output.cpp revision 0:a61af66fc99e
1/*
2 * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_output.cpp.incl"
27
28extern uint size_java_to_interp();
29extern uint reloc_java_to_interp();
30extern uint size_exception_handler();
31extern uint size_deopt_handler();
32
33#ifndef PRODUCT
34#define DEBUG_ARG(x) , x
35#else
36#define DEBUG_ARG(x)
37#endif
38
39extern int emit_exception_handler(CodeBuffer &cbuf);
40extern int emit_deopt_handler(CodeBuffer &cbuf);
41
42//------------------------------Output-----------------------------------------
43// Convert Nodes to instruction bits and pass off to the VM
44void Compile::Output() {
45  // RootNode goes
46  assert( _cfg->_broot->_nodes.size() == 0, "" );
47
48  // Initialize the space for the BufferBlob used to find and verify
49  // instruction size in MachNode::emit_size()
50  init_scratch_buffer_blob();
51
52  // Make sure I can find the Start Node
53  Block_Array& bbs = _cfg->_bbs;
54  Block *entry = _cfg->_blocks[1];
55  Block *broot = _cfg->_broot;
56
57  const StartNode *start = entry->_nodes[0]->as_Start();
58
59  // Replace StartNode with prolog
60  MachPrologNode *prolog = new (this) MachPrologNode();
61  entry->_nodes.map( 0, prolog );
62  bbs.map( prolog->_idx, entry );
63  bbs.map( start->_idx, NULL ); // start is no longer in any block
64
65  // Virtual methods need an unverified entry point
66
67  if( is_osr_compilation() ) {
68    if( PoisonOSREntry ) {
69      // TODO: Should use a ShouldNotReachHereNode...
70      _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
71    }
72  } else {
73    if( _method && !_method->flags().is_static() ) {
74      // Insert unvalidated entry point
75      _cfg->insert( broot, 0, new (this) MachUEPNode() );
76    }
77
78  }
79
80
81  // Break before main entry point
82  if( (_method && _method->break_at_execute())
83#ifndef PRODUCT
84    ||(OptoBreakpoint && is_method_compilation())
85    ||(OptoBreakpointOSR && is_osr_compilation())
86    ||(OptoBreakpointC2R && !_method)
87#endif
88    ) {
89    // checking for _method means that OptoBreakpoint does not apply to
90    // runtime stubs or frame converters
91    _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
92  }
93
94  // Insert epilogs before every return
95  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
96    Block *b = _cfg->_blocks[i];
97    if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
98      Node *m = b->end();
99      if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
100        MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
101        b->add_inst( epilog );
102        bbs.map(epilog->_idx, b);
103        //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
104      }
105    }
106  }
107
108# ifdef ENABLE_ZAP_DEAD_LOCALS
109  if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
110# endif
111
112  ScheduleAndBundle();
113
114#ifndef PRODUCT
115  if (trace_opto_output()) {
116    tty->print("\n---- After ScheduleAndBundle ----\n");
117    for (uint i = 0; i < _cfg->_num_blocks; i++) {
118      tty->print("\nBB#%03d:\n", i);
119      Block *bb = _cfg->_blocks[i];
120      for (uint j = 0; j < bb->_nodes.size(); j++) {
121        Node *n = bb->_nodes[j];
122        OptoReg::Name reg = _regalloc->get_reg_first(n);
123        tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
124        n->dump();
125      }
126    }
127  }
128#endif
129
130  if (failing())  return;
131
132  BuildOopMaps();
133
134  if (failing())  return;
135
136  Fill_buffer();
137}
138
139bool Compile::need_stack_bang(int frame_size_in_bytes) const {
140  // Determine if we need to generate a stack overflow check.
141  // Do it if the method is not a stub function and
142  // has java calls or has frame size > vm_page_size/8.
143  return (stub_function() == NULL &&
144          (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
145}
146
147bool Compile::need_register_stack_bang() const {
148  // Determine if we need to generate a register stack overflow check.
149  // This is only used on architectures which have split register
150  // and memory stacks (ie. IA64).
151  // Bang if the method is not a stub function and has java calls
152  return (stub_function() == NULL && has_java_calls());
153}
154
155# ifdef ENABLE_ZAP_DEAD_LOCALS
156
157
158// In order to catch compiler oop-map bugs, we have implemented
159// a debugging mode called ZapDeadCompilerLocals.
160// This mode causes the compiler to insert a call to a runtime routine,
161// "zap_dead_locals", right before each place in compiled code
162// that could potentially be a gc-point (i.e., a safepoint or oop map point).
163// The runtime routine checks that locations mapped as oops are really
164// oops, that locations mapped as values do not look like oops,
165// and that locations mapped as dead are not used later
166// (by zapping them to an invalid address).
167
168int Compile::_CompiledZap_count = 0;
169
170void Compile::Insert_zap_nodes() {
171  bool skip = false;
172
173
174  // Dink with static counts because code code without the extra
175  // runtime calls is MUCH faster for debugging purposes
176
177       if ( CompileZapFirst  ==  0  ) ; // nothing special
178  else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
179  else if ( CompileZapFirst  == CompiledZap_count() )
180    warning("starting zap compilation after skipping");
181
182       if ( CompileZapLast  ==  -1  ) ; // nothing special
183  else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
184  else if ( CompileZapLast  ==  CompiledZap_count() )
185    warning("about to compile last zap");
186
187  ++_CompiledZap_count; // counts skipped zaps, too
188
189  if ( skip )  return;
190
191
192  if ( _method == NULL )
193    return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
194
195  // Insert call to zap runtime stub before every node with an oop map
196  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
197    Block *b = _cfg->_blocks[i];
198    for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
199      Node *n = b->_nodes[j];
200
201      // Determining if we should insert a zap-a-lot node in output.
202      // We do that for all nodes that has oopmap info, except for calls
203      // to allocation.  Calls to allocation passes in the old top-of-eden pointer
204      // and expect the C code to reset it.  Hence, there can be no safepoints between
205      // the inlined-allocation and the call to new_Java, etc.
206      // We also cannot zap monitor calls, as they must hold the microlock
207      // during the call to Zap, which also wants to grab the microlock.
208      bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
209      if ( insert ) { // it is MachSafePoint
210        if ( !n->is_MachCall() ) {
211          insert = false;
212        } else if ( n->is_MachCall() ) {
213          MachCallNode* call = n->as_MachCall();
214          if (call->entry_point() == OptoRuntime::new_instance_Java() ||
215              call->entry_point() == OptoRuntime::new_array_Java() ||
216              call->entry_point() == OptoRuntime::multianewarray2_Java() ||
217              call->entry_point() == OptoRuntime::multianewarray3_Java() ||
218              call->entry_point() == OptoRuntime::multianewarray4_Java() ||
219              call->entry_point() == OptoRuntime::multianewarray5_Java() ||
220              call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
221              call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
222              ) {
223            insert = false;
224          }
225        }
226        if (insert) {
227          Node *zap = call_zap_node(n->as_MachSafePoint(), i);
228          b->_nodes.insert( j, zap );
229          _cfg->_bbs.map( zap->_idx, b );
230          ++j;
231        }
232      }
233    }
234  }
235}
236
237
238Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
239  const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
240  CallStaticJavaNode* ideal_node =
241    new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
242         OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
243                            "call zap dead locals stub", 0, TypePtr::BOTTOM);
244  // We need to copy the OopMap from the site we're zapping at.
245  // We have to make a copy, because the zap site might not be
246  // a call site, and zap_dead is a call site.
247  OopMap* clone = node_to_check->oop_map()->deep_copy();
248
249  // Add the cloned OopMap to the zap node
250  ideal_node->set_oop_map(clone);
251  return _matcher->match_sfpt(ideal_node);
252}
253
254//------------------------------is_node_getting_a_safepoint--------------------
255bool Compile::is_node_getting_a_safepoint( Node* n) {
256  // This code duplicates the logic prior to the call of add_safepoint
257  // below in this file.
258  if( n->is_MachSafePoint() ) return true;
259  return false;
260}
261
262# endif // ENABLE_ZAP_DEAD_LOCALS
263
264//------------------------------compute_loop_first_inst_sizes------------------
265// Compute the size of first NumberOfLoopInstrToAlign instructions at head
266// of a loop. When aligning a loop we need to provide enough instructions
267// in cpu's fetch buffer to feed decoders. The loop alignment could be
268// avoided if we have enough instructions in fetch buffer at the head of a loop.
269// By default, the size is set to 999999 by Block's constructor so that
270// a loop will be aligned if the size is not reset here.
271//
272// Note: Mach instructions could contain several HW instructions
273// so the size is estimated only.
274//
275void Compile::compute_loop_first_inst_sizes() {
276  // The next condition is used to gate the loop alignment optimization.
277  // Don't aligned a loop if there are enough instructions at the head of a loop
278  // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
279  // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
280  // equal to 11 bytes which is the largest address NOP instruction.
281  if( MaxLoopPad < OptoLoopAlignment-1 ) {
282    uint last_block = _cfg->_num_blocks-1;
283    for( uint i=1; i <= last_block; i++ ) {
284      Block *b = _cfg->_blocks[i];
285      // Check the first loop's block which requires an alignment.
286      if( b->head()->is_Loop() &&
287          b->code_alignment() > (uint)relocInfo::addr_unit() ) {
288        uint sum_size = 0;
289        uint inst_cnt = NumberOfLoopInstrToAlign;
290        inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt,
291                                              _regalloc);
292        // Check the next fallthrough block if first loop's block does not have
293        // enough instructions.
294        if( inst_cnt > 0 && i < last_block ) {
295          // First, check if the first loop's block contains whole loop.
296          // LoopNode::LoopBackControl == 2.
297          Block *bx = _cfg->_bbs[b->pred(2)->_idx];
298          // Skip connector blocks (with limit in case of irreducible loops).
299          int search_limit = 16;
300          while( bx->is_connector() && search_limit-- > 0) {
301            bx = _cfg->_bbs[bx->pred(1)->_idx];
302          }
303          if( bx != b ) { // loop body is in several blocks.
304            Block *nb = NULL;
305            while( inst_cnt > 0 && i < last_block && nb != bx &&
306                  !_cfg->_blocks[i+1]->head()->is_Loop() ) {
307              i++;
308              nb = _cfg->_blocks[i];
309              inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt,
310                                                      _regalloc);
311            } // while( inst_cnt > 0 && i < last_block  )
312          } // if( bx != b )
313        } // if( inst_cnt > 0 && i < last_block )
314        b->set_first_inst_size(sum_size);
315      } // f( b->head()->is_Loop() )
316    } // for( i <= last_block )
317  } // if( MaxLoopPad < OptoLoopAlignment-1 )
318}
319
320//----------------------Shorten_branches---------------------------------------
321// The architecture description provides short branch variants for some long
322// branch instructions. Replace eligible long branches with short branches.
323void Compile::Shorten_branches(Label *labels, int& code_size, int& reloc_size, int& stub_size, int& const_size) {
324
325  // fill in the nop array for bundling computations
326  MachNode *_nop_list[Bundle::_nop_count];
327  Bundle::initialize_nops(_nop_list, this);
328
329  // ------------------
330  // Compute size of each block, method size, and relocation information size
331  uint *jmp_end    = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks);
332  uint *blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
333  DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
334  blk_starts[0]    = 0;
335
336  // Initialize the sizes to 0
337  code_size  = 0;          // Size in bytes of generated code
338  stub_size  = 0;          // Size in bytes of all stub entries
339  // Size in bytes of all relocation entries, including those in local stubs.
340  // Start with 2-bytes of reloc info for the unvalidated entry point
341  reloc_size = 1;          // Number of relocation entries
342  const_size = 0;          // size of fp constants in words
343
344  // Make three passes.  The first computes pessimistic blk_starts,
345  // relative jmp_end, reloc_size and const_size information.
