                           new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
547      Compile::set_sv_for_object_node(objs, sv);
548
549      uint first_ind = spobj->first_index(sfpt->jvms());
550      for (uint i = 0; i < spobj->n_fields(); i++) {
551        Node* fld_node = sfpt->in(first_ind+i);
552        (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
553      }
554    }
555    array->append(sv);
556    return;
557  }
558
559  // Grab the register number for the local
560  OptoReg::Name regnum = _regalloc->get_reg_first(local);
561  if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
562    // Record the double as two float registers.
563    // The register mask for such a value always specifies two adjacent
564    // float registers, with the lower register number even.
565    // Normally, the allocation of high and low words to these registers
566    // is irrelevant, because nearly all operations on register pairs
567    // (e.g., StoreD) treat them as a single unit.
568    // Here, we assume in addition that the words in these two registers
569    // stored "naturally" (by operations like StoreD and double stores
570    // within the interpreter) such that the lower-numbered register
571    // is written to the lower memory address.  This may seem like
572    // a machine dependency, but it is not--it is a requirement on
573    // the author of the <arch>.ad file to ensure that, for every
574    // even/odd double-register pair to which a double may be allocated,
575    // the word in the even single-register is stored to the first
576    // memory word.  (Note that register numbers are completely
577    // arbitrary, and are not tied to any machine-level encodings.)
578#ifdef _LP64
579    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
580      array->append(new ConstantIntValue(0));
581      array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
582    } else if ( t->base() == Type::Long ) {
583      array->append(new ConstantIntValue(0));
584      array->append(new_loc_value( _regalloc, regnum, Location::lng ));
585    } else if ( t->base() == Type::RawPtr ) {
586      // jsr/ret return address which must be restored into a the full
587      // width 64-bit stack slot.
588      array->append(new_loc_value( _regalloc, regnum, Location::lng ));
589    }
590#else //_LP64
591#ifdef SPARC
592    if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
593      // For SPARC we have to swap high and low words for
594      // long values stored in a single-register (g0-g7).
595      array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
596      array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
597    } else
598#endif //SPARC
599    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
600      // Repack the double/long as two jints.
601      // The convention the interpreter uses is that the second local
602      // holds the first raw word of the native double representation.
603      // This is actually reasonable, since locals and stack arrays
604      // grow downwards in all implementations.
605      // (If, on some machine, the interpreter's Java locals or stack
606      // were to grow upwards, the embedded doubles would be word-swapped.)
607      array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
608      array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
609    }
610#endif //_LP64
611    else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
612               OptoReg::is_reg(regnum) ) {
613      array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
614                                   ? Location::float_in_dbl : Location::normal ));
615    } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
616      array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
617                                   ? Location::int_in_long : Location::normal ));
618    } else if( t->base() == Type::NarrowOop ) {
619      array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
620    } else {
621      array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
622    }
623    return;
624  }
625
626  // No register.  It must be constant data.
627  switch (t->base()) {
628  case Type::Half:              // Second half of a double
629    ShouldNotReachHere();       // Caller should skip 2nd halves
630    break;
631  case Type::AnyPtr:
632    array->append(new ConstantOopWriteValue(NULL));
633    break;
634  case Type::AryPtr:
635  case Type::InstPtr:          // fall through
636    array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
637    break;
638  case Type::NarrowOop:
639    if (t == TypeNarrowOop::NULL_PTR) {
640      array->append(new ConstantOopWriteValue(NULL));
641    } else {
642      array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
643    }
644    break;
645  case Type::Int:
646    array->append(new ConstantIntValue(t->is_int()->get_con()));
647    break;
648  case Type::RawPtr:
649    // A return address (T_ADDRESS).
650    assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
651#ifdef _LP64
652    // Must be restored to the full-width 64-bit stack slot.
653    array->append(new ConstantLongValue(t->is_ptr()->get_con()));
654#else
655    array->append(new ConstantIntValue(t->is_ptr()->get_con()));
656#endif
657    break;
658  case Type::FloatCon: {
659    float f = t->is_float_constant()->getf();
660    array->append(new ConstantIntValue(jint_cast(f)));
661    break;
662  }
663  case Type::DoubleCon: {
664    jdouble d = t->is_double_constant()->getd();
665#ifdef _LP64
666    array->append(new ConstantIntValue(0));
667    array->append(new ConstantDoubleValue(d));
668#else
669    // Repack the double as two jints.
670    // The convention the interpreter uses is that the second local
671    // holds the first raw word of the native double representation.
672    // This is actually reasonable, since locals and stack arrays
673    // grow downwards in all implementations.
674    // (If, on some machine, the interpreter's Java locals or stack
675    // were to grow upwards, the embedded doubles would be word-swapped.)
676    jlong_accessor acc;
677    acc.long_value = jlong_cast(d);
678    array->append(new ConstantIntValue(acc.words[1]));
679    array->append(new ConstantIntValue(acc.words[0]));
680#endif
681    break;
682  }
683  case Type::Long: {
684    jlong d = t->is_long()->get_con();
685#ifdef _LP64
686    array->append(new ConstantIntValue(0));
687    array->append(new ConstantLongValue(d));
688#else
689    // Repack the long as two jints.
690    // The convention the interpreter uses is that the second local
691    // holds the first raw word of the native double representation.
692    // This is actually reasonable, since locals and stack arrays
693    // grow downwards in all implementations.
694    // (If, on some machine, the interpreter's Java locals or stack
695    // were to grow upwards, the embedded doubles would be word-swapped.)
696    jlong_accessor acc;
697    acc.long_value = d;
698    array->append(new ConstantIntValue(acc.words[1]));
699    array->append(new ConstantIntValue(acc.words[0]));
700#endif
701    break;
702  }
703  case Type::Top:               // Add an illegal value here
704    array->append(new LocationValue(Location()));
705    break;
706  default:
707    ShouldNotReachHere();
708    break;
709  }
710}
711
712// Determine if this node starts a bundle
713bool Compile::starts_bundle(const Node *n) const {
714  return (_node_bundling_limit > n->_idx &&
715          _node_bundling_base[n->_idx].starts_bundle());
716}
717
718//--------------------------Process_OopMap_Node--------------------------------
719void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
720
721  // Handle special safepoint nodes for synchronization
722  MachSafePointNode *sfn   = mach->as_MachSafePoint();
723  MachCallNode      *mcall;
724
725  int safepoint_pc_offset = current_offset;
726  bool is_method_handle_invoke = false;
727  bool return_oop = false;
728
729  // Add the safepoint in the DebugInfoRecorder
730  if( !mach->is_MachCall() ) {
731    mcall = NULL;
732    debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
733  } else {
734    mcall = mach->as_MachCall();
735
736    // Is the call a MethodHandle call?
737    if (mcall->is_MachCallJava()) {
738      if (mcall->as_MachCallJava()->_method_handle_invoke) {
739        assert(has_method_handle_invokes(), "must have been set during call generation");
740        is_method_handle_invoke = true;
741      }
742    }
743
744    // Check if a call returns an object.
745    if (mcall->returns_pointer()) {
746      return_oop = true;
747    }
748    safepoint_pc_offset += mcall->ret_addr_offset();
749    debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
750  }
751
752  // Loop over the JVMState list to add scope information
753  // Do not skip safepoints with a NULL method, they need monitor info
754  JVMState* youngest_jvms = sfn->jvms();
755  int max_depth = youngest_jvms->depth();
756
757  // Allocate the object pool for scalar-replaced objects -- the map from
758  // small-integer keys (which can be recorded in the local and ostack
759  // arrays) to descriptions of the object state.
760  GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
761
762  // Visit scopes from oldest to youngest.
763  for (int depth = 1; depth <= max_depth; depth++) {
764    JVMState* jvms = youngest_jvms->of_depth(depth);
765    int idx;
766    ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
767    // Safepoints that do not have method() set only provide oop-map and monitor info
768    // to support GC; these do not support deoptimization.
769    int num_locs = (method == NULL) ? 0 : jvms->loc_size();
770    int num_exps = (method == NULL) ? 0 : jvms->stk_size();
771    int num_mon  = jvms->nof_monitors();
772    assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
773           "JVMS local count must match that of the method");
774
775    // Add Local and Expression Stack Information
776
777    // Insert locals into the locarray
778    GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
779    for( idx = 0; idx < num_locs; idx++ ) {
780      FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
781    }
782
783    // Insert expression stack entries into the exparray
784    GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
785    for( idx = 0; idx < num_exps; idx++ ) {
786      FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
787    }
788
789    // Add in mappings of the monitors
790    assert( !method ||
791            !method->is_synchronized() ||
792            method->is_native() ||
793            num_mon > 0 ||
794            !GenerateSynchronizationCode,
795            "monitors must always exist for synchronized methods");
796
797    // Build the growable array of ScopeValues for exp stack
798    GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
799
800    // Loop over monitors and insert into array
801    for (idx = 0; idx < num_mon; idx++) {
802      // Grab the node that defines this monitor
803      Node* box_node = sfn->monitor_box(jvms, idx);
804      Node* obj_node = sfn->monitor_obj(jvms, idx);
805
806      // Create ScopeValue for object
807      ScopeValue *scval = NULL;
808
809      if (obj_node->is_SafePointScalarObject()) {
810        SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
811        scval = Compile::sv_for_node_id(objs, spobj->_idx);
812        if (scval == NULL) {
813          const Type *t = spobj->bottom_type();
814          ciKlass* cik = t->is_oopptr()->klass();
815          assert(cik->is_instance_klass() ||
816                 cik->is_array_klass(), "Not supported allocation.");
817          ObjectValue* sv = new ObjectValue(spobj->_idx,
818                                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
819          Compile::set_sv_for_object_node(objs, sv);
820
821          uint first_ind = spobj->first_index(youngest_jvms);
822          for (uint i = 0; i < spobj->n_fields(); i++) {
823            Node* fld_node = sfn->in(first_ind+i);
824            (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
825          }
826          scval = sv;
827        }
828      } else if (!obj_node->is_Con()) {
829        OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
830        if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
831          scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
832        } else {
833          scval = new_loc_value( _regalloc, obj_reg, Location::oop );
834        }
835      } else {
836        const TypePtr *tp = obj_node->get_ptr_type();
837        scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
838      }
839
840      OptoReg::Name box_reg = BoxLockNode::reg(box_node);
841      Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
842      bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
843      monarray->append(new MonitorValue(scval, basic_lock, eliminated));
844    }
845
846    // We dump the object pool first, since deoptimization reads it in first.
847    debug_info()->dump_object_pool(objs);
848
849    // Build first class objects to pass to scope
850    DebugToken *locvals = debug_info()->create_scope_values(locarray);
851    DebugToken *expvals = debug_info()->create_scope_values(exparray);
852    DebugToken *monvals = debug_info()->create_monitor_values(monarray);
853
854    // Make method available for all Safepoints
855    ciMethod* scope_method = method ? method : _method;
856    // Describe the scope here
857    assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
858    assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
859    // Now we can describe the scope.
860    methodHandle null_mh;
861    bool rethrow_exception = false;
862    debug_info()->describe_scope(safepoint_pc_offset, null_mh, scope_method, jvms->bci(), jvms->should_reexecute(), rethrow_exception, is_method_handle_invoke, return_oop, locvals, expvals, monvals);
863  } // End jvms loop
864
865  // Mark the end of the scope set.
866  debug_info()->end_safepoint(safepoint_pc_offset);
867}
868
869
870
871// A simplified version of Process_OopMap_Node, to handle non-safepoints.
872class NonSafepointEmitter {
873  Compile*  C;
874  JVMState* _pending_jvms;
875  int       _pending_offset;
876
877  void emit_non_safepoint();
878
879 public:
880  NonSafepointEmitter(Compile* compile) {
881    this->C = compile;
882    _pending_jvms = NULL;
883    _pending_offset = 0;
884  }
885
886  void observe_instruction(Node* n, int pc_offset) {
887    if (!C->debug_info()->recording_non_safepoints())  return;
888
889    Node_Notes* nn = C->node_notes_at(n->_idx);
890    if (nn == NULL || nn->jvms() == NULL)  return;
891    if (_pending_jvms != NULL &&
892        _pending_jvms->same_calls_as(nn->jvms())) {
893      // Repeated JVMS?  Stretch it up here.
894      _pending_offset = pc_offset;
895    } else {
896      if (_pending_jvms != NULL &&
897          _pending_offset < pc_offset) {
898        emit_non_safepoint();
899      }
900      _pending_jvms = NULL;
901      if (pc_offset > C->debug_info()->last_pc_offset()) {
902        // This is the only way _pending_jvms can become non-NULL:
903        _pending_jvms = nn->jvms();
904        _pending_offset = pc_offset;
905      }
906    }
907  }
908
909  // Stay out of the way of real safepoints:
910  void observe_safepoint(JVMState* jvms, int pc_offset) {
911    if (_pending_jvms != NULL &&
912        !_pending_jvms->same_calls_as(jvms) &&
913        _pending_offset < pc_offset) {
914      emit_non_safepoint();
915    }
916    _pending_jvms = NULL;
917  }
918
919  void flush_at_end() {
920    if (_pending_jvms != NULL) {
921      emit_non_safepoint();
922    }
923    _pending_jvms = NULL;
924  }
925};
926
927void NonSafepointEmitter::emit_non_safepoint() {
928  JVMState* youngest_jvms = _pending_jvms;
929  int       pc_offset     = _pending_offset;
930
931  // Clear it now:
932  _pending_jvms = NULL;
933
934  DebugInformationRecorder* debug_info = C->debug_info();
935  assert(debug_info->recording_non_safepoints(), "sanity");
936
937  debug_info->add_non_safepoint(pc_offset);
938  int max_depth = youngest_jvms->depth();
939
940  // Visit scopes from oldest to youngest.
941  for (int depth = 1; depth <= max_depth; depth++) {
942    JVMState* jvms = youngest_jvms->of_depth(depth);
943    ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
944    assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
945    methodHandle null_mh;
946    debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute());
947  }
948
949  // Mark the end of the scope set.
950  debug_info->end_non_safepoint(pc_offset);
951}
952
953//------------------------------init_buffer------------------------------------
954CodeBuffer* Compile::init_buffer(uint* blk_starts) {
955
956  // Set the initially allocated size
957  int  code_req   = initial_code_capacity;
958  int  locs_req   = initial_locs_capacity;
959  int  stub_req   = initial_stub_capacity;
960  int  const_req  = initial_const_capacity;
961
962  int  pad_req    = NativeCall::instruction_size;
963  // The extra spacing after the code is necessary on some platforms.
964  // Sometimes we need to patch in a jump after the last instruction,
965  // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
966
967  // Compute the byte offset where we can store the deopt pc.
968  if (fixed_slots() != 0) {
969    _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
970  }
971
972  // Compute prolog code size
973  _method_size = 0;
974  _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
975#if defined(IA64) && !defined(AIX)
976  if (save_argument_registers()) {
977    // 4815101: this is a stub with implicit and unknown precision fp args.
978    // The usual spill mechanism can only generate stfd's in this case, which
979    // doesn't work if the fp reg to spill contains a single-precision denorm.
980    // Instead, we hack around the normal spill mechanism using stfspill's and
981    // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
982    // space here for the fp arg regs (f8-f15) we're going to thusly spill.
983    //
984    // If we ever implement 16-byte 'registers' == stack slots, we can
985    // get rid of this hack and have SpillCopy generate stfspill/ldffill
986    // instead of stfd/stfs/ldfd/ldfs.
987    _frame_slots += 8*(16/BytesPerInt);
988  }
989#endif
990  assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
991
992  if (has_mach_constant_base_node()) {
993    uint add_size = 0;
994    // Fill the constant table.
995    // Note:  This must happen before shorten_branches.
996    for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
997      Block* b = _cfg->get_block(i);
998
999      for (uint j = 0; j < b->number_of_nodes(); j++) {
1000        Node* n = b->get_node(j);
1001
1002        // If the node is a MachConstantNode evaluate the constant
1003        // value section.
1004        if (n->is_MachConstant()) {
1005          MachConstantNode* machcon = n->as_MachConstant();
1006          machcon->eval_constant(C);
1007        } else if (n->is_Mach()) {
1008          // On Power there are more nodes that issue constants.
1009          add_size += (n->as_Mach()->ins_num_consts() * 8);
1010        }
1011      }
1012    }
1013
1014    // Calculate the offsets of the constants and the size of the
1015    // constant table (including the padding to the next section).
1016    constant_table().calculate_offsets_and_size();
1017    const_req = constant_table().size() + add_size;
1018  }
1019
1020  // Initialize the space for the BufferBlob used to find and verify
1021  // instruction size in MachNode::emit_size()
1022  init_scratch_buffer_blob(const_req);
1023  if (failing())  return NULL; // Out of memory
1024
1025  // Pre-compute the length of blocks and replace
1026  // long branches with short if machine supports it.
1027  shorten_branches(blk_starts, code_req, locs_req, stub_req);
1028
1029  // nmethod and CodeBuffer count stubs & constants as part of method's code.
1030  // class HandlerImpl is platform-specific and defined in the *.ad files.
1031  int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler
1032  int deopt_handler_req     = HandlerImpl::size_deopt_handler()     + MAX_stubs_size; // add marginal slop for handler
1033  stub_req += MAX_stubs_size;   // ensure per-stub margin
1034  code_req += MAX_inst_size;    // ensure per-instruction margin
1035
1036  if (StressCodeBuffers)
1037    code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1038
1039  int total_req =
1040    const_req +
1041    code_req +
1042    pad_req +
1043    stub_req +
1044    exception_handler_req +
1045    deopt_handler_req;               // deopt handler
1046
1047  if (has_method_handle_invokes())
1048    total_req += deopt_handler_req;  // deopt MH handler
1049
1050  CodeBuffer* cb = code_buffer();
1051  cb->initialize(total_req, locs_req);
1052
1053  // Have we run out of code space?
1054  if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1055    C->record_failure("CodeCache is full");
1056    return NULL;
1057  }
1058  // Configure the code buffer.
1059  cb->initialize_consts_size(const_req);
1060  cb->initialize_stubs_size(stub_req);
1061  cb->initialize_oop_recorder(env()->oop_recorder());
1062
1063  // fill in the nop array for bundling computations
1064  MachNode *_nop_list[Bundle::_nop_count];
1065  Bundle::initialize_nops(_nop_list);
1066
1067  return cb;
1068}
1069
1070//------------------------------fill_buffer------------------------------------
1071void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1072  // blk_starts[] contains offsets calculated during short branches processing,
1073  // offsets should not be increased during following steps.
1074
1075  // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1076  // of a loop. It is used to determine the padding for loop alignment.
1077  compute_loop_first_inst_sizes();
1078
1079  // Create oopmap set.
1080  _oop_map_set = new OopMapSet();
1081
1082  // !!!!! This preserves old handling of oopmaps for now
1083  debug_info()->set_oopmaps(_oop_map_set);
1084
1085  uint nblocks  = _cfg->number_of_blocks();
1086  // Count and start of implicit null check instructions
1087  uint inct_cnt = 0;
1088  uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1089
1090  // Count and start of calls
1091  uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1092
1093  uint  return_offset = 0;
1094  int nop_size = (new MachNopNode())->size(_regalloc);
1095
1096  int previous_offset = 0;
1097  int current_offset  = 0;
1098  int last_call_offset = -1;
1099  int last_avoid_back_to_back_offset = -1;
1100#ifdef ASSERT
1101  uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1102  uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1103  uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1104  uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1105#endif
1106
1107  // Create an array of unused labels, one for each basic block, if printing is enabled
1108#ifndef PRODUCT
1109  int *node_offsets      = NULL;
1110  uint node_offset_limit = unique();
1111
1112  if (print_assembly())
1113    node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1114#endif
1115
1116  NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1117
1118  // Emit the constant table.
1119  if (has_mach_constant_base_node()) {
1120    constant_table().emit(*cb);
1121  }
1122
1123  // Create an array of labels, one for each basic block
1124  Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1125  for (uint i=0; i <= nblocks; i++) {
1126    blk_labels[i].init();
1127  }
1128
1129  // ------------------
1130  // Now fill in the code buffer
1131  Node *delay_slot = NULL;
1132
1133  for (uint i = 0; i < nblocks; i++) {
1134    Block* block = _cfg->get_block(i);
1135    Node* head = block->head();
1136
1137    // If this block needs to start aligned (i.e, can be reached other
1138    // than by falling-thru from the previous block), then force the
1139    // start of a new bundle.
1140    if (Pipeline::requires_bundling() && starts_bundle(head)) {
1141      cb->flush_bundle(true);
1142    }
1143
1144#ifdef ASSERT
1145    if (!block->is_connector()) {
1146      stringStream st;
1147      block->dump_head(_cfg, &st);
1148      MacroAssembler(cb).block_comment(st.as_string());
1149    }
1150    jmp_target[i] = 0;
1151    jmp_offset[i] = 0;
1152    jmp_size[i]   = 0;
1153    jmp_rule[i]   = 0;
1154#endif
1155    int blk_offset = current_offset;
1156
1157    // Define the label at the beginning of the basic block
1158    MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
1159
1160    uint last_inst = block->number_of_nodes();
1161
1162    // Emit block normally, except for last instruction.
1163    // Emit means "dump code bits into code buffer".
1164    for (uint j = 0; j<last_inst; j++) {
1165
1166      // Get the node
1167      Node* n = block->get_node(j);
1168
1169      // See if delay slots are supported
1170      if (valid_bundle_info(n) &&
1171          node_bundling(n)->used_in_unconditional_delay()) {
1172        assert(delay_slot == NULL, "no use of delay slot node");
1173        assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1174
1175        delay_slot = n;
1176        continue;
1177      }
1178
1179      // If this starts a new instruction group, then flush the current one
1180      // (but allow split bundles)
1181      if (Pipeline::requires_bundling() && starts_bundle(n))
1182        cb->flush_bundle(false);
1183
1184      // Special handling for SafePoint/Call Nodes
1185      bool is_mcall = false;
1186      if (n->is_Mach()) {
1187        MachNode *mach = n->as_Mach();
1188        is_mcall = n->is_MachCall();
1189        bool is_sfn = n->is_MachSafePoint();
1190
1191        // If this requires all previous instructions be flushed, then do so
1192        if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1193          cb->flush_bundle(true);
1194          current_offset = cb->insts_size();
1195        }
1196
1197        // A padding may be needed again since a previous instruction
1198        // could be moved to delay slot.
1199
1200        // align the instruction if necessary
1201        int padding = mach->compute_padding(current_offset);
1202        // Make sure safepoint node for polling is distinct from a call's
1203        // return by adding a nop if needed.
1204        if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1205          padding = nop_size;
1206        }
1207        if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) &&
1208            current_offset == last_avoid_back_to_back_offset) {
1209          // Avoid back to back some instructions.
1210          padding = nop_size;
1211        }
1212
1213        if (padding > 0) {
1214          assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1215          int nops_cnt = padding / nop_size;
1216          MachNode *nop = new MachNopNode(nops_cnt);
1217          block->insert_node(nop, j++);
1218          last_inst++;
1219          _cfg->map_node_to_block(nop, block);
1220          // Ensure enough space.
1221          cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1222          if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1223            C->record_failure("CodeCache is full");
1224            return;
1225          }
1226          nop->emit(*cb, _regalloc);
1227          cb->flush_bundle(true);
1228          current_offset = cb->insts_size();
1229        }
1230
1231        // Remember the start of the last call in a basic block
1232        if (is_mcall) {
1233          MachCallNode *mcall = mach->as_MachCall();
1234
1235          // This destination address is NOT PC-relative
1236          mcall->method_set((intptr_t)mcall->entry_point());
1237
1238          // Save the return address
1239          call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
1240
1241          if (mcall->is_MachCallLeaf()) {
1242            is_mcall = false;
1243            is_sfn = false;
1244          }
1245        }
1246
1247        // sfn will be valid whenever mcall is valid now because of inheritance
1248        if (is_sfn || is_mcall) {
1249
1250          // Handle special safepoint nodes for synchronization
1251          if (!is_mcall) {
1252            MachSafePointNode *sfn = mach->as_MachSafePoint();
1253            // !!!!! Stubs only need an oopmap right now, so bail out
1254            if (sfn->jvms()->method() == NULL) {
1255              // Write the oopmap directly to the code blob??!!
1256              continue;
1257            }
1258          } // End synchronization
1259
1260          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1261                                           current_offset);
1262          Process_OopMap_Node(mach, current_offset);
1263        } // End if safepoint
1264
1265        // If this is a null check, then add the start of the previous instruction to the list
1266        else if( mach->is_MachNullCheck() ) {
1267          inct_starts[inct_cnt++] = previous_offset;
1268        }
1269
1270        // If this is a branch, then fill in the label with the target BB's label
1271        else if (mach->is_MachBranch()) {
1272          // This requires the TRUE branch target be in succs[0]
1273          uint block_num = block->non_connector_successor(0)->_pre_order;
1274
1275          // Try to replace long branch if delay slot is not used,
1276          // it is mostly for back branches since forward branch's
1277          // distance is not updated yet.
1278          bool delay_slot_is_used = valid_bundle_info(n) &&
1279                                    node_bundling(n)->use_unconditional_delay();
1280          if (!delay_slot_is_used && mach->may_be_short_branch()) {
1281           assert(delay_slot == NULL, "not expecting delay slot node");
1282           int br_size = n->size(_regalloc);
1283            int offset = blk_starts[block_num] - current_offset;
1284            if (block_num >= i) {
1285              // Current and following block's offset are not
1286              // finalized yet, adjust distance by the difference
1287              // between calculated and final offsets of current block.
1288              offset -= (blk_starts[i] - blk_offset);
1289            }
1290            // In the following code a nop could be inserted before
1291            // the branch which will increase the backward distance.
1292            bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1293            if (needs_padding && offset <= 0)
1294              offset -= nop_size;
1295
1296            if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
1297              // We've got a winner.  Replace this branch.
1298              MachNode* replacement = mach->as_MachBranch()->short_branch_version();
1299
1300              // Update the jmp_size.
1301              int new_size = replacement->size(_regalloc);
1302              assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1303              // Insert padding between avoid_back_to_back branches.
1304              if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
1305                MachNode *nop = new MachNopNode();
1306                block->insert_node(nop, j++);
1307                _cfg->map_node_to_block(nop, block);
1308                last_inst++;
1309                nop->emit(*cb, _regalloc);
1310                cb->flush_bundle(true);
1311                current_offset = cb->insts_size();
1312              }
1313#ifdef ASSERT
1314              jmp_target[i] = block_num;
1315              jmp_offset[i] = current_offset - blk_offset;
1316              jmp_size[i]   = new_size;
1317              jmp_rule[i]   = mach->rule();
1318#endif
1319              block->map_node(replacement, j);
1320              mach->subsume_by(replacement, C);
1321              n    = replacement;
1322              mach = replacement;
1323            }
1324          }
1325          mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1326        } else if (mach->ideal_Opcode() == Op_Jump) {
1327          for (uint h = 0; h < block->_num_succs; h++) {
1328            Block* succs_block = block->_succs[h];
1329            for (uint j = 1; j < succs_block->num_preds(); j++) {
1330              Node* jpn = succs_block->pred(j);
1331              if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1332                uint block_num = succs_block->non_connector()->_pre_order;
1333                Label *blkLabel = &blk_labels[block_num];
1334                mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1335              }
1336            }
1337          }
1338        }
1339#ifdef ASSERT
1340        // Check that oop-store precedes the card-mark
1341        else if (mach->ideal_Opcode() == Op_StoreCM) {
1342          uint storeCM_idx = j;
1343          int count = 0;
1344          for (uint prec = mach->req(); prec < mach->len(); prec++) {
1345            Node *oop_store = mach->in(prec);  // Precedence edge
1346            if (oop_store == NULL) continue;
1347            count++;
1348            uint i4;
1349            for (i4 = 0; i4 < last_inst; ++i4) {
1350              if (block->get_node(i4) == oop_store) {
1351                break;
1352              }
1353            }
1354            // Note: This test can provide a false failure if other precedence
1355            // edges have been added to the storeCMNode.
1356            assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1357          }
1358          assert(count > 0, "storeCM expects at least one precedence edge");
1359        }
1360#endif
1361        else if (!n->is_Proj()) {
1362          // Remember the beginning of the previous instruction, in case
1363          // it's followed by a flag-kill and a null-check.  Happens on
1364          // Intel all the time, with add-to-memory kind of opcodes.
1365          previous_offset = current_offset;
1366        }
1367
1368        // Not an else-if!
1369        // If this is a trap based cmp then add its offset to the list.
1370        if (mach->is_TrapBasedCheckNode()) {
1371          inct_starts[inct_cnt++] = current_offset;
1372        }
1373      }
1374
1375      // Verify that there is sufficient space remaining
1376      cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1377      if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1378        C->record_failure("CodeCache is full");
1379        return;
1380      }
1381
1382      // Save the offset for the listing
1383#ifndef PRODUCT
1384      if (node_offsets && n->_idx < node_offset_limit)
1385        node_offsets[n->_idx] = cb->insts_size();
1386#endif
1387
1388      // "Normal" instruction case
1389      DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
1390      n->emit(*cb, _regalloc);
1391      current_offset  = cb->insts_size();
1392
1393      // Above we only verified that there is enough space in the instruction section.
1394      // However, the instruction may emit stubs that cause code buffer expansion.
1395      // Bail out here if expansion failed due to a lack of code cache space.
1396      if (failing()) {
1397        return;
1398      }
1399
1400#ifdef ASSERT
1401      if (n->size(_regalloc) < (current_offset-instr_offset)) {
1402        n->dump();
1403        assert(false, "wrong size of mach node");
1404      }
1405#endif
1406      non_safepoints.observe_instruction(n, current_offset);
1407
1408      // mcall is last "call" that can be a safepoint
1409      // record it so we can see if a poll will directly follow it
1410      // in which case we'll need a pad to make the PcDesc sites unique
1411      // see  5010568. This can be slightly inaccurate but conservative
1412      // in the case that return address is not actually at current_offset.
1413      // This is a small price to pay.
1414
1415      if (is_mcall) {
1416        last_call_offset = current_offset;
1417      }
1418
1419      if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
1420        // Avoid back to back some instructions.
1421        last_avoid_back_to_back_offset = current_offset;
1422      }
1423
1424      // See if this instruction has a delay slot
1425      if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1426        assert(delay_slot != NULL, "expecting delay slot node");
1427
1428        // Back up 1 instruction
1429        cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1430
1431        // Save the offset for the listing
1432#ifndef PRODUCT
1433        if (node_offsets && delay_slot->_idx < node_offset_limit)
1434          node_offsets[delay_slot->_idx] = cb->insts_size();
1435#endif
1436
1437        // Support a SafePoint in the delay slot
1438        if (delay_slot->is_MachSafePoint()) {
1439          MachNode *mach = delay_slot->as_Mach();
1440          // !!!!! Stubs only need an oopmap right now, so bail out
1441          if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
1442            // Write the oopmap directly to the code blob??!!
1443            delay_slot = NULL;
1444            continue;
1445          }
1446
1447          int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1448          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1449                                           adjusted_offset);
1450          // Generate an OopMap entry
1451          Process_OopMap_Node(mach, adjusted_offset);
1452        }
1453
1454        // Insert the delay slot instruction
1455        delay_slot->emit(*cb, _regalloc);
1456
1457        // Don't reuse it
1458        delay_slot = NULL;
1459      }
1460
1461    } // End for all instructions in block
1462
1463    // If the next block is the top of a loop, pad this block out to align
1464    // the loop top a little. Helps prevent pipe stalls at loop back branches.
1465    if (i < nblocks-1) {
1466      Block *nb = _cfg->get_block(i + 1);
1467      int padding = nb->alignment_padding(current_offset);
1468      if( padding > 0 ) {
1469        MachNode *nop = new MachNopNode(padding / nop_size);
1470        block->insert_node(nop, block->number_of_nodes());
1471        _cfg->map_node_to_block(nop, block);
1472        nop->emit(*cb, _regalloc);
1473        current_offset = cb->insts_size();
1474      }
1475    }
1476    // Verify that the distance for generated before forward
1477    // short branches is still valid.
1478    guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1479
1480    // Save new block start offset
1481    blk_starts[i] = blk_offset;
1482  } // End of for all blocks
1483  blk_starts[nblocks] = current_offset;
1484
1485  non_safepoints.flush_at_end();
1486
1487  // Offset too large?
1488  if (failing())  return;
1489
1490  // Define a pseudo-label at the end of the code
1491  MacroAssembler(cb).bind( blk_labels[nblocks] );
1492
1493  // Compute the size of the first block
1494  _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1495
1496#ifdef ASSERT
1497  for (uint i = 0; i < nblocks; i++) { // For all blocks
1498    if (jmp_target[i] != 0) {
1499      int br_size = jmp_size[i];
1500      int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1501      if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1502        tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1503        assert(false, "Displacement too large for short jmp");
1504      }
1505    }
1506  }
1507#endif
1508
1509#ifndef PRODUCT
1510  // Information on the size of the method, without the extraneous code
1511  Scheduling::increment_method_size(cb->insts_size());
1512#endif
1513
1514  // ------------------
1515  // Fill in exception table entries.
1516  FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1517
1518  // Only java methods have exception handlers and deopt handlers
1519  // class HandlerImpl is platform-specific and defined in the *.ad files.
1520  if (_method) {
1521    // Emit the exception handler code.
1522    _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(*cb));
1523    if (failing()) {
1524      return; // CodeBuffer::expand failed
1525    }
1526    // Emit the deopt handler code.
1527    _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(*cb));
1528
1529    // Emit the MethodHandle deopt handler code (if required).
1530    if (has_method_handle_invokes() && !failing()) {
1531      // We can use the same code as for the normal deopt handler, we
1532      // just need a different entry point address.
1533      _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(*cb));
1534    }
1535  }
1536
1537  // One last check for failed CodeBuffer::expand:
1538  if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1539    C->record_failure("CodeCache is full");
1540    return;
1541  }
1542
1543#ifndef PRODUCT
1544  // Dump the assembly code, including basic-block numbers
1545  if (print_assembly()) {
1546    ttyLocker ttyl;  // keep the following output all in one block
1547    if (!VMThread::should_terminate()) {  // test this under the tty lock
1548      // This output goes directly to the tty, not the compiler log.
1549      // To enable tools to match it up with the compilation activity,
1550      // be sure to tag this tty output with the compile ID.
1551      if (xtty != NULL) {
1552        xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1553                   is_osr_compilation()    ? " compile_kind='osr'" :
1554                   "");
1555      }
1556      if (method() != NULL) {
1557        method()->print_metadata();
1558      }
1559      dump_asm(node_offsets, node_offset_limit);
1560      if (xtty != NULL) {
1561        // print_metadata and dump_asm above may safepoint which makes us loose the ttylock.
1562        // Retake lock too make sure the end tag is coherent, and that xmlStream->pop_tag is done
1563        // thread safe
1564        ttyLocker ttyl2;
1565        xtty->tail("opto_assembly");
1566      }
1567    }
1568  }
1569#endif
1570
1571}
1572
1573void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1574  _inc_table.set_size(cnt);
1575
1576  uint inct_cnt = 0;
1577  for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
1578    Block* block = _cfg->get_block(i);
1579    Node *n = NULL;
1580    int j;
1581
1582    // Find the branch; ignore trailing NOPs.
1583    for (j = block->number_of_nodes() - 1; j >= 0; j--) {
1584      n = block->get_node(j);
1585      if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
1586        break;
1587      }
1588    }
1589
1590    // If we didn't find anything, continue
1591    if (j < 0) {
1592      continue;
1593    }
1594
1595    // Compute ExceptionHandlerTable subtable entry and add it
1596    // (skip empty blocks)
1597    if (n->is_Catch()) {
1598
1599      // Get the offset of the return from the call
1600      uint call_return = call_returns[block->_pre_order];
1601#ifdef ASSERT
1602      assert( call_return > 0, "no call seen for this basic block" );
1603      while (block->get_node(--j)->is_MachProj()) ;
1604      assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1605#endif
1606      // last instruction is a CatchNode, find it's CatchProjNodes
1607      int nof_succs = block->_num_succs;
1608      // allocate space
1609      GrowableArray<intptr_t> handler_bcis(nof_succs);
1610      GrowableArray<intptr_t> handler_pcos(nof_succs);
1611      // iterate through all successors
1612      for (int j = 0; j < nof_succs; j++) {
1613        Block* s = block->_succs[j];
1614        bool found_p = false;
1615        for (uint k = 1; k < s->num_preds(); k++) {
1616          Node* pk = s->pred(k);
1617          if (pk->is_CatchProj() && pk->in(0) == n) {
1618            const CatchProjNode* p = pk->as_CatchProj();
1619            found_p = true;
1620            // add the corresponding handler bci & pco information
1621            if (p->_con != CatchProjNode::fall_through_index) {
1622              // p leads to an exception handler (and is not fall through)
1623              assert(s == _cfg->get_block(s->_pre_order), "bad numbering");
1624              // no duplicates, please
1625              if (!handler_bcis.contains(p->handler_bci())) {
1626                uint block_num = s->non_connector()->_pre_order;
1627                handler_bcis.append(p->handler_bci());
1628                handler_pcos.append(blk_labels[block_num].loc_pos());
1629              }
1630            }
1631          }
1632        }
1633        assert(found_p, "no matching predecessor found");
1634        // Note:  Due to empty block removal, one block may have
1635        // several CatchProj inputs, from the same Catch.
1636      }
1637
1638      // Set the offset of the return from the call
1639      _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1640      continue;
1641    }
1642
1643    // Handle implicit null exception table updates
1644    if (n->is_MachNullCheck()) {
1645      uint block_num = block->non_connector_successor(0)->_pre_order;
1646      _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1647      continue;
1648    }
1649    // Handle implicit exception table updates: trap instructions.
1650    if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) {
1651      uint block_num = block->non_connector_successor(0)->_pre_order;
1652      _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1653      continue;
1654    }
1655  } // End of for all blocks fill in exception table entries
1656}
1657
1658// Static Variables
1659#ifndef PRODUCT
1660uint Scheduling::_total_nop_size = 0;
1661uint Scheduling::_total_method_size = 0;
1662uint Scheduling::_total_branches = 0;
1663uint Scheduling::_total_unconditional_delays = 0;
1664uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1665#endif
1666
1667// Initializer for class Scheduling
1668
1669Scheduling::Scheduling(Arena *arena, Compile &compile)
1670  : _arena(arena),
1671    _cfg(compile.cfg()),
1672    _regalloc(compile.regalloc()),
1673    _reg_node(arena),
1674    _bundle_instr_count(0),
1675    _bundle_cycle_number(0),
1676    _scheduled(arena),
1677    _available(arena),
1678    _next_node(NULL),
1679    _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1680    _pinch_free_list(arena)
1681#ifndef PRODUCT
1682  , _branches(0)
1683  , _unconditional_delays(0)
1684#endif
1685{
1686  // Create a MachNopNode
1687  _nop = new MachNopNode();
1688
1689  // Now that the nops are in the array, save the count
1690  // (but allow entries for the nops)
1691  _node_bundling_limit = compile.unique();
1692  uint node_max = _regalloc->node_regs_max_index();
1693
1694  compile.set_node_bundling_limit(_node_bundling_limit);
1695
1696  // This one is persistent within the Compile class
1697  _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1698
1699  // Allocate space for fixed-size arrays
1700  _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1701  _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1702  _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1703
1704  // Clear the arrays
1705  memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1706  memset(_node_latency,       0, node_max * sizeof(unsigned short));
1707  memset(_uses,               0, node_max * sizeof(short));
1708  memset(_current_latency,    0, node_max * sizeof(unsigned short));
1709
1710  // Clear the bundling information
1711  memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
1712
1713  // Get the last node
1714  Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
1715
1716  _next_node = block->get_node(block->number_of_nodes() - 1);
1717}
1718
1719#ifndef PRODUCT
1720// Scheduling destructor
1721Scheduling::~Scheduling() {
1722  _total_branches             += _branches;
1723  _total_unconditional_delays += _unconditional_delays;
1724}
1725#endif
1726
1727// Step ahead "i" cycles
1728void Scheduling::step(uint i) {
1729
1730  Bundle *bundle = node_bundling(_next_node);
1731  bundle->set_starts_bundle();
1732
1733  // Update the bundle record, but leave the flags information alone
1734  if (_bundle_instr_count > 0) {
1735    bundle->set_instr_count(_bundle_instr_count);
1736    bundle->set_resources_used(_bundle_use.resourcesUsed());
1737  }
1738
1739  // Update the state information
1740  _bundle_instr_count = 0;
1741  _bundle_cycle_number += i;
1742  _bundle_use.step(i);
1743}
1744
1745void Scheduling::step_and_clear() {
1746  Bundle *bundle = node_bundling(_next_node);
1747  bundle->set_starts_bundle();
1748
1749  // Update the bundle record
1750  if (_bundle_instr_count > 0) {
1751    bundle->set_instr_count(_bundle_instr_count);
1752    bundle->set_resources_used(_bundle_use.resourcesUsed());
1753
1754    _bundle_cycle_number += 1;
1755  }
1756
1757  // Clear the bundling information
1758  _bundle_instr_count = 0;
1759  _bundle_use.reset();
1760
1761  memcpy(_bundle_use_elements,
1762    Pipeline_Use::elaborated_elements,
1763    sizeof(Pipeline_Use::elaborated_elements));
1764}
1765
1766// Perform instruction scheduling and bundling over the sequence of
1767// instructions in backwards order.
1768void Compile::ScheduleAndBundle() {
1769
1770  // Don't optimize this if it isn't a method
1771  if (!_method)
1772    return;
1773
1774  // Don't optimize this if scheduling is disabled
1775  if (!do_scheduling())
1776    return;
1777
1778  // Scheduling code works only with pairs (16 bytes) maximum.
1779  if (max_vector_size() > 16)
1780    return;
1781
1782  TracePhase tp("isched", &timers[_t_instrSched]);
1783
1784  // Create a data structure for all the scheduling information
1785  Scheduling scheduling(Thread::current()->resource_area(), *this);
1786
1787  // Walk backwards over each basic block, computing the needed alignment
1788  // Walk over all the basic blocks
1789  scheduling.DoScheduling();
1790}
1791
1792// Compute the latency of all the instructions.  This is fairly simple,
1793// because we already have a legal ordering.  Walk over the instructions
1794// from first to last, and compute the latency of the instruction based
1795// on the latency of the preceding instruction(s).
1796void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1797#ifndef PRODUCT
1798  if (_cfg->C->trace_opto_output())
1799    tty->print("# -> ComputeLocalLatenciesForward\n");
1800#endif
1801
1802  // Walk over all the schedulable instructions
1803  for( uint j=_bb_start; j < _bb_end; j++ ) {
1804
1805    // This is a kludge, forcing all latency calculations to start at 1.
1806    // Used to allow latency 0 to force an instruction to the beginning
1807    // of the bb
1808    uint latency = 1;
1809    Node *use = bb->get_node(j);
1810    uint nlen = use->len();
1811
1812    // Walk over all the inputs
1813    for ( uint k=0; k < nlen; k++ ) {
1814      Node *def = use->in(k);
1815      if (!def)
1816        continue;
1817
1818      uint l = _node_latency[def->_idx] + use->latency(k);
1819      if (latency < l)
1820        latency = l;
1821    }
1822
1823    _node_latency[use->_idx] = latency;
1824
1825#ifndef PRODUCT
1826    if (_cfg->C->trace_opto_output()) {
1827      tty->print("# latency %4d: ", latency);
1828      use->dump();
1829    }
1830#endif
1831  }
1832
1833#ifndef PRODUCT
1834  if (_cfg->C->trace_opto_output())
1835    tty->print("# <- ComputeLocalLatenciesForward\n");
1836#endif
1837
1838} // end ComputeLocalLatenciesForward
1839
1840// See if this node fits into the present instruction bundle
1841bool Scheduling::NodeFitsInBundle(Node *n) {
1842  uint n_idx = n->_idx;
1843
1844  // If this is the unconditional delay instruction, then it fits
1845  if (n == _unconditional_delay_slot) {
1846#ifndef PRODUCT
1847    if (_cfg->C->trace_opto_output())
1848      tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1849#endif
1850    return (true);
1851  }
1852
1853  // If the node cannot be scheduled this cycle, skip it
1854  if (_current_latency[n_idx] > _bundle_cycle_number) {
1855#ifndef PRODUCT
1856    if (_cfg->C->trace_opto_output())
1857      tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1858        n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1859#endif
1860    return (false);
1861  }
1862
1863  const Pipeline *node_pipeline = n->pipeline();
1864
1865  uint instruction_count = node_pipeline->instructionCount();
1866  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1867    instruction_count = 0;
1868  else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1869    instruction_count++;
1870
1871  if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1872#ifndef PRODUCT
1873    if (_cfg->C->trace_opto_output())
1874      tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1875        n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1876#endif
1877    return (false);
1878  }
1879
1880  // Don't allow non-machine nodes to be handled this way
1881  if (!n->is_Mach() && instruction_count == 0)
1882    return (false);
1883
1884  // See if there is any overlap
1885  uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1886
1887  if (delay > 0) {
1888#ifndef PRODUCT
1889    if (_cfg->C->trace_opto_output())
1890      tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1891#endif
1892    return false;
1893  }
1894
1895#ifndef PRODUCT
1896  if (_cfg->C->trace_opto_output())
1897    tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
1898#endif
1899
1900  return true;
1901}
1902
1903Node * Scheduling::ChooseNodeToBundle() {
1904  uint siz = _available.size();
1905
1906  if (siz == 0) {
1907
1908#ifndef PRODUCT
1909    if (_cfg->C->trace_opto_output())
1910      tty->print("#   ChooseNodeToBundle: NULL\n");
1911#endif
1912    return (NULL);
1913  }
1914
1915  // Fast path, if only 1 instruction in the bundle
1916  if (siz == 1) {
1917#ifndef PRODUCT
1918    if (_cfg->C->trace_opto_output()) {
1919      tty->print("#   ChooseNodeToBundle (only 1): ");
1920      _available[0]->dump();
1921    }
1922#endif
1923    return (_available[0]);
1924  }
1925
1926  // Don't bother, if the bundle is already full
1927  if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
1928    for ( uint i = 0; i < siz; i++ ) {
1929      Node *n = _available[i];
1930
1931      // Skip projections, we'll handle them another way
1932      if (n->is_Proj())
1933        continue;
1934
1935      // This presupposed that instructions are inserted into the
1936      // available list in a legality order; i.e. instructions that
1937      // must be inserted first are at the head of the list
1938      if (NodeFitsInBundle(n)) {
1939#ifndef PRODUCT
1940        if (_cfg->C->trace_opto_output()) {
1941          tty->print("#   ChooseNodeToBundle: ");
1942          n->dump();
1943        }
1944#endif
1945        return (n);
1946      }
1947    }
1948  }
1949
1950  // Nothing fits in this bundle, choose the highest priority
1951#ifndef PRODUCT
1952  if (_cfg->C->trace_opto_output()) {
1953    tty->print("#   ChooseNodeToBundle: ");
1954    _available[0]->dump();
1955  }
1956#endif
1957
1958  return _available[0];
1959}
1960
1961void Scheduling::AddNodeToAvailableList(Node *n) {
1962  assert( !n->is_Proj(), "projections never directly made available" );
1963#ifndef PRODUCT
1964  if (_cfg->C->trace_opto_output()) {
1965    tty->print("#   AddNodeToAvailableList: ");
1966    n->dump();
1967  }
1968#endif
1969
1970  int latency = _current_latency[n->_idx];
1971
1972  // Insert in latency order (insertion sort)
1973  uint i;
1974  for ( i=0; i < _available.size(); i++ )
1975    if (_current_latency[_available[i]->_idx] > latency)
1976      break;
1977
1978  // Special Check for compares following branches
1979  if( n->is_Mach() && _scheduled.size() > 0 ) {
1980    int op = n->as_Mach()->ideal_Opcode();
1981    Node *last = _scheduled[0];
1982    if( last->is_MachIf() && last->in(1) == n &&
1983        ( op == Op_CmpI ||
1984          op == Op_CmpU ||
1985          op == Op_CmpP ||
1986          op == Op_CmpF ||
1987          op == Op_CmpD ||
1988          op == Op_CmpL ) ) {
1989
1990      // Recalculate position, moving to front of same latency
1991      for ( i=0 ; i < _available.size(); i++ )
1992        if (_current_latency[_available[i]->_idx] >= latency)
1993          break;
1994    }
1995  }
1996
1997  // Insert the node in the available list
1998  _available.insert(i, n);
1999
2000#ifndef PRODUCT
2001  if (_cfg->C->trace_opto_output())
2002    dump_available();
2003#endif
2004}
2005
2006void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2007  for ( uint i=0; i < n->len(); i++ ) {
2008    Node *def = n->in(i);
2009    if (!def) continue;
2010    if( def->is_Proj() )        // If this is a machine projection, then
2011      def = def->in(0);         // propagate usage thru to the base instruction
2012
2013    if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
2014      continue;
2015    }
2016
2017    // Compute the latency
2018    uint l = _bundle_cycle_number + n->latency(i);
2019    if (_current_latency[def->_idx] < l)
2020      _current_latency[def->_idx] = l;
2021
2022    // If this does not have uses then schedule it
2023    if ((--_uses[def->_idx]) == 0)
2024      AddNodeToAvailableList(def);
2025  }
2026}
2027
2028void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2029#ifndef PRODUCT
2030  if (_cfg->C->trace_opto_output()) {
2031    tty->print("#   AddNodeToBundle: ");
2032    n->dump();
2033  }
2034#endif
2035
2036  // Remove this from the available list
2037  uint i;
2038  for (i = 0; i < _available.size(); i++)
2039    if (_available[i] == n)
2040      break;
2041  assert(i < _available.size(), "entry in _available list not found");
2042  _available.remove(i);
2043
2044  // See if this fits in the current bundle
2045  const Pipeline *node_pipeline = n->pipeline();
2046  const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2047
2048  // Check for instructions to be placed in the delay slot. We
2049  // do this before we actually schedule the current instruction,
2050  // because the delay slot follows the current instruction.
2051  if (Pipeline::_branch_has_delay_slot &&
2052      node_pipeline->hasBranchDelay() &&
2053      !_unconditional_delay_slot) {
2054
2055    uint siz = _available.size();
2056
2057    // Conditional branches can support an instruction that
2058    // is unconditionally executed and not dependent by the
2059    // branch, OR a conditionally executed instruction if
2060    // the branch is taken.  In practice, this means that
2061    // the first instruction at the branch target is
2062    // copied to the delay slot, and the branch goes to
2063    // the instruction after that at the branch target
2064    if ( n->is_MachBranch() ) {
2065
2066      assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2067      assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2068
2069#ifndef PRODUCT
2070      _branches++;
2071#endif
2072
2073      // At least 1 instruction is on the available list
2074      // that is not dependent on the branch
2075      for (uint i = 0; i < siz; i++) {
2076        Node *d = _available[i];
2077        const Pipeline *avail_pipeline = d->pipeline();
2078
2079        // Don't allow safepoints in the branch shadow, that will
2080        // cause a number of difficulties
2081        if ( avail_pipeline->instructionCount() == 1 &&
2082            !avail_pipeline->hasMultipleBundles() &&
2083            !avail_pipeline->hasBranchDelay() &&
2084            Pipeline::instr_has_unit_size() &&
2085            d->size(_regalloc) == Pipeline::instr_unit_size() &&
2086            NodeFitsInBundle(d) &&
2087            !node_bundling(d)->used_in_delay()) {
2088
2089          if (d->is_Mach() && !d->is_MachSafePoint()) {
2090            // A node that fits in the delay slot was found, so we need to
2091            // set the appropriate bits in the bundle pipeline information so
2092            // that it correctly indicates resource usage.  Later, when we
2093            // attempt to add this instruction to the bundle, we will skip
2094            // setting the resource usage.
2095            _unconditional_delay_slot = d;
2096            node_bundling(n)->set_use_unconditional_delay();
2097            node_bundling(d)->set_used_in_unconditional_delay();
2098            _bundle_use.add_usage(avail_pipeline->resourceUse());
2099            _current_latency[d->_idx] = _bundle_cycle_number;
2100            _next_node = d;
2101            ++_bundle_instr_count;
2102#ifndef PRODUCT
2103            _unconditional_delays++;
2104#endif
2105            break;
2106          }
2107        }
2108      }
2109    }
2110
2111    // No delay slot, add a nop to the usage
2112    if (!_unconditional_delay_slot) {
2113      // See if adding an instruction in the delay slot will overflow
2114      // the bundle.
2115      if (!NodeFitsInBundle(_nop)) {
2116#ifndef PRODUCT
2117        if (_cfg->C->trace_opto_output())
2118          tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2119#endif
2120        step(1);
2121      }
2122
2123      _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2124      _next_node = _nop;
2125      ++_bundle_instr_count;
2126    }
2127
2128    // See if the instruction in the delay slot requires a
2129    // step of the bundles
2130    if (!NodeFitsInBundle(n)) {
2131#ifndef PRODUCT
2132        if (_cfg->C->trace_opto_output())
2133          tty->print("#  *** STEP(branch won't fit) ***\n");
2134#endif
2135        // Update the state information
2136        _bundle_instr_count = 0;
2137        _bundle_cycle_number += 1;
2138        _bundle_use.step(1);
2139    }
2140  }
2141
2142  // Get the number of instructions
2143  uint instruction_count = node_pipeline->instructionCount();
2144  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2145    instruction_count = 0;
2146
2147  // Compute the latency information
2148  uint delay = 0;
2149
2150  if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2151    int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2152    if (relative_latency < 0)
2153      relative_latency = 0;
2154
2155    delay = _bundle_use.full_latency(relative_latency, node_usage);
2156
2157    // Does not fit in this bundle, start a new one
2158    if (delay > 0) {
2159      step(delay);
2160
2161#ifndef PRODUCT
2162      if (_cfg->C->trace_opto_output())
2163        tty->print("#  *** STEP(%d) ***\n", delay);
2164#endif
2165    }
2166  }
2167
2168  // If this was placed in the delay slot, ignore it
2169  if (n != _unconditional_delay_slot) {
2170
2171    if (delay == 0) {
2172      if (node_pipeline->hasMultipleBundles()) {
2173#ifndef PRODUCT
2174        if (_cfg->C->trace_opto_output())
2175          tty->print("#  *** STEP(multiple instructions) ***\n");
2176#endif
2177        step(1);
2178      }
2179
2180      else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2181#ifndef PRODUCT
2182        if (_cfg->C->trace_opto_output())
2183          tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2184            instruction_count + _bundle_instr_count,
2185            Pipeline::_max_instrs_per_cycle);
2186#endif
2187        step(1);
2188      }
2189    }
2190
2191    if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2192      _bundle_instr_count++;
2193
2194    // Set the node's latency
2195    _current_latency[n->_idx] = _bundle_cycle_number;
2196
2197    // Now merge the functional unit information
2198    if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2199      _bundle_use.add_usage(node_usage);
2200
2201    // Increment the number of instructions in this bundle
2202    _bundle_instr_count += instruction_count;
2203
2204    // Remember this node for later
2205    if (n->is_Mach())
2206      _next_node = n;
2207  }
2208
2209  // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2210  // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2211  // 'Schedule' them (basically ignore in the schedule) but do not insert them
2212  // into the block.  All other scheduled nodes get put in the schedule here.
2213  int op = n->Opcode();
2214  if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2215      (op != Op_Node &&         // Not an unused antidepedence node and
2216       // not an unallocated boxlock
2217       (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2218
2219    // Push any trailing projections
2220    if( bb->get_node(bb->number_of_nodes()-1) != n ) {
2221      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2222        Node *foi = n->fast_out(i);
2223        if( foi->is_Proj() )
2224          _scheduled.push(foi);
2225      }
2226    }
2227
2228    // Put the instruction in the schedule list
2229    _scheduled.push(n);
2230  }
2231
2232#ifndef PRODUCT
2233  if (_cfg->C->trace_opto_output())
2234    dump_available();
2235#endif
2236
2237  // Walk all the definitions, decrementing use counts, and
2238  // if a definition has a 0 use count, place it in the available list.
2239  DecrementUseCounts(n,bb);
2240}
2241
2242// This method sets the use count within a basic block.  We will ignore all
2243// uses outside the current basic block.  As we are doing a backwards walk,
2244// any node we reach that has a use count of 0 may be scheduled.  This also
2245// avoids the problem of cyclic references from phi nodes, as long as phi
2246// nodes are at the front of the basic block.  This method also initializes
2247// the available list to the set of instructions that have no uses within this
2248// basic block.
2249void Scheduling::ComputeUseCount(const Block *bb) {
2250#ifndef PRODUCT
2251  if (_cfg->C->trace_opto_output())
2252    tty->print("# -> ComputeUseCount\n");
2253#endif
2254
2255  // Clear the list of available and scheduled instructions, just in case
2256  _available.clear();
2257  _scheduled.clear();
2258
2259  // No delay slot specified
2260  _unconditional_delay_slot = NULL;
2261
2262#ifdef ASSERT
2263  for( uint i=0; i < bb->number_of_nodes(); i++ )
2264    assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
2265#endif
2266
2267  // Force the _uses count to never go to zero for unscheduable pieces
2268  // of the block
2269  for( uint k = 0; k < _bb_start; k++ )
2270    _uses[bb->get_node(k)->_idx] = 1;
2271  for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
2272    _uses[bb->get_node(l)->_idx] = 1;
2273
2274  // Iterate backwards over the instructions in the block.  Don't count the
2275  // branch projections at end or the block header instructions.
2276  for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2277    Node *n = bb->get_node(j);
2278    if( n->is_Proj() ) continue; // Projections handled another way
2279
2280    // Account for all uses
2281    for ( uint k = 0; k < n->len(); k++ ) {
2282      Node *inp = n->in(k);
2283      if (!inp) continue;
2284      assert(inp != n, "no cycles allowed" );
2285      if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
2286        if (inp->is_Proj()) { // Skip through Proj's
2287          inp = inp->in(0);
2288        }
2289        ++_uses[inp->_idx];     // Count 1 block-local use
2290      }
2291    }
2292
2293    // If this instruction has a 0 use count, then it is available
2294    if (!_uses[n->_idx]) {
2295      _current_latency[n->_idx] = _bundle_cycle_number;
2296      AddNodeToAvailableList(n);
2297    }
2298
2299#ifndef PRODUCT
2300    if (_cfg->C->trace_opto_output()) {
2301      tty->print("#   uses: %3d: ", _uses[n->_idx]);
2302      n->dump();
2303    }
2304#endif
2305  }
2306
2307#ifndef PRODUCT
2308  if (_cfg->C->trace_opto_output())
2309    tty->print("# <- ComputeUseCount\n");
2310#endif
2311}
2312
2313// This routine performs scheduling on each basic block in reverse order,
2314// using instruction latencies and taking into account function unit
2315// availability.
2316void Scheduling::DoScheduling() {
2317#ifndef PRODUCT
2318  if (_cfg->C->trace_opto_output())
2319    tty->print("# -> DoScheduling\n");
2320#endif
2321
2322  Block *succ_bb = NULL;
2323  Block *bb;
2324
2325  // Walk over all the basic blocks in reverse order
2326  for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
2327    bb = _cfg->get_block(i);
2328
2329#ifndef PRODUCT
2330    if (_cfg->C->trace_opto_output()) {
2331      tty->print("#  Schedule BB#%03d (initial)\n", i);
2332      for (uint j = 0; j < bb->number_of_nodes(); j++) {
2333        bb->get_node(j)->dump();
2334      }
2335    }
2336#endif
2337
2338    // On the head node, skip processing
2339    if (bb == _cfg->get_root_block()) {
2340      continue;
2341    }
2342
2343    // Skip empty, connector blocks
2344    if (bb->is_connector())
2345      continue;
2346
2347    // If the following block is not the sole successor of
2348    // this one, then reset the pipeline information
2349    if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2350#ifndef PRODUCT
2351      if (_cfg->C->trace_opto_output()) {
2352        tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2353                   _next_node->_idx, _bundle_instr_count);
2354      }
2355#endif
2356      step_and_clear();
2357    }
2358
2359    // Leave untouched the starting instruction, any Phis, a CreateEx node
2360    // or Top.  bb->get_node(_bb_start) is the first schedulable instruction.
2361    _bb_end = bb->number_of_nodes()-1;
2362    for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2363      Node *n = bb->get_node(_bb_start);
2364      // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2365      // Also, MachIdealNodes do not get scheduled
2366      if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2367      MachNode *mach = n->as_Mach();
2368      int iop = mach->ideal_Opcode();
2369      if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2370      if( iop == Op_Con ) continue;      // Do not schedule Top
2371      if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2372          mach->pipeline() == MachNode::pipeline_class() &&
2373          !n->is_SpillCopy() && !n->is_MachMerge() )  // Breakpoints, Prolog, etc
2374        continue;
2375      break;                    // Funny loop structure to be sure...
2376    }
2377    // Compute last "interesting" instruction in block - last instruction we
2378    // might schedule.  _bb_end points just after last schedulable inst.  We
2379    // normally schedule conditional branches (despite them being forced last
2380    // in the block), because they have delay slots we can fill.  Calls all
2381    // have their delay slots filled in the template expansions, so we don't
2382    // bother scheduling them.
2383    Node *last = bb->get_node(_bb_end);
2384    // Ignore trailing NOPs.
2385    while (_bb_end > 0 && last->is_Mach() &&
2386           last->as_Mach()->ideal_Opcode() == Op_Con) {
2387      last = bb->get_node(--_bb_end);
2388    }
2389    assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2390    if( last->is_Catch() ||
2391       // Exclude unreachable path case when Halt node is in a separate block.
2392       (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2393      // There must be a prior call.  Skip it.
2394      while( !bb->get_node(--_bb_end)->is_MachCall() ) {
2395        assert( bb->get_node(_bb_end)->is_MachProj(), "skipping projections after expected call" );
2396      }
2397    } else if( last->is_MachNullCheck() ) {
2398      // Backup so the last null-checked memory instruction is
2399      // outside the schedulable range. Skip over the nullcheck,
2400      // projection, and the memory nodes.
2401      Node *mem = last->in(1);
2402      do {
2403        _bb_end--;
2404      } while (mem != bb->get_node(_bb_end));
2405    } else {
2406      // Set _bb_end to point after last schedulable inst.
2407      _bb_end++;
2408    }
2409
2410    assert( _bb_start <= _bb_end, "inverted block ends" );
2411
2412    // Compute the register antidependencies for the basic block
2413    ComputeRegisterAntidependencies(bb);
2414    if (_cfg->C->failing())  return;  // too many D-U pinch points
2415
2416    // Compute intra-bb latencies for the nodes
2417    ComputeLocalLatenciesForward(bb);
2418
2419    // Compute the usage within the block, and set the list of all nodes
2420    // in the block that have no uses within the block.
2421    ComputeUseCount(bb);
2422
2423    // Schedule the remaining instructions in the block
2424    while ( _available.size() > 0 ) {
2425      Node *n = ChooseNodeToBundle();
2426      guarantee(n != NULL, "no nodes available");
2427      AddNodeToBundle(n,bb);
2428    }
2429
2430    assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2431#ifdef ASSERT
2432    for( uint l = _bb_start; l < _bb_end; l++ ) {
2433      Node *n = bb->get_node(l);
2434      uint m;
2435      for( m = 0; m < _bb_end-_bb_start; m++ )
2436        if( _scheduled[m] == n )
2437          break;
2438      assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2439    }
2440#endif
2441
2442    // Now copy the instructions (in reverse order) back to the block
2443    for ( uint k = _bb_start; k < _bb_end; k++ )
2444      bb->map_node(_scheduled[_bb_end-k-1], k);
2445
2446#ifndef PRODUCT
2447    if (_cfg->C->trace_opto_output()) {
2448      tty->print("#  Schedule BB#%03d (final)\n", i);
2449      uint current = 0;
2450      for (uint j = 0; j < bb->number_of_nodes(); j++) {
2451        Node *n = bb->get_node(j);
2452        if( valid_bundle_info(n) ) {
2453          Bundle *bundle = node_bundling(n);
2454          if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2455            tty->print("*** Bundle: ");
2456            bundle->dump();
2457          }
2458          n->dump();
2459        }
2460      }
2461    }
2462#endif
2463#ifdef ASSERT
2464  verify_good_schedule(bb,"after block local scheduling");
2465#endif
2466  }
2467
2468#ifndef PRODUCT
2469  if (_cfg->C->trace_opto_output())
2470    tty->print("# <- DoScheduling\n");
2471#endif
2472
2473  // Record final node-bundling array location
2474  _regalloc->C->set_node_bundling_base(_node_bundling_base);
2475
2476} // end DoScheduling
2477
2478// Verify that no live-range used in the block is killed in the block by a
2479// wrong DEF.  This doesn't verify live-ranges that span blocks.
2480
2481// Check for edge existence.  Used to avoid adding redundant precedence edges.
2482static bool edge_from_to( Node *from, Node *to ) {
2483  for( uint i=0; i<from->len(); i++ )
2484    if( from->in(i) == to )
2485      return true;
2486  return false;
2487}
2488
2489#ifdef ASSERT
2490void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2491  // Check for bad kills
2492  if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2493    Node *prior_use = _reg_node[def];
2494    if( prior_use && !edge_from_to(prior_use,n) ) {
2495      tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2496      n->dump();
2497      tty->print_cr("...");
2498      prior_use->dump();
2499      assert(edge_from_to(prior_use,n), "%s", msg);
2500    }
2501    _reg_node.map(def,NULL); // Kill live USEs
2502  }
2503}
2504
2505void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2506
2507  // Zap to something reasonable for the verify code
2508  _reg_node.clear();
2509
2510  // Walk over the block backwards.  Check to make sure each DEF doesn't
2511  // kill a live value (other than the one it's supposed to).  Add each
2512  // USE to the live set.
2513  for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
2514    Node *n = b->get_node(i);
2515    int n_op = n->Opcode();
2516    if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2517      // Fat-proj kills a slew of registers
2518      RegMask rm = n->out_RegMask();// Make local copy
2519      while( rm.is_NotEmpty() ) {
2520        OptoReg::Name kill = rm.find_first_elem();
2521        rm.Remove(kill);
2522        verify_do_def( n, kill, msg );
2523      }
2524    } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2525      // Get DEF'd registers the normal way
2526      verify_do_def( n, _regalloc->get_reg_first(n), msg );
2527      verify_do_def( n, _regalloc->get_reg_second(n), msg );
2528    }
2529
2530    // Now make all USEs live
2531    for( uint i=1; i<n->req(); i++ ) {
2532      Node *def = n->in(i);
2533      assert(def != 0, "input edge required");
2534      OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2535      OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2536      if( OptoReg::is_valid(reg_lo) ) {
2537        assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg);
2538        _reg_node.map(reg_lo,n);
2539      }
2540      if( OptoReg::is_valid(reg_hi) ) {
2541        assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg);
2542        _reg_node.map(reg_hi,n);
2543      }
2544    }
2545
2546  }
2547
2548  // Zap to something reasonable for the Antidependence code
2549  _reg_node.clear();
2550}
2551#endif
2552
2553// Conditionally add precedence edges.  Avoid putting edges on Projs.
2554static void add_prec_edge_from_to( Node *from, Node *to ) {
2555  if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2556    assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2557    from = from->in(0);
2558  }
2559  if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2560      !edge_from_to( from, to ) ) // Avoid duplicate edge
2561    from->add_prec(to);
2562}
2563
2564void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2565  if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2566    return;
2567
2568  Node *pinch = _reg_node[def_reg]; // Get pinch point
2569  if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
2570      is_def ) {    // Check for a true def (not a kill)
2571    _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2572    return;
2573  }
2574
2575  Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2576  debug_only( def = (Node*)0xdeadbeef; )
2577
2578  // After some number of kills there _may_ be a later def
2579  Node *later_def = NULL;
2580
2581  // Finding a kill requires a real pinch-point.
2582  // Check for not already having a pinch-point.
2583  // Pinch points are Op_Node's.
2584  if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2585    later_def = pinch;            // Must be def/kill as optimistic pinch-point
2586    if ( _pinch_free_list.size() > 0) {
2587      pinch = _pinch_free_list.pop();
2588    } else {
2589      pinch = new Node(1); // Pinch point to-be
2590    }
2591    if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2592      _cfg->C->record_method_not_compilable("too many D-U pinch points");
2593      return;
2594    }
2595    _cfg->map_node_to_block(pinch, b);      // Pretend it's valid in this block (lazy init)
2596    _reg_node.map(def_reg,pinch); // Record pinch-point
2597    //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2598    if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2599      pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2600      add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2601      later_def = NULL;           // and no later def
2602    }
2603    pinch->set_req(0,later_def);  // Hook later def so we can find it
2604  } else {                        // Else have valid pinch point
2605    if( pinch->in(0) )            // If there is a later-def
2606      later_def = pinch->in(0);   // Get it
2607  }
2608
2609  // Add output-dependence edge from later def to kill
2610  if( later_def )               // If there is some original def
2611    add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2612
2613  // See if current kill is also a use, and so is forced to be the pinch-point.
2614  if( pinch->Opcode() == Op_Node ) {
2615    Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2616    for( uint i=1; i<uses->req(); i++ ) {
2617      if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2618          _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2619        // Yes, found a use/kill pinch-point
2620        pinch->set_req(0,NULL);  //
2621        pinch->replace_by(kill); // Move anti-dep edges up
2622        pinch = kill;
2623        _reg_node.map(def_reg,pinch);
2624        return;
2625      }
2626    }
2627  }
2628
2629  // Add edge from kill to pinch-point
2630  add_prec_edge_from_to(kill,pinch);
2631}
2632
2633void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2634  if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2635    return;
2636  Node *pinch = _reg_node[use_reg]; // Get pinch point
2637  // Check for no later def_reg/kill in block
2638  if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b &&
2639      // Use has to be block-local as well
2640      _cfg->get_block_for_node(use) == b) {
2641    if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2642        pinch->req() == 1 ) {   // pinch not yet in block?
2643      pinch->del_req(0);        // yank pointer to later-def, also set flag
2644      // Insert the pinch-point in the block just after the last use
2645      b->insert_node(pinch, b->find_node(use) + 1);
2646      _bb_end++;                // Increase size scheduled region in block
2647    }
2648
2649    add_prec_edge_from_to(pinch,use);
2650  }
2651}
2652
2653// We insert antidependences between the reads and following write of
2654// allocated registers to prevent illegal code motion. Hopefully, the
2655// number of added references should be fairly small, especially as we
2656// are only adding references within the current basic block.
2657void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2658
2659#ifdef ASSERT
2660  verify_good_schedule(b,"before block local scheduling");
2661#endif
2662
2663  // A valid schedule, for each register independently, is an endless cycle
2664  // of: a def, then some uses (connected to the def by true dependencies),
2665  // then some kills (defs with no uses), finally the cycle repeats with a new
2666  // def.  The uses are allowed to float relative to each other, as are the
2667  // kills.  No use is allowed to slide past a kill (or def).  This requires
2668  // antidependencies between all uses of a single def and all kills that
2669  // follow, up to the next def.  More edges are redundant, because later defs
2670  // & kills are already serialized with true or antidependencies.  To keep
2671  // the edge count down, we add a 'pinch point' node if there's more than
2672  // one use or more than one kill/def.
2673
2674  // We add dependencies in one bottom-up pass.
2675
2676  // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2677
2678  // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2679  // register.  If not, we record the DEF/KILL in _reg_node, the
2680  // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2681  // "pinch point", a new Node that's in the graph but not in the block.
2682  // We put edges from the prior and current DEF/KILLs to the pinch point.
2683  // We put the pinch point in _reg_node.  If there's already a pinch point
2684  // we merely add an edge from the current DEF/KILL to the pinch point.
2685
2686  // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2687  // put an edge from the pinch point to the USE.
2688
2689  // To be expedient, the _reg_node array is pre-allocated for the whole
2690  // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2691  // or a valid def/kill/pinch-point, or a leftover node from some prior
2692  // block.  Leftover node from some prior block is treated like a NULL (no
2693  // prior def, so no anti-dependence needed).  Valid def is distinguished by
2694  // it being in the current block.
2695  bool fat_proj_seen = false;
2696  uint last_safept = _bb_end-1;
2697  Node* end_node         = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL;
2698  Node* last_safept_node = end_node;
2699  for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2700    Node *n = b->get_node(i);
2701    int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2702    if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2703      // Fat-proj kills a slew of registers
2704      // This can add edges to 'n' and obscure whether or not it was a def,
2705      // hence the is_def flag.
2706      fat_proj_seen = true;
2707      RegMask rm = n->out_RegMask();// Make local copy
2708      while( rm.is_NotEmpty() ) {
2709        OptoReg::Name kill = rm.find_first_elem();
2710        rm.Remove(kill);
2711        anti_do_def( b, n, kill, is_def );
2712      }
2713    } else {
2714      // Get DEF'd registers the normal way
2715      anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2716      anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2717    }
2718
2719    // Kill projections on a branch should appear to occur on the
2720    // branch, not afterwards, so grab the masks from the projections
2721    // and process them.
2722    if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
2723      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2724        Node* use = n->fast_out(i);
2725        if (use->is_Proj()) {
2726          RegMask rm = use->out_RegMask();// Make local copy
2727          while( rm.is_NotEmpty() ) {
2728            OptoReg::Name kill = rm.find_first_elem();
2729            rm.Remove(kill);
2730            anti_do_def( b, n, kill, false );
2731          }
2732        }
2733      }
2734    }
2735
2736    // Check each register used by this instruction for a following DEF/KILL
2737    // that must occur afterward and requires an anti-dependence edge.
2738    for( uint j=0; j<n->req(); j++ ) {
2739      Node *def = n->in(j);
2740      if( def ) {
2741        assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
2742        anti_do_use( b, n, _regalloc->get_reg_first(def) );
2743        anti_do_use( b, n, _regalloc->get_reg_second(def) );
2744      }
2745    }
2746    // Do not allow defs of new derived values to float above GC
2747    // points unless the base is definitely available at the GC point.
2748
2749    Node *m = b->get_node(i);
2750
2751    // Add precedence edge from following safepoint to use of derived pointer
2752    if( last_safept_node != end_node &&
2753        m != last_safept_node) {
2754      for (uint k = 1; k < m->req(); k++) {
2755        const Type *t = m->in(k)->bottom_type();
2756        if( t->isa_oop_ptr() &&
2757            t->is_ptr()->offset() != 0 ) {
2758          last_safept_node->add_prec( m );
2759          break;
2760        }
2761      }
2762    }
2763
2764    if( n->jvms() ) {           // Precedence edge from derived to safept
2765      // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2766      if( b->get_node(last_safept) != last_safept_node ) {
2767        last_safept = b->find_node(last_safept_node);
2768      }
2769      for( uint j=last_safept; j > i; j-- ) {
2770        Node *mach = b->get_node(j);
2771        if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2772          mach->add_prec( n );
2773      }
2774      last_safept = i;
2775      last_safept_node = m;
2776    }
2777  }
2778
2779  if (fat_proj_seen) {
2780    // Garbage collect pinch nodes that were not consumed.
2781    // They are usually created by a fat kill MachProj for a call.
2782    garbage_collect_pinch_nodes();
2783  }
2784}
2785
2786// Garbage collect pinch nodes for reuse by other blocks.
2787//
2788// The block scheduler's insertion of anti-dependence
2789// edges creates many pinch nodes when the block contains
2790// 2 or more Calls.  A pinch node is used to prevent a
2791// combinatorial explosion of edges.  If a set of kills for a
2792// register is anti-dependent on a set of uses (or defs), rather
2793// than adding an edge in the graph between each pair of kill
2794// and use (or def), a pinch is inserted between them:
2795//
2796//            use1   use2  use3
2797//                \   |   /
2798//                 \  |  /
2799//                  pinch
2800//                 /  |  \
2801//                /   |   \
2802//            kill1 kill2 kill3
2803//
2804// One pinch node is created per register killed when
2805// the second call is encountered during a backwards pass
2806// over the block.  Most of these pinch nodes are never
2807// wired into the graph because the register is never
2808// used or def'ed in the block.
2809//
2810void Scheduling::garbage_collect_pinch_nodes() {
2811#ifndef PRODUCT
2812    if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2813#endif
2814    int trace_cnt = 0;
2815    for (uint k = 0; k < _reg_node.Size(); k++) {
2816      Node* pinch = _reg_node[k];
2817      if ((pinch != NULL) && pinch->Opcode() == Op_Node &&
2818          // no predecence input edges
2819          (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2820        cleanup_pinch(pinch);
2821        _pinch_free_list.push(pinch);
2822        _reg_node.map(k, NULL);
2823#ifndef PRODUCT
2824        if (_cfg->C->trace_opto_output()) {
2825          trace_cnt++;
2826          if (trace_cnt > 40) {
2827            tty->print("\n");
2828            trace_cnt = 0;
2829          }
2830          tty->print(" %d", pinch->_idx);
2831        }
2832#endif
2833      }
2834    }
2835#ifndef PRODUCT
2836    if (_cfg->C->trace_opto_output()) tty->print("\n");
2837#endif
2838}
2839
2840// Clean up a pinch node for reuse.
2841void Scheduling::cleanup_pinch( Node *pinch ) {
2842  assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2843
2844  for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2845    Node* use = pinch->last_out(i);
2846    uint uses_found = 0;
2847    for (uint j = use->req(); j < use->len(); j++) {
2848      if (use->in(j) == pinch) {
2849        use->rm_prec(j);
2850        uses_found++;
2851      }
2852    }
2853    assert(uses_found > 0, "must be a precedence edge");
2854    i -= uses_found;    // we deleted 1 or more copies of this edge
2855  }
2856  // May have a later_def entry
2857  pinch->set_req(0, NULL);
2858}
2859
2860#ifndef PRODUCT
2861
2862void Scheduling::dump_available() const {
2863  tty->print("#Availist  ");
2864  for (uint i = 0; i < _available.size(); i++)
2865    tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2866  tty->cr();
2867}
2868
2869// Print Scheduling Statistics
2870void Scheduling::print_statistics() {
2871  // Print the size added by nops for bundling
2872  tty->print("Nops added %d bytes to total of %d bytes",
2873    _total_nop_size, _total_method_size);
2874  if (_total_method_size > 0)
2875    tty->print(", for %.2f%%",
2876      ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2877  tty->print("\n");
2878
2879  // Print the number of branch shadows filled
2880  if (Pipeline::_branch_has_delay_slot) {
2881    tty->print("Of %d branches, %d had unconditional delay slots filled",
2882      _total_branches, _total_unconditional_delays);
2883    if (_total_branches > 0)
2884      tty->print(", for %.2f%%",
2885        ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2886    tty->print("\n");
2887  }
2888
2889  uint total_instructions = 0, total_bundles = 0;
2890
2891  for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2892    uint bundle_count   = _total_instructions_per_bundle[i];
2893    total_instructions += bundle_count * i;
2894    total_bundles      += bundle_count;
2895  }
2896
2897  if (total_bundles > 0)
2898    tty->print("Average ILP (excluding nops) is %.2f\n",
2899      ((double)total_instructions) / ((double)total_bundles));
2900}
2901#endif
2902