node.cpp revision 6019:28f281e8de1d
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "libadt/vectset.hpp"
27#include "memory/allocation.inline.hpp"
28#include "opto/cfgnode.hpp"
29#include "opto/connode.hpp"
30#include "opto/machnode.hpp"
31#include "opto/matcher.hpp"
32#include "opto/node.hpp"
33#include "opto/opcodes.hpp"
34#include "opto/regmask.hpp"
35#include "opto/type.hpp"
36#include "utilities/copy.hpp"
37
38class RegMask;
39// #include "phase.hpp"
40class PhaseTransform;
41class PhaseGVN;
42
43// Arena we are currently building Nodes in
44const uint Node::NotAMachineReg = 0xffff0000;
45
46#ifndef PRODUCT
47extern int nodes_created;
48#endif
49
50#ifdef ASSERT
51
52//-------------------------- construct_node------------------------------------
53// Set a breakpoint here to identify where a particular node index is built.
54void Node::verify_construction() {
55  _debug_orig = NULL;
56  int old_debug_idx = Compile::debug_idx();
57  int new_debug_idx = old_debug_idx+1;
58  if (new_debug_idx > 0) {
59    // Arrange that the lowest five decimal digits of _debug_idx
60    // will repeat those of _idx. In case this is somehow pathological,
61    // we continue to assign negative numbers (!) consecutively.
62    const int mod = 100000;
63    int bump = (int)(_idx - new_debug_idx) % mod;
64    if (bump < 0)  bump += mod;
65    assert(bump >= 0 && bump < mod, "");
66    new_debug_idx += bump;
67  }
68  Compile::set_debug_idx(new_debug_idx);
69  set_debug_idx( new_debug_idx );
70  assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
71  assert(Compile::current()->live_nodes() < (uint)MaxNodeLimit, "Live Node limit exceeded limit");
72  if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
73    tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
74    BREAKPOINT;
75  }
76#if OPTO_DU_ITERATOR_ASSERT
77  _last_del = NULL;
78  _del_tick = 0;
79#endif
80  _hash_lock = 0;
81}
82
83
84// #ifdef ASSERT ...
85
86#if OPTO_DU_ITERATOR_ASSERT
87void DUIterator_Common::sample(const Node* node) {
88  _vdui     = VerifyDUIterators;
89  _node     = node;
90  _outcnt   = node->_outcnt;
91  _del_tick = node->_del_tick;
92  _last     = NULL;
93}
94
95void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
96  assert(_node     == node, "consistent iterator source");
97  assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
98}
99
100void DUIterator_Common::verify_resync() {
101  // Ensure that the loop body has just deleted the last guy produced.
102  const Node* node = _node;
103  // Ensure that at least one copy of the last-seen edge was deleted.
104  // Note:  It is OK to delete multiple copies of the last-seen edge.
105  // Unfortunately, we have no way to verify that all the deletions delete
106  // that same edge.  On this point we must use the Honor System.
107  assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
108  assert(node->_last_del == _last, "must have deleted the edge just produced");
109  // We liked this deletion, so accept the resulting outcnt and tick.
110  _outcnt   = node->_outcnt;
111  _del_tick = node->_del_tick;
112}
113
114void DUIterator_Common::reset(const DUIterator_Common& that) {
115  if (this == &that)  return;  // ignore assignment to self
116  if (!_vdui) {
117    // We need to initialize everything, overwriting garbage values.
118    _last = that._last;
119    _vdui = that._vdui;
120  }
121  // Note:  It is legal (though odd) for an iterator over some node x
122  // to be reassigned to iterate over another node y.  Some doubly-nested
123  // progress loops depend on being able to do this.
124  const Node* node = that._node;
125  // Re-initialize everything, except _last.
126  _node     = node;
127  _outcnt   = node->_outcnt;
128  _del_tick = node->_del_tick;
129}
130
131void DUIterator::sample(const Node* node) {
132  DUIterator_Common::sample(node);      // Initialize the assertion data.
133  _refresh_tick = 0;                    // No refreshes have happened, as yet.
134}
135
136void DUIterator::verify(const Node* node, bool at_end_ok) {
137  DUIterator_Common::verify(node, at_end_ok);
138  assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
139}
140
141void DUIterator::verify_increment() {
142  if (_refresh_tick & 1) {
143    // We have refreshed the index during this loop.
144    // Fix up _idx to meet asserts.
145    if (_idx > _outcnt)  _idx = _outcnt;
146  }
147  verify(_node, true);
148}
149
150void DUIterator::verify_resync() {
151  // Note:  We do not assert on _outcnt, because insertions are OK here.
152  DUIterator_Common::verify_resync();
153  // Make sure we are still in sync, possibly with no more out-edges:
154  verify(_node, true);
155}
156
157void DUIterator::reset(const DUIterator& that) {
158  if (this == &that)  return;  // self assignment is always a no-op
159  assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
160  assert(that._idx          == 0, "assign only the result of Node::outs()");
161  assert(_idx               == that._idx, "already assigned _idx");
162  if (!_vdui) {
163    // We need to initialize everything, overwriting garbage values.
164    sample(that._node);
165  } else {
166    DUIterator_Common::reset(that);
167    if (_refresh_tick & 1) {
168      _refresh_tick++;                  // Clear the "was refreshed" flag.
169    }
170    assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
171  }
172}
173
174void DUIterator::refresh() {
175  DUIterator_Common::sample(_node);     // Re-fetch assertion data.
176  _refresh_tick |= 1;                   // Set the "was refreshed" flag.
177}
178
179void DUIterator::verify_finish() {
180  // If the loop has killed the node, do not require it to re-run.
181  if (_node->_outcnt == 0)  _refresh_tick &= ~1;
182  // If this assert triggers, it means that a loop used refresh_out_pos
183  // to re-synch an iteration index, but the loop did not correctly
184  // re-run itself, using a "while (progress)" construct.
185  // This iterator enforces the rule that you must keep trying the loop
186  // until it "runs clean" without any need for refreshing.
187  assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
188}
189
190
191void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
192  DUIterator_Common::verify(node, at_end_ok);
193  Node** out    = node->_out;
194  uint   cnt    = node->_outcnt;
195  assert(cnt == _outcnt, "no insertions allowed");
196  assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
197  // This last check is carefully designed to work for NO_OUT_ARRAY.
198}
199
200void DUIterator_Fast::verify_limit() {
201  const Node* node = _node;
202  verify(node, true);
203  assert(_outp == node->_out + node->_outcnt, "limit still correct");
204}
205
206void DUIterator_Fast::verify_resync() {
207  const Node* node = _node;
208  if (_outp == node->_out + _outcnt) {
209    // Note that the limit imax, not the pointer i, gets updated with the
210    // exact count of deletions.  (For the pointer it's always "--i".)
211    assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
212    // This is a limit pointer, with a name like "imax".
213    // Fudge the _last field so that the common assert will be happy.
214    _last = (Node*) node->_last_del;
215    DUIterator_Common::verify_resync();
216  } else {
217    assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
218    // A normal internal pointer.
219    DUIterator_Common::verify_resync();
220    // Make sure we are still in sync, possibly with no more out-edges:
221    verify(node, true);
222  }
223}
224
225void DUIterator_Fast::verify_relimit(uint n) {
226  const Node* node = _node;
227  assert((int)n > 0, "use imax -= n only with a positive count");
228  // This must be a limit pointer, with a name like "imax".
229  assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
230  // The reported number of deletions must match what the node saw.
231  assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
232  // Fudge the _last field so that the common assert will be happy.
233  _last = (Node*) node->_last_del;
234  DUIterator_Common::verify_resync();
235}
236
237void DUIterator_Fast::reset(const DUIterator_Fast& that) {
238  assert(_outp              == that._outp, "already assigned _outp");
239  DUIterator_Common::reset(that);
240}
241
242void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
243  // at_end_ok means the _outp is allowed to underflow by 1
244  _outp += at_end_ok;
245  DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
246  _outp -= at_end_ok;
247  assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
248}
249
250void DUIterator_Last::verify_limit() {
251  // Do not require the limit address to be resynched.
252  //verify(node, true);
253  assert(_outp == _node->_out, "limit still correct");
254}
255
256void DUIterator_Last::verify_step(uint num_edges) {
257  assert((int)num_edges > 0, "need non-zero edge count for loop progress");
258  _outcnt   -= num_edges;
259  _del_tick += num_edges;
260  // Make sure we are still in sync, possibly with no more out-edges:
261  const Node* node = _node;
262  verify(node, true);
263  assert(node->_last_del == _last, "must have deleted the edge just produced");
264}
265
266#endif //OPTO_DU_ITERATOR_ASSERT
267
268
269#endif //ASSERT
270
271
272// This constant used to initialize _out may be any non-null value.
273// The value NULL is reserved for the top node only.
274#define NO_OUT_ARRAY ((Node**)-1)
275
276// This funny expression handshakes with Node::operator new
277// to pull Compile::current out of the new node's _out field,
278// and then calls a subroutine which manages most field
279// initializations.  The only one which is tricky is the
280// _idx field, which is const, and so must be initialized
281// by a return value, not an assignment.
282//
283// (Aren't you thankful that Java finals don't require so many tricks?)
284#define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
285#ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
286#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
287#endif
288#ifdef __clang__
289#pragma clang diagnostic push
290#pragma GCC diagnostic ignored "-Wuninitialized"
291#endif
292
293// Out-of-line code from node constructors.
294// Executed only when extra debug info. is being passed around.
295static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
296  C->set_node_notes_at(idx, nn);
297}
298
299// Shared initialization code.
300inline int Node::Init(int req, Compile* C) {
301  assert(Compile::current() == C, "must use operator new(Compile*)");
302  int idx = C->next_unique();
303
304  // Allocate memory for the necessary number of edges.
305  if (req > 0) {
306    // Allocate space for _in array to have double alignment.
307    _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
308#ifdef ASSERT
309    _in[req-1] = this; // magic cookie for assertion check
310#endif
311  }
312  // If there are default notes floating around, capture them:
313  Node_Notes* nn = C->default_node_notes();
314  if (nn != NULL)  init_node_notes(C, idx, nn);
315
316  // Note:  At this point, C is dead,
317  // and we begin to initialize the new Node.
318
319  _cnt = _max = req;
320  _outcnt = _outmax = 0;
321  _class_id = Class_Node;
322  _flags = 0;
323  _out = NO_OUT_ARRAY;
324  return idx;
325}
326
327//------------------------------Node-------------------------------------------
328// Create a Node, with a given number of required edges.
329Node::Node(uint req)
330  : _idx(IDX_INIT(req))
331{
332  assert( req < (uint)(MaxNodeLimit - NodeLimitFudgeFactor), "Input limit exceeded" );
333  debug_only( verify_construction() );
334  NOT_PRODUCT(nodes_created++);
335  if (req == 0) {
336    assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
337    _in = NULL;
338  } else {
339    assert( _in[req-1] == this, "Must pass arg count to 'new'" );
340    Node** to = _in;
341    for(uint i = 0; i < req; i++) {
342      to[i] = NULL;
343    }
344  }
345}
346
347//------------------------------Node-------------------------------------------
348Node::Node(Node *n0)
349  : _idx(IDX_INIT(1))
350{
351  debug_only( verify_construction() );
352  NOT_PRODUCT(nodes_created++);
353  // Assert we allocated space for input array already
354  assert( _in[0] == this, "Must pass arg count to 'new'" );
355  assert( is_not_dead(n0), "can not use dead node");
356  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
357}
358
359//------------------------------Node-------------------------------------------
360Node::Node(Node *n0, Node *n1)
361  : _idx(IDX_INIT(2))
362{
363  debug_only( verify_construction() );
364  NOT_PRODUCT(nodes_created++);
365  // Assert we allocated space for input array already
366  assert( _in[1] == this, "Must pass arg count to 'new'" );
367  assert( is_not_dead(n0), "can not use dead node");
368  assert( is_not_dead(n1), "can not use dead node");
369  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
370  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
371}
372
373//------------------------------Node-------------------------------------------
374Node::Node(Node *n0, Node *n1, Node *n2)
375  : _idx(IDX_INIT(3))
376{
377  debug_only( verify_construction() );
378  NOT_PRODUCT(nodes_created++);
379  // Assert we allocated space for input array already
380  assert( _in[2] == this, "Must pass arg count to 'new'" );
381  assert( is_not_dead(n0), "can not use dead node");
382  assert( is_not_dead(n1), "can not use dead node");
383  assert( is_not_dead(n2), "can not use dead node");
384  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
385  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
386  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
387}
388
389//------------------------------Node-------------------------------------------
390Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
391  : _idx(IDX_INIT(4))
392{
393  debug_only( verify_construction() );
394  NOT_PRODUCT(nodes_created++);
395  // Assert we allocated space for input array already
396  assert( _in[3] == this, "Must pass arg count to 'new'" );
397  assert( is_not_dead(n0), "can not use dead node");
398  assert( is_not_dead(n1), "can not use dead node");
399  assert( is_not_dead(n2), "can not use dead node");
400  assert( is_not_dead(n3), "can not use dead node");
401  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
402  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
403  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
404  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
405}
406
407//------------------------------Node-------------------------------------------
408Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
409  : _idx(IDX_INIT(5))
410{
411  debug_only( verify_construction() );
412  NOT_PRODUCT(nodes_created++);
413  // Assert we allocated space for input array already
414  assert( _in[4] == this, "Must pass arg count to 'new'" );
415  assert( is_not_dead(n0), "can not use dead node");
416  assert( is_not_dead(n1), "can not use dead node");
417  assert( is_not_dead(n2), "can not use dead node");
418  assert( is_not_dead(n3), "can not use dead node");
419  assert( is_not_dead(n4), "can not use dead node");
420  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
421  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
422  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
423  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
424  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
425}
426
427//------------------------------Node-------------------------------------------
428Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
429                     Node *n4, Node *n5)
430  : _idx(IDX_INIT(6))
431{
432  debug_only( verify_construction() );
433  NOT_PRODUCT(nodes_created++);
434  // Assert we allocated space for input array already
435  assert( _in[5] == this, "Must pass arg count to 'new'" );
436  assert( is_not_dead(n0), "can not use dead node");
437  assert( is_not_dead(n1), "can not use dead node");
438  assert( is_not_dead(n2), "can not use dead node");
439  assert( is_not_dead(n3), "can not use dead node");
440  assert( is_not_dead(n4), "can not use dead node");
441  assert( is_not_dead(n5), "can not use dead node");
442  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
443  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
444  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
445  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
446  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
447  _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
448}
449
450//------------------------------Node-------------------------------------------
451Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
452                     Node *n4, Node *n5, Node *n6)
453  : _idx(IDX_INIT(7))
454{
455  debug_only( verify_construction() );
456  NOT_PRODUCT(nodes_created++);
457  // Assert we allocated space for input array already
458  assert( _in[6] == this, "Must pass arg count to 'new'" );
459  assert( is_not_dead(n0), "can not use dead node");
460  assert( is_not_dead(n1), "can not use dead node");
461  assert( is_not_dead(n2), "can not use dead node");
462  assert( is_not_dead(n3), "can not use dead node");
463  assert( is_not_dead(n4), "can not use dead node");
464  assert( is_not_dead(n5), "can not use dead node");
465  assert( is_not_dead(n6), "can not use dead node");
466  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
467  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
468  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
469  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
470  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
471  _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
472  _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
473}
474
475#ifdef __clang__
476#pragma clang diagnostic pop
477#endif
478
479
480//------------------------------clone------------------------------------------
481// Clone a Node.
482Node *Node::clone() const {
483  Compile* C = Compile::current();
484  uint s = size_of();           // Size of inherited Node
485  Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
486  Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
487  // Set the new input pointer array
488  n->_in = (Node**)(((char*)n)+s);
489  // Cannot share the old output pointer array, so kill it
490  n->_out = NO_OUT_ARRAY;
491  // And reset the counters to 0
492  n->_outcnt = 0;
493  n->_outmax = 0;
494  // Unlock this guy, since he is not in any hash table.
495  debug_only(n->_hash_lock = 0);
496  // Walk the old node's input list to duplicate its edges
497  uint i;
498  for( i = 0; i < len(); i++ ) {
499    Node *x = in(i);
500    n->_in[i] = x;
501    if (x != NULL) x->add_out(n);
502  }
503  if (is_macro())
504    C->add_macro_node(n);
505  if (is_expensive())
506    C->add_expensive_node(n);
507
508  n->set_idx(C->next_unique()); // Get new unique index as well
509  debug_only( n->verify_construction() );
510  NOT_PRODUCT(nodes_created++);
511  // Do not patch over the debug_idx of a clone, because it makes it
512  // impossible to break on the clone's moment of creation.
513  //debug_only( n->set_debug_idx( debug_idx() ) );
514
515  C->copy_node_notes_to(n, (Node*) this);
516
517  // MachNode clone
518  uint nopnds;
519  if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
520    MachNode *mach  = n->as_Mach();
521    MachNode *mthis = this->as_Mach();
522    // Get address of _opnd_array.
523    // It should be the same offset since it is the clone of this node.
524    MachOper **from = mthis->_opnds;
525    MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
526                    pointer_delta((const void*)from,
527                                  (const void*)(&mthis->_opnds), 1));
528    mach->_opnds = to;
529    for ( uint i = 0; i < nopnds; ++i ) {
530      to[i] = from[i]->clone(C);
531    }
532  }
533  // cloning CallNode may need to clone JVMState
534  if (n->is_Call()) {
535    n->as_Call()->clone_jvms(C);
536  }
537  return n;                     // Return the clone
538}
539
540//---------------------------setup_is_top--------------------------------------
541// Call this when changing the top node, to reassert the invariants
542// required by Node::is_top.  See Compile::set_cached_top_node.
543void Node::setup_is_top() {
544  if (this == (Node*)Compile::current()->top()) {
545    // This node has just become top.  Kill its out array.
546    _outcnt = _outmax = 0;
547    _out = NULL;                           // marker value for top
548    assert(is_top(), "must be top");
549  } else {
550    if (_out == NULL)  _out = NO_OUT_ARRAY;
551    assert(!is_top(), "must not be top");
552  }
553}
554
555
556//------------------------------~Node------------------------------------------
557// Fancy destructor; eagerly attempt to reclaim Node numberings and storage
558extern int reclaim_idx ;
559extern int reclaim_in  ;
560extern int reclaim_node;
561void Node::destruct() {
562  // Eagerly reclaim unique Node numberings
563  Compile* compile = Compile::current();
564  if ((uint)_idx+1 == compile->unique()) {
565    compile->set_unique(compile->unique()-1);
566#ifdef ASSERT
567    reclaim_idx++;
568#endif
569  }
570  // Clear debug info:
571  Node_Notes* nn = compile->node_notes_at(_idx);
572  if (nn != NULL)  nn->clear();
573  // Walk the input array, freeing the corresponding output edges
574  _cnt = _max;  // forget req/prec distinction
575  uint i;
576  for( i = 0; i < _max; i++ ) {
577    set_req(i, NULL);
578    //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
579  }
580  assert(outcnt() == 0, "deleting a node must not leave a dangling use");
581  // See if the input array was allocated just prior to the object
582  int edge_size = _max*sizeof(void*);
583  int out_edge_size = _outmax*sizeof(void*);
584  char *edge_end = ((char*)_in) + edge_size;
585  char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
586  char *out_edge_end = out_array + out_edge_size;
587  int node_size = size_of();
588
589  // Free the output edge array
590  if (out_edge_size > 0) {
591#ifdef ASSERT
592    if( out_edge_end == compile->node_arena()->hwm() )
593      reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
594#endif
595    compile->node_arena()->Afree(out_array, out_edge_size);
596  }
597
598  // Free the input edge array and the node itself
599  if( edge_end == (char*)this ) {
600#ifdef ASSERT
601    if( edge_end+node_size == compile->node_arena()->hwm() ) {
602      reclaim_in  += edge_size;
603      reclaim_node+= node_size;
604    }
605#else
606    // It was; free the input array and object all in one hit
607    compile->node_arena()->Afree(_in,edge_size+node_size);
608#endif
609  } else {
610
611    // Free just the input array
612#ifdef ASSERT
613    if( edge_end == compile->node_arena()->hwm() )
614      reclaim_in  += edge_size;
615#endif
616    compile->node_arena()->Afree(_in,edge_size);
617
618    // Free just the object
619#ifdef ASSERT
620    if( ((char*)this) + node_size == compile->node_arena()->hwm() )
621      reclaim_node+= node_size;
622#else
623    compile->node_arena()->Afree(this,node_size);
624#endif
625  }
626  if (is_macro()) {
627    compile->remove_macro_node(this);
628  }
629  if (is_expensive()) {
630    compile->remove_expensive_node(this);
631  }
632#ifdef ASSERT
633  // We will not actually delete the storage, but we'll make the node unusable.
634  *(address*)this = badAddress;  // smash the C++ vtbl, probably
635  _in = _out = (Node**) badAddress;
636  _max = _cnt = _outmax = _outcnt = 0;
637#endif
638}
639
640//------------------------------grow-------------------------------------------
641// Grow the input array, making space for more edges
642void Node::grow( uint len ) {
643  Arena* arena = Compile::current()->node_arena();
644  uint new_max = _max;
645  if( new_max == 0 ) {
646    _max = 4;
647    _in = (Node**)arena->Amalloc(4*sizeof(Node*));
648    Node** to = _in;
649    to[0] = NULL;
650    to[1] = NULL;
651    to[2] = NULL;
652    to[3] = NULL;
653    return;
654  }
655  while( new_max <= len ) new_max <<= 1; // Find next power-of-2
656  // Trimming to limit allows a uint8 to handle up to 255 edges.
657  // Previously I was using only powers-of-2 which peaked at 128 edges.
658  //if( new_max >= limit ) new_max = limit-1;
659  _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
660  Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
661  _max = new_max;               // Record new max length
662  // This assertion makes sure that Node::_max is wide enough to
663  // represent the numerical value of new_max.
664  assert(_max == new_max && _max > len, "int width of _max is too small");
665}
666
667//-----------------------------out_grow----------------------------------------
668// Grow the input array, making space for more edges
669void Node::out_grow( uint len ) {
670  assert(!is_top(), "cannot grow a top node's out array");
671  Arena* arena = Compile::current()->node_arena();
672  uint new_max = _outmax;
673  if( new_max == 0 ) {
674    _outmax = 4;
675    _out = (Node **)arena->Amalloc(4*sizeof(Node*));
676    return;
677  }
678  while( new_max <= len ) new_max <<= 1; // Find next power-of-2
679  // Trimming to limit allows a uint8 to handle up to 255 edges.
680  // Previously I was using only powers-of-2 which peaked at 128 edges.
681  //if( new_max >= limit ) new_max = limit-1;
682  assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
683  _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
684  //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
685  _outmax = new_max;               // Record new max length
686  // This assertion makes sure that Node::_max is wide enough to
687  // represent the numerical value of new_max.
688  assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
689}
690
691#ifdef ASSERT
692//------------------------------is_dead----------------------------------------
693bool Node::is_dead() const {
694  // Mach and pinch point nodes may look like dead.
695  if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
696    return false;
697  for( uint i = 0; i < _max; i++ )
698    if( _in[i] != NULL )
699      return false;
700  dump();
701  return true;
702}
703#endif
704
705
706//------------------------------is_unreachable---------------------------------
707bool Node::is_unreachable(PhaseIterGVN &igvn) const {
708  assert(!is_Mach(), "doesn't work with MachNodes");
709  return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top();
710}
711
712//------------------------------add_req----------------------------------------
713// Add a new required input at the end
714void Node::add_req( Node *n ) {
715  assert( is_not_dead(n), "can not use dead node");
716
717  // Look to see if I can move precedence down one without reallocating
718  if( (_cnt >= _max) || (in(_max-1) != NULL) )
719    grow( _max+1 );
720
721  // Find a precedence edge to move
722  if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
723    uint i;
724    for( i=_cnt; i<_max; i++ )
725      if( in(i) == NULL )       // Find the NULL at end of prec edge list
726        break;                  // There must be one, since we grew the array
727    _in[i] = in(_cnt);          // Move prec over, making space for req edge
728  }
729  _in[_cnt++] = n;            // Stuff over old prec edge
730  if (n != NULL) n->add_out((Node *)this);
731}
732
733//---------------------------add_req_batch-------------------------------------
734// Add a new required input at the end
735void Node::add_req_batch( Node *n, uint m ) {
736  assert( is_not_dead(n), "can not use dead node");
737  // check various edge cases
738  if ((int)m <= 1) {
739    assert((int)m >= 0, "oob");
740    if (m != 0)  add_req(n);
741    return;
742  }
743
744  // Look to see if I can move precedence down one without reallocating
745  if( (_cnt+m) > _max || _in[_max-m] )
746    grow( _max+m );
747
748  // Find a precedence edge to move
749  if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
750    uint i;
751    for( i=_cnt; i<_max; i++ )
752      if( _in[i] == NULL )      // Find the NULL at end of prec edge list
753        break;                  // There must be one, since we grew the array
754    // Slide all the precs over by m positions (assume #prec << m).
755    Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
756  }
757
758  // Stuff over the old prec edges
759  for(uint i=0; i<m; i++ ) {
760    _in[_cnt++] = n;
761  }
762
763  // Insert multiple out edges on the node.
764  if (n != NULL && !n->is_top()) {
765    for(uint i=0; i<m; i++ ) {
766      n->add_out((Node *)this);
767    }
768  }
769}
770
771//------------------------------del_req----------------------------------------
772// Delete the required edge and compact the edge array
773void Node::del_req( uint idx ) {
774  assert( idx < _cnt, "oob");
775  assert( !VerifyHashTableKeys || _hash_lock == 0,
776          "remove node from hash table before modifying it");
777  // First remove corresponding def-use edge
778  Node *n = in(idx);
779  if (n != NULL) n->del_out((Node *)this);
780  _in[idx] = in(--_cnt);  // Compact the array
781  _in[_cnt] = NULL;       // NULL out emptied slot
782}
783
784//------------------------------del_req_ordered--------------------------------
785// Delete the required edge and compact the edge array with preserved order
786void Node::del_req_ordered( uint idx ) {
787  assert( idx < _cnt, "oob");
788  assert( !VerifyHashTableKeys || _hash_lock == 0,
789          "remove node from hash table before modifying it");
790  // First remove corresponding def-use edge
791  Node *n = in(idx);
792  if (n != NULL) n->del_out((Node *)this);
793  if (idx < _cnt - 1) { // Not last edge ?
794    Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx-1)*sizeof(Node*)));
795  }
796  _in[--_cnt] = NULL;   // NULL out emptied slot
797}
798
799//------------------------------ins_req----------------------------------------
800// Insert a new required input at the end
801void Node::ins_req( uint idx, Node *n ) {
802  assert( is_not_dead(n), "can not use dead node");
803  add_req(NULL);                // Make space
804  assert( idx < _max, "Must have allocated enough space");
805  // Slide over
806  if(_cnt-idx-1 > 0) {
807    Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
808  }
809  _in[idx] = n;                            // Stuff over old required edge
810  if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
811}
812
813//-----------------------------find_edge---------------------------------------
814int Node::find_edge(Node* n) {
815  for (uint i = 0; i < len(); i++) {
816    if (_in[i] == n)  return i;
817  }
818  return -1;
819}
820
821//----------------------------replace_edge-------------------------------------
822int Node::replace_edge(Node* old, Node* neww) {
823  if (old == neww)  return 0;  // nothing to do
824  uint nrep = 0;
825  for (uint i = 0; i < len(); i++) {
826    if (in(i) == old) {
827      if (i < req())
828        set_req(i, neww);
829      else
830        set_prec(i, neww);
831      nrep++;
832    }
833  }
834  return nrep;
835}
836
837/**
838 * Replace input edges in the range pointing to 'old' node.
839 */
840int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
841  if (old == neww)  return 0;  // nothing to do
842  uint nrep = 0;
843  for (int i = start; i < end; i++) {
844    if (in(i) == old) {
845      set_req(i, neww);
846      nrep++;
847    }
848  }
849  return nrep;
850}
851
852//-------------------------disconnect_inputs-----------------------------------
853// NULL out all inputs to eliminate incoming Def-Use edges.
854// Return the number of edges between 'n' and 'this'
855int Node::disconnect_inputs(Node *n, Compile* C) {
856  int edges_to_n = 0;
857
858  uint cnt = req();
859  for( uint i = 0; i < cnt; ++i ) {
860    if( in(i) == 0 ) continue;
861    if( in(i) == n ) ++edges_to_n;
862    set_req(i, NULL);
863  }
864  // Remove precedence edges if any exist
865  // Note: Safepoints may have precedence edges, even during parsing
866  if( (req() != len()) && (in(req()) != NULL) ) {
867    uint max = len();
868    for( uint i = 0; i < max; ++i ) {
869      if( in(i) == 0 ) continue;
870      if( in(i) == n ) ++edges_to_n;
871      set_prec(i, NULL);
872    }
873  }
874
875  // Node::destruct requires all out edges be deleted first
876  // debug_only(destruct();)   // no reuse benefit expected
877  if (edges_to_n == 0) {
878    C->record_dead_node(_idx);
879  }
880  return edges_to_n;
881}
882
883//-----------------------------uncast---------------------------------------
884// %%% Temporary, until we sort out CheckCastPP vs. CastPP.
885// Strip away casting.  (It is depth-limited.)
886Node* Node::uncast() const {
887  // Should be inline:
888  //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
889  if (is_ConstraintCast() || is_CheckCastPP())
890    return uncast_helper(this);
891  else
892    return (Node*) this;
893}
894
895//---------------------------uncast_helper-------------------------------------
896Node* Node::uncast_helper(const Node* p) {
897#ifdef ASSERT
898  uint depth_count = 0;
899  const Node* orig_p = p;
900#endif
901
902  while (true) {
903#ifdef ASSERT
904    if (depth_count >= K) {
905      orig_p->dump(4);
906      if (p != orig_p)
907        p->dump(1);
908    }
909    assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
910#endif
911    if (p == NULL || p->req() != 2) {
912      break;
913    } else if (p->is_ConstraintCast()) {
914      p = p->in(1);
915    } else if (p->is_CheckCastPP()) {
916      p = p->in(1);
917    } else {
918      break;
919    }
920  }
921  return (Node*) p;
922}
923
924//------------------------------add_prec---------------------------------------
925// Add a new precedence input.  Precedence inputs are unordered, with
926// duplicates removed and NULLs packed down at the end.
927void Node::add_prec( Node *n ) {
928  assert( is_not_dead(n), "can not use dead node");
929
930  // Check for NULL at end
931  if( _cnt >= _max || in(_max-1) )
932    grow( _max+1 );
933
934  // Find a precedence edge to move
935  uint i = _cnt;
936  while( in(i) != NULL ) i++;
937  _in[i] = n;                                // Stuff prec edge over NULL
938  if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
939}
940
941//------------------------------rm_prec----------------------------------------
942// Remove a precedence input.  Precedence inputs are unordered, with
943// duplicates removed and NULLs packed down at the end.
944void Node::rm_prec( uint j ) {
945
946  // Find end of precedence list to pack NULLs
947  uint i;
948  for( i=j; i<_max; i++ )
949    if( !_in[i] )               // Find the NULL at end of prec edge list
950      break;
951  if (_in[j] != NULL) _in[j]->del_out((Node *)this);
952  _in[j] = _in[--i];            // Move last element over removed guy
953  _in[i] = NULL;                // NULL out last element
954}
955
956//------------------------------size_of----------------------------------------
957uint Node::size_of() const { return sizeof(*this); }
958
959//------------------------------ideal_reg--------------------------------------
960uint Node::ideal_reg() const { return 0; }
961
962//------------------------------jvms-------------------------------------------
963JVMState* Node::jvms() const { return NULL; }
964
965#ifdef ASSERT
966//------------------------------jvms-------------------------------------------
967bool Node::verify_jvms(const JVMState* using_jvms) const {
968  for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
969    if (jvms == using_jvms)  return true;
970  }
971  return false;
972}
973
974//------------------------------init_NodeProperty------------------------------
975void Node::init_NodeProperty() {
976  assert(_max_classes <= max_jushort, "too many NodeProperty classes");
977  assert(_max_flags <= max_jushort, "too many NodeProperty flags");
978}
979#endif
980
981//------------------------------format-----------------------------------------
982// Print as assembly
983void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
984//------------------------------emit-------------------------------------------
985// Emit bytes starting at parameter 'ptr'.
986void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
987//------------------------------size-------------------------------------------
988// Size of instruction in bytes
989uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
990
991//------------------------------CFG Construction-------------------------------
992// Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
993// Goto and Return.
994const Node *Node::is_block_proj() const { return 0; }
995
996// Minimum guaranteed type
997const Type *Node::bottom_type() const { return Type::BOTTOM; }
998
999
1000//------------------------------raise_bottom_type------------------------------
1001// Get the worst-case Type output for this Node.
1002void Node::raise_bottom_type(const Type* new_type) {
1003  if (is_Type()) {
1004    TypeNode *n = this->as_Type();
1005    if (VerifyAliases) {
1006      assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1007    }
1008    n->set_type(new_type);
1009  } else if (is_Load()) {
1010    LoadNode *n = this->as_Load();
1011    if (VerifyAliases) {
1012      assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1013    }
1014    n->set_type(new_type);
1015  }
1016}
1017
1018//------------------------------Identity---------------------------------------
1019// Return a node that the given node is equivalent to.
1020Node *Node::Identity( PhaseTransform * ) {
1021  return this;                  // Default to no identities
1022}
1023
1024//------------------------------Value------------------------------------------
1025// Compute a new Type for a node using the Type of the inputs.
1026const Type *Node::Value( PhaseTransform * ) const {
1027  return bottom_type();         // Default to worst-case Type
1028}
1029
1030//------------------------------Ideal------------------------------------------
1031//
1032// 'Idealize' the graph rooted at this Node.
1033//
1034// In order to be efficient and flexible there are some subtle invariants
1035// these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
1036// these invariants, although its too slow to have on by default.  If you are
1037// hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
1038//
1039// The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1040// pointer.  If ANY change is made, it must return the root of the reshaped
1041// graph - even if the root is the same Node.  Example: swapping the inputs
1042// to an AddINode gives the same answer and same root, but you still have to
1043// return the 'this' pointer instead of NULL.
1044//
1045// You cannot return an OLD Node, except for the 'this' pointer.  Use the
1046// Identity call to return an old Node; basically if Identity can find
1047// another Node have the Ideal call make no change and return NULL.
1048// Example: AddINode::Ideal must check for add of zero; in this case it
1049// returns NULL instead of doing any graph reshaping.
1050//
1051// You cannot modify any old Nodes except for the 'this' pointer.  Due to
1052// sharing there may be other users of the old Nodes relying on their current
1053// semantics.  Modifying them will break the other users.
1054// Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1055// "X+3" unchanged in case it is shared.
1056//
1057// If you modify the 'this' pointer's inputs, you should use
1058// 'set_req'.  If you are making a new Node (either as the new root or
1059// some new internal piece) you may use 'init_req' to set the initial
1060// value.  You can make a new Node with either 'new' or 'clone'.  In
1061// either case, def-use info is correctly maintained.
1062//
1063// Example: reshape "(X+3)+4" into "X+7":
1064//    set_req(1, in(1)->in(1));
1065//    set_req(2, phase->intcon(7));
1066//    return this;
1067// Example: reshape "X*4" into "X<<2"
1068//    return new (C) LShiftINode(in(1), phase->intcon(2));
1069//
1070// You must call 'phase->transform(X)' on any new Nodes X you make, except
1071// for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1072//    Node *shift=phase->transform(new(C)LShiftINode(in(1),phase->intcon(5)));
1073//    return new (C) AddINode(shift, in(1));
1074//
1075// When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1076// These forms are faster than 'phase->transform(new (C) ConNode())' and Do
1077// The Right Thing with def-use info.
1078//
1079// You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1080// graph uses the 'this' Node it must be the root.  If you want a Node with
1081// the same Opcode as the 'this' pointer use 'clone'.
1082//
1083Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1084  return NULL;                  // Default to being Ideal already
1085}
1086
1087// Some nodes have specific Ideal subgraph transformations only if they are
1088// unique users of specific nodes. Such nodes should be put on IGVN worklist
1089// for the transformations to happen.
1090bool Node::has_special_unique_user() const {
1091  assert(outcnt() == 1, "match only for unique out");
1092  Node* n = unique_out();
1093  int op  = Opcode();
1094  if( this->is_Store() ) {
1095    // Condition for back-to-back stores folding.
1096    return n->Opcode() == op && n->in(MemNode::Memory) == this;
1097  } else if( op == Op_AddL ) {
1098    // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1099    return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1100  } else if( op == Op_SubI || op == Op_SubL ) {
1101    // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1102    return n->Opcode() == op && n->in(2) == this;
1103  }
1104  return false;
1105};
1106
1107//--------------------------find_exact_control---------------------------------
1108// Skip Proj and CatchProj nodes chains. Check for Null and Top.
1109Node* Node::find_exact_control(Node* ctrl) {
1110  if (ctrl == NULL && this->is_Region())
1111    ctrl = this->as_Region()->is_copy();
1112
1113  if (ctrl != NULL && ctrl->is_CatchProj()) {
1114    if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1115      ctrl = ctrl->in(0);
1116    if (ctrl != NULL && !ctrl->is_top())
1117      ctrl = ctrl->in(0);
1118  }
1119
1120  if (ctrl != NULL && ctrl->is_Proj())
1121    ctrl = ctrl->in(0);
1122
1123  return ctrl;
1124}
1125
1126//--------------------------dominates------------------------------------------
1127// Helper function for MemNode::all_controls_dominate().
1128// Check if 'this' control node dominates or equal to 'sub' control node.
1129// We already know that if any path back to Root or Start reaches 'this',
1130// then all paths so, so this is a simple search for one example,
1131// not an exhaustive search for a counterexample.
1132bool Node::dominates(Node* sub, Node_List &nlist) {
1133  assert(this->is_CFG(), "expecting control");
1134  assert(sub != NULL && sub->is_CFG(), "expecting control");
1135
1136  // detect dead cycle without regions
1137  int iterations_without_region_limit = DominatorSearchLimit;
1138
1139  Node* orig_sub = sub;
1140  Node* dom      = this;
1141  bool  met_dom  = false;
1142  nlist.clear();
1143
1144  // Walk 'sub' backward up the chain to 'dom', watching for regions.
1145  // After seeing 'dom', continue up to Root or Start.
1146  // If we hit a region (backward split point), it may be a loop head.
1147  // Keep going through one of the region's inputs.  If we reach the
1148  // same region again, go through a different input.  Eventually we
1149  // will either exit through the loop head, or give up.
1150  // (If we get confused, break out and return a conservative 'false'.)
1151  while (sub != NULL) {
1152    if (sub->is_top())  break; // Conservative answer for dead code.
1153    if (sub == dom) {
1154      if (nlist.size() == 0) {
1155        // No Region nodes except loops were visited before and the EntryControl
1156        // path was taken for loops: it did not walk in a cycle.
1157        return true;
1158      } else if (met_dom) {
1159        break;          // already met before: walk in a cycle
1160      } else {
1161        // Region nodes were visited. Continue walk up to Start or Root
1162        // to make sure that it did not walk in a cycle.
1163        met_dom = true; // first time meet
1164        iterations_without_region_limit = DominatorSearchLimit; // Reset
1165     }
1166    }
1167    if (sub->is_Start() || sub->is_Root()) {
1168      // Success if we met 'dom' along a path to Start or Root.
1169      // We assume there are no alternative paths that avoid 'dom'.
1170      // (This assumption is up to the caller to ensure!)
1171      return met_dom;
1172    }
1173    Node* up = sub->in(0);
1174    // Normalize simple pass-through regions and projections:
1175    up = sub->find_exact_control(up);
1176    // If sub == up, we found a self-loop.  Try to push past it.
1177    if (sub == up && sub->is_Loop()) {
1178      // Take loop entry path on the way up to 'dom'.
1179      up = sub->in(1); // in(LoopNode::EntryControl);
1180    } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1181      // Always take in(1) path on the way up to 'dom' for clone regions
1182      // (with only one input) or regions which merge > 2 paths
1183      // (usually used to merge fast/slow paths).
1184      up = sub->in(1);
1185    } else if (sub == up && sub->is_Region()) {
1186      // Try both paths for Regions with 2 input paths (it may be a loop head).
1187      // It could give conservative 'false' answer without information
1188      // which region's input is the entry path.
1189      iterations_without_region_limit = DominatorSearchLimit; // Reset
1190
1191      bool region_was_visited_before = false;
1192      // Was this Region node visited before?
1193      // If so, we have reached it because we accidentally took a
1194      // loop-back edge from 'sub' back into the body of the loop,
1195      // and worked our way up again to the loop header 'sub'.
1196      // So, take the first unexplored path on the way up to 'dom'.
1197      for (int j = nlist.size() - 1; j >= 0; j--) {
1198        intptr_t ni = (intptr_t)nlist.at(j);
1199        Node* visited = (Node*)(ni & ~1);
1200        bool  visited_twice_already = ((ni & 1) != 0);
1201        if (visited == sub) {
1202          if (visited_twice_already) {
1203            // Visited 2 paths, but still stuck in loop body.  Give up.
1204            return false;
1205          }
1206          // The Region node was visited before only once.
1207          // (We will repush with the low bit set, below.)
1208          nlist.remove(j);
1209          // We will find a new edge and re-insert.
1210          region_was_visited_before = true;
1211          break;
1212        }
1213      }
1214
1215      // Find an incoming edge which has not been seen yet; walk through it.
1216      assert(up == sub, "");
1217      uint skip = region_was_visited_before ? 1 : 0;
1218      for (uint i = 1; i < sub->req(); i++) {
1219        Node* in = sub->in(i);
1220        if (in != NULL && !in->is_top() && in != sub) {
1221          if (skip == 0) {
1222            up = in;
1223            break;
1224          }
1225          --skip;               // skip this nontrivial input
1226        }
1227      }
1228
1229      // Set 0 bit to indicate that both paths were taken.
1230      nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1231    }
1232
1233    if (up == sub) {
1234      break;    // some kind of tight cycle
1235    }
1236    if (up == orig_sub && met_dom) {
1237      // returned back after visiting 'dom'
1238      break;    // some kind of cycle
1239    }
1240    if (--iterations_without_region_limit < 0) {
1241      break;    // dead cycle
1242    }
1243    sub = up;
1244  }
1245
1246  // Did not meet Root or Start node in pred. chain.
1247  // Conservative answer for dead code.
1248  return false;
1249}
1250
1251//------------------------------remove_dead_region-----------------------------
1252// This control node is dead.  Follow the subgraph below it making everything
1253// using it dead as well.  This will happen normally via the usual IterGVN
1254// worklist but this call is more efficient.  Do not update use-def info
1255// inside the dead region, just at the borders.
1256static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1257  // Con's are a popular node to re-hit in the hash table again.
1258  if( dead->is_Con() ) return;
1259
1260  // Can't put ResourceMark here since igvn->_worklist uses the same arena
1261  // for verify pass with +VerifyOpto and we add/remove elements in it here.
1262  Node_List  nstack(Thread::current()->resource_area());
1263
1264  Node *top = igvn->C->top();
1265  nstack.push(dead);
1266
1267  while (nstack.size() > 0) {
1268    dead = nstack.pop();
1269    if (dead->outcnt() > 0) {
1270      // Keep dead node on stack until all uses are processed.
1271      nstack.push(dead);
1272      // For all Users of the Dead...    ;-)
1273      for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1274        Node* use = dead->last_out(k);
1275        igvn->hash_delete(use);       // Yank from hash table prior to mod
1276        if (use->in(0) == dead) {     // Found another dead node
1277          assert (!use->is_Con(), "Control for Con node should be Root node.");
1278          use->set_req(0, top);       // Cut dead edge to prevent processing
1279          nstack.push(use);           // the dead node again.
1280        } else {                      // Else found a not-dead user
1281          for (uint j = 1; j < use->req(); j++) {
1282            if (use->in(j) == dead) { // Turn all dead inputs into TOP
1283              use->set_req(j, top);
1284            }
1285          }
1286          igvn->_worklist.push(use);
1287        }
1288        // Refresh the iterator, since any number of kills might have happened.
1289        k = dead->last_outs(kmin);
1290      }
1291    } else { // (dead->outcnt() == 0)
1292      // Done with outputs.
1293      igvn->hash_delete(dead);
1294      igvn->_worklist.remove(dead);
1295      igvn->set_type(dead, Type::TOP);
1296      if (dead->is_macro()) {
1297        igvn->C->remove_macro_node(dead);
1298      }
1299      if (dead->is_expensive()) {
1300        igvn->C->remove_expensive_node(dead);
1301      }
1302      igvn->C->record_dead_node(dead->_idx);
1303      // Kill all inputs to the dead guy
1304      for (uint i=0; i < dead->req(); i++) {
1305        Node *n = dead->in(i);      // Get input to dead guy
1306        if (n != NULL && !n->is_top()) { // Input is valid?
1307          dead->set_req(i, top);    // Smash input away
1308          if (n->outcnt() == 0) {   // Input also goes dead?
1309            if (!n->is_Con())
1310              nstack.push(n);       // Clear it out as well
1311          } else if (n->outcnt() == 1 &&
1312                     n->has_special_unique_user()) {
1313            igvn->add_users_to_worklist( n );
1314          } else if (n->outcnt() <= 2 && n->is_Store()) {
1315            // Push store's uses on worklist to enable folding optimization for
1316            // store/store and store/load to the same address.
1317            // The restriction (outcnt() <= 2) is the same as in set_req_X()
1318            // and remove_globally_dead_node().
1319            igvn->add_users_to_worklist( n );
1320          }
1321        }
1322      }
1323    } // (dead->outcnt() == 0)
1324  }   // while (nstack.size() > 0) for outputs
1325  return;
1326}
1327
1328//------------------------------remove_dead_region-----------------------------
1329bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1330  Node *n = in(0);
1331  if( !n ) return false;
1332  // Lost control into this guy?  I.e., it became unreachable?
1333  // Aggressively kill all unreachable code.
1334  if (can_reshape && n->is_top()) {
1335    kill_dead_code(this, phase->is_IterGVN());
1336    return false; // Node is dead.
1337  }
1338
1339  if( n->is_Region() && n->as_Region()->is_copy() ) {
1340    Node *m = n->nonnull_req();
1341    set_req(0, m);
1342    return true;
1343  }
1344  return false;
1345}
1346
1347//------------------------------Ideal_DU_postCCP-------------------------------
1348// Idealize graph, using DU info.  Must clone result into new-space
1349Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
1350  return NULL;                 // Default to no change
1351}
1352
1353//------------------------------hash-------------------------------------------
1354// Hash function over Nodes.
1355uint Node::hash() const {
1356  uint sum = 0;
1357  for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1358    sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1359  return (sum>>2) + _cnt + Opcode();
1360}
1361
1362//------------------------------cmp--------------------------------------------
1363// Compare special parts of simple Nodes
1364uint Node::cmp( const Node &n ) const {
1365  return 1;                     // Must be same
1366}
1367
1368//------------------------------rematerialize-----------------------------------
1369// Should we clone rather than spill this instruction?
1370bool Node::rematerialize() const {
1371  if ( is_Mach() )
1372    return this->as_Mach()->rematerialize();
1373  else
1374    return (_flags & Flag_rematerialize) != 0;
1375}
1376
1377//------------------------------needs_anti_dependence_check---------------------
1378// Nodes which use memory without consuming it, hence need antidependences.
1379bool Node::needs_anti_dependence_check() const {
1380  if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1381    return false;
1382  else
1383    return in(1)->bottom_type()->has_memory();
1384}
1385
1386
1387// Get an integer constant from a ConNode (or CastIINode).
1388// Return a default value if there is no apparent constant here.
1389const TypeInt* Node::find_int_type() const {
1390  if (this->is_Type()) {
1391    return this->as_Type()->type()->isa_int();
1392  } else if (this->is_Con()) {
1393    assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1394    return this->bottom_type()->isa_int();
1395  }
1396  return NULL;
1397}
1398
1399// Get a pointer constant from a ConstNode.
1400// Returns the constant if it is a pointer ConstNode
1401intptr_t Node::get_ptr() const {
1402  assert( Opcode() == Op_ConP, "" );
1403  return ((ConPNode*)this)->type()->is_ptr()->get_con();
1404}
1405
1406// Get a narrow oop constant from a ConNNode.
1407intptr_t Node::get_narrowcon() const {
1408  assert( Opcode() == Op_ConN, "" );
1409  return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1410}
1411
1412// Get a long constant from a ConNode.
1413// Return a default value if there is no apparent constant here.
1414const TypeLong* Node::find_long_type() const {
1415  if (this->is_Type()) {
1416    return this->as_Type()->type()->isa_long();
1417  } else if (this->is_Con()) {
1418    assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1419    return this->bottom_type()->isa_long();
1420  }
1421  return NULL;
1422}
1423
1424
1425/**
1426 * Return a ptr type for nodes which should have it.
1427 */
1428const TypePtr* Node::get_ptr_type() const {
1429  const TypePtr* tp = this->bottom_type()->make_ptr();
1430#ifdef ASSERT
1431  if (tp == NULL) {
1432    this->dump(1);
1433    assert((tp != NULL), "unexpected node type");
1434  }
1435#endif
1436  return tp;
1437}
1438
1439// Get a double constant from a ConstNode.
1440// Returns the constant if it is a double ConstNode
1441jdouble Node::getd() const {
1442  assert( Opcode() == Op_ConD, "" );
1443  return ((ConDNode*)this)->type()->is_double_constant()->getd();
1444}
1445
1446// Get a float constant from a ConstNode.
1447// Returns the constant if it is a float ConstNode
1448jfloat Node::getf() const {
1449  assert( Opcode() == Op_ConF, "" );
1450  return ((ConFNode*)this)->type()->is_float_constant()->getf();
1451}
1452
1453#ifndef PRODUCT
1454
1455//----------------------------NotANode----------------------------------------
1456// Used in debugging code to avoid walking across dead or uninitialized edges.
1457static inline bool NotANode(const Node* n) {
1458  if (n == NULL)                   return true;
1459  if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1460  if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1461  return false;
1462}
1463
1464
1465//------------------------------find------------------------------------------
1466// Find a neighbor of this Node with the given _idx
1467// If idx is negative, find its absolute value, following both _in and _out.
1468static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1469                        VectorSet* old_space, VectorSet* new_space ) {
1470  int node_idx = (idx >= 0) ? idx : -idx;
1471  if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1472  // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1473  VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1474  if( v->test(n->_idx) ) return;
1475  if( (int)n->_idx == node_idx
1476      debug_only(|| n->debug_idx() == node_idx) ) {
1477    if (result != NULL)
1478      tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1479                 (uintptr_t)result, (uintptr_t)n, node_idx);
1480    result = n;
1481  }
1482  v->set(n->_idx);
1483  for( uint i=0; i<n->len(); i++ ) {
1484    if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1485    find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1486  }
1487  // Search along forward edges also:
1488  if (idx < 0 && !only_ctrl) {
1489    for( uint j=0; j<n->outcnt(); j++ ) {
1490      find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1491    }
1492  }
1493#ifdef ASSERT
1494  // Search along debug_orig edges last, checking for cycles
1495  Node* orig = n->debug_orig();
1496  if (orig != NULL) {
1497    do {
1498      if (NotANode(orig))  break;
1499      find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1500      orig = orig->debug_orig();
1501    } while (orig != NULL && orig != n->debug_orig());
1502  }
1503#endif //ASSERT
1504}
1505
1506// call this from debugger:
1507Node* find_node(Node* n, int idx) {
1508  return n->find(idx);
1509}
1510
1511//------------------------------find-------------------------------------------
1512Node* Node::find(int idx) const {
1513  ResourceArea *area = Thread::current()->resource_area();
1514  VectorSet old_space(area), new_space(area);
1515  Node* result = NULL;
1516  find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1517  return result;
1518}
1519
1520//------------------------------find_ctrl--------------------------------------
1521// Find an ancestor to this node in the control history with given _idx
1522Node* Node::find_ctrl(int idx) const {
1523  ResourceArea *area = Thread::current()->resource_area();
1524  VectorSet old_space(area), new_space(area);
1525  Node* result = NULL;
1526  find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1527  return result;
1528}
1529#endif
1530
1531
1532
1533#ifndef PRODUCT
1534
1535// -----------------------------Name-------------------------------------------
1536extern const char *NodeClassNames[];
1537const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1538
1539static bool is_disconnected(const Node* n) {
1540  for (uint i = 0; i < n->req(); i++) {
1541    if (n->in(i) != NULL)  return false;
1542  }
1543  return true;
1544}
1545
1546#ifdef ASSERT
1547static void dump_orig(Node* orig, outputStream *st) {
1548  Compile* C = Compile::current();
1549  if (NotANode(orig)) orig = NULL;
1550  if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1551  if (orig == NULL) return;
1552  st->print(" !orig=");
1553  Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1554  if (NotANode(fast)) fast = NULL;
1555  while (orig != NULL) {
1556    bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1557    if (discon) st->print("[");
1558    if (!Compile::current()->node_arena()->contains(orig))
1559      st->print("o");
1560    st->print("%d", orig->_idx);
1561    if (discon) st->print("]");
1562    orig = orig->debug_orig();
1563    if (NotANode(orig)) orig = NULL;
1564    if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1565    if (orig != NULL) st->print(",");
1566    if (fast != NULL) {
1567      // Step fast twice for each single step of orig:
1568      fast = fast->debug_orig();
1569      if (NotANode(fast)) fast = NULL;
1570      if (fast != NULL && fast != orig) {
1571        fast = fast->debug_orig();
1572        if (NotANode(fast)) fast = NULL;
1573      }
1574      if (fast == orig) {
1575        st->print("...");
1576        break;
1577      }
1578    }
1579  }
1580}
1581
1582void Node::set_debug_orig(Node* orig) {
1583  _debug_orig = orig;
1584  if (BreakAtNode == 0)  return;
1585  if (NotANode(orig))  orig = NULL;
1586  int trip = 10;
1587  while (orig != NULL) {
1588    if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1589      tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1590                    this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1591      BREAKPOINT;
1592    }
1593    orig = orig->debug_orig();
1594    if (NotANode(orig))  orig = NULL;
1595    if (trip-- <= 0)  break;
1596  }
1597}
1598#endif //ASSERT
1599
1600//------------------------------dump------------------------------------------
1601// Dump a Node
1602void Node::dump(const char* suffix, outputStream *st) const {
1603  Compile* C = Compile::current();
1604  bool is_new = C->node_arena()->contains(this);
1605  C->_in_dump_cnt++;
1606  st->print("%c%d\t%s\t=== ", is_new ? ' ' : 'o', _idx, Name());
1607
1608  // Dump the required and precedence inputs
1609  dump_req(st);
1610  dump_prec(st);
1611  // Dump the outputs
1612  dump_out(st);
1613
1614  if (is_disconnected(this)) {
1615#ifdef ASSERT
1616    st->print("  [%d]",debug_idx());
1617    dump_orig(debug_orig(), st);
1618#endif
1619    st->cr();
1620    C->_in_dump_cnt--;
1621    return;                     // don't process dead nodes
1622  }
1623
1624  // Dump node-specific info
1625  dump_spec(st);
1626#ifdef ASSERT
1627  // Dump the non-reset _debug_idx
1628  if (Verbose && WizardMode) {
1629    st->print("  [%d]",debug_idx());
1630  }
1631#endif
1632
1633  const Type *t = bottom_type();
1634
1635  if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1636    const TypeInstPtr  *toop = t->isa_instptr();
1637    const TypeKlassPtr *tkls = t->isa_klassptr();
1638    ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1639    if (klass && klass->is_loaded() && klass->is_interface()) {
1640      st->print("  Interface:");
1641    } else if (toop) {
1642      st->print("  Oop:");
1643    } else if (tkls) {
1644      st->print("  Klass:");
1645    }
1646    t->dump_on(st);
1647  } else if (t == Type::MEMORY) {
1648    st->print("  Memory:");
1649    MemNode::dump_adr_type(this, adr_type(), st);
1650  } else if (Verbose || WizardMode) {
1651    st->print("  Type:");
1652    if (t) {
1653      t->dump_on(st);
1654    } else {
1655      st->print("no type");
1656    }
1657  } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1658    // Dump MachSpillcopy vector type.
1659    t->dump_on(st);
1660  }
1661  if (is_new) {
1662    debug_only(dump_orig(debug_orig(), st));
1663    Node_Notes* nn = C->node_notes_at(_idx);
1664    if (nn != NULL && !nn->is_clear()) {
1665      if (nn->jvms() != NULL) {
1666        st->print(" !jvms:");
1667        nn->jvms()->dump_spec(st);
1668      }
1669    }
1670  }
1671  if (suffix) st->print(suffix);
1672  C->_in_dump_cnt--;
1673}
1674
1675//------------------------------dump_req--------------------------------------
1676void Node::dump_req(outputStream *st) const {
1677  // Dump the required input edges
1678  for (uint i = 0; i < req(); i++) {    // For all required inputs
1679    Node* d = in(i);
1680    if (d == NULL) {
1681      st->print("_ ");
1682    } else if (NotANode(d)) {
1683      st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1684    } else {
1685      st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1686    }
1687  }
1688}
1689
1690
1691//------------------------------dump_prec-------------------------------------
1692void Node::dump_prec(outputStream *st) const {
1693  // Dump the precedence edges
1694  int any_prec = 0;
1695  for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1696    Node* p = in(i);
1697    if (p != NULL) {
1698      if (!any_prec++) st->print(" |");
1699      if (NotANode(p)) { st->print("NotANode "); continue; }
1700      st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1701    }
1702  }
1703}
1704
1705//------------------------------dump_out--------------------------------------
1706void Node::dump_out(outputStream *st) const {
1707  // Delimit the output edges
1708  st->print(" [[");
1709  // Dump the output edges
1710  for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1711    Node* u = _out[i];
1712    if (u == NULL) {
1713      st->print("_ ");
1714    } else if (NotANode(u)) {
1715      st->print("NotANode ");
1716    } else {
1717      st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1718    }
1719  }
1720  st->print("]] ");
1721}
1722
1723//------------------------------dump_nodes-------------------------------------
1724static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1725  Node* s = (Node*)start; // remove const
1726  if (NotANode(s)) return;
1727
1728  uint depth = (uint)ABS(d);
1729  int direction = d;
1730  Compile* C = Compile::current();
1731  GrowableArray <Node *> nstack(C->unique());
1732
1733  nstack.append(s);
1734  int begin = 0;
1735  int end = 0;
1736  for(uint i = 0; i < depth; i++) {
1737    end = nstack.length();
1738    for(int j = begin; j < end; j++) {
1739      Node* tp  = nstack.at(j);
1740      uint limit = direction > 0 ? tp->len() : tp->outcnt();
1741      for(uint k = 0; k < limit; k++) {
1742        Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1743
1744        if (NotANode(n))  continue;
1745        // do not recurse through top or the root (would reach unrelated stuff)
1746        if (n->is_Root() || n->is_top())  continue;
1747        if (only_ctrl && !n->is_CFG()) continue;
1748
1749        bool on_stack = nstack.contains(n);
1750        if (!on_stack) {
1751          nstack.append(n);
1752        }
1753      }
1754    }
1755    begin = end;
1756  }
1757  end = nstack.length();
1758  if (direction > 0) {
1759    for(int j = end-1; j >= 0; j--) {
1760      nstack.at(j)->dump();
1761    }
1762  } else {
1763    for(int j = 0; j < end; j++) {
1764      nstack.at(j)->dump();
1765    }
1766  }
1767}
1768
1769//------------------------------dump-------------------------------------------
1770void Node::dump(int d) const {
1771  dump_nodes(this, d, false);
1772}
1773
1774//------------------------------dump_ctrl--------------------------------------
1775// Dump a Node's control history to depth
1776void Node::dump_ctrl(int d) const {
1777  dump_nodes(this, d, true);
1778}
1779
1780// VERIFICATION CODE
1781// For each input edge to a node (ie - for each Use-Def edge), verify that
1782// there is a corresponding Def-Use edge.
1783//------------------------------verify_edges-----------------------------------
1784void Node::verify_edges(Unique_Node_List &visited) {
1785  uint i, j, idx;
1786  int  cnt;
1787  Node *n;
1788
1789  // Recursive termination test
1790  if (visited.member(this))  return;
1791  visited.push(this);
1792
1793  // Walk over all input edges, checking for correspondence
1794  for( i = 0; i < len(); i++ ) {
1795    n = in(i);
1796    if (n != NULL && !n->is_top()) {
1797      // Count instances of (Node *)this
1798      cnt = 0;
1799      for (idx = 0; idx < n->_outcnt; idx++ ) {
1800        if (n->_out[idx] == (Node *)this)  cnt++;
1801      }
1802      assert( cnt > 0,"Failed to find Def-Use edge." );
1803      // Check for duplicate edges
1804      // walk the input array downcounting the input edges to n
1805      for( j = 0; j < len(); j++ ) {
1806        if( in(j) == n ) cnt--;
1807      }
1808      assert( cnt == 0,"Mismatched edge count.");
1809    } else if (n == NULL) {
1810      assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
1811    } else {
1812      assert(n->is_top(), "sanity");
1813      // Nothing to check.
1814    }
1815  }
1816  // Recursive walk over all input edges
1817  for( i = 0; i < len(); i++ ) {
1818    n = in(i);
1819    if( n != NULL )
1820      in(i)->verify_edges(visited);
1821  }
1822}
1823
1824//------------------------------verify_recur-----------------------------------
1825static const Node *unique_top = NULL;
1826
1827void Node::verify_recur(const Node *n, int verify_depth,
1828                        VectorSet &old_space, VectorSet &new_space) {
1829  if ( verify_depth == 0 )  return;
1830  if (verify_depth > 0)  --verify_depth;
1831
1832  Compile* C = Compile::current();
1833
1834  // Contained in new_space or old_space?
1835  VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
1836  // Check for visited in the proper space.  Numberings are not unique
1837  // across spaces so we need a separate VectorSet for each space.
1838  if( v->test_set(n->_idx) ) return;
1839
1840  if (n->is_Con() && n->bottom_type() == Type::TOP) {
1841    if (C->cached_top_node() == NULL)
1842      C->set_cached_top_node((Node*)n);
1843    assert(C->cached_top_node() == n, "TOP node must be unique");
1844  }
1845
1846  for( uint i = 0; i < n->len(); i++ ) {
1847    Node *x = n->in(i);
1848    if (!x || x->is_top()) continue;
1849
1850    // Verify my input has a def-use edge to me
1851    if (true /*VerifyDefUse*/) {
1852      // Count use-def edges from n to x
1853      int cnt = 0;
1854      for( uint j = 0; j < n->len(); j++ )
1855        if( n->in(j) == x )
1856          cnt++;
1857      // Count def-use edges from x to n
1858      uint max = x->_outcnt;
1859      for( uint k = 0; k < max; k++ )
1860        if (x->_out[k] == n)
1861          cnt--;
1862      assert( cnt == 0, "mismatched def-use edge counts" );
1863    }
1864
1865    verify_recur(x, verify_depth, old_space, new_space);
1866  }
1867
1868}
1869
1870//------------------------------verify-----------------------------------------
1871// Check Def-Use info for my subgraph
1872void Node::verify() const {
1873  Compile* C = Compile::current();
1874  Node* old_top = C->cached_top_node();
1875  ResourceMark rm;
1876  ResourceArea *area = Thread::current()->resource_area();
1877  VectorSet old_space(area), new_space(area);
1878  verify_recur(this, -1, old_space, new_space);
1879  C->set_cached_top_node(old_top);
1880}
1881#endif
1882
1883
1884//------------------------------walk-------------------------------------------
1885// Graph walk, with both pre-order and post-order functions
1886void Node::walk(NFunc pre, NFunc post, void *env) {
1887  VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
1888  walk_(pre, post, env, visited);
1889}
1890
1891void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
1892  if( visited.test_set(_idx) ) return;
1893  pre(*this,env);               // Call the pre-order walk function
1894  for( uint i=0; i<_max; i++ )
1895    if( in(i) )                 // Input exists and is not walked?
1896      in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
1897  post(*this,env);              // Call the post-order walk function
1898}
1899
1900void Node::nop(Node &, void*) {}
1901
1902//------------------------------Registers--------------------------------------
1903// Do we Match on this edge index or not?  Generally false for Control
1904// and true for everything else.  Weird for calls & returns.
1905uint Node::match_edge(uint idx) const {
1906  return idx;                   // True for other than index 0 (control)
1907}
1908
1909static RegMask _not_used_at_all;
1910// Register classes are defined for specific machines
1911const RegMask &Node::out_RegMask() const {
1912  ShouldNotCallThis();
1913  return _not_used_at_all;
1914}
1915
1916const RegMask &Node::in_RegMask(uint) const {
1917  ShouldNotCallThis();
1918  return _not_used_at_all;
1919}
1920
1921//=============================================================================
1922//-----------------------------------------------------------------------------
1923void Node_Array::reset( Arena *new_arena ) {
1924  _a->Afree(_nodes,_max*sizeof(Node*));
1925  _max   = 0;
1926  _nodes = NULL;
1927  _a     = new_arena;
1928}
1929
1930//------------------------------clear------------------------------------------
1931// Clear all entries in _nodes to NULL but keep storage
1932void Node_Array::clear() {
1933  Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
1934}
1935
1936//-----------------------------------------------------------------------------
1937void Node_Array::grow( uint i ) {
1938  if( !_max ) {
1939    _max = 1;
1940    _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
1941    _nodes[0] = NULL;
1942  }
1943  uint old = _max;
1944  while( i >= _max ) _max <<= 1;        // Double to fit
1945  _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
1946  Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
1947}
1948
1949//-----------------------------------------------------------------------------
1950void Node_Array::insert( uint i, Node *n ) {
1951  if( _nodes[_max-1] ) grow(_max);      // Get more space if full
1952  Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
1953  _nodes[i] = n;
1954}
1955
1956//-----------------------------------------------------------------------------
1957void Node_Array::remove( uint i ) {
1958  Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
1959  _nodes[_max-1] = NULL;
1960}
1961
1962//-----------------------------------------------------------------------------
1963void Node_Array::sort( C_sort_func_t func) {
1964  qsort( _nodes, _max, sizeof( Node* ), func );
1965}
1966
1967//-----------------------------------------------------------------------------
1968void Node_Array::dump() const {
1969#ifndef PRODUCT
1970  for( uint i = 0; i < _max; i++ ) {
1971    Node *nn = _nodes[i];
1972    if( nn != NULL ) {
1973      tty->print("%5d--> ",i); nn->dump();
1974    }
1975  }
1976#endif
1977}
1978
1979//--------------------------is_iteratively_computed------------------------------
1980// Operation appears to be iteratively computed (such as an induction variable)
1981// It is possible for this operation to return false for a loop-varying
1982// value, if it appears (by local graph inspection) to be computed by a simple conditional.
1983bool Node::is_iteratively_computed() {
1984  if (ideal_reg()) { // does operation have a result register?
1985    for (uint i = 1; i < req(); i++) {
1986      Node* n = in(i);
1987      if (n != NULL && n->is_Phi()) {
1988        for (uint j = 1; j < n->req(); j++) {
1989          if (n->in(j) == this) {
1990            return true;
1991          }
1992        }
1993      }
1994    }
1995  }
1996  return false;
1997}
1998
1999//--------------------------find_similar------------------------------
2000// Return a node with opcode "opc" and same inputs as "this" if one can
2001// be found; Otherwise return NULL;
2002Node* Node::find_similar(int opc) {
2003  if (req() >= 2) {
2004    Node* def = in(1);
2005    if (def && def->outcnt() >= 2) {
2006      for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2007        Node* use = def->fast_out(i);
2008        if (use->Opcode() == opc &&
2009            use->req() == req()) {
2010          uint j;
2011          for (j = 0; j < use->req(); j++) {
2012            if (use->in(j) != in(j)) {
2013              break;
2014            }
2015          }
2016          if (j == use->req()) {
2017            return use;
2018          }
2019        }
2020      }
2021    }
2022  }
2023  return NULL;
2024}
2025
2026
2027//--------------------------unique_ctrl_out------------------------------
2028// Return the unique control out if only one. Null if none or more than one.
2029Node* Node::unique_ctrl_out() {
2030  Node* found = NULL;
2031  for (uint i = 0; i < outcnt(); i++) {
2032    Node* use = raw_out(i);
2033    if (use->is_CFG() && use != this) {
2034      if (found != NULL) return NULL;
2035      found = use;
2036    }
2037  }
2038  return found;
2039}
2040
2041//=============================================================================
2042//------------------------------yank-------------------------------------------
2043// Find and remove
2044void Node_List::yank( Node *n ) {
2045  uint i;
2046  for( i = 0; i < _cnt; i++ )
2047    if( _nodes[i] == n )
2048      break;
2049
2050  if( i < _cnt )
2051    _nodes[i] = _nodes[--_cnt];
2052}
2053
2054//------------------------------dump-------------------------------------------
2055void Node_List::dump() const {
2056#ifndef PRODUCT
2057  for( uint i = 0; i < _cnt; i++ )
2058    if( _nodes[i] ) {
2059      tty->print("%5d--> ",i);
2060      _nodes[i]->dump();
2061    }
2062#endif
2063}
2064
2065//=============================================================================
2066//------------------------------remove-----------------------------------------
2067void Unique_Node_List::remove( Node *n ) {
2068  if( _in_worklist[n->_idx] ) {
2069    for( uint i = 0; i < size(); i++ )
2070      if( _nodes[i] == n ) {
2071        map(i,Node_List::pop());
2072        _in_worklist >>= n->_idx;
2073        return;
2074      }
2075    ShouldNotReachHere();
2076  }
2077}
2078
2079//-----------------------remove_useless_nodes----------------------------------
2080// Remove useless nodes from worklist
2081void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2082
2083  for( uint i = 0; i < size(); ++i ) {
2084    Node *n = at(i);
2085    assert( n != NULL, "Did not expect null entries in worklist");
2086    if( ! useful.test(n->_idx) ) {
2087      _in_worklist >>= n->_idx;
2088      map(i,Node_List::pop());
2089      // Node *replacement = Node_List::pop();
2090      // if( i != size() ) { // Check if removing last entry
2091      //   _nodes[i] = replacement;
2092      // }
2093      --i;  // Visit popped node
2094      // If it was last entry, loop terminates since size() was also reduced
2095    }
2096  }
2097}
2098
2099//=============================================================================
2100void Node_Stack::grow() {
2101  size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2102  size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2103  size_t max = old_max << 1;             // max * 2
2104  _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2105  _inode_max = _inodes + max;
2106  _inode_top = _inodes + old_top;        // restore _top
2107}
2108
2109// Node_Stack is used to map nodes.
2110Node* Node_Stack::find(uint idx) const {
2111  uint sz = size();
2112  for (uint i=0; i < sz; i++) {
2113    if (idx == index_at(i) )
2114      return node_at(i);
2115  }
2116  return NULL;
2117}
2118
2119//=============================================================================
2120uint TypeNode::size_of() const { return sizeof(*this); }
2121#ifndef PRODUCT
2122void TypeNode::dump_spec(outputStream *st) const {
2123  if( !Verbose && !WizardMode ) {
2124    // standard dump does this in Verbose and WizardMode
2125    st->print(" #"); _type->dump_on(st);
2126  }
2127}
2128#endif
2129uint TypeNode::hash() const {
2130  return Node::hash() + _type->hash();
2131}
2132uint TypeNode::cmp( const Node &n ) const
2133{ return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2134const Type *TypeNode::bottom_type() const { return _type; }
2135const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
2136
2137//------------------------------ideal_reg--------------------------------------
2138uint TypeNode::ideal_reg() const {
2139  return _type->ideal_reg();
2140}
2141