346  // The second performs short branch substitution using the pessimistic
347  // sizing. The third inserts nops where needed.
348
349  Node *nj; // tmp
350
351  // Step one, perform a pessimistic sizing pass.
352  uint i;
353  uint min_offset_from_last_call = 1;  // init to a positive value
354  uint nop_size = (new (this) MachNopNode())->size(_regalloc);
355  for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
356    Block *b = _cfg->_blocks[i];
357
358    // Sum all instruction sizes to compute block size
359    uint last_inst = b->_nodes.size();
360    uint blk_size = 0;
361    for( uint j = 0; j<last_inst; j++ ) {
362      nj = b->_nodes[j];
363      uint inst_size = nj->size(_regalloc);
364      blk_size += inst_size;
365      // Handle machine instruction nodes
366      if( nj->is_Mach() ) {
367        MachNode *mach = nj->as_Mach();
368        blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
369        reloc_size += mach->reloc();
370        const_size += mach->const_size();
371        if( mach->is_MachCall() ) {
372          MachCallNode *mcall = mach->as_MachCall();
373          // This destination address is NOT PC-relative
374
375          mcall->method_set((intptr_t)mcall->entry_point());
376
377          if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
378            stub_size  += size_java_to_interp();
379            reloc_size += reloc_java_to_interp();
380          }
381        } else if (mach->is_MachSafePoint()) {
382          // If call/safepoint are adjacent, account for possible
383          // nop to disambiguate the two safepoints.
384          if (min_offset_from_last_call == 0) {
385            blk_size += nop_size;
386          }
387        }
388      }
389      min_offset_from_last_call += inst_size;
390      // Remember end of call offset
391      if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
392        min_offset_from_last_call = 0;
393      }
394    }
395
396    // During short branch replacement, we store the relative (to blk_starts)
397    // end of jump in jmp_end, rather than the absolute end of jump.  This
398    // is so that we do not need to recompute sizes of all nodes when we compute
399    // correct blk_starts in our next sizing pass.
400    jmp_end[i] = blk_size;
401    DEBUG_ONLY( jmp_target[i] = 0; )
402
403    // When the next block starts a loop, we may insert pad NOP
404    // instructions.  Since we cannot know our future alignment,
405    // assume the worst.
406    if( i<_cfg->_num_blocks-1 ) {
407      Block *nb = _cfg->_blocks[i+1];
408      int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
409      if( max_loop_pad > 0 ) {
410        assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
411        blk_size += max_loop_pad;
412      }
413    }
414
415    // Save block size; update total method size
416    blk_starts[i+1] = blk_starts[i]+blk_size;
417  }
418
419  // Step two, replace eligible long jumps.
420
421  // Note: this will only get the long branches within short branch
422  //   range. Another pass might detect more branches that became
423  //   candidates because the shortening in the first pass exposed
424  //   more opportunities. Unfortunately, this would require
425  //   recomputing the starting and ending positions for the blocks
426  for( i=0; i<_cfg->_num_blocks; i++ ) {
427    Block *b = _cfg->_blocks[i];
428
429    int j;
430    // Find the branch; ignore trailing NOPs.
431    for( j = b->_nodes.size()-1; j>=0; j-- ) {
432      nj = b->_nodes[j];
433      if( !nj->is_Mach() || nj->as_Mach()->ideal_Opcode() != Op_Con )
434        break;
435    }
436
437    if (j >= 0) {
438      if( nj->is_Mach() && nj->as_Mach()->may_be_short_branch() ) {
439        MachNode *mach = nj->as_Mach();
440        // This requires the TRUE branch target be in succs[0]
441        uint bnum = b->non_connector_successor(0)->_pre_order;
442        uintptr_t target = blk_starts[bnum];
443        if( mach->is_pc_relative() ) {
444          int offset = target-(blk_starts[i] + jmp_end[i]);
445          if (_matcher->is_short_branch_offset(offset)) {
446            // We've got a winner.  Replace this branch.
447            MachNode *replacement = mach->short_branch_version(this);
448            b->_nodes.map(j, replacement);
449
450            // Update the jmp_end size to save time in our
451            // next pass.
452            jmp_end[i] -= (mach->size(_regalloc) - replacement->size(_regalloc));
453            DEBUG_ONLY( jmp_target[i] = bnum; );
454          }
455        } else {
456#ifndef PRODUCT
457          mach->dump(3);
458#endif
459          Unimplemented();
460        }
461      }
462    }
463  }
464
465  // Compute the size of first NumberOfLoopInstrToAlign instructions at head
466  // of a loop. It is used to determine the padding for loop alignment.
467  compute_loop_first_inst_sizes();
468
469  // Step 3, compute the offsets of all the labels
470  uint last_call_adr = max_uint;
471  for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
472    // copy the offset of the beginning to the corresponding label
473    assert(labels[i].is_unused(), "cannot patch at this point");
474    labels[i].bind_loc(blk_starts[i], CodeBuffer::SECT_INSTS);
475
476    // insert padding for any instructions that need it
477    Block *b = _cfg->_blocks[i];
478    uint last_inst = b->_nodes.size();
479    uint adr = blk_starts[i];
480    for( uint j = 0; j<last_inst; j++ ) {
481      nj = b->_nodes[j];
482      if( nj->is_Mach() ) {
483        int padding = nj->as_Mach()->compute_padding(adr);
484        // If call/safepoint are adjacent insert a nop (5010568)
485        if (padding == 0 && nj->is_MachSafePoint() && !nj->is_MachCall() &&
486            adr == last_call_adr ) {
487          padding = nop_size;
488        }
489        if(padding > 0) {
490          assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
491          int nops_cnt = padding / nop_size;
492          MachNode *nop = new (this) MachNopNode(nops_cnt);
493          b->_nodes.insert(j++, nop);
494          _cfg->_bbs.map( nop->_idx, b );
495          adr += padding;
496          last_inst++;
497        }
498      }
499      adr += nj->size(_regalloc);
500
501      // Remember end of call offset
502      if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
503        last_call_adr = adr;
504      }
505    }
506
507    if ( i != _cfg->_num_blocks-1) {
508      // Get the size of the block
509      uint blk_size = adr - blk_starts[i];
510
511      // When the next block starts a loop, we may insert pad NOP
512      // instructions.
513      Block *nb = _cfg->_blocks[i+1];
514      int current_offset = blk_starts[i] + blk_size;
515      current_offset += nb->alignment_padding(current_offset);
516      // Save block size; update total method size
517      blk_starts[i+1] = current_offset;
518    }
519  }
520
521#ifdef ASSERT
522  for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
523    if( jmp_target[i] != 0 ) {
524      int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_end[i]);
525      if (!_matcher->is_short_branch_offset(offset)) {
526        tty->print_cr("target (%d) - jmp_end(%d) = offset (%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_end[i], offset, i, jmp_target[i]);
527      }
528      assert(_matcher->is_short_branch_offset(offset), "Displacement too large for short jmp");
529    }
530  }
531#endif
532
533  // ------------------
534  // Compute size for code buffer
535  code_size   = blk_starts[i-1] + jmp_end[i-1];
536
537  // Relocation records
538  reloc_size += 1;              // Relo entry for exception handler
539
540  // Adjust reloc_size to number of record of relocation info
541  // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
542  // a relocation index.
543  // The CodeBuffer will expand the locs array if this estimate is too low.
544  reloc_size   *= 10 / sizeof(relocInfo);
545
546  // Adjust const_size to number of bytes
547  const_size   *= 2*jintSize; // both float and double take two words per entry
548
549}
550
551//------------------------------FillLocArray-----------------------------------
552// Create a bit of debug info and append it to the array.  The mapping is from
553// Java local or expression stack to constant, register or stack-slot.  For
554// doubles, insert 2 mappings and return 1 (to tell the caller that the next
555// entry has been taken care of and caller should skip it).
556static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
557  // This should never have accepted Bad before
558  assert(OptoReg::is_valid(regnum), "location must be valid");
559  return (OptoReg::is_reg(regnum))
560    ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
561    : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
562}
563
564void Compile::FillLocArray( int idx, Node *local, GrowableArray<ScopeValue*> *array ) {
565  assert( local, "use _top instead of null" );
566  if (array->length() != idx) {
567    assert(array->length() == idx + 1, "Unexpected array count");
568    // Old functionality:
569    //   return
570    // New functionality:
571    //   Assert if the local is not top. In product mode let the new node
572    //   override the old entry.
573    assert(local == top(), "LocArray collision");
574    if (local == top()) {
575      return;
576    }
577    array->pop();
578  }
579  const Type *t = local->bottom_type();
580
581  // Grab the register number for the local
582  OptoReg::Name regnum = _regalloc->get_reg_first(local);
583  if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
584    // Record the double as two float registers.
585    // The register mask for such a value always specifies two adjacent
586    // float registers, with the lower register number even.
587    // Normally, the allocation of high and low words to these registers
588    // is irrelevant, because nearly all operations on register pairs
589    // (e.g., StoreD) treat them as a single unit.
590    // Here, we assume in addition that the words in these two registers
591    // stored "naturally" (by operations like StoreD and double stores
592    // within the interpreter) such that the lower-numbered register
593    // is written to the lower memory address.  This may seem like
594    // a machine dependency, but it is not--it is a requirement on
595    // the author of the <arch>.ad file to ensure that, for every
596    // even/odd double-register pair to which a double may be allocated,
597    // the word in the even single-register is stored to the first
598    // memory word.  (Note that register numbers are completely
599    // arbitrary, and are not tied to any machine-level encodings.)
600#ifdef _LP64
601    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
602      array->append(new ConstantIntValue(0));
603      array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
604    } else if ( t->base() == Type::Long ) {
605      array->append(new ConstantIntValue(0));
606      array->append(new_loc_value( _regalloc, regnum, Location::lng ));
607    } else if ( t->base() == Type::RawPtr ) {
608      // jsr/ret return address which must be restored into a the full
609      // width 64-bit stack slot.
610      array->append(new_loc_value( _regalloc, regnum, Location::lng ));
611    }
612#else //_LP64
613#ifdef SPARC
614    if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
615      // For SPARC we have to swap high and low words for
616      // long values stored in a single-register (g0-g7).
617      array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
618      array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
619    } else
620#endif //SPARC
621    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
622      // Repack the double/long as two jints.
623      // The convention the interpreter uses is that the second local
624      // holds the first raw word of the native double representation.
625      // This is actually reasonable, since locals and stack arrays
626      // grow downwards in all implementations.
627      // (If, on some machine, the interpreter's Java locals or stack
628      // were to grow upwards, the embedded doubles would be word-swapped.)
629      array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
630      array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
631    }
632#endif //_LP64
633    else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
634               OptoReg::is_reg(regnum) ) {
635      array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double
636                                   ? Location::float_in_dbl : Location::normal ));
637    } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
638      array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
639                                   ? Location::int_in_long : Location::normal ));
640    } else {
641      array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
642    }
643    return;
644  }
645
646  // No register.  It must be constant data.
647  switch (t->base()) {
648  case Type::Half:              // Second half of a double
649    ShouldNotReachHere();       // Caller should skip 2nd halves
650    break;
651  case Type::AnyPtr:
652    array->append(new ConstantOopWriteValue(NULL));
653    break;
654  case Type::AryPtr:
655  case Type::InstPtr:
656  case Type::KlassPtr:          // fall through
657    array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->encoding()));
658    break;
659  case Type::Int:
660    array->append(new ConstantIntValue(t->is_int()->get_con()));
661    break;
662  case Type::RawPtr:
663    // A return address (T_ADDRESS).
664    assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
665#ifdef _LP64
666    // Must be restored to the full-width 64-bit stack slot.
667    array->append(new ConstantLongValue(t->is_ptr()->get_con()));
668#else
669    array->append(new ConstantIntValue(t->is_ptr()->get_con()));
670#endif
671    break;
672  case Type::FloatCon: {
673    float f = t->is_float_constant()->getf();
674    array->append(new ConstantIntValue(jint_cast(f)));
675    break;
676  }
677  case Type::DoubleCon: {
678    jdouble d = t->is_double_constant()->getd();
679#ifdef _LP64
680    array->append(new ConstantIntValue(0));
681    array->append(new ConstantDoubleValue(d));
682#else
683    // Repack the double as two jints.
684    // The convention the interpreter uses is that the second local
685    // holds the first raw word of the native double representation.
686    // This is actually reasonable, since locals and stack arrays
687    // grow downwards in all implementations.
688    // (If, on some machine, the interpreter's Java locals or stack
689    // were to grow upwards, the embedded doubles would be word-swapped.)
690    jint   *dp = (jint*)&d;
691    array->append(new ConstantIntValue(dp[1]));
692    array->append(new ConstantIntValue(dp[0]));
693#endif
694    break;
695  }
696  case Type::Long: {
697    jlong d = t->is_long()->get_con();
698#ifdef _LP64
699    array->append(new ConstantIntValue(0));
700    array->append(new ConstantLongValue(d));
701#else
702    // Repack the long as two jints.
703    // The convention the interpreter uses is that the second local
704    // holds the first raw word of the native double representation.
705    // This is actually reasonable, since locals and stack arrays
706    // grow downwards in all implementations.
707    // (If, on some machine, the interpreter's Java locals or stack
708    // were to grow upwards, the embedded doubles would be word-swapped.)
709    jint *dp = (jint*)&d;
710    array->append(new ConstantIntValue(dp[1]));
711    array->append(new ConstantIntValue(dp[0]));
712#endif
713    break;
714  }
715  case Type::Top:               // Add an illegal value here
716    array->append(new LocationValue(Location()));
717    break;
718  default:
719    ShouldNotReachHere();
720    break;
721  }
722}
723
724// Determine if this node starts a bundle
725bool Compile::starts_bundle(const Node *n) const {
726  return (_node_bundling_limit > n->_idx &&
727          _node_bundling_base[n->_idx].starts_bundle());
728}
729
730//--------------------------Process_OopMap_Node--------------------------------
731void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
732
733  // Handle special safepoint nodes for synchronization
734  MachSafePointNode *sfn   = mach->as_MachSafePoint();
735  MachCallNode      *mcall;
736
737#ifdef ENABLE_ZAP_DEAD_LOCALS
738  assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
739#endif
740
741  int safepoint_pc_offset = current_offset;
742
743  // Add the safepoint in the DebugInfoRecorder
744  if( !mach->is_MachCall() ) {
745    mcall = NULL;
746    debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
747  } else {
748    mcall = mach->as_MachCall();
749    safepoint_pc_offset += mcall->ret_addr_offset();
750    debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
751  }
752
753  // Loop over the JVMState list to add scope information
754  // Do not skip safepoints with a NULL method, they need monitor info
755  JVMState* youngest_jvms = sfn->jvms();
756  int max_depth = youngest_jvms->depth();
757
758  // Visit scopes from oldest to youngest.
759  for (int depth = 1; depth <= max_depth; depth++) {
760    JVMState* jvms = youngest_jvms->of_depth(depth);
761    int idx;
762    ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
763    // Safepoints that do not have method() set only provide oop-map and monitor info
764    // to support GC; these do not support deoptimization.
765    int num_locs = (method == NULL) ? 0 : jvms->loc_size();
766    int num_exps = (method == NULL) ? 0 : jvms->stk_size();
767    int num_mon  = jvms->nof_monitors();
768    assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
769           "JVMS local count must match that of the method");
770
771    // Add Local and Expression Stack Information
772
773    // Insert locals into the locarray
774    GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
775    for( idx = 0; idx < num_locs; idx++ ) {
776      FillLocArray( idx, sfn->local(jvms, idx), locarray );
777    }
778
779    // Insert expression stack entries into the exparray
780    GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
781    for( idx = 0; idx < num_exps; idx++ ) {
782      FillLocArray( idx,  sfn->stack(jvms, idx), exparray );
783    }
784
785    // Add in mappings of the monitors
786    assert( !method ||
787            !method->is_synchronized() ||
788            method->is_native() ||
789            num_mon > 0 ||
790            !GenerateSynchronizationCode,
791            "monitors must always exist for synchronized methods");
792
793    // Build the growable array of ScopeValues for exp stack
794    GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
795
796    // Loop over monitors and insert into array
797    for(idx = 0; idx < num_mon; idx++) {
798      // Grab the node that defines this monitor
799      Node* box_node;
800      Node* obj_node;
801      box_node = sfn->monitor_box(jvms, idx);
802      obj_node = sfn->monitor_obj(jvms, idx);
803
804      // Create ScopeValue for object
805      ScopeValue *scval = NULL;
806      if( !obj_node->is_Con() ) {
807        OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
808        scval = new_loc_value( _regalloc, obj_reg, Location::oop );
809      } else {
810        scval = new ConstantOopWriteValue(obj_node->bottom_type()->is_instptr()->const_oop()->encoding());
811      }
812
813      OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node);
814      monarray->append(new MonitorValue(scval, Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg))));
815    }
816
817    // Build first class objects to pass to scope
818    DebugToken *locvals = debug_info()->create_scope_values(locarray);
819    DebugToken *expvals = debug_info()->create_scope_values(exparray);
820    DebugToken *monvals = debug_info()->create_monitor_values(monarray);
821
822    // Make method available for all Safepoints
823    ciMethod* scope_method = method ? method : _method;
824    // Describe the scope here
825    assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
826    debug_info()->describe_scope(safepoint_pc_offset,scope_method,jvms->bci(),locvals,expvals,monvals);
827  } // End jvms loop
828
829  // Mark the end of the scope set.
830  debug_info()->end_safepoint(safepoint_pc_offset);
831}
832
833
834
835// A simplified version of Process_OopMap_Node, to handle non-safepoints.
836class NonSafepointEmitter {
837  Compile*  C;
838  JVMState* _pending_jvms;
839  int       _pending_offset;
840
841  void emit_non_safepoint();
842
843 public:
844  NonSafepointEmitter(Compile* compile) {
845    this->C = compile;
846    _pending_jvms = NULL;
847    _pending_offset = 0;
848  }
849
850  void observe_instruction(Node* n, int pc_offset) {
851    if (!C->debug_info()->recording_non_safepoints())  return;
852
853    Node_Notes* nn = C->node_notes_at(n->_idx);
854    if (nn == NULL || nn->jvms() == NULL)  return;
855    if (_pending_jvms != NULL &&
856        _pending_jvms->same_calls_as(nn->jvms())) {
857      // Repeated JVMS?  Stretch it up here.
858      _pending_offset = pc_offset;
859    } else {
860      if (_pending_jvms != NULL &&
861          _pending_offset < pc_offset) {
862        emit_non_safepoint();
863      }
864      _pending_jvms = NULL;
865      if (pc_offset > C->debug_info()->last_pc_offset()) {
866        // This is the only way _pending_jvms can become non-NULL:
867        _pending_jvms = nn->jvms();
868        _pending_offset = pc_offset;
869      }
870    }
871  }
872
873  // Stay out of the way of real safepoints:
874  void observe_safepoint(JVMState* jvms, int pc_offset) {
875    if (_pending_jvms != NULL &&
876        !_pending_jvms->same_calls_as(jvms) &&
877        _pending_offset < pc_offset) {
878      emit_non_safepoint();
879    }
880    _pending_jvms = NULL;
881  }
882
883  void flush_at_end() {
884    if (_pending_jvms != NULL) {
885      emit_non_safepoint();
886    }
887    _pending_jvms = NULL;
888  }
889};
890
891void NonSafepointEmitter::emit_non_safepoint() {
892  JVMState* youngest_jvms = _pending_jvms;
893  int       pc_offset     = _pending_offset;
894
895  // Clear it now:
896  _pending_jvms = NULL;
897
898  DebugInformationRecorder* debug_info = C->debug_info();
899  assert(debug_info->recording_non_safepoints(), "sanity");
900
901  debug_info->add_non_safepoint(pc_offset);
902  int max_depth = youngest_jvms->depth();
903
904  // Visit scopes from oldest to youngest.
905  for (int depth = 1; depth <= max_depth; depth++) {
906    JVMState* jvms = youngest_jvms->of_depth(depth);
907    ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
908    debug_info->describe_scope(pc_offset, method, jvms->bci());
909  }
910
911  // Mark the end of the scope set.
912  debug_info->end_non_safepoint(pc_offset);
913}
914
915
916
917// helper for Fill_buffer bailout logic
918static void turn_off_compiler(Compile* C) {
919  if (CodeCache::unallocated_capacity() >= CodeCacheMinimumFreeSpace*10) {
920    // Do not turn off compilation if a single giant method has
921    // blown the code cache size.
922    C->record_failure("excessive request to CodeCache");
923  } else {
924    UseInterpreter            = true;
925    UseCompiler               = false;
926    AlwaysCompileLoopMethods  = false;
927    C->record_failure("CodeCache is full");
928    warning("CodeCache is full. Compiling has been disabled");
929  }
930}
931
932
933//------------------------------Fill_buffer------------------------------------
934void Compile::Fill_buffer() {
935
936  // Set the initially allocated size
937  int  code_req   = initial_code_capacity;
938  int  locs_req   = initial_locs_capacity;
939  int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
940  int  const_req  = initial_const_capacity;
941  bool labels_not_set = true;
942
943  int  pad_req    = NativeCall::instruction_size;
944  // The extra spacing after the code is necessary on some platforms.
945  // Sometimes we need to patch in a jump after the last instruction,
946  // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
947
948  uint i;
949  // Compute the byte offset where we can store the deopt pc.
950  if (fixed_slots() != 0) {
951    _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
952  }
953
954  // Compute prolog code size
955  _method_size = 0;
956  _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
957#ifdef IA64
958  if (save_argument_registers()) {
959    // 4815101: this is a stub with implicit and unknown precision fp args.
960    // The usual spill mechanism can only generate stfd's in this case, which
961    // doesn't work if the fp reg to spill contains a single-precision denorm.
962    // Instead, we hack around the normal spill mechanism using stfspill's and
963    // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
964    // space here for the fp arg regs (f8-f15) we're going to thusly spill.
965    //
966    // If we ever implement 16-byte 'registers' == stack slots, we can
967    // get rid of this hack and have SpillCopy generate stfspill/ldffill
968    // instead of stfd/stfs/ldfd/ldfs.
969    _frame_slots += 8*(16/BytesPerInt);
970  }
971#endif
972  assert( _frame_slots >= 0 && _frame_slots < 1000000, "sanity check" );
973
974  // Create an array of unused labels, one for each basic block
975  Label *blk_labels = NEW_RESOURCE_ARRAY(Label, _cfg->_num_blocks+1);
976
977  for( i=0; i <= _cfg->_num_blocks; i++ ) {
978    blk_labels[i].init();
979  }
980
981  // If this machine supports different size branch offsets, then pre-compute
982  // the length of the blocks
983  if( _matcher->is_short_branch_offset(0) ) {
984    Shorten_branches(blk_labels, code_req, locs_req, stub_req, const_req);
985    labels_not_set = false;
986  }
987
988  // nmethod and CodeBuffer count stubs & constants as part of method's code.
