node.cpp revision 3602:da91efe96a93
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "libadt/vectset.hpp"
27#include "memory/allocation.inline.hpp"
28#include "opto/cfgnode.hpp"
29#include "opto/connode.hpp"
30#include "opto/machnode.hpp"
31#include "opto/matcher.hpp"
32#include "opto/node.hpp"
33#include "opto/opcodes.hpp"
34#include "opto/regmask.hpp"
35#include "opto/type.hpp"
36#include "utilities/copy.hpp"
37
38class RegMask;
39// #include "phase.hpp"
40class PhaseTransform;
41class PhaseGVN;
42
43// Arena we are currently building Nodes in
44const uint Node::NotAMachineReg = 0xffff0000;
45
46#ifndef PRODUCT
47extern int nodes_created;
48#endif
49
50#ifdef ASSERT
51
52//-------------------------- construct_node------------------------------------
53// Set a breakpoint here to identify where a particular node index is built.
54void Node::verify_construction() {
55  _debug_orig = NULL;
56  int old_debug_idx = Compile::debug_idx();
57  int new_debug_idx = old_debug_idx+1;
58  if (new_debug_idx > 0) {
59    // Arrange that the lowest five decimal digits of _debug_idx
60    // will repeat thos of _idx.  In case this is somehow pathological,
61    // we continue to assign negative numbers (!) consecutively.
62    const int mod = 100000;
63    int bump = (int)(_idx - new_debug_idx) % mod;
64    if (bump < 0)  bump += mod;
65    assert(bump >= 0 && bump < mod, "");
66    new_debug_idx += bump;
67  }
68  Compile::set_debug_idx(new_debug_idx);
69  set_debug_idx( new_debug_idx );
70  assert(Compile::current()->unique() < (uint)MaxNodeLimit, "Node limit exceeded");
71  if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
72    tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
73    BREAKPOINT;
74  }
75#if OPTO_DU_ITERATOR_ASSERT
76  _last_del = NULL;
77  _del_tick = 0;
78#endif
79  _hash_lock = 0;
80}
81
82
83// #ifdef ASSERT ...
84
85#if OPTO_DU_ITERATOR_ASSERT
86void DUIterator_Common::sample(const Node* node) {
87  _vdui     = VerifyDUIterators;
88  _node     = node;
89  _outcnt   = node->_outcnt;
90  _del_tick = node->_del_tick;
91  _last     = NULL;
92}
93
94void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
95  assert(_node     == node, "consistent iