node.cpp revision 6010:abec000618bf
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "libadt/vectset.hpp"
27#include "memory/allocation.inline.hpp"
28#include "opto/cfgnode.hpp"
29#include "opto/connode.hpp"
30#include "opto/machnode.hpp"
31#include "opto/matcher.hpp"
32#include "opto/node.hpp"
33#include "opto/opcodes.hpp"
34#include "opto/regmask.hpp"
35#include "opto/type.hpp"
36#include "utilities/copy.hpp"
37
38class RegMask;
39// #include "phase.hpp"
40class PhaseTransform;
41class PhaseGVN;
42
43// Arena we are currently building Nodes in
44const uint Node::NotAMachineReg = 0xffff0000;
45
46#ifndef PRODUCT
47extern int nodes_created;
48#endif
49
50#ifdef ASSERT
51
52//-------------------------- construct_node------------------------------------
53// Set a breakpoint here to identify where a particular node index is built.
54void Node::verify_construction() {
55  _debug_orig = NULL;
56  int old_debug_idx = Compile::debug_idx();
57  int new_debug_idx = old_debug_idx+1;
58  if (new_debug_idx > 0) {
59    // Arrange that the lowest five decimal digits of _debug_idx
60    // will repeat those of _idx. In case this is somehow pathological,
61    // we continue to assign negative numbers (!) consecutively.
62    const int mod = 100000;
63    int bump = (int)(_idx - new_debug_idx) % mod;
64    if (bump < 0)  bump += mod;
65    assert(bump >= 0 && bump < mod, "");
66    new_debug_idx += bump;
67  }
68  Compile::set_debug_idx(new_debug_idx);
69  set_debug_idx( new_debug_idx );
70  assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
71  assert(Compile::current()->live_nodes() < (uint)MaxNodeLimit, "Live Node limit exceeded limit");
72  if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
73    tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
74    BREAKPOINT;
75  }
76#if OPTO_DU_ITERATOR_ASSERT
77  _last_del = NULL;
78  _del_tick = 0;
79#endif
80  _hash_lock = 0;
81}
82
83
84// #ifdef ASSERT ...
85
86#if OPTO_DU_ITERATOR_ASSERT
87void DUIterator_Common::sample(const Node* node) {
88  _vdui     = VerifyDUIterators;
89  _node     = node;
90  _outcnt   = node->_outcnt;
91  _del_tick = node->_del_tick;
92  _last     = NULL;
93}
94
95void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
96  assert(_node     == node, "consistent iterator source");
97  assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
98}
99
100void DUIterator_Common::verify_resync() {
101  // Ensure that the loop body has just deleted the last guy produced.
102  const Node* node = _node;
103  // Ensure that at least one copy of the last-seen edge was deleted.
104  // Note:  It is OK to delete multiple copies of the last-seen edge.
105  // Unfortunately, we have no way to verify that all the deletions delete
106  // that same edge.  On this point we must use the Honor System.
107  assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
108  assert(node->_last_del == _last, "must have deleted the edge just produced");
109  // We liked this deletion, so accept the resulting outcnt and tick.
110  _outcnt   = node->_outcnt;
111  _del_tick = node->_del_tick;
112}
113
114void DUIterator_Common::reset(const DUIterator_Common& that) {
115  if (this == &that)  return;  // ignore assignment to self
116  if (!_vdui) {
117    // We need to initialize everything, overwriting garbage values.
118    _last = that._last;
119    _vdui = that._vdui;
120  }
121  // Note:  It is legal (though odd) for an iterator over some node x
122  // to be reassigned to iterate over another node y.  Some doubly-nested
123  // progress loops depend on being able to do this.
124  const Node* node = that._node;
125  // Re-initialize everything, except _last.
126  _node     = node;
127  _outcnt   = node->_outcnt;
128  _del_tick = node->_del_tick;
129}
130
131void DUIterator::sample(const Node* node) {
132  DUIterator_Common::sample(node);      // Initialize the assertion data.
133  _refresh_tick = 0;                    // No refreshes have happened, as yet.
134}
135
136void DUIterator::verify(const Node* node, bool at_end_ok) {
137  DUIterator_Common::verify(node, at_end_ok);
138  assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
139}
140
141void DUIterator::verify_increment() {
142  if (_refresh_tick & 1) {
143    // We have refreshed the index during this loop.
144    // Fix up _idx to meet asserts.
145    if (_idx > _outcnt)  _idx = _outcnt;
146  }
147  verify(_node, true);
148}
149
150void DUIterator::verify_resync() {
151  // Note:  We do not assert on _outcnt, because insertions are OK here.
152  DUIterator_Common::verify_resync();
153  // Make sure we are still in sync, possibly with no more out-edges:
154  verify(_node, true);
155}
156
157void DUIterator::reset(const DUIterator& that) {
158  if (this == &that)  return;  // self assignment is always a no-op
159  assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
160  assert(that._idx          == 0, "assign only the result of Node::outs()");
161  assert(_idx               == that._idx, "already assigned _idx");
162  if (!_vdui) {
163    // We need to initialize everything, overwriting garbage values.
164    sample(that._node);
165  } else {
166    DUIterator_Common::reset(that);
167    if (_refresh_tick & 1) {
168      _refresh_tick++;                  // Clear the "was refreshed" flag.
169    }
170    assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
171  }
172}
173
174void DUIterator::refresh() {
175  DUIterator_Common::sample(_node);     // Re-fetch assertion data.
176  _refresh_tick |= 1;                   // Set the "was refreshed" flag.
177}
178
179void DUIterator::verify_finish() {
180  // If the loop has killed the node, do not require it to re-run.
181  if (_node->_outcnt == 0)  _refresh_tick &= ~1;
182  // If this assert triggers, it means that a loop used refresh_out_pos
183  // to re-synch an iteration index, but the loop did not correctly
184  // re-run itself, using a "while (progress)" construct.
185  // This iterator enforces the rule that you must keep trying the loop
186  // until it "runs clean" without any need for refreshing.
187  assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
188}
189
190
191void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
192  DUIterator_Common::verify(node, at_end_ok);
193  Node** out    = node->_out;
194  uint   cnt    = node->_outcnt;
195  assert(cnt == _outcnt, "no insertions allowed");
196  assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
197  // This last check is carefully designed to work for NO_OUT_ARRAY.
198}
199
200void DUIterator_Fast::verify_limit() {
201  const Node* node = _node;
202  verify(node, true);
203  assert(_outp == node->_out + node->_outcnt, "limit still correct");
204}
205
206void DUIterator_Fast::verify_resync() {
207  const Node* node = _node;
208  if (_outp == node->_out + _outcnt) {
209    // Note that the limit imax, not the pointer i, gets updated with the
210    // exact count of deletions.  (For the pointer it's always "--i".)
211    assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
212    // This is a limit pointer, with a name like "imax".
213    // Fudge the _last field so that the common assert will be happy.
214    _last = (Node*) node->_last_del;
215    DUIterator_Common::verify_resync();
216  } else {
217    assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
218    // A normal internal pointer.
219    DUIterator_Common::verify_resync();
220    // Make sure we are still in sync, possibly with no more out-edges:
221    verify(node, true);
222  }
223}
224
225void DUIterator_Fast::verify_relimit(uint n) {
226  const Node* node = _node;
227  assert((int)n > 0, "use imax -= n only with a positive count");
228  // This must be a limit pointer, with a name like "imax".
229  assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
230  // The reported number of deletions must match what the node saw.
231  assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
232  // Fudge the _last field so that the common assert will be happy.
233  _last = (Node*) node->_last_del;
234  DUIterator_Common::verify_resync();
235}
236
237void DUIterator_Fast::reset(const DUIterator_Fast& that) {
238  assert(_outp              == that._outp, "already assigned _outp");
239  DUIterator_Common::reset(that);
240}
241
242void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
243  // at_end_ok means the _outp is allowed to underflow by 1
244  _outp += at_end_ok;
245  DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
246  _outp -= at_end_ok;
247  assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
248}
249
250void DUIterator_Last::verify_limit() {
251  // Do not require the limit address to be resynched.
252  //verify(node, true);
253  assert(_outp == _node->_out, "limit still correct");
254}
255
256void DUIterator_Last::verify_step(uint num_edges) {
257  assert((int)num_edges > 0, "need non-zero edge count for loop progress");
258  _outcnt   -= num_edges;
259  _del_tick += num_edges;
260  // Make sure we are still in sync, possibly with no more out-edges:
261  const Node* node = _node;
262  verify(node, true);
263  assert(node->_last_del == _last, "must have deleted the edge just produced");
264}
265
266#endif //OPTO_DU_ITERATOR_ASSERT
267
268
269#endif //ASSERT
270
271
272// This constant used to initialize _out may be any non-null value.
273// The value NULL is reserved for the top node only.
274#define NO_OUT_ARRAY ((Node**)-1)
275
276// This funny expression handshakes with Node::operator new
277// to pull Compile::current out of the new node's _out field,
278// and then calls a subroutine which manages most field
279// initializations.  The only one which is tricky is the
280// _idx field, which is const, and so must be initialized
281// by a return value, not an assignment.
282//
283// (Aren't you thankful that Java finals don't require so many tricks?)
284#define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
285#ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
286#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
287#endif
288
289// Out-of-line code from node constructors.
290// Executed only when extra debug info. is being passed around.
291static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
292  C->set_node_notes_at(idx, nn);
293}
294
295// Shared initialization code.
296inline int Node::Init(int req, Compile* C) {
297  assert(Compile::current() == C, "must use operator new(Compile*)");
298  int idx = C->next_unique();
299
300  // Allocate memory for the necessary number of edges.
301  if (req > 0) {
302    // Allocate space for _in array to have double alignment.
303    _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
304#ifdef ASSERT
305    _in[req-1] = this; // magic cookie for assertion check
306#endif
307  }
308  // If there are default notes floating around, capture them:
309  Node_Notes* nn = C->default_node_notes();
310  if (nn != NULL)  init_node_notes(C, idx, nn);
311
312  // Note:  At this point, C is dead,
313  // and we begin to initialize the new Node.
314
315  _cnt = _max = req;
316  _outcnt = _outmax = 0;
317  _class_id = Class_Node;
318  _flags = 0;
319  _out = NO_OUT_ARRAY;
320  return idx;
321}
322
323//------------------------------Node-------------------------------------------
324// Create a Node, with a given number of required edges.
325Node::Node(uint req)
326  : _idx(IDX_INIT(req))
327{
328  assert( req < (uint)(MaxNodeLimit - NodeLimitFudgeFactor), "Input limit exceeded" );
329  debug_only( verify_construction() );
330  NOT_PRODUCT(nodes_created++);
331  if (req == 0) {
332    assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
333    _in = NULL;
334  } else {
335    assert( _in[req-1] == this, "Must pass arg count to 'new'" );
336    Node** to = _in;
337    for(uint i = 0; i < req; i++) {
338      to[i] = NULL;
339    }
340  }
341}
342
343//------------------------------Node-------------------------------------------
344Node::Node(Node *n0)
345  : _idx(IDX_INIT(1))
346{
347  debug_only( verify_construction() );
348  NOT_PRODUCT(nodes_created++);
349  // Assert we allocated space for input array already
350  assert( _in[0] == this, "Must pass arg count to 'new'" );
351  assert( is_not_dead(n0), "can not use dead node");
352  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
353}
354
355//------------------------------Node-------------------------------------------
356Node::Node(Node *n0, Node *n1)
357  : _idx(IDX_INIT(2))
358{
359  debug_only( verify_construction() );
360  NOT_PRODUCT(nodes_created++);
361  // Assert we allocated space for input array already
362  assert( _in[1] == this, "Must pass arg count to 'new'" );
363  assert( is_not_dead(n0), "can not use dead node");
364  assert( is_not_dead(n1), "can not use dead node");
365  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
366  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
367}
368
369//------------------------------Node-------------------------------------------
370Node::Node(Node *n0, Node *n1, Node *n2)
371  : _idx(IDX_INIT(3))
372{
373  debug_only( verify_construction() );
374  NOT_PRODUCT(nodes_created++);
375  // Assert we allocated space for input array already
376  assert( _in[2] == this, "Must pass arg count to 'new'" );
377  assert( is_not_dead(n0), "can not use dead node");
378  assert( is_not_dead(n1), "can not use dead node");
379  assert( is_not_dead(n2), "can not use dead node");
380  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
381  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
382  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
383}
384
385//------------------------------Node-------------------------------------------
386Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
387  : _idx(IDX_INIT(4))
388{
389  debug_only( verify_construction() );
390  NOT_PRODUCT(nodes_created++);
391  // Assert we allocated space for input array already
392  assert( _in[3] == this, "Must pass arg count to 'new'" );
393  assert( is_not_dead(n0), "can not use dead node");
394  assert( is_not_dead(n1), "can not use dead node");
395  assert( is_not_dead(n2), "can not use dead node");
396  assert( is_not_dead(n3), "can not use dead node");
397  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
398  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
399  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
400  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
401}
402
403//------------------------------Node-------------------------------------------
404Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
405  : _idx(IDX_INIT(5))
406{
407  debug_only( verify_construction() );
408  NOT_PRODUCT(nodes_created++);
409  // Assert we allocated space for input array already
410  assert( _in[4] == this, "Must pass arg count to 'new'" );
411  assert( is_not_dead(n0), "can not use dead node");
412  assert( is_not_dead(n1), "can not use dead node");
413  assert( is_not_dead(n2), "can not use dead node");
414  assert( is_not_dead(n3), "can not use dead node");
415  assert( is_not_dead(n4), "can not use dead node");
416  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
417  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
418  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
419  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
420  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
421}
422
423//------------------------------Node-------------------------------------------
424Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
425                     Node *n4, Node *n5)
426  : _idx(IDX_INIT(6))
427{
428  debug_only( verify_construction() );
429  NOT_PRODUCT(nodes_created++);
430  // Assert we allocated space for input array already
431  assert( _in[5] == this, "Must pass arg count to 'new'" );
432  assert( is_not_dead(n0), "can not use dead node");
433  assert( is_not_dead(n1), "can not use dead node");
434  assert( is_not_dead(n2), "can not use dead node");
435  assert( is_not_dead(n3), "can not use dead node");
436  assert( is_not_dead(n4), "can not use dead node");
437  assert( is_not_dead(n5), "can not use dead node");
438  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
439  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
440  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
441  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
442  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
443  _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
444}
445
446//------------------------------Node-------------------------------------------
447Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
448                     Node *n4, Node *n5, Node *n6)
449  : _idx(IDX_INIT(7))
450{
451  debug_only( verify_construction() );
452  NOT_PRODUCT(nodes_created++);
453  // Assert we allocated space for input array already
454  assert( _in[6] == this, "Must pass arg count to 'new'" );
455  assert( is_not_dead(n0), "can not use dead node");
456  assert( is_not_dead(n1), "can not use dead node");
457  assert( is_not_dead(n2), "can not use dead node");
458  assert( is_not_dead(n3), "can not use dead node");
459  assert( is_not_dead(n4), "can not use dead node");
460  assert( is_not_dead(n5), "can not use dead node");
461  assert( is_not_dead(n6), "can not use dead node");
462  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
463  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
464  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
465  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
466  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
467  _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
468  _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
469}
470
471
472//------------------------------clone------------------------------------------
473// Clone a Node.
474Node *Node::clone() const {
475  Compile* C = Compile::current();
476  uint s = size_of();           // Size of inherited Node
477  Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
478  Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
479  // Set the new input pointer array
480  n->_in = (Node**)(((char*)n)+s);
481  // Cannot share the old output pointer array, so kill it
482  n->_out = NO_OUT_ARRAY;
483  // And reset the counters to 0
484  n->_outcnt = 0;
485  n->_outmax = 0;
486  // Unlock this guy, since he is not in any hash table.
487  debug_only(n->_hash_lock = 0);
488  // Walk the old node's input list to duplicate its edges
489  uint i;
490  for( i = 0; i < len(); i++ ) {
491    Node *x = in(i);
492    n->_in[i] = x;
493    if (x != NULL) x->add_out(n);
494  }
495  if (is_macro())
496    C->add_macro_node(n);
497  if (is_expensive())
498    C->add_expensive_node(n);
499
500  n->set_idx(C->next_unique()); // Get new unique index as well
501  debug_only( n->verify_construction() );
502  NOT_PRODUCT(nodes_created++);
503  // Do not patch over the debug_idx of a clone, because it makes it
504  // impossible to break on the clone's moment of creation.
505  //debug_only( n->set_debug_idx( debug_idx() ) );
506
507  C->copy_node_notes_to(n, (Node*) this);
508
509  // MachNode clone
510  uint nopnds;
511  if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
512    MachNode *mach  = n->as_Mach();
513    MachNode *mthis = this->as_Mach();
514    // Get address of _opnd_array.
515    // It should be the same offset since it is the clone of this node.
516    MachOper **from = mthis->_opnds;
517    MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
518                    pointer_delta((const void*)from,
519                                  (const void*)(&mthis->_opnds), 1));
520    mach->_opnds = to;
521    for ( uint i = 0; i < nopnds; ++i ) {
522      to[i] = from[i]->clone(C);
523    }
524  }
525  // cloning CallNode may need to clone JVMState
526  if (n->is_Call()) {
527    n->as_Call()->clone_jvms(C);
528  }
529  return n;                     // Return the clone
530}
531
532//---------------------------setup_is_top--------------------------------------
533// Call this when changing the top node, to reassert the invariants
534// required by Node::is_top.  See Compile::set_cached_top_node.
535void Node::setup_is_top() {
536  if (this == (Node*)Compile::current()->top()) {
537    // This node has just become top.  Kill its out array.
538    _outcnt = _outmax = 0;
539    _out = NULL;                           // marker value for top
540    assert(is_top(), "must be top");
541  } else {
542    if (_out == NULL)  _out = NO_OUT_ARRAY;
543    assert(!is_top(), "must not be top");
544  }
545}
546
547
548//------------------------------~Node------------------------------------------
549// Fancy destructor; eagerly attempt to reclaim Node numberings and storage
550extern int reclaim_idx ;
551extern int reclaim_in  ;
552extern int reclaim_node;
553void Node::destruct() {
554  // Eagerly reclaim unique Node numberings
555  Compile* compile = Compile::current();
556  if ((uint)_idx+1 == compile->unique()) {
557    compile->set_unique(compile->unique()-1);
558#ifdef ASSERT
559    reclaim_idx++;
560#endif
561  }
562  // Clear debug info:
563  Node_Notes* nn = compile->node_notes_at(_idx);
564  if (nn != NULL)  nn->clear();
565  // Walk the input array, freeing the corresponding output edges
566  _cnt = _max;  // forget req/prec distinction
567  uint i;
568  for( i = 0; i < _max; i++ ) {
569    set_req(i, NULL);
570    //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
571  }
572  assert(outcnt() == 0, "deleting a node must not leave a dangling use");
573  // See if the input array was allocated just prior to the object
574  int edge_size = _max*sizeof(void*);
575  int out_edge_size = _outmax*sizeof(void*);
576  char *edge_end = ((char*)_in) + edge_size;
577  char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
578  char *out_edge_end = out_array + out_edge_size;
579  int node_size = size_of();
580
581  // Free the output edge array
582  if (out_edge_size > 0) {
583#ifdef ASSERT
584    if( out_edge_end == compile->node_arena()->hwm() )
585      reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
586#endif
587    compile->node_arena()->Afree(out_array, out_edge_size);
588  }
589
590  // Free the input edge array and the node itself
591  if( edge_end == (char*)this ) {
592#ifdef ASSERT
593    if( edge_end+node_size == compile->node_arena()->hwm() ) {
594      reclaim_in  += edge_size;
595      reclaim_node+= node_size;
596    }
597#else
598    // It was; free the input array and object all in one hit
599    compile->node_arena()->Afree(_in,edge_size+node_size);
600#endif
601  } else {
602
603    // Free just the input array
604#ifdef ASSERT
605    if( edge_end == compile->node_arena()->hwm() )
606      reclaim_in  += edge_size;
607#endif
608    compile->node_arena()->Afree(_in,edge_size);
609
610    // Free just the object
611#ifdef ASSERT
612    if( ((char*)this) + node_size == compile->node_arena()->hwm() )
613      reclaim_node+= node_size;
614#else
615    compile->node_arena()->Afree(this,node_size);
616#endif
617  }
618  if (is_macro()) {
619    compile->remove_macro_node(this);
620  }
621  if (is_expensive()) {
622    compile->remove_expensive_node(this);
623  }
624#ifdef ASSERT
625  // We will not actually delete the storage, but we'll make the node unusable.
626  *(address*)this = badAddress;  // smash the C++ vtbl, probably
627  _in = _out = (Node**) badAddress;
628  _max = _cnt = _outmax = _outcnt = 0;
629#endif
630}
631
632//------------------------------grow-------------------------------------------
633// Grow the input array, making space for more edges
634void Node::grow( uint len ) {
635  Arena* arena = Compile::current()->node_arena();
636  uint new_max = _max;
637  if( new_max == 0 ) {
638    _max = 4;
639    _in = (Node**)arena->Amalloc(4*sizeof(Node*));
640    Node** to = _in;
641    to[0] = NULL;
642    to[1] = NULL;
643    to[2] = NULL;
644    to[3] = NULL;
645    return;
646  }
647  while( new_max <= len ) new_max <<= 1; // Find next power-of-2
648  // Trimming to limit allows a uint8 to handle up to 255 edges.
649  // Previously I was using only powers-of-2 which peaked at 128 edges.
650  //if( new_max >= limit ) new_max = limit-1;
651  _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
652  Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
653  _max = new_max;               // Record new max length
654  // This assertion makes sure that Node::_max is wide enough to
655  // represent the numerical value of new_max.
656  assert(_max == new_max && _max > len, "int width of _max is too small");
657}
658
659//-----------------------------out_grow----------------------------------------
660// Grow the input array, making space for more edges
661void Node::out_grow( uint len ) {
662  assert(!is_top(), "cannot grow a top node's out array");
663  Arena* arena = Compile::current()->node_arena();
664  uint new_max = _outmax;
665  if( new_max == 0 ) {
666    _outmax = 4;
667    _out = (Node **)arena->Amalloc(4*sizeof(Node*));
668    return;
669  }
670  while( new_max <= len ) new_max <<= 1; // Find next power-of-2
671  // Trimming to limit allows a uint8 to handle up to 255 edges.
672  // Previously I was using only powers-of-2 which peaked at 128 edges.
673  //if( new_max >= limit ) new_max = limit-1;
674  assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
675  _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
676  //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
677  _outmax = new_max;               // Record new max length
678  // This assertion makes sure that Node::_max is wide enough to
679  // represent the numerical value of new_max.
680  assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
681}
682
683#ifdef ASSERT
684//------------------------------is_dead----------------------------------------
685bool Node::is_dead() const {
686  // Mach and pinch point nodes may look like dead.
687  if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
688    return false;
689  for( uint i = 0; i < _max; i++ )
690    if( _in[i] != NULL )
691      return false;
692  dump();
693  return true;
694}
695#endif
696
697
698//------------------------------is_unreachable---------------------------------
699bool Node::is_unreachable(PhaseIterGVN &igvn) const {
700  assert(!is_Mach(), "doesn't work with MachNodes");
701  return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top();
702}
703
704//------------------------------add_req----------------------------------------
705// Add a new required input at the end
706void Node::add_req( Node *n ) {
707  assert( is_not_dead(n), "can not use dead node");
708
709  // Look to see if I can move precedence down one without reallocating
710  if( (_cnt >= _max) || (in(_max-1) != NULL) )
711    grow( _max+1 );
712
713  // Find a precedence edge to move
714  if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
715    uint i;
716    for( i=_cnt; i<_max; i++ )
717      if( in(i) == NULL )       // Find the NULL at end of prec edge list
718        break;                  // There must be one, since we grew the array
719    _in[i] = in(_cnt);          // Move prec over, making space for req edge
720  }
721  _in[_cnt++] = n;            // Stuff over old prec edge
722  if (n != NULL) n->add_out((Node *)this);
723}
724
725//---------------------------add_req_batch-------------------------------------
726// Add a new required input at the end
727void Node::add_req_batch( Node *n, uint m ) {
728  assert( is_not_dead(n), "can not use dead node");
729  // check various edge cases
730  if ((int)m <= 1) {
731    assert((int)m >= 0, "oob");
732    if (m != 0)  add_req(n);
733    return;
734  }
735
736  // Look to see if I can move precedence down one without reallocating
737  if( (_cnt+m) > _max || _in[_max-m] )
738    grow( _max+m );
739
740  // Find a precedence edge to move
741  if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
742    uint i;
743    for( i=_cnt; i<_max; i++ )
744      if( _in[i] == NULL )      // Find the NULL at end of prec edge list
745        break;                  // There must be one, since we grew the array
746    // Slide all the precs over by m positions (assume #prec << m).
747    Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
748  }
749
750  // Stuff over the old prec edges
751  for(uint i=0; i<m; i++ ) {
752    _in[_cnt++] = n;
753  }
754
755  // Insert multiple out edges on the node.
756  if (n != NULL && !n->is_top()) {
757    for(uint i=0; i<m; i++ ) {
758      n->add_out((Node *)this);
759    }
760  }
761}
762
763//------------------------------del_req----------------------------------------
764// Delete the required edge and compact the edge array
765void Node::del_req( uint idx ) {
766  assert( idx < _cnt, "oob");
767  assert( !VerifyHashTableKeys || _hash_lock == 0,
768          "remove node from hash table before modifying it");
769  // First remove corresponding def-use edge
770  Node *n = in(idx);
771  if (n != NULL) n->del_out((Node *)this);
772  _in[idx] = in(--_cnt);  // Compact the array
773  _in[_cnt] = NULL;       // NULL out emptied slot
774}
775
776//------------------------------del_req_ordered--------------------------------
777// Delete the required edge and compact the edge array with preserved order
778void Node::del_req_ordered( uint idx ) {
779  assert( idx < _cnt, "oob");
780  assert( !VerifyHashTableKeys || _hash_lock == 0,
781          "remove node from hash table before modifying it");
782  // First remove corresponding def-use edge
783  Node *n = in(idx);
784  if (n != NULL) n->del_out((Node *)this);
785  if (idx < _cnt - 1) { // Not last edge ?
786    Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx-1)*sizeof(Node*)));
787  }
788  _in[--_cnt] = NULL;   // NULL out emptied slot
789}
790
791//------------------------------ins_req----------------------------------------
792// Insert a new required input at the end
793void Node::ins_req( uint idx, Node *n ) {
794  assert( is_not_dead(n), "can not use dead node");
795  add_req(NULL);                // Make space
796  assert( idx < _max, "Must have allocated enough space");
797  // Slide over
798  if(_cnt-idx-1 > 0) {
799    Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
800  }
801  _in[idx] = n;                            // Stuff over old required edge
802  if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
803}
804
805//-----------------------------find_edge---------------------------------------
806int Node::find_edge(Node* n) {
807  for (uint i = 0; i < len(); i++) {
808    if (_in[i] == n)  return i;
809  }
810  return -1;
811}
812
813//----------------------------replace_edge-------------------------------------
814int Node::replace_edge(Node* old, Node* neww) {
815  if (old == neww)  return 0;  // nothing to do
816  uint nrep = 0;
817  for (uint i = 0; i < len(); i++) {
818    if (in(i) == old) {
819      if (i < req())
820        set_req(i, neww);
821      else
822        set_prec(i, neww);
823      nrep++;
824    }
825  }
826  return nrep;
827}
828
829/**
830 * Replace input edges in the range pointing to 'old' node.
831 */
832int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
833  if (old == neww)  return 0;  // nothing to do
834  uint nrep = 0;
835  for (int i = start; i < end; i++) {
836    if (in(i) == old) {
837      set_req(i, neww);
838      nrep++;
839    }
840  }
841  return nrep;
842}
843
844//-------------------------disconnect_inputs-----------------------------------
845// NULL out all inputs to eliminate incoming Def-Use edges.
846// Return the number of edges between 'n' and 'this'
847int Node::disconnect_inputs(Node *n, Compile* C) {
848  int edges_to_n = 0;
849
850  uint cnt = req();
851  for( uint i = 0; i < cnt; ++i ) {
852    if( in(i) == 0 ) continue;
853    if( in(i) == n ) ++edges_to_n;
854    set_req(i, NULL);
855  }
856  // Remove precedence edges if any exist
857  // Note: Safepoints may have precedence edges, even during parsing
858  if( (req() != len()) && (in(req()) != NULL) ) {
859    uint max = len();
860    for( uint i = 0; i < max; ++i ) {
861      if( in(i) == 0 ) continue;
862      if( in(i) == n ) ++edges_to_n;
863      set_prec(i, NULL);
864    }
865  }
866
867  // Node::destruct requires all out edges be deleted first
868  // debug_only(destruct();)   // no reuse benefit expected
869  if (edges_to_n == 0) {
870    C->record_dead_node(_idx);
871  }
872  return edges_to_n;
873}
874
875//-----------------------------uncast---------------------------------------
876// %%% Temporary, until we sort out CheckCastPP vs. CastPP.
877// Strip away casting.  (It is depth-limited.)
878Node* Node::uncast() const {
879  // Should be inline:
880  //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
881  if (is_ConstraintCast() || is_CheckCastPP())
882    return uncast_helper(this);
883  else
884    return (Node*) this;
885}
886
887//---------------------------uncast_helper-------------------------------------
888Node* Node::uncast_helper(const Node* p) {
889#ifdef ASSERT
890  uint depth_count = 0;
891  const Node* orig_p = p;
892#endif
893
894  while (true) {
895#ifdef ASSERT
896    if (depth_count >= K) {
897      orig_p->dump(4);
898      if (p != orig_p)
899        p->dump(1);
900    }
901    assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
902#endif
903    if (p == NULL || p->req() != 2) {
904      break;
905    } else if (p->is_ConstraintCast()) {
906      p = p->in(1);
907    } else if (p->is_CheckCastPP()) {
908      p = p->in(1);
909    } else {
910      break;
911    }
912  }
913  return (Node*) p;
914}
915
916//------------------------------add_prec---------------------------------------
917// Add a new precedence input.  Precedence inputs are unordered, with
918// duplicates removed and NULLs packed down at the end.
919void Node::add_prec( Node *n ) {
920  assert( is_not_dead(n), "can not use dead node");
921
922  // Check for NULL at end
923  if( _cnt >= _max || in(_max-1) )
924    grow( _max+1 );
925
926  // Find a precedence edge to move
927  uint i = _cnt;
928  while( in(i) != NULL ) i++;
929  _in[i] = n;                                // Stuff prec edge over NULL
930  if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
931}
932
933//------------------------------rm_prec----------------------------------------
934// Remove a precedence input.  Precedence inputs are unordered, with
935// duplicates removed and NULLs packed down at the end.
936void Node::rm_prec( uint j ) {
937
938  // Find end of precedence list to pack NULLs
939  uint i;
940  for( i=j; i<_max; i++ )
941    if( !_in[i] )               // Find the NULL at end of prec edge list
942      break;
943  if (_in[j] != NULL) _in[j]->del_out((Node *)this);
944  _in[j] = _in[--i];            // Move last element over removed guy
945  _in[i] = NULL;                // NULL out last element
946}
947
948//------------------------------size_of----------------------------------------
949uint Node::size_of() const { return sizeof(*this); }
950
951//------------------------------ideal_reg--------------------------------------
952uint Node::ideal_reg() const { return 0; }
953
954//------------------------------jvms-------------------------------------------
955JVMState* Node::jvms() const { return NULL; }
956
957#ifdef ASSERT
958//------------------------------jvms-------------------------------------------
959bool Node::verify_jvms(const JVMState* using_jvms) const {
960  for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
961    if (jvms == using_jvms)  return true;
962  }
963  return false;
964}
965
966//------------------------------init_NodeProperty------------------------------
967void Node::init_NodeProperty() {
968  assert(_max_classes <= max_jushort, "too many NodeProperty classes");
969  assert(_max_flags <= max_jushort, "too many NodeProperty flags");
970}
971#endif
972
973//------------------------------format-----------------------------------------
974// Print as assembly
975void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
976//------------------------------emit-------------------------------------------
977// Emit bytes starting at parameter 'ptr'.
978void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
979//------------------------------size-------------------------------------------
980// Size of instruction in bytes
981uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
982
983//------------------------------CFG Construction-------------------------------
984// Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
985// Goto and Return.
986const Node *Node::is_block_proj() const { return 0; }
987
988// Minimum guaranteed type
989const Type *Node::bottom_type() const { return Type::BOTTOM; }
990
991
992//------------------------------raise_bottom_type------------------------------
993// Get the worst-case Type output for this Node.
994void Node::raise_bottom_type(const Type* new_type) {
995  if (is_Type()) {
996    TypeNode *n = this->as_Type();
997    if (VerifyAliases) {
998      assert(new_type->higher_equal(n->type()), "new type must refine old type");
999    }
1000    n->set_type(new_type);
1001  } else if (is_Load()) {
1002    LoadNode *n = this->as_Load();
1003    if (VerifyAliases) {
1004      assert(new_type->higher_equal(n->type()), "new type must refine old type");
1005    }
1006    n->set_type(new_type);
1007  }
1008}
1009
1010//------------------------------Identity---------------------------------------
1011// Return a node that the given node is equivalent to.
1012Node *Node::Identity( PhaseTransform * ) {
1013  return this;                  // Default to no identities
1014}
1015
1016//------------------------------Value------------------------------------------
1017// Compute a new Type for a node using the Type of the inputs.
1018const Type *Node::Value( PhaseTransform * ) const {
1019  return bottom_type();         // Default to worst-case Type
1020}
1021
1022//------------------------------Ideal------------------------------------------
1023//
1024// 'Idealize' the graph rooted at this Node.
1025//
1026// In order to be efficient and flexible there are some subtle invariants
1027// these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
1028// these invariants, although its too slow to have on by default.  If you are
1029// hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
1030//
1031// The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1032// pointer.  If ANY change is made, it must return the root of the reshaped
1033// graph - even if the root is the same Node.  Example: swapping the inputs
1034// to an AddINode gives the same answer and same root, but you still have to
1035// return the 'this' pointer instead of NULL.
1036//
1037// You cannot return an OLD Node, except for the 'this' pointer.  Use the
1038// Identity call to return an old Node; basically if Identity can find
1039// another Node have the Ideal call make no change and return NULL.
1040// Example: AddINode::Ideal must check for add of zero; in this case it
1041// returns NULL instead of doing any graph reshaping.
1042//
1043// You cannot modify any old Nodes except for the 'this' pointer.  Due to
1044// sharing there may be other users of the old Nodes relying on their current
1045// semantics.  Modifying them will break the other users.
1046// Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1047// "X+3" unchanged in case it is shared.
1048//
1049// If you modify the 'this' pointer's inputs, you should use
1050// 'set_req'.  If you are making a new Node (either as the new root or
1051// some new internal piece) you may use 'init_req' to set the initial
1052// value.  You can make a new Node with either 'new' or 'clone'.  In
1053// either case, def-use info is correctly maintained.
1054//
1055// Example: reshape "(X+3)+4" into "X+7":
1056//    set_req(1, in(1)->in(1));
1057//    set_req(2, phase->intcon(7));
1058//    return this;
1059// Example: reshape "X*4" into "X<<2"
1060//    return new (C) LShiftINode(in(1), phase->intcon(2));
1061//
1062// You must call 'phase->transform(X)' on any new Nodes X you make, except
1063// for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1064//    Node *shift=phase->transform(new(C)LShiftINode(in(1),phase->intcon(5)));
1065//    return new (C) AddINode(shift, in(1));
1066//
1067// When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1068// These forms are faster than 'phase->transform(new (C) ConNode())' and Do
1069// The Right Thing with def-use info.
1070//
1071// You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1072// graph uses the 'this' Node it must be the root.  If you want a Node with
1073// the same Opcode as the 'this' pointer use 'clone'.
1074//
1075Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1076  return NULL;                  // Default to being Ideal already
1077}
1078
1079// Some nodes have specific Ideal subgraph transformations only if they are
1080// unique users of specific nodes. Such nodes should be put on IGVN worklist
1081// for the transformations to happen.
1082bool Node::has_special_unique_user() const {
1083  assert(outcnt() == 1, "match only for unique out");
1084  Node* n = unique_out();
1085  int op  = Opcode();
1086  if( this->is_Store() ) {
1087    // Condition for back-to-back stores folding.
1088    return n->Opcode() == op && n->in(MemNode::Memory) == this;
1089  } else if( op == Op_AddL ) {
1090    // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1091    return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1092  } else if( op == Op_SubI || op == Op_SubL ) {
1093    // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1094    return n->Opcode() == op && n->in(2) == this;
1095  }
1096  return false;
1097};
1098
1099//--------------------------find_exact_control---------------------------------
1100// Skip Proj and CatchProj nodes chains. Check for Null and Top.
1101Node* Node::find_exact_control(Node* ctrl) {
1102  if (ctrl == NULL && this->is_Region())
1103    ctrl = this->as_Region()->is_copy();
1104
1105  if (ctrl != NULL && ctrl->is_CatchProj()) {
1106    if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1107      ctrl = ctrl->in(0);
1108    if (ctrl != NULL && !ctrl->is_top())
1109      ctrl = ctrl->in(0);
1110  }
1111
1112  if (ctrl != NULL && ctrl->is_Proj())
1113    ctrl = ctrl->in(0);
1114
1115  return ctrl;
1116}
1117
1118//--------------------------dominates------------------------------------------
1119// Helper function for MemNode::all_controls_dominate().
1120// Check if 'this' control node dominates or equal to 'sub' control node.
1121// We already know that if any path back to Root or Start reaches 'this',
1122// then all paths so, so this is a simple search for one example,
1123// not an exhaustive search for a counterexample.
1124bool Node::dominates(Node* sub, Node_List &nlist) {
1125  assert(this->is_CFG(), "expecting control");
1126  assert(sub != NULL && sub->is_CFG(), "expecting control");
1127
1128  // detect dead cycle without regions
1129  int iterations_without_region_limit = DominatorSearchLimit;
1130
1131  Node* orig_sub = sub;
1132  Node* dom      = this;
1133  bool  met_dom  = false;
1134  nlist.clear();
1135
1136  // Walk 'sub' backward up the chain to 'dom', watching for regions.
1137  // After seeing 'dom', continue up to Root or Start.
1138  // If we hit a region (backward split point), it may be a loop head.
1139  // Keep going through one of the region's inputs.  If we reach the
1140  // same region again, go through a different input.  Eventually we
1141  // will either exit through the loop head, or give up.
1142  // (If we get confused, break out and return a conservative 'false'.)
1143  while (sub != NULL) {
1144    if (sub->is_top())  break; // Conservative answer for dead code.
1145    if (sub == dom) {
1146      if (nlist.size() == 0) {
1147        // No Region nodes except loops were visited before and the EntryControl
1148        // path was taken for loops: it did not walk in a cycle.
1149        return true;
1150      } else if (met_dom) {
1151        break;          // already met before: walk in a cycle
1152      } else {
1153        // Region nodes were visited. Continue walk up to Start or Root
1154        // to make sure that it did not walk in a cycle.
1155        met_dom = true; // first time meet
1156        iterations_without_region_limit = DominatorSearchLimit; // Reset
1157     }
1158    }
1159    if (sub->is_Start() || sub->is_Root()) {
1160      // Success if we met 'dom' along a path to Start or Root.
1161      // We assume there are no alternative paths that avoid 'dom'.
1162      // (This assumption is up to the caller to ensure!)
1163      return met_dom;
1164    }
1165    Node* up = sub->in(0);
1166    // Normalize simple pass-through regions and projections:
1167    up = sub->find_exact_control(up);
1168    // If sub == up, we found a self-loop.  Try to push past it.
1169    if (sub == up && sub->is_Loop()) {
1170      // Take loop entry path on the way up to 'dom'.
1171      up = sub->in(1); // in(LoopNode::EntryControl);
1172    } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1173      // Always take in(1) path on the way up to 'dom' for clone regions
1174      // (with only one input) or regions which merge > 2 paths
1175      // (usually used to merge fast/slow paths).
1176      up = sub->in(1);
1177    } else if (sub == up && sub->is_Region()) {
1178      // Try both paths for Regions with 2 input paths (it may be a loop head).
1179      // It could give conservative 'false' answer without information
1180      // which region's input is the entry path.
1181      iterations_without_region_limit = DominatorSearchLimit; // Reset
1182
1183      bool region_was_visited_before = false;
1184      // Was this Region node visited before?
1185      // If so, we have reached it because we accidentally took a
1186      // loop-back edge from 'sub' back into the body of the loop,
1187      // and worked our way up again to the loop header 'sub'.
1188      // So, take the first unexplored path on the way up to 'dom'.
1189      for (int j = nlist.size() - 1; j >= 0; j--) {
1190        intptr_t ni = (intptr_t)nlist.at(j);
1191        Node* visited = (Node*)(ni & ~1);
1192        bool  visited_twice_already = ((ni & 1) != 0);
1193        if (visited == sub) {
1194          if (visited_twice_already) {
1195            // Visited 2 paths, but still stuck in loop body.  Give up.
1196            return false;
1197          }
1198          // The Region node was visited before only once.
1199          // (We will repush with the low bit set, below.)
1200          nlist.remove(j);
1201          // We will find a new edge and re-insert.
1202          region_was_visited_before = true;
1203          break;
1204        }
1205      }
1206
1207      // Find an incoming edge which has not been seen yet; walk through it.
1208      assert(up == sub, "");
1209      uint skip = region_was_visited_before ? 1 : 0;
1210      for (uint i = 1; i < sub->req(); i++) {
1211        Node* in = sub->in(i);
1212        if (in != NULL && !in->is_top() && in != sub) {
1213          if (skip == 0) {
1214            up = in;
1215            break;
1216          }
1217          --skip;               // skip this nontrivial input
1218        }
1219      }
1220
1221      // Set 0 bit to indicate that both paths were taken.
1222      nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1223    }
1224
1225    if (up == sub) {
1226      break;    // some kind of tight cycle
1227    }
1228    if (up == orig_sub && met_dom) {
1229      // returned back after visiting 'dom'
1230      break;    // some kind of cycle
1231    }
1232    if (--iterations_without_region_limit < 0) {
1233      break;    // dead cycle
1234    }
1235    sub = up;
1236  }
1237
1238  // Did not meet Root or Start node in pred. chain.
1239  // Conservative answer for dead code.
1240  return false;
1241}
1242
1243//------------------------------remove_dead_region-----------------------------
1244// This control node is dead.  Follow the subgraph below it making everything
1245// using it dead as well.  This will happen normally via the usual IterGVN
1246// worklist but this call is more efficient.  Do not update use-def info
1247// inside the dead region, just at the borders.
1248static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1249  // Con's are a popular node to re-hit in the hash table again.
1250  if( dead->is_Con() ) return;
1251
1252  // Can't put ResourceMark here since igvn->_worklist uses the same arena
1253  // for verify pass with +VerifyOpto and we add/remove elements in it here.
1254  Node_List  nstack(Thread::current()->resource_area());
1255
1256  Node *top = igvn->C->top();
1257  nstack.push(dead);
1258
1259  while (nstack.size() > 0) {
1260    dead = nstack.pop();
1261    if (dead->outcnt() > 0) {
1262      // Keep dead node on stack until all uses are processed.
1263      nstack.push(dead);
1264      // For all Users of the Dead...    ;-)
1265      for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1266        Node* use = dead->last_out(k);
1267        igvn->hash_delete(use);       // Yank from hash table prior to mod
1268        if (use->in(0) == dead) {     // Found another dead node
1269          assert (!use->is_Con(), "Control for Con node should be Root node.");
1270          use->set_req(0, top);       // Cut dead edge to prevent processing
1271          nstack.push(use);           // the dead node again.
1272        } else {                      // Else found a not-dead user
1273          for (uint j = 1; j < use->req(); j++) {
1274            if (use->in(j) == dead) { // Turn all dead inputs into TOP
1275              use->set_req(j, top);
1276            }
1277          }
1278          igvn->_worklist.push(use);
1279        }
1280        // Refresh the iterator, since any number of kills might have happened.
1281        k = dead->last_outs(kmin);
1282      }
1283    } else { // (dead->outcnt() == 0)
1284      // Done with outputs.
1285      igvn->hash_delete(dead);
1286      igvn->_worklist.remove(dead);
1287      igvn->set_type(dead, Type::TOP);
1288      if (dead->is_macro()) {
1289        igvn->C->remove_macro_node(dead);
1290      }
1291      if (dead->is_expensive()) {
1292        igvn->C->remove_expensive_node(dead);
1293      }
1294      igvn->C->record_dead_node(dead->_idx);
1295      // Kill all inputs to the dead guy
1296      for (uint i=0; i < dead->req(); i++) {
1297        Node *n = dead->in(i);      // Get input to dead guy
1298        if (n != NULL && !n->is_top()) { // Input is valid?
1299          dead->set_req(i, top);    // Smash input away
1300          if (n->outcnt() == 0) {   // Input also goes dead?
1301            if (!n->is_Con())
1302              nstack.push(n);       // Clear it out as well
1303          } else if (n->outcnt() == 1 &&
1304                     n->has_special_unique_user()) {
1305            igvn->add_users_to_worklist( n );
1306          } else if (n->outcnt() <= 2 && n->is_Store()) {
1307            // Push store's uses on worklist to enable folding optimization for
1308            // store/store and store/load to the same address.
1309            // The restriction (outcnt() <= 2) is the same as in set_req_X()
1310            // and remove_globally_dead_node().
1311            igvn->add_users_to_worklist( n );
1312          }
1313        }
1314      }
1315    } // (dead->outcnt() == 0)
1316  }   // while (nstack.size() > 0) for outputs
1317  return;
1318}
1319
1320//------------------------------remove_dead_region-----------------------------
1321bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1322  Node *n = in(0);
1323  if( !n ) return false;
1324  // Lost control into this guy?  I.e., it became unreachable?
1325  // Aggressively kill all unreachable code.
1326  if (can_reshape && n->is_top()) {
1327    kill_dead_code(this, phase->is_IterGVN());
1328    return false; // Node is dead.
1329  }
1330
1331  if( n->is_Region() && n->as_Region()->is_copy() ) {
1332    Node *m = n->nonnull_req();
1333    set_req(0, m);
1334    return true;
1335  }
1336  return false;
1337}
1338
1339//------------------------------Ideal_DU_postCCP-------------------------------
1340// Idealize graph, using DU info.  Must clone result into new-space
1341Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
1342  return NULL;                 // Default to no change
1343}
1344
1345//------------------------------hash-------------------------------------------
1346// Hash function over Nodes.
1347uint Node::hash() const {
1348  uint sum = 0;
1349  for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1350    sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1351  return (sum>>2) + _cnt + Opcode();
1352}
1353
1354//------------------------------cmp--------------------------------------------
1355// Compare special parts of simple Nodes
1356uint Node::cmp( const Node &n ) const {
1357  return 1;                     // Must be same
1358}
1359
1360//------------------------------rematerialize-----------------------------------
1361// Should we clone rather than spill this instruction?
1362bool Node::rematerialize() const {
1363  if ( is_Mach() )
1364    return this->as_Mach()->rematerialize();
1365  else
1366    return (_flags & Flag_rematerialize) != 0;
1367}
1368
1369//------------------------------needs_anti_dependence_check---------------------
1370// Nodes which use memory without consuming it, hence need antidependences.
1371bool Node::needs_anti_dependence_check() const {
1372  if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1373    return false;
1374  else
1375    return in(1)->bottom_type()->has_memory();
1376}
1377
1378
1379// Get an integer constant from a ConNode (or CastIINode).
1380// Return a default value if there is no apparent constant here.
1381const TypeInt* Node::find_int_type() const {
1382  if (this->is_Type()) {
1383    return this->as_Type()->type()->isa_int();
1384  } else if (this->is_Con()) {
1385    assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1386    return this->bottom_type()->isa_int();
1387  }
1388  return NULL;
1389}
1390
1391// Get a pointer constant from a ConstNode.
1392// Returns the constant if it is a pointer ConstNode
1393intptr_t Node::get_ptr() const {
1394  assert( Opcode() == Op_ConP, "" );
1395  return ((ConPNode*)this)->type()->is_ptr()->get_con();
1396}
1397
1398// Get a narrow oop constant from a ConNNode.
1399intptr_t Node::get_narrowcon() const {
1400  assert( Opcode() == Op_ConN, "" );
1401  return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1402}
1403
1404// Get a long constant from a ConNode.
1405// Return a default value if there is no apparent constant here.
1406const TypeLong* Node::find_long_type() const {
1407  if (this->is_Type()) {
1408    return this->as_Type()->type()->isa_long();
1409  } else if (this->is_Con()) {
1410    assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1411    return this->bottom_type()->isa_long();
1412  }
1413  return NULL;
1414}
1415
1416
1417/**
1418 * Return a ptr type for nodes which should have it.
1419 */
1420const TypePtr* Node::get_ptr_type() const {
1421  const TypePtr* tp = this->bottom_type()->make_ptr();
1422#ifdef ASSERT
1423  if (tp == NULL) {
1424    this->dump(1);
1425    assert((tp != NULL), "unexpected node type");
1426  }
1427#endif
1428  return tp;
1429}
1430
1431// Get a double constant from a ConstNode.
1432// Returns the constant if it is a double ConstNode
1433jdouble Node::getd() const {
1434  assert( Opcode() == Op_ConD, "" );
1435  return ((ConDNode*)this)->type()->is_double_constant()->getd();
1436}
1437
1438// Get a float constant from a ConstNode.
1439// Returns the constant if it is a float ConstNode
1440jfloat Node::getf() const {
1441  assert( Opcode() == Op_ConF, "" );
1442  return ((ConFNode*)this)->type()->is_float_constant()->getf();
1443}
1444
1445#ifndef PRODUCT
1446
1447//----------------------------NotANode----------------------------------------
1448// Used in debugging code to avoid walking across dead or uninitialized edges.
1449static inline bool NotANode(const Node* n) {
1450  if (n == NULL)                   return true;
1451  if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1452  if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1453  return false;
1454}
1455
1456
1457//------------------------------find------------------------------------------
1458// Find a neighbor of this Node with the given _idx
1459// If idx is negative, find its absolute value, following both _in and _out.
1460static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1461                        VectorSet* old_space, VectorSet* new_space ) {
1462  int node_idx = (idx >= 0) ? idx : -idx;
1463  if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1464  // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1465  VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1466  if( v->test(n->_idx) ) return;
1467  if( (int)n->_idx == node_idx
1468      debug_only(|| n->debug_idx() == node_idx) ) {
1469    if (result != NULL)
1470      tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1471                 (uintptr_t)result, (uintptr_t)n, node_idx);
1472    result = n;
1473  }
1474  v->set(n->_idx);
1475  for( uint i=0; i<n->len(); i++ ) {
1476    if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1477    find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1478  }
1479  // Search along forward edges also:
1480  if (idx < 0 && !only_ctrl) {
1481    for( uint j=0; j<n->outcnt(); j++ ) {
1482      find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1483    }
1484  }
1485#ifdef ASSERT
1486  // Search along debug_orig edges last, checking for cycles
1487  Node* orig = n->debug_orig();
1488  if (orig != NULL) {
1489    do {
1490      if (NotANode(orig))  break;
1491      find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1492      orig = orig->debug_orig();
1493    } while (orig != NULL && orig != n->debug_orig());
1494  }
1495#endif //ASSERT
1496}
1497
1498// call this from debugger:
1499Node* find_node(Node* n, int idx) {
1500  return n->find(idx);
1501}
1502
1503//------------------------------find-------------------------------------------
1504Node* Node::find(int idx) const {
1505  ResourceArea *area = Thread::current()->resource_area();
1506  VectorSet old_space(area), new_space(area);
1507  Node* result = NULL;
1508  find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1509  return result;
1510}
1511
1512//------------------------------find_ctrl--------------------------------------
1513// Find an ancestor to this node in the control history with given _idx
1514Node* Node::find_ctrl(int idx) const {
1515  ResourceArea *area = Thread::current()->resource_area();
1516  VectorSet old_space(area), new_space(area);
1517  Node* result = NULL;
1518  find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1519  return result;
1520}
1521#endif
1522
1523
1524
1525#ifndef PRODUCT
1526
1527// -----------------------------Name-------------------------------------------
1528extern const char *NodeClassNames[];
1529const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1530
1531static bool is_disconnected(const Node* n) {
1532  for (uint i = 0; i < n->req(); i++) {
1533    if (n->in(i) != NULL)  return false;
1534  }
1535  return true;
1536}
1537
1538#ifdef ASSERT
1539static void dump_orig(Node* orig, outputStream *st) {
1540  Compile* C = Compile::current();
1541  if (NotANode(orig)) orig = NULL;
1542  if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1543  if (orig == NULL) return;
1544  st->print(" !orig=");
1545  Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1546  if (NotANode(fast)) fast = NULL;
1547  while (orig != NULL) {
1548    bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1549    if (discon) st->print("[");
1550    if (!Compile::current()->node_arena()->contains(orig))
1551      st->print("o");
1552    st->print("%d", orig->_idx);
1553    if (discon) st->print("]");
1554    orig = orig->debug_orig();
1555    if (NotANode(orig)) orig = NULL;
1556    if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1557    if (orig != NULL) st->print(",");
1558    if (fast != NULL) {
1559      // Step fast twice for each single step of orig:
1560      fast = fast->debug_orig();
1561      if (NotANode(fast)) fast = NULL;
1562      if (fast != NULL && fast != orig) {
1563        fast = fast->debug_orig();
1564        if (NotANode(fast)) fast = NULL;
1565      }
1566      if (fast == orig) {
1567        st->print("...");
1568        break;
1569      }
1570    }
1571  }
1572}
1573
1574void Node::set_debug_orig(Node* orig) {
1575  _debug_orig = orig;
1576  if (BreakAtNode == 0)  return;
1577  if (NotANode(orig))  orig = NULL;
1578  int trip = 10;
1579  while (orig != NULL) {
1580    if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1581      tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1582                    this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1583      BREAKPOINT;
1584    }
1585    orig = orig->debug_orig();
1586    if (NotANode(orig))  orig = NULL;
1587    if (trip-- <= 0)  break;
1588  }
1589}
1590#endif //ASSERT
1591
1592//------------------------------dump------------------------------------------
1593// Dump a Node
1594void Node::dump(const char* suffix, outputStream *st) const {
1595  Compile* C = Compile::current();
1596  bool is_new = C->node_arena()->contains(this);
1597  C->_in_dump_cnt++;
1598  st->print("%c%d\t%s\t=== ", is_new ? ' ' : 'o', _idx, Name());
1599
1600  // Dump the required and precedence inputs
1601  dump_req(st);
1602  dump_prec(st);
1603  // Dump the outputs
1604  dump_out(st);
1605
1606  if (is_disconnected(this)) {
1607#ifdef ASSERT
1608    st->print("  [%d]",debug_idx());
1609    dump_orig(debug_orig(), st);
1610#endif
1611    st->cr();
1612    C->_in_dump_cnt--;
1613    return;                     // don't process dead nodes
1614  }
1615
1616  // Dump node-specific info
1617  dump_spec(st);
1618#ifdef ASSERT
1619  // Dump the non-reset _debug_idx
1620  if (Verbose && WizardMode) {
1621    st->print("  [%d]",debug_idx());
1622  }
1623#endif
1624
1625  const Type *t = bottom_type();
1626
1627  if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1628    const TypeInstPtr  *toop = t->isa_instptr();
1629    const TypeKlassPtr *tkls = t->isa_klassptr();
1630    ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1631    if (klass && klass->is_loaded() && klass->is_interface()) {
1632      st->print("  Interface:");
1633    } else if (toop) {
1634      st->print("  Oop:");
1635    } else if (tkls) {
1636      st->print("  Klass:");
1637    }
1638    t->dump_on(st);
1639  } else if (t == Type::MEMORY) {
1640    st->print("  Memory:");
1641    MemNode::dump_adr_type(this, adr_type(), st);
1642  } else if (Verbose || WizardMode) {
1643    st->print("  Type:");
1644    if (t) {
1645      t->dump_on(st);
1646    } else {
1647      st->print("no type");
1648    }
1649  } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1650    // Dump MachSpillcopy vector type.
1651    t->dump_on(st);
1652  }
1653  if (is_new) {
1654    debug_only(dump_orig(debug_orig(), st));
1655    Node_Notes* nn = C->node_notes_at(_idx);
1656    if (nn != NULL && !nn->is_clear()) {
1657      if (nn->jvms() != NULL) {
1658        st->print(" !jvms:");
1659        nn->jvms()->dump_spec(st);
1660      }
1661    }
1662  }
1663  if (suffix) st->print(suffix);
1664  C->_in_dump_cnt--;
1665}
1666
1667//------------------------------dump_req--------------------------------------
1668void Node::dump_req(outputStream *st) const {
1669  // Dump the required input edges
1670  for (uint i = 0; i < req(); i++) {    // For all required inputs
1671    Node* d = in(i);
1672    if (d == NULL) {
1673      st->print("_ ");
1674    } else if (NotANode(d)) {
1675      st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1676    } else {
1677      st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1678    }
1679  }
1680}
1681
1682
1683//------------------------------dump_prec-------------------------------------
1684void Node::dump_prec(outputStream *st) const {
1685  // Dump the precedence edges
1686  int any_prec = 0;
1687  for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1688    Node* p = in(i);
1689    if (p != NULL) {
1690      if (!any_prec++) st->print(" |");
1691      if (NotANode(p)) { st->print("NotANode "); continue; }
1692      st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1693    }
1694  }
1695}
1696
1697//------------------------------dump_out--------------------------------------
1698void Node::dump_out(outputStream *st) const {
1699  // Delimit the output edges
1700  st->print(" [[");
1701  // Dump the output edges
1702  for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1703    Node* u = _out[i];
1704    if (u == NULL) {
1705      st->print("_ ");
1706    } else if (NotANode(u)) {
1707      st->print("NotANode ");
1708    } else {
1709      st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1710    }
1711  }
1712  st->print("]] ");
1713}
1714
1715//------------------------------dump_nodes-------------------------------------
1716static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1717  Node* s = (Node*)start; // remove const
1718  if (NotANode(s)) return;
1719
1720  uint depth = (uint)ABS(d);
1721  int direction = d;
1722  Compile* C = Compile::current();
1723  GrowableArray <Node *> nstack(C->unique());
1724
1725  nstack.append(s);
1726  int begin = 0;
1727  int end = 0;
1728  for(uint i = 0; i < depth; i++) {
1729    end = nstack.length();
1730    for(int j = begin; j < end; j++) {
1731      Node* tp  = nstack.at(j);
1732      uint limit = direction > 0 ? tp->len() : tp->outcnt();
1733      for(uint k = 0; k < limit; k++) {
1734        Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1735
1736        if (NotANode(n))  continue;
1737        // do not recurse through top or the root (would reach unrelated stuff)
1738        if (n->is_Root() || n->is_top())  continue;
1739        if (only_ctrl && !n->is_CFG()) continue;
1740
1741        bool on_stack = nstack.contains(n);
1742        if (!on_stack) {
1743          nstack.append(n);
1744        }
1745      }
1746    }
1747    begin = end;
1748  }
1749  end = nstack.length();
1750  if (direction > 0) {
1751    for(int j = end-1; j >= 0; j--) {
1752      nstack.at(j)->dump();
1753    }
1754  } else {
1755    for(int j = 0; j < end; j++) {
1756      nstack.at(j)->dump();
1757    }
1758  }
1759}
1760
1761//------------------------------dump-------------------------------------------
1762void Node::dump(int d) const {
1763  dump_nodes(this, d, false);
1764}
1765
1766//------------------------------dump_ctrl--------------------------------------
1767// Dump a Node's control history to depth
1768void Node::dump_ctrl(int d) const {
1769  dump_nodes(this, d, true);
1770}
1771
1772// VERIFICATION CODE
1773// For each input edge to a node (ie - for each Use-Def edge), verify that
1774// there is a corresponding Def-Use edge.
1775//------------------------------verify_edges-----------------------------------
1776void Node::verify_edges(Unique_Node_List &visited) {
1777  uint i, j, idx;
1778  int  cnt;
1779  Node *n;
1780
1781  // Recursive termination test
1782  if (visited.member(this))  return;
1783  visited.push(this);
1784
1785  // Walk over all input edges, checking for correspondence
1786  for( i = 0; i < len(); i++ ) {
1787    n = in(i);
1788    if (n != NULL && !n->is_top()) {
1789      // Count instances of (Node *)this
1790      cnt = 0;
1791      for (idx = 0; idx < n->_outcnt; idx++ ) {
1792        if (n->_out[idx] == (Node *)this)  cnt++;
1793      }
1794      assert( cnt > 0,"Failed to find Def-Use edge." );
1795      // Check for duplicate edges
1796      // walk the input array downcounting the input edges to n
1797      for( j = 0; j < len(); j++ ) {
1798        if( in(j) == n ) cnt--;
1799      }
1800      assert( cnt == 0,"Mismatched edge count.");
1801    } else if (n == NULL) {
1802      assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
1803    } else {
1804      assert(n->is_top(), "sanity");
1805      // Nothing to check.
1806    }
1807  }
1808  // Recursive walk over all input edges
1809  for( i = 0; i < len(); i++ ) {
1810    n = in(i);
1811    if( n != NULL )
1812      in(i)->verify_edges(visited);
1813  }
1814}
1815
1816//------------------------------verify_recur-----------------------------------
1817static const Node *unique_top = NULL;
1818
1819void Node::verify_recur(const Node *n, int verify_depth,
1820                        VectorSet &old_space, VectorSet &new_space) {
1821  if ( verify_depth == 0 )  return;
1822  if (verify_depth > 0)  --verify_depth;
1823
1824  Compile* C = Compile::current();
1825
1826  // Contained in new_space or old_space?
1827  VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
1828  // Check for visited in the proper space.  Numberings are not unique
1829  // across spaces so we need a separate VectorSet for each space.
1830  if( v->test_set(n->_idx) ) return;
1831
1832  if (n->is_Con() && n->bottom_type() == Type::TOP) {
1833    if (C->cached_top_node() == NULL)
1834      C->set_cached_top_node((Node*)n);
1835    assert(C->cached_top_node() == n, "TOP node must be unique");
1836  }
1837
1838  for( uint i = 0; i < n->len(); i++ ) {
1839    Node *x = n->in(i);
1840    if (!x || x->is_top()) continue;
1841
1842    // Verify my input has a def-use edge to me
1843    if (true /*VerifyDefUse*/) {
1844      // Count use-def edges from n to x
1845      int cnt = 0;
1846      for( uint j = 0; j < n->len(); j++ )
1847        if( n->in(j) == x )
1848          cnt++;
1849      // Count def-use edges from x to n
1850      uint max = x->_outcnt;
1851      for( uint k = 0; k < max; k++ )
1852        if (x->_out[k] == n)
1853          cnt--;
1854      assert( cnt == 0, "mismatched def-use edge counts" );
1855    }
1856
1857    verify_recur(x, verify_depth, old_space, new_space);
1858  }
1859
1860}
1861
1862//------------------------------verify-----------------------------------------
1863// Check Def-Use info for my subgraph
1864void Node::verify() const {
1865  Compile* C = Compile::current();
1866  Node* old_top = C->cached_top_node();
1867  ResourceMark rm;
1868  ResourceArea *area = Thread::current()->resource_area();
1869  VectorSet old_space(area), new_space(area);
1870  verify_recur(this, -1, old_space, new_space);
1871  C->set_cached_top_node(old_top);
1872}
1873#endif
1874
1875
1876//------------------------------walk-------------------------------------------
1877// Graph walk, with both pre-order and post-order functions
1878void Node::walk(NFunc pre, NFunc post, void *env) {
1879  VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
1880  walk_(pre, post, env, visited);
1881}
1882
1883void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
1884  if( visited.test_set(_idx) ) return;
1885  pre(*this,env);               // Call the pre-order walk function
1886  for( uint i=0; i<_max; i++ )
1887    if( in(i) )                 // Input exists and is not walked?
1888      in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
1889  post(*this,env);              // Call the post-order walk function
1890}
1891
1892void Node::nop(Node &, void*) {}
1893
1894//------------------------------Registers--------------------------------------
1895// Do we Match on this edge index or not?  Generally false for Control
1896// and true for everything else.  Weird for calls & returns.
1897uint Node::match_edge(uint idx) const {
1898  return idx;                   // True for other than index 0 (control)
1899}
1900
1901static RegMask _not_used_at_all;
1902// Register classes are defined for specific machines
1903const RegMask &Node::out_RegMask() const {
1904  ShouldNotCallThis();
1905  return _not_used_at_all;
1906}
1907
1908const RegMask &Node::in_RegMask(uint) const {
1909  ShouldNotCallThis();
1910  return _not_used_at_all;
1911}
1912
1913//=============================================================================
1914//-----------------------------------------------------------------------------
1915void Node_Array::reset( Arena *new_arena ) {
1916  _a->Afree(_nodes,_max*sizeof(Node*));
1917  _max   = 0;
1918  _nodes = NULL;
1919  _a     = new_arena;
1920}
1921
1922//------------------------------clear------------------------------------------
1923// Clear all entries in _nodes to NULL but keep storage
1924void Node_Array::clear() {
1925  Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
1926}
1927
1928//-----------------------------------------------------------------------------
1929void Node_Array::grow( uint i ) {
1930  if( !_max ) {
1931    _max = 1;
1932    _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
1933    _nodes[0] = NULL;
1934  }
1935  uint old = _max;
1936  while( i >= _max ) _max <<= 1;        // Double to fit
1937  _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
1938  Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
1939}
1940
1941//-----------------------------------------------------------------------------
1942void Node_Array::insert( uint i, Node *n ) {
1943  if( _nodes[_max-1] ) grow(_max);      // Get more space if full
1944  Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
1945  _nodes[i] = n;
1946}
1947
1948//-----------------------------------------------------------------------------
1949void Node_Array::remove( uint i ) {
1950  Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
1951  _nodes[_max-1] = NULL;
1952}
1953
1954//-----------------------------------------------------------------------------
1955void Node_Array::sort( C_sort_func_t func) {
1956  qsort( _nodes, _max, sizeof( Node* ), func );
1957}
1958
1959//-----------------------------------------------------------------------------
1960void Node_Array::dump() const {
1961#ifndef PRODUCT
1962  for( uint i = 0; i < _max; i++ ) {
1963    Node *nn = _nodes[i];
1964    if( nn != NULL ) {
1965      tty->print("%5d--> ",i); nn->dump();
1966    }
1967  }
1968#endif
1969}
1970
1971//--------------------------is_iteratively_computed------------------------------
1972// Operation appears to be iteratively computed (such as an induction variable)
1973// It is possible for this operation to return false for a loop-varying
1974// value, if it appears (by local graph inspection) to be computed by a simple conditional.
1975bool Node::is_iteratively_computed() {
1976  if (ideal_reg()) { // does operation have a result register?
1977    for (uint i = 1; i < req(); i++) {
1978      Node* n = in(i);
1979      if (n != NULL && n->is_Phi()) {
1980        for (uint j = 1; j < n->req(); j++) {
1981          if (n->in(j) == this) {
1982            return true;
1983          }
1984        }
1985      }
1986    }
1987  }
1988  return false;
1989}
1990
1991//--------------------------find_similar------------------------------
1992// Return a node with opcode "opc" and same inputs as "this" if one can
1993// be found; Otherwise return NULL;
1994Node* Node::find_similar(int opc) {
1995  if (req() >= 2) {
1996    Node* def = in(1);
1997    if (def && def->outcnt() >= 2) {
1998      for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
1999        Node* use = def->fast_out(i);
2000        if (use->Opcode() == opc &&
2001            use->req() == req()) {
2002          uint j;
2003          for (j = 0; j < use->req(); j++) {
2004            if (use->in(j) != in(j)) {
2005              break;
2006            }
2007          }
2008          if (j == use->req()) {
2009            return use;
2010          }
2011        }
2012      }
2013    }
2014  }
2015  return NULL;
2016}
2017
2018
2019//--------------------------unique_ctrl_out------------------------------
2020// Return the unique control out if only one. Null if none or more than one.
2021Node* Node::unique_ctrl_out() {
2022  Node* found = NULL;
2023  for (uint i = 0; i < outcnt(); i++) {
2024    Node* use = raw_out(i);
2025    if (use->is_CFG() && use != this) {
2026      if (found != NULL) return NULL;
2027      found = use;
2028    }
2029  }
2030  return found;
2031}
2032
2033//=============================================================================
2034//------------------------------yank-------------------------------------------
2035// Find and remove
2036void Node_List::yank( Node *n ) {
2037  uint i;
2038  for( i = 0; i < _cnt; i++ )
2039    if( _nodes[i] == n )
2040      break;
2041
2042  if( i < _cnt )
2043    _nodes[i] = _nodes[--_cnt];
2044}
2045
2046//------------------------------dump-------------------------------------------
2047void Node_List::dump() const {
2048#ifndef PRODUCT
2049  for( uint i = 0; i < _cnt; i++ )
2050    if( _nodes[i] ) {
2051      tty->print("%5d--> ",i);
2052      _nodes[i]->dump();
2053    }
2054#endif
2055}
2056
2057//=============================================================================
2058//------------------------------remove-----------------------------------------
2059void Unique_Node_List::remove( Node *n ) {
2060  if( _in_worklist[n->_idx] ) {
2061    for( uint i = 0; i < size(); i++ )
2062      if( _nodes[i] == n ) {
2063        map(i,Node_List::pop());
2064        _in_worklist >>= n->_idx;
2065        return;
2066      }
2067    ShouldNotReachHere();
2068  }
2069}
2070
2071//-----------------------remove_useless_nodes----------------------------------
2072// Remove useless nodes from worklist
2073void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2074
2075  for( uint i = 0; i < size(); ++i ) {
2076    Node *n = at(i);
2077    assert( n != NULL, "Did not expect null entries in worklist");
2078    if( ! useful.test(n->_idx) ) {
2079      _in_worklist >>= n->_idx;
2080      map(i,Node_List::pop());
2081      // Node *replacement = Node_List::pop();
2082      // if( i != size() ) { // Check if removing last entry
2083      //   _nodes[i] = replacement;
2084      // }
2085      --i;  // Visit popped node
2086      // If it was last entry, loop terminates since size() was also reduced
2087    }
2088  }
2089}
2090
2091//=============================================================================
2092void Node_Stack::grow() {
2093  size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2094  size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2095  size_t max = old_max << 1;             // max * 2
2096  _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2097  _inode_max = _inodes + max;
2098  _inode_top = _inodes + old_top;        // restore _top
2099}
2100
2101// Node_Stack is used to map nodes.
2102Node* Node_Stack::find(uint idx) const {
2103  uint sz = size();
2104  for (uint i=0; i < sz; i++) {
2105    if (idx == index_at(i) )
2106      return node_at(i);
2107  }
2108  return NULL;
2109}
2110
2111//=============================================================================
2112uint TypeNode::size_of() const { return sizeof(*this); }
2113#ifndef PRODUCT
2114void TypeNode::dump_spec(outputStream *st) const {
2115  if( !Verbose && !WizardMode ) {
2116    // standard dump does this in Verbose and WizardMode
2117    st->print(" #"); _type->dump_on(st);
2118  }
2119}
2120#endif
2121uint TypeNode::hash() const {
2122  return Node::hash() + _type->hash();
2123}
2124uint TypeNode::cmp( const Node &n ) const
2125{ return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2126const Type *TypeNode::bottom_type() const { return _type; }
2127const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
2128
2129//------------------------------ideal_reg--------------------------------------
2130uint TypeNode::ideal_reg() const {
2131  return _type->ideal_reg();
2132}
2133