989  int exception_handler_req = size_exception_handler();
990  int deopt_handler_req = size_deopt_handler();
991  exception_handler_req += MAX_stubs_size; // add marginal slop for handler
992  deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
993  stub_req += MAX_stubs_size;   // ensure per-stub margin
994  code_req += MAX_inst_size;    // ensure per-instruction margin
995  if (StressCodeBuffers)
996    code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
997  int total_req = code_req + pad_req + stub_req + exception_handler_req + deopt_handler_req + const_req;
998  CodeBuffer* cb = code_buffer();
999  cb->initialize(total_req, locs_req);
1000
1001  // Have we run out of code space?
1002  if (cb->blob() == NULL) {
1003    turn_off_compiler(this);
1004    return;
1005  }
1006  // Configure the code buffer.
1007  cb->initialize_consts_size(const_req);
1008  cb->initialize_stubs_size(stub_req);
1009  cb->initialize_oop_recorder(env()->oop_recorder());
1010
1011  // fill in the nop array for bundling computations
1012  MachNode *_nop_list[Bundle::_nop_count];
1013  Bundle::initialize_nops(_nop_list, this);
1014
1015  // Create oopmap set.
1016  _oop_map_set = new OopMapSet();
1017
1018  // !!!!! This preserves old handling of oopmaps for now
1019  debug_info()->set_oopmaps(_oop_map_set);
1020
1021  // Count and start of implicit null check instructions
1022  uint inct_cnt = 0;
1023  uint *inct_starts = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
1024
1025  // Count and start of calls
1026  uint *call_returns = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
1027
1028  uint  return_offset = 0;
1029  MachNode *nop = new (this) MachNopNode();
1030
1031  int previous_offset = 0;
1032  int current_offset  = 0;
1033  int last_call_offset = -1;
1034
1035  // Create an array of unused labels, one for each basic block, if printing is enabled
1036#ifndef PRODUCT
1037  int *node_offsets      = NULL;
1038  uint  node_offset_limit = unique();
1039
1040
1041  if ( print_assembly() )
1042    node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1043#endif
1044
1045  NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1046
1047  // ------------------
1048  // Now fill in the code buffer
1049  Node *delay_slot = NULL;
1050
1051  for( i=0; i < _cfg->_num_blocks; i++ ) {
1052    Block *b = _cfg->_blocks[i];
1053
1054    Node *head = b->head();
1055
1056    // If this block needs to start aligned (i.e, can be reached other
1057    // than by falling-thru from the previous block), then force the
1058    // start of a new bundle.
1059    if( Pipeline::requires_bundling() && starts_bundle(head) )
1060      cb->flush_bundle(true);
1061
1062    // Define the label at the beginning of the basic block
1063    if( labels_not_set )
1064      MacroAssembler(cb).bind( blk_labels[b->_pre_order] );
1065
1066    else
1067      assert( blk_labels[b->_pre_order].loc_pos() == cb->code_size(),
1068              "label position does not match code offset" );
1069
1070    uint last_inst = b->_nodes.size();
1071
1072    // Emit block normally, except for last instruction.
1073    // Emit means "dump code bits into code buffer".
1074    for( uint j = 0; j<last_inst; j++ ) {
1075
1076      // Get the node
1077      Node* n = b->_nodes[j];
1078
1079      // See if delay slots are supported
1080      if (valid_bundle_info(n) &&
1081          node_bundling(n)->used_in_unconditional_delay()) {
1082        assert(delay_slot == NULL, "no use of delay slot node");
1083        assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1084
1085        delay_slot = n;
1086        continue;
1087      }
1088
1089      // If this starts a new instruction group, then flush the current one
1090      // (but allow split bundles)
1091      if( Pipeline::requires_bundling() && starts_bundle(n) )
1092        cb->flush_bundle(false);
1093
1094      // The following logic is duplicated in the code ifdeffed for
1095      // ENABLE_ZAP_DEAD_LOCALS which apppears above in this file.  It
1096      // should be factored out.  Or maybe dispersed to the nodes?
1097
1098      // Special handling for SafePoint/Call Nodes
1099      bool is_mcall = false;
1100      if( n->is_Mach() ) {
1101        MachNode *mach = n->as_Mach();
1102        is_mcall = n->is_MachCall();
1103        bool is_sfn = n->is_MachSafePoint();
1104
1105        // If this requires all previous instructions be flushed, then do so
1106        if( is_sfn || is_mcall || mach->alignment_required() != 1) {
1107          cb->flush_bundle(true);
1108          current_offset = cb->code_size();
1109        }
1110
1111        // align the instruction if necessary
1112        int nop_size = nop->size(_regalloc);
1113        int padding = mach->compute_padding(current_offset);
1114        // Make sure safepoint node for polling is distinct from a call's
1115        // return by adding a nop if needed.
1116        if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset ) {
1117          padding = nop_size;
1118        }
1119        assert( labels_not_set || padding == 0, "instruction should already be aligned")
1120
1121        if(padding > 0) {
1122          assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1123          int nops_cnt = padding / nop_size;
1124          MachNode *nop = new (this) MachNopNode(nops_cnt);
1125          b->_nodes.insert(j++, nop);
1126          last_inst++;
1127          _cfg->_bbs.map( nop->_idx, b );
1128          nop->emit(*cb, _regalloc);
1129          cb->flush_bundle(true);
1130          current_offset = cb->code_size();
1131        }
1132
1133        // Remember the start of the last call in a basic block
1134        if (is_mcall) {
1135          MachCallNode *mcall = mach->as_MachCall();
1136
1137          // This destination address is NOT PC-relative
1138          mcall->method_set((intptr_t)mcall->entry_point());
1139
1140          // Save the return address
1141          call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
1142
1143          if (!mcall->is_safepoint_node()) {
1144            is_mcall = false;
1145            is_sfn = false;
1146          }
1147        }
1148
1149        // sfn will be valid whenever mcall is valid now because of inheritance
1150        if( is_sfn || is_mcall ) {
1151
1152          // Handle special safepoint nodes for synchronization
1153          if( !is_mcall ) {
1154            MachSafePointNode *sfn = mach->as_MachSafePoint();
1155            // !!!!! Stubs only need an oopmap right now, so bail out
1156            if( sfn->jvms()->method() == NULL) {
1157              // Write the oopmap directly to the code blob??!!
1158#             ifdef ENABLE_ZAP_DEAD_LOCALS
1159              assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1160#             endif
1161              continue;
1162            }
1163          } // End synchronization
1164
1165          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1166                                           current_offset);
1167          Process_OopMap_Node(mach, current_offset);
1168        } // End if safepoint
1169
1170        // If this is a null check, then add the start of the previous instruction to the list
1171        else if( mach->is_MachNullCheck() ) {
1172          inct_starts[inct_cnt++] = previous_offset;
1173        }
1174
1175        // If this is a branch, then fill in the label with the target BB's label
1176        else if ( mach->is_Branch() ) {
1177
1178          if ( mach->ideal_Opcode() == Op_Jump ) {
1179            for (uint h = 0; h < b->_num_succs; h++ ) {
1180              Block* succs_block = b->_succs[h];
1181              for (uint j = 1; j < succs_block->num_preds(); j++) {
1182                Node* jpn = succs_block->pred(j);
1183                if ( jpn->is_JumpProj() && jpn->in(0) == mach ) {
1184                  uint block_num = succs_block->non_connector()->_pre_order;
1185                  Label *blkLabel = &blk_labels[block_num];
1186                  mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1187                }
1188              }
1189            }
1190          } else {
1191            // For Branchs
1192            // This requires the TRUE branch target be in succs[0]
1193            uint block_num = b->non_connector_successor(0)->_pre_order;
1194            mach->label_set( blk_labels[block_num], block_num );
1195          }
1196        }
1197
1198#ifdef ASSERT
1199        // Check that oop-store preceeds the card-mark
1200        else if( mach->ideal_Opcode() == Op_StoreCM ) {
1201          uint storeCM_idx = j;
1202          Node *oop_store = mach->in(mach->_cnt);  // First precedence edge
1203          assert( oop_store != NULL, "storeCM expects a precedence edge");
1204          uint i4;
1205          for( i4 = 0; i4 < last_inst; ++i4 ) {
1206            if( b->_nodes[i4] == oop_store ) break;
1207          }
1208          // Note: This test can provide a false failure if other precedence
1209          // edges have been added to the storeCMNode.
1210          assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1211        }
1212#endif
1213
1214        else if( !n->is_Proj() ) {
1215          // Remember the begining of the previous instruction, in case
1216          // it's followed by a flag-kill and a null-check.  Happens on
1217          // Intel all the time, with add-to-memory kind of opcodes.
1218          previous_offset = current_offset;
1219        }
1220      }
1221
1222      // Verify that there is sufficient space remaining
1223      cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1224      if (cb->blob() == NULL) {
1225        turn_off_compiler(this);
1226        return;
1227      }
1228
1229      // Save the offset for the listing
1230#ifndef PRODUCT
1231      if( node_offsets && n->_idx < node_offset_limit )
1232        node_offsets[n->_idx] = cb->code_size();
1233#endif
1234
1235      // "Normal" instruction case
1236      n->emit(*cb, _regalloc);
1237      current_offset  = cb->code_size();
1238      non_safepoints.observe_instruction(n, current_offset);
1239
1240      // mcall is last "call" that can be a safepoint
1241      // record it so we can see if a poll will directly follow it
1242      // in which case we'll need a pad to make the PcDesc sites unique
1243      // see  5010568. This can be slightly inaccurate but conservative
1244      // in the case that return address is not actually at current_offset.
1245      // This is a small price to pay.
1246
1247      if (is_mcall) {
1248        last_call_offset = current_offset;
1249      }
1250
1251      // See if this instruction has a delay slot
1252      if ( valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1253        assert(delay_slot != NULL, "expecting delay slot node");
1254
1255        // Back up 1 instruction
1256        cb->set_code_end(
1257          cb->code_end()-Pipeline::instr_unit_size());
1258
1259        // Save the offset for the listing
1260#ifndef PRODUCT
1261        if( node_offsets && delay_slot->_idx < node_offset_limit )
1262          node_offsets[delay_slot->_idx] = cb->code_size();
1263#endif
1264
1265        // Support a SafePoint in the delay slot
1266        if( delay_slot->is_MachSafePoint() ) {
1267          MachNode *mach = delay_slot->as_Mach();
1268          // !!!!! Stubs only need an oopmap right now, so bail out
1269          if( !mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL ) {
1270            // Write the oopmap directly to the code blob??!!
1271#           ifdef ENABLE_ZAP_DEAD_LOCALS
1272            assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1273#           endif
1274            delay_slot = NULL;
1275            continue;
1276          }
1277
1278          int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1279          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1280                                           adjusted_offset);
1281          // Generate an OopMap entry
1282          Process_OopMap_Node(mach, adjusted_offset);
1283        }
1284
1285        // Insert the delay slot instruction
1286        delay_slot->emit(*cb, _regalloc);
1287
1288        // Don't reuse it
1289        delay_slot = NULL;
1290      }
1291
1292    } // End for all instructions in block
1293
1294    // If the next block _starts_ a loop, pad this block out to align
1295    // the loop start a little. Helps prevent pipe stalls at loop starts
1296    int nop_size = (new (this) MachNopNode())->size(_regalloc);
1297    if( i<_cfg->_num_blocks-1 ) {
1298      Block *nb = _cfg->_blocks[i+1];
1299      uint padding = nb->alignment_padding(current_offset);
1300      if( padding > 0 ) {
1301        MachNode *nop = new (this) MachNopNode(padding / nop_size);
1302        b->_nodes.insert( b->_nodes.size(), nop );
1303        _cfg->_bbs.map( nop->_idx, b );
1304        nop->emit(*cb, _regalloc);
1305        current_offset = cb->code_size();
1306      }
1307    }
1308
1309  } // End of for all blocks
1310
1311  non_safepoints.flush_at_end();
1312
1313  // Offset too large?
1314  if (failing())  return;
1315
1316  // Define a pseudo-label at the end of the code
1317  MacroAssembler(cb).bind( blk_labels[_cfg->_num_blocks] );
1318
1319  // Compute the size of the first block
1320  _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1321
1322  assert(cb->code_size() < 500000, "method is unreasonably large");
1323
1324  // ------------------
1325
1326#ifndef PRODUCT
1327  // Information on the size of the method, without the extraneous code
1328  Scheduling::increment_method_size(cb->code_size());
1329#endif
1330
1331  // ------------------
1332  // Fill in exception table entries.
1333  FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1334
1335  // Only java methods have exception handlers and deopt handlers
1336  if (_method) {
1337    // Emit the exception handler code.
1338    _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
1339    // Emit the deopt handler code.
1340    _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
1341  }
1342
1343  // One last check for failed CodeBuffer::expand:
1344  if (cb->blob() == NULL) {
1345    turn_off_compiler(this);
1346    return;
1347  }
1348
1349#ifndef PRODUCT
1350  // Dump the assembly code, including basic-block numbers
1351  if (print_assembly()) {
1352    ttyLocker ttyl;  // keep the following output all in one block
1353    if (!VMThread::should_terminate()) {  // test this under the tty lock
1354      // This output goes directly to the tty, not the compiler log.
1355      // To enable tools to match it up with the compilation activity,
1356      // be sure to tag this tty output with the compile ID.
1357      if (xtty != NULL) {
1358        xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1359                   is_osr_compilation()    ? " compile_kind='osr'" :
1360                   "");
1361      }
1362      if (method() != NULL) {
1363        method()->print_oop();
1364        print_codes();
1365      }
1366      dump_asm(node_offsets, node_offset_limit);
1367      if (xtty != NULL) {
1368        xtty->tail("opto_assembly");
1369      }
1370    }
1371  }
1372#endif
1373
1374}
1375
1376void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1377  _inc_table.set_size(cnt);
1378
1379  uint inct_cnt = 0;
1380  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1381    Block *b = _cfg->_blocks[i];
1382    Node *n = NULL;
1383    int j;
1384
1385    // Find the branch; ignore trailing NOPs.
1386    for( j = b->_nodes.size()-1; j>=0; j-- ) {
1387      n = b->_nodes[j];
1388      if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
1389        break;
1390    }
1391
1392    // If we didn't find anything, continue
1393    if( j < 0 ) continue;
1394
1395    // Compute ExceptionHandlerTable subtable entry and add it
1396    // (skip empty blocks)
1397    if( n->is_Catch() ) {
1398
1399      // Get the offset of the return from the call
1400      uint call_return = call_returns[b->_pre_order];
1401#ifdef ASSERT
1402      assert( call_return > 0, "no call seen for this basic block" );
1403      while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
1404      assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
1405#endif
1406      // last instruction is a CatchNode, find it's CatchProjNodes
1407      int nof_succs = b->_num_succs;
1408      // allocate space
1409      GrowableArray<intptr_t> handler_bcis(nof_succs);
1410      GrowableArray<intptr_t> handler_pcos(nof_succs);
1411      // iterate through all successors
1412      for (int j = 0; j < nof_succs; j++) {
1413        Block* s = b->_succs[j];
1414        bool found_p = false;
1415        for( uint k = 1; k < s->num_preds(); k++ ) {
1416          Node *pk = s->pred(k);
1417          if( pk->is_CatchProj() && pk->in(0) == n ) {
1418            const CatchProjNode* p = pk->as_CatchProj();
1419            found_p = true;
1420            // add the corresponding handler bci & pco information
1421            if( p->_con != CatchProjNode::fall_through_index ) {
1422              // p leads to an exception handler (and is not fall through)
1423              assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
1424              // no duplicates, please
1425              if( !handler_bcis.contains(p->handler_bci()) ) {
1426                uint block_num = s->non_connector()->_pre_order;
1427                handler_bcis.append(p->handler_bci());
1428                handler_pcos.append(blk_labels[block_num].loc_pos());
1429              }
1430            }
1431          }
1432        }
1433        assert(found_p, "no matching predecessor found");
1434        // Note:  Due to empty block removal, one block may have
1435        // several CatchProj inputs, from the same Catch.
1436      }
1437
1438      // Set the offset of the return from the call
1439      _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1440      continue;
1441    }
1442
1443    // Handle implicit null exception table updates
1444    if( n->is_MachNullCheck() ) {
1445      uint block_num = b->non_connector_successor(0)->_pre_order;
1446      _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
1447      continue;
1448    }
1449  } // End of for all blocks fill in exception table entries
1450}
1451
1452// Static Variables
1453#ifndef PRODUCT
1454uint Scheduling::_total_nop_size = 0;
1455uint Scheduling::_total_method_size = 0;
1456uint Scheduling::_total_branches = 0;
1457uint Scheduling::_total_unconditional_delays = 0;
1458uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1459#endif
1460
1461// Initializer for class Scheduling
1462
1463Scheduling::Scheduling(Arena *arena, Compile &compile)
1464  : _arena(arena),
1465    _cfg(compile.cfg()),
1466    _bbs(compile.cfg()->_bbs),
1467    _regalloc(compile.regalloc()),
1468    _reg_node(arena),
1469    _bundle_instr_count(0),
1470    _bundle_cycle_number(0),
1471    _scheduled(arena),
1472    _available(arena),
1473    _next_node(NULL),
1474    _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1475    _pinch_free_list(arena)
1476#ifndef PRODUCT
1477  , _branches(0)
1478  , _unconditional_delays(0)
1479#endif
1480{
1481  // Create a MachNopNode
1482  _nop = new (&compile) MachNopNode();
1483
1484  // Now that the nops are in the array, save the count
1485  // (but allow entries for the nops)
1486  _node_bundling_limit = compile.unique();
1487  uint node_max = _regalloc->node_regs_max_index();
1488
1489  compile.set_node_bundling_limit(_node_bundling_limit);
1490
1491  // This one is persistant within the Compile class
1492  _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1493
1494  // Allocate space for fixed-size arrays
1495  _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1496  _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1497  _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1498
1499  // Clear the arrays
1500  memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1501  memset(_node_latency,       0, node_max * sizeof(unsigned short));
1502  memset(_uses,               0, node_max * sizeof(short));
1503  memset(_current_latency,    0, node_max * sizeof(unsigned short));
1504
1505  // Clear the bundling information
1506  memcpy(_bundle_use_elements,
1507    Pipeline_Use::elaborated_elements,
1508    sizeof(Pipeline_Use::elaborated_elements));
1509
1510  // Get the last node
1511  Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
1512
1513  _next_node = bb->_nodes[bb->_nodes.size()-1];
1514}
1515
1516#ifndef PRODUCT
1517// Scheduling destructor
1518Scheduling::~Scheduling() {
1519  _total_branches             += _branches;
1520  _total_unconditional_delays += _unconditional_delays;
1521}
1522#endif
1523
1524// Step ahead "i" cycles
1525void Scheduling::step(uint i) {
1526
1527  Bundle *bundle = node_bundling(_next_node);
1528  bundle->set_starts_bundle();
1529
1530  // Update the bundle record, but leave the flags information alone
1531  if (_bundle_instr_count > 0) {
1532    bundle->set_instr_count(_bundle_instr_count);
1533    bundle->set_resources_used(_bundle_use.resourcesUsed());
1534  }
1535
1536  // Update the state information
1537  _bundle_instr_count = 0;
1538  _bundle_cycle_number += i;
1539  _bundle_use.step(i);
1540}
1541
1542void Scheduling::step_and_clear() {
1543  Bundle *bundle = node_bundling(_next_node);
1544  bundle->set_starts_bundle();
1545
1546  // Update the bundle record
1547  if (_bundle_instr_count > 0) {
1548    bundle->set_instr_count(_bundle_instr_count);
1549    bundle->set_resources_used(_bundle_use.resourcesUsed());
1550
1551    _bundle_cycle_number += 1;
1552  }
1553
1554  // Clear the bundling information
1555  _bundle_instr_count = 0;
1556  _bundle_use.reset();
1557
1558  memcpy(_bundle_use_elements,
1559    Pipeline_Use::elaborated_elements,
1560    sizeof(Pipeline_Use::elaborated_elements));
1561}
1562
1563//------------------------------ScheduleAndBundle------------------------------
1564// Perform instruction scheduling and bundling over the sequence of
1565// instructions in backwards order.
1566void Compile::ScheduleAndBundle() {
1567
1568  // Don't optimize this if it isn't a method
1569  if (!_method)
1570    return;
1571
1572  // Don't optimize this if scheduling is disabled
1573  if (!do_scheduling())
1574    return;
1575
1576  NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1577
1578  // Create a data structure for all the scheduling information
1579  Scheduling scheduling(Thread::current()->resource_area(), *this);
1580
1581  // Walk backwards over each basic block, computing the needed alignment
1582  // Walk over all the basic blocks
1583  scheduling.DoScheduling();
1584}
1585
1586//------------------------------ComputeLocalLatenciesForward-------------------
1587// Compute the latency of all the instructions.  This is fairly simple,
1588// because we already have a legal ordering.  Walk over the instructions
1589// from first to last, and compute the latency of the instruction based
1590// on the latency of the preceeding instruction(s).
1591void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1592#ifndef PRODUCT
1593  if (_cfg->C->trace_opto_output())
1594    tty->print("# -> ComputeLocalLatenciesForward\n");
1595#endif
1596
1597  // Walk over all the schedulable instructions
1598  for( uint j=_bb_start; j < _bb_end; j++ ) {
1599
1600    // This is a kludge, forcing all latency calculations to start at 1.
1601    // Used to allow latency 0 to force an instruction to the beginning
1602    // of the bb
1603    uint latency = 1;
1604    Node *use = bb->_nodes[j];
1605    uint nlen = use->len();
1606
1607    // Walk over all the inputs
1608    for ( uint k=0; k < nlen; k++ ) {
1609      Node *def = use->in(k);
1610      if (!def)
1611        continue;
1612
1613      uint l = _node_latency[def->_idx] + use->latency(k);
1614      if (latency < l)
1615        latency = l;
1616    }
1617
1618    _node_latency[use->_idx] = latency;
1619
1620#ifndef PRODUCT
1621    if (_cfg->C->trace_opto_output()) {
1622      tty->print("# latency %4d: ", latency);
1623      use->dump();
1624    }
1625#endif
1626  }
1627
1628#ifndef PRODUCT
1629  if (_cfg->C->trace_opto_output())
1630    tty->print("# <- ComputeLocalLatenciesForward\n");
1631#endif
1632
1633} // end ComputeLocalLatenciesForward
1634
1635// See if this node fits into the present instruction bundle
1636bool Scheduling::NodeFitsInBundle(Node *n) {
1637  uint n_idx = n->_idx;
1638
1639  // If this is the unconditional delay instruction, then it fits
1640  if (n == _unconditional_delay_slot) {
1641#ifndef PRODUCT
1642    if (_cfg->C->trace_opto_output())
1643      tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1644#endif
1645    return (true);
1646  }
1647
1648  // If the node cannot be scheduled this cycle, skip it
1649  if (_current_latency[n_idx] > _bundle_cycle_number) {
1650#ifndef PRODUCT
1651    if (_cfg->C->trace_opto_output())
1652      tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1653        n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1654#endif
1655    return (false);
1656  }
1657
1658  const Pipeline *node_pipeline = n->pipeline();
1659
1660  uint instruction_count = node_pipeline->instructionCount();
1661  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1662    instruction_count = 0;
1663  else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1664    instruction_count++;
1665
1666  if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1667#ifndef PRODUCT
1668    if (_cfg->C->trace_opto_output())
1669      tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1670        n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1671#endif
1672    return (false);
1673  }
1674
1675  // Don't allow non-machine nodes to be handled this way
1676  if (!n->is_Mach() && instruction_count == 0)
1677    return (false);
1678
1679  // See if there is any overlap
1680  uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1681
1682  if (delay > 0) {
1683#ifndef PRODUCT
1684    if (_cfg->C->trace_opto_output())
1685      tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1686#endif
1687    return false;
1688  }
1689
1690#ifndef PRODUCT
1691  if (_cfg->C->trace_opto_output())
1692    tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
1693#endif
1694
1695  return true;
1696}
1697
1698Node * Scheduling::ChooseNodeToBundle() {
1699  uint siz = _available.size();
1700
1701  if (siz == 0) {
1702
1703#ifndef PRODUCT
1704    if (_cfg->C->trace_opto_output())
1705      tty->print("#   ChooseNodeToBundle: NULL\n");
1706#endif
1707    return (NULL);
1708  }
1709
1710  // Fast path, if only 1 instruction in the bundle
1711  if (siz == 1) {
1712#ifndef PRODUCT
1713    if (_cfg->C->trace_opto_output()) {
1714      tty->print("#   ChooseNodeToBundle (only 1): ");
1715      _available[0]->dump();
1716    }
1717#endif
1718    return (_available[0]);
1719  }
1720
1721  // Don't bother, if the bundle is already full
1722  if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
1723    for ( uint i = 0; i < siz; i++ ) {
1724      Node *n = _available[i];
1725
1726      // Skip projections, we'll handle them another way
1727      if (n->is_Proj())
1728        continue;
1729
1730      // This presupposed that instructions are inserted into the
1731      // available list in a legality order; i.e. instructions that
1732      // must be inserted first are at the head of the list
1733      if (NodeFitsInBundle(n)) {
1734#ifndef PRODUCT
1735        if (_cfg->C->trace_opto_output()) {
1736          tty->print("#   ChooseNodeToBundle: ");
1737          n->dump();
1738        }
1739#endif
1740        return (n);
1741      }
1742    }
1743  }
1744
1745  // Nothing fits in this bundle, choose the highest priority
1746#ifndef PRODUCT
1747  if (_cfg->C->trace_opto_output()) {
1748    tty->print("#   ChooseNodeToBundle: ");
1749    _available[0]->dump();
1750  }
1751#endif
1752
1753  return _available[0];
1754}
1755
1756//------------------------------AddNodeToAvailableList-------------------------
1757void Scheduling::AddNodeToAvailableList(Node *n) {
1758  assert( !n->is_Proj(), "projections never directly made available" );
1759#ifndef PRODUCT
1760  if (_cfg->C->trace_opto_output()) {
1761    tty->print("#   AddNodeToAvailableList: ");
1762    n->dump();
1763  }
1764#endif
1765
1766  int latency = _current_latency[n->_idx];
1767
1768  // Insert in latency order (insertion sort)
1769  uint i;
1770  for ( i=0; i < _available.size(); i++ )
1771    if (_current_latency[_available[i]->_idx] > latency)
1772      break;
1773
1774  // Special Check for compares following branches
1775  if( n->is_Mach() && _scheduled.size() > 0 ) {
1776    int op = n->as_Mach()->ideal_Opcode();
1777    Node *last = _scheduled[0];
1778    if( last->is_MachIf() && last->in(1) == n &&
1779        ( op == Op_CmpI ||
1780          op == Op_CmpU ||
1781          op == Op_CmpP ||
1782          op == Op_CmpF ||
1783          op == Op_CmpD ||
1784          op == Op_CmpL ) ) {
1785
1786      // Recalculate position, moving to front of same latency
1787      for ( i=0 ; i < _available.size(); i++ )
1788        if (_current_latency[_available[i]->_idx] >= latency)
1789          break;
1790    }
1791  }
1792
1793  // Insert the node in the available list
1794  _available.insert(i, n);
1795
1796#ifndef PRODUCT
1797  if (_cfg->C->trace_opto_output())
1798    dump_available();
1799#endif
1800}
1801
1802//------------------------------DecrementUseCounts-----------------------------
1803void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
1804  for ( uint i=0; i < n->len(); i++ ) {
1805    Node *def = n->in(i);
1806    if (!def) continue;
1807    if( def->is_Proj() )        // If this is a machine projection, then
1808      def = def->in(0);         // propagate usage thru to the base instruction
1809
1810    if( _bbs[def->_idx] != bb ) // Ignore if not block-local
1811      continue;
1812
1813    // Compute the latency
1814    uint l = _bundle_cycle_number + n->latency(i);
1815    if (_current_latency[def->_idx] < l)
1816      _current_latency[def->_idx] = l;
1817
1818    // If this does not have uses then schedule it
1819    if ((--_uses[def->_idx]) == 0)
1820      AddNodeToAvailableList(def);
1821  }
1822}
1823
1824//------------------------------AddNodeToBundle--------------------------------
1825void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
1826#ifndef PRODUCT
1827  if (_cfg->C->trace_opto_output()) {
1828    tty->print("#   AddNodeToBundle: ");
1829    n->dump();
1830  }
1831#endif
1832
1833  // Remove this from the available list
1834  uint i;
1835  for (i = 0; i < _available.size(); i++)
1836    if (_available[i] == n)
1837      break;
1838  assert(i < _available.size(), "entry in _available list not found");
1839  _available.remove(i);
1840
1841  // See if this fits in the current bundle
1842  const Pipeline *node_pipeline = n->pipeline();
1843  const Pipeline_Use& node_usage = node_pipeline->resourceUse();
1844
1845  // Check for instructions to be placed in the delay slot. We
1846  // do this before we actually schedule the current instruction,
1847  // because the delay slot follows the current instruction.
1848  if (Pipeline::_branch_has_delay_slot &&
1849      node_pipeline->hasBranchDelay() &&
1850      !_unconditional_delay_slot) {
1851
1852    uint siz = _available.size();
1853
1854    // Conditional branches can support an instruction that
1855    // is unconditionally executed and not dependant by the
1856    // branch, OR a conditionally executed instruction if
1857    // the branch is taken.  In practice, this means that
1858    // the first instruction at the branch target is
1859    // copied to the delay slot, and the branch goes to
1860    // the instruction after that at the branch target
1861    if ( n->is_Mach() && n->is_Branch() ) {
1862
1863      assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
1864      assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
1865
1866#ifndef PRODUCT
1867      _branches++;
1868#endif
1869
1870      // At least 1 instruction is on the available list
1871      // that is not dependant on the branch
1872      for (uint i = 0; i < siz; i++) {
1873        Node *d = _available[i];
1874        const Pipeline *avail_pipeline = d->pipeline();
1875
1876        // Don't allow safepoints in the branch shadow, that will
1877        // cause a number of difficulties
1878        if ( avail_pipeline->instructionCount() == 1 &&
1879            !avail_pipeline->hasMultipleBundles() &&
1880            !avail_pipeline->hasBranchDelay() &&
1881            Pipeline::instr_has_unit_size() &&
1882            d->size(_regalloc) == Pipeline::instr_unit_size() &&
1883            NodeFitsInBundle(d) &&
1884            !node_bundling(d)->used_in_delay()) {
1885
1886          if (d->is_Mach() && !d->is_MachSafePoint()) {
1887            // A node that fits in the delay slot was found, so we need to
1888            // set the appropriate bits in the bundle pipeline information so
1889            // that it correctly indicates resource usage.  Later, when we
1890            // attempt to add this instruction to the bundle, we will skip
1891            // setting the resource usage.
1892            _unconditional_delay_slot = d;
1893            node_bundling(n)->set_use_unconditional_delay();
1894            node_bundling(d)->set_used_in_unconditional_delay();
1895            _bundle_use.add_usage(avail_pipeline->resourceUse());
1896            _current_latency[d->_idx] = _bundle_cycle_number;
1897            _next_node = d;
1898            ++_bundle_instr_count;
1899#ifndef PRODUCT
1900            _unconditional_delays++;
1901#endif
1902            break;
1903          }
1904        }
1905      }
1906    }
1907
1908    // No delay slot, add a nop to the usage
1909    if (!_unconditional_delay_slot) {
1910      // See if adding an instruction in the delay slot will overflow
1911      // the bundle.
1912      if (!NodeFitsInBundle(_nop)) {
1913#ifndef PRODUCT
1914        if (_cfg->C->trace_opto_output())
1915          tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
1916#endif
1917        step(1);
1918      }
1919
1920      _bundle_use.add_usage(_nop->pipeline()->resourceUse());
1921      _next_node = _nop;
1922      ++_bundle_instr_count;
1923    }
1924
1925    // See if the instruction in the delay slot requires a
1926    // step of the bundles
1927    if (!NodeFitsInBundle(n)) {
1928#ifndef PRODUCT
1929        if (_cfg->C->trace_opto_output())
1930          tty->print("#  *** STEP(branch won't fit) ***\n");
1931#endif
1932        // Update the state information
1933        _bundle_instr_count = 0;
1934        _bundle_cycle_number += 1;
1935        _bundle_use.step(1);
1936    }
1937  }
1938
1939  // Get the number of instructions
1940  uint instruction_count = node_pipeline->instructionCount();
1941  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1942    instruction_count = 0;
1943
1944  // Compute the latency information
1945  uint delay = 0;
1946
1947  if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
1948    int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
1949    if (relative_latency < 0)
1950      relative_latency = 0;
1951
1952    delay = _bundle_use.full_latency(relative_latency, node_usage);
1953
1954    // Does not fit in this bundle, start a new one
1955    if (delay > 0) {
1956      step(delay);
1957
1958#ifndef PRODUCT
1959      if (_cfg->C->trace_opto_output())
1960        tty->print("#  *** STEP(%d) ***\n", delay);
1961#endif
1962    }
1963  }
1964
1965  // If this was placed in the delay slot, ignore it
1966  if (n != _unconditional_delay_slot) {
1967
1968    if (delay == 0) {
1969      if (node_pipeline->hasMultipleBundles()) {
1970#ifndef PRODUCT
1971        if (_cfg->C->trace_opto_output())
1972          tty->print("#  *** STEP(multiple instructions) ***\n");
1973#endif
1974        step(1);
1975      }
1976
1977      else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
1978#ifndef PRODUCT
1979        if (_cfg->C->trace_opto_output())
1980          tty->print("#  *** STEP(%d >= %d instructions) ***\n",
1981            instruction_count + _bundle_instr_count,
1982            Pipeline::_max_instrs_per_cycle);
1983#endif
1984        step(1);
1985      }
1986    }
1987
1988    if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1989      _bundle_instr_count++;
1990
1991    // Set the node's latency
1992    _current_latency[n->_idx] = _bundle_cycle_number;
1993
1994    // Now merge the functional unit information
1995    if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
1996      _bundle_use.add_usage(node_usage);
1997
1998    // Increment the number of instructions in this bundle
1999    _bundle_instr_count += instruction_count;
2000
2001    // Remember this node for later
2002    if (n->is_Mach())
2003      _next_node = n;
2004  }
2005
2006  // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2007  // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2008  // 'Schedule' them (basically ignore in the schedule) but do not insert them
2009  // into the block.  All other scheduled nodes get put in the schedule here.
2010  int op = n->Opcode();
2011  if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2012      (op != Op_Node &&         // Not an unused antidepedence node and
2013       // not an unallocated boxlock
2014       (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2015
2016    // Push any trailing projections
2017    if( bb->_nodes[bb->_nodes.size()-1] != n ) {
2018      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2019        Node *foi = n->fast_out(i);
2020        if( foi->is_Proj() )
2021          _scheduled.push(foi);
2022      }
2023    }
2024
2025    // Put the instruction in the schedule list
2026    _scheduled.push(n);
2027  }
2028
2029#ifndef PRODUCT
2030  if (_cfg->C->trace_opto_output())
2031    dump_available();
2032#endif
2033
2034  // Walk all the definitions, decrementing use counts, and
2035  // if a definition has a 0 use count, place it in the available list.
2036  DecrementUseCounts(n,bb);
2037}
2038
2039//------------------------------ComputeUseCount--------------------------------
2040// This method sets the use count within a basic block.  We will ignore all
2041// uses outside the current basic block.  As we are doing a backwards walk,
2042// any node we reach that has a use count of 0 may be scheduled.  This also
2043// avoids the problem of cyclic references from phi nodes, as long as phi
2044// nodes are at the front of the basic block.  This method also initializes
2045// the available list to the set of instructions that have no uses within this
2046// basic block.
2047void Scheduling::ComputeUseCount(const Block *bb) {
2048#ifndef PRODUCT
2049  if (_cfg->C->trace_opto_output())
2050    tty->print("# -> ComputeUseCount\n");
2051#endif
2052
2053  // Clear the list of available and scheduled instructions, just in case
2054  _available.clear();
2055  _scheduled.clear();
2056
2057  // No delay slot specified
2058  _unconditional_delay_slot = NULL;
2059
2060#ifdef ASSERT
2061  for( uint i=0; i < bb->_nodes.size(); i++ )
2062    assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
2063#endif
2064
2065  // Force the _uses count to never go to zero for unscheduable pieces
2066  // of the block
2067  for( uint k = 0; k < _bb_start; k++ )
2068    _uses[bb->_nodes[k]->_idx] = 1;
2069  for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
2070    _uses[bb->_nodes[l]->_idx] = 1;
2071
2072  // Iterate backwards over the instructions in the block.  Don't count the
2073  // branch projections at end or the block header instructions.
2074  for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2075    Node *n = bb->_nodes[j];
2076    if( n->is_Proj() ) continue; // Projections handled another way
2077
2078    // Account for all uses
2079    for ( uint k = 0; k < n->len(); k++ ) {
2080      Node *inp = n->in(k);
2081      if (!inp) continue;
2082      assert(inp != n, "no cycles allowed" );
2083      if( _bbs[inp->_idx] == bb ) { // Block-local use?
2084        if( inp->is_Proj() )    // Skip through Proj's
2085          inp = inp->in(0);
2086        ++_uses[inp->_idx];     // Count 1 block-local use
2087      }
2088    }
2089
2090    // If this instruction has a 0 use count, then it is available
2091    if (!_uses[n->_idx]) {
2092      _current_latency[n->_idx] = _bundle_cycle_number;
2093      AddNodeToAvailableList(n);
2094    }
2095
2096#ifndef PRODUCT
2097    if (_cfg->C->trace_opto_output()) {
2098      tty->print("#   uses: %3d: ", _uses[n->_idx]);
2099      n->dump();
2100    }
2101#endif
2102  }
2103
2104#ifndef PRODUCT
2105  if (_cfg->C->trace_opto_output())
2106    tty->print("# <- ComputeUseCount\n");
2107#endif
2108}
2109
2110// This routine performs scheduling on each basic block in reverse order,
2111// using instruction latencies and taking into account function unit
2112// availability.
2113void Scheduling::DoScheduling() {
2114#ifndef PRODUCT
2115  if (_cfg->C->trace_opto_output())
2116    tty->print("# -> DoScheduling\n");
2117#endif
2118
2119  Block *succ_bb = NULL;
2120  Block *bb;
2121
2122  // Walk over all the basic blocks in reverse order
2123  for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
2124    bb = _cfg->_blocks[i];
2125
2126#ifndef PRODUCT
2127    if (_cfg->C->trace_opto_output()) {
2128      tty->print("#  Schedule BB#%03d (initial)\n", i);
2129      for (uint j = 0; j < bb->_nodes.size(); j++)
2130        bb->_nodes[j]->dump();
2131    }
2132#endif
2133
2134    // On the head node, skip processing
2135    if( bb == _cfg->_broot )
2136      continue;
2137
2138    // Skip empty, connector blocks
2139    if (bb->is_connector())
2140      continue;
2141
2142    // If the following block is not the sole successor of
2143    // this one, then reset the pipeline information
2144    if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2145#ifndef PRODUCT
2146      if (_cfg->C->trace_opto_output()) {
2147        tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2148                   _next_node->_idx, _bundle_instr_count);
2149      }
2150#endif
2151      step_and_clear();
2152    }
2153
2154    // Leave untouched the starting instruction, any Phis, a CreateEx node
2155    // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
2156    _bb_end = bb->_nodes.size()-1;
2157    for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2158      Node *n = bb->_nodes[_bb_start];
2159      // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2160      // Also, MachIdealNodes do not get scheduled
2161      if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2162      MachNode *mach = n->as_Mach();
2163      int iop = mach->ideal_Opcode();
2164      if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2165      if( iop == Op_Con ) continue;      // Do not schedule Top
2166      if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2167          mach->pipeline() == MachNode::pipeline_class() &&
2168          !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2169        continue;
2170      break;                    // Funny loop structure to be sure...
2171    }
2172    // Compute last "interesting" instruction in block - last instruction we
2173    // might schedule.  _bb_end points just after last schedulable inst.  We
2174    // normally schedule conditional branches (despite them being forced last
2175    // in the block), because they have delay slots we can fill.  Calls all
2176    // have their delay slots filled in the template expansions, so we don't
2177    // bother scheduling them.
2178    Node *last = bb->_nodes[_bb_end];
2179    if( last->is_Catch() ||
2180       (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2181      // There must be a prior call.  Skip it.
2182      while( !bb->_nodes[--_bb_end]->is_Call() ) {
2183        assert( bb->_nodes[_bb_end]->is_Proj(), "skipping projections after expected call" );
2184      }
2185    } else if( last->is_MachNullCheck() ) {
2186      // Backup so the last null-checked memory instruction is
2187      // outside the schedulable range. Skip over the nullcheck,
2188      // projection, and the memory nodes.
2189      Node *mem = last->in(1);
2190      do {
2191        _bb_end--;
2192      } while (mem != bb->_nodes[_bb_end]);
2193    } else {
2194      // Set _bb_end to point after last schedulable inst.
2195      _bb_end++;
2196    }
2197
2198    assert( _bb_start <= _bb_end, "inverted block ends" );
2199
2200    // Compute the register antidependencies for the basic block
2201    ComputeRegisterAntidependencies(bb);
2202    if (_cfg->C->failing())  return;  // too many D-U pinch points
2203
2204    // Compute intra-bb latencies for the nodes
2205    ComputeLocalLatenciesForward(bb);
2206
2207    // Compute the usage within the block, and set the list of all nodes
2208    // in the block that have no uses within the block.
2209    ComputeUseCount(bb);
2210
2211    // Schedule the remaining instructions in the block
2212    while ( _available.size() > 0 ) {
2213      Node *n = ChooseNodeToBundle();
2214      AddNodeToBundle(n,bb);
2215    }
2216
2217    assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2218#ifdef ASSERT
2219    for( uint l = _bb_start; l < _bb_end; l++ ) {
2220      Node *n = bb->_nodes[l];
2221      uint m;
2222      for( m = 0; m < _bb_end-_bb_start; m++ )
2223        if( _scheduled[m] == n )
2224          break;
2225      assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2226    }
2227#endif
2228
2229    // Now copy the instructions (in reverse order) back to the block
2230    for ( uint k = _bb_start; k < _bb_end; k++ )
2231      bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
2232
2233#ifndef PRODUCT
2234    if (_cfg->C->trace_opto_output()) {
2235      tty->print("#  Schedule BB#%03d (final)\n", i);
2236      uint current = 0;
2237      for (uint j = 0; j < bb->_nodes.size(); j++) {
2238        Node *n = bb->_nodes[j];
2239        if( valid_bundle_info(n) ) {
2240          Bundle *bundle = node_bundling(n);
2241          if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2242            tty->print("*** Bundle: ");
2243            bundle->dump();
2244          }
2245          n->dump();
2246        }
2247      }
2248    }
2249#endif
2250#ifdef ASSERT
2251  verify_good_schedule(bb,"after block local scheduling");
2252#endif
2253  }
2254
2255#ifndef PRODUCT
2256  if (_cfg->C->trace_opto_output())
2257    tty->print("# <- DoScheduling\n");
2258#endif
2259
2260  // Record final node-bundling array location
2261  _regalloc->C->set_node_bundling_base(_node_bundling_base);
2262
2263} // end DoScheduling
2264
2265//------------------------------verify_good_schedule---------------------------
2266// Verify that no live-range used in the block is killed in the block by a
2267// wrong DEF.  This doesn't verify live-ranges that span blocks.
2268
2269// Check for edge existence.  Used to avoid adding redundant precedence edges.
2270static bool edge_from_to( Node *from, Node *to ) {
2271  for( uint i=0; i<from->len(); i++ )
2272    if( from->in(i) == to )
2273      return true;
2274  return false;
2275}
2276
2277#ifdef ASSERT
2278//------------------------------verify_do_def----------------------------------
2279void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2280  // Check for bad kills
2281  if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2282    Node *prior_use = _reg_node[def];
2283    if( prior_use && !edge_from_to(prior_use,n) ) {
2284      tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2285      n->dump();
2286      tty->print_cr("...");
2287      prior_use->dump();
2288      assert_msg(edge_from_to(prior_use,n),msg);
2289    }
2290    _reg_node.map(def,NULL); // Kill live USEs
2291  }
2292}
2293
2294//------------------------------verify_good_schedule---------------------------
2295void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2296
2297  // Zap to something reasonable for the verify code
2298  _reg_node.clear();
2299
2300  // Walk over the block backwards.  Check to make sure each DEF doesn't
2301  // kill a live value (other than the one it's supposed to).  Add each
2302  // USE to the live set.
2303  for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
2304    Node *n = b->_nodes[i];
2305    int n_op = n->Opcode();
2306    if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2307      // Fat-proj kills a slew of registers
2308      RegMask rm = n->out_RegMask();// Make local copy
2309      while( rm.is_NotEmpty() ) {
2310        OptoReg::Name kill = rm.find_first_elem();
2311        rm.Remove(kill);
2312        verify_do_def( n, kill, msg );
2313      }
2314    } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2315      // Get DEF'd registers the normal way
2316      verify_do_def( n, _regalloc->get_reg_first(n), msg );
2317      verify_do_def( n, _regalloc->get_reg_second(n), msg );
2318    }
2319
2320    // Now make all USEs live
2321    for( uint i=1; i<n->req(); i++ ) {
2322      Node *def = n->in(i);
2323      assert(def != 0, "input edge required");
2324      OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2325      OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2326      if( OptoReg::is_valid(reg_lo) ) {
2327        assert_msg(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg );
2328        _reg_node.map(reg_lo,n);
2329      }
2330      if( OptoReg::is_valid(reg_hi) ) {
2331        assert_msg(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg );
2332        _reg_node.map(reg_hi,n);
2333      }
2334    }
2335
2336  }
2337
2338  // Zap to something reasonable for the Antidependence code
2339  _reg_node.clear();
2340}
2341#endif
2342
2343// Conditionally add precedence edges.  Avoid putting edges on Projs.
2344static void add_prec_edge_from_to( Node *from, Node *to ) {
2345  if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2346    assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2347    from = from->in(0);
2348  }
2349  if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2350      !edge_from_to( from, to ) ) // Avoid duplicate edge
2351    from->add_prec(to);
2352}
2353
2354//------------------------------anti_do_def------------------------------------
2355void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2356  if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2357    return;
2358
2359  Node *pinch = _reg_node[def_reg]; // Get pinch point
2360  if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
2361      is_def ) {    // Check for a true def (not a kill)
2362    _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2363    return;
2364  }
2365
2366  Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2367  debug_only( def = (Node*)0xdeadbeef; )
2368
2369  // After some number of kills there _may_ be a later def
2370  Node *later_def = NULL;
2371
2372  // Finding a kill requires a real pinch-point.
2373  // Check for not already having a pinch-point.
2374  // Pinch points are Op_Node's.
2375  if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2376    later_def = pinch;            // Must be def/kill as optimistic pinch-point
2377    if ( _pinch_free_list.size() > 0) {
2378      pinch = _pinch_free_list.pop();
2379    } else {
2380      pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
2381    }
2382    if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2383      _cfg->C->record_method_not_compilable("too many D-U pinch points");
2384      return;
2385    }
2386    _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
2387    _reg_node.map(def_reg,pinch); // Record pinch-point
2388    //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2389    if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2390      pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2391      add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2392      later_def = NULL;           // and no later def
2393    }
2394    pinch->set_req(0,later_def);  // Hook later def so we can find it
2395  } else {                        // Else have valid pinch point
2396    if( pinch->in(0) )            // If there is a later-def
2397      later_def = pinch->in(0);   // Get it
2398  }
2399
2400  // Add output-dependence edge from later def to kill
2401  if( later_def )               // If there is some original def
2402    add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2403
2404  // See if current kill is also a use, and so is forced to be the pinch-point.
2405  if( pinch->Opcode() == Op_Node ) {
2406    Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2407    for( uint i=1; i<uses->req(); i++ ) {
2408      if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2409          _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2410        // Yes, found a use/kill pinch-point
2411        pinch->set_req(0,NULL);  //
2412        pinch->replace_by(kill); // Move anti-dep edges up
2413        pinch = kill;
2414        _reg_node.map(def_reg,pinch);
2415        return;
2416      }
2417    }
2418  }
2419
2420  // Add edge from kill to pinch-point
2421  add_prec_edge_from_to(kill,pinch);
2422}
2423
2424//------------------------------anti_do_use------------------------------------
2425void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2426  if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2427    return;
2428  Node *pinch = _reg_node[use_reg]; // Get pinch point
2429  // Check for no later def_reg/kill in block
2430  if( pinch && _bbs[pinch->_idx] == b &&
2431      // Use has to be block-local as well
2432      _bbs[use->_idx] == b ) {
2433    if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2434        pinch->req() == 1 ) {   // pinch not yet in block?
2435      pinch->del_req(0);        // yank pointer to later-def, also set flag
2436      // Insert the pinch-point in the block just after the last use
2437      b->_nodes.insert(b->find_node(use)+1,pinch);
2438      _bb_end++;                // Increase size scheduled region in block
2439    }
2440
2441    add_prec_edge_from_to(pinch,use);
2442  }
2443}
2444
2445//------------------------------ComputeRegisterAntidependences-----------------
2446// We insert antidependences between the reads and following write of
2447// allocated registers to prevent illegal code motion. Hopefully, the
2448// number of added references should be fairly small, especially as we
2449// are only adding references within the current basic block.
2450void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2451
2452#ifdef ASSERT
2453  verify_good_schedule(b,"before block local scheduling");
2454#endif
2455
2456  // A valid schedule, for each register independently, is an endless cycle
2457  // of: a def, then some uses (connected to the def by true dependencies),
2458  // then some kills (defs with no uses), finally the cycle repeats with a new
2459  // def.  The uses are allowed to float relative to each other, as are the
2460  // kills.  No use is allowed to slide past a kill (or def).  This requires
2461  // antidependencies between all uses of a single def and all kills that
2462  // follow, up to the next def.  More edges are redundant, because later defs
2463  // & kills are already serialized with true or antidependencies.  To keep
2464  // the edge count down, we add a 'pinch point' node if there's more than
2465  // one use or more than one kill/def.
2466
2467  // We add dependencies in one bottom-up pass.
2468
2469  // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2470
2471  // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2472  // register.  If not, we record the DEF/KILL in _reg_node, the
2473  // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2474  // "pinch point", a new Node that's in the graph but not in the block.
2475  // We put edges from the prior and current DEF/KILLs to the pinch point.
2476  // We put the pinch point in _reg_node.  If there's already a pinch point
2477  // we merely add an edge from the current DEF/KILL to the pinch point.
2478
2479  // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2480  // put an edge from the pinch point to the USE.
2481
2482  // To be expedient, the _reg_node array is pre-allocated for the whole
2483  // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2484  // or a valid def/kill/pinch-point, or a leftover node from some prior
2485  // block.  Leftover node from some prior block is treated like a NULL (no
2486  // prior def, so no anti-dependence needed).  Valid def is distinguished by
2487  // it being in the current block.
2488  bool fat_proj_seen = false;
2489  uint last_safept = _bb_end-1;
2490  Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
2491  Node* last_safept_node = end_node;
2492  for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2493    Node *n = b->_nodes[i];
2494    int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2495    if( n->Opcode() == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2496      // Fat-proj kills a slew of registers
2497      // This can add edges to 'n' and obscure whether or not it was a def,
2498      // hence the is_def flag.
2499      fat_proj_seen = true;
2500      RegMask rm = n->out_RegMask();// Make local copy
2501      while( rm.is_NotEmpty() ) {
2502        OptoReg::Name kill = rm.find_first_elem();
2503        rm.Remove(kill);
2504        anti_do_def( b, n, kill, is_def );
2505      }
2506    } else {
2507      // Get DEF'd registers the normal way
2508      anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2509      anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2510    }
2511
2512    // Check each register used by this instruction for a following DEF/KILL
2513    // that must occur afterward and requires an anti-dependence edge.
2514    for( uint j=0; j<n->req(); j++ ) {
2515      Node *def = n->in(j);
2516      if( def ) {
2517        assert( def->Opcode() != Op_MachProj || def->ideal_reg() != MachProjNode::fat_proj, "" );
2518        anti_do_use( b, n, _regalloc->get_reg_first(def) );
2519        anti_do_use( b, n, _regalloc->get_reg_second(def) );
2520      }
2521    }
2522    // Do not allow defs of new derived values to float above GC
2523    // points unless the base is definitely available at the GC point.
2524
2525    Node *m = b->_nodes[i];
2526
2527    // Add precedence edge from following safepoint to use of derived pointer
2528    if( last_safept_node != end_node &&
2529        m != last_safept_node) {
2530      for (uint k = 1; k < m->req(); k++) {
2531        const Type *t = m->in(k)->bottom_type();
2532        if( t->isa_oop_ptr() &&
2533            t->is_ptr()->offset() != 0 ) {
2534          last_safept_node->add_prec( m );
2535          break;
2536        }
2537      }
2538    }
2539
2540    if( n->jvms() ) {           // Precedence edge from derived to safept
2541      // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2542      if( b->_nodes[last_safept] != last_safept_node ) {
2543        last_safept = b->find_node(last_safept_node);
2544      }
2545      for( uint j=last_safept; j > i; j-- ) {
2546        Node *mach = b->_nodes[j];
2547        if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2548          mach->add_prec( n );
2549      }
2550      last_safept = i;
2551      last_safept_node = m;
2552    }
2553  }
2554
2555  if (fat_proj_seen) {
2556    // Garbage collect pinch nodes that were not consumed.
2557    // They are usually created by a fat kill MachProj for a call.
2558    garbage_collect_pinch_nodes();
2559  }
2560}
2561
2562//------------------------------garbage_collect_pinch_nodes-------------------------------
2563
2564// Garbage collect pinch nodes for reuse by other blocks.
2565//
2566// The block scheduler's insertion of anti-dependence
2567// edges creates many pinch nodes when the block contains
2568// 2 or more Calls.  A pinch node is used to prevent a
2569// combinatorial explosion of edges.  If a set of kills for a
2570// register is anti-dependent on a set of uses (or defs), rather
2571// than adding an edge in the graph between each pair of kill
2572// and use (or def), a pinch is inserted between them:
2573//
2574//            use1   use2  use3
2575//                \   |   /
2576//                 \  |  /
2577//                  pinch
2578//                 /  |  \
2579//                /   |   \
2580//            kill1 kill2 kill3
2581//
2582// One pinch node is created per register killed when
2583// the second call is encountered during a backwards pass
2584// over the block.  Most of these pinch nodes are never
2585// wired into the graph because the register is never
2586// used or def'ed in the block.
2587//
2588void Scheduling::garbage_collect_pinch_nodes() {
2589#ifndef PRODUCT
2590    if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2591#endif
2592    int trace_cnt = 0;
2593    for (uint k = 0; k < _reg_node.Size(); k++) {
2594      Node* pinch = _reg_node[k];
2595      if (pinch != NULL && pinch->Opcode() == Op_Node &&
2596          // no predecence input edges
2597          (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2598        cleanup_pinch(pinch);
2599        _pinch_free_list.push(pinch);
2600        _reg_node.map(k, NULL);
2601#ifndef PRODUCT
2602        if (_cfg->C->trace_opto_output()) {
2603          trace_cnt++;
2604          if (trace_cnt > 40) {
2605            tty->print("\n");
2606            trace_cnt = 0;
2607          }
2608          tty->print(" %d", pinch->_idx);
2609        }
2610#endif
2611      }
2612    }
2613#ifndef PRODUCT
2614    if (_cfg->C->trace_opto_output()) tty->print("\n");
2615#endif
2616}
2617
2618// Clean up a pinch node for reuse.
2619void Scheduling::cleanup_pinch( Node *pinch ) {
2620  assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2621
2622  for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2623    Node* use = pinch->last_out(i);
2624    uint uses_found = 0;
2625    for (uint j = use->req(); j < use->len(); j++) {
2626      if (use->in(j) == pinch) {
2627        use->rm_prec(j);
2628        uses_found++;
2629      }
2630    }
2631    assert(uses_found > 0, "must be a precedence edge");
2632    i -= uses_found;    // we deleted 1 or more copies of this edge
2633  }
2634  // May have a later_def entry
2635  pinch->set_req(0, NULL);
2636}
2637
2638//------------------------------print_statistics-------------------------------
2639#ifndef PRODUCT
2640
2641void Scheduling::dump_available() const {
2642  tty->print("#Availist  ");
2643  for (uint i = 0; i < _available.size(); i++)
2644    tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2645  tty->cr();
2646}
2647
2648// Print Scheduling Statistics
2649void Scheduling::print_statistics() {
2650  // Print the size added by nops for bundling
2651  tty->print("Nops added %d bytes to total of %d bytes",
2652    _total_nop_size, _total_method_size);
2653  if (_total_method_size > 0)
2654    tty->print(", for %.2f%%",
2655      ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2656  tty->print("\n");
2657
2658  // Print the number of branch shadows filled
2659  if (Pipeline::_branch_has_delay_slot) {
2660    tty->print("Of %d branches, %d had unconditional delay slots filled",
2661      _total_branches, _total_unconditional_delays);
2662    if (_total_branches > 0)
2663      tty->print(", for %.2f%%",
2664        ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2665    tty->print("\n");
2666  }
2667
2668  uint total_instructions = 0, total_bundles = 0;
2669
2670  for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2671    uint bundle_count   = _total_instructions_per_bundle[i];
2672    total_instructions += bundle_count * i;
2673    total_bundles      += bundle_count;
2674  }
2675
2676  if (total_bundles > 0)
2677    tty->print("Average ILP (excluding nops) is %.2f\n",
2678      ((double)total_instructions) / ((double)total_bundles));
2679}
2680#endif
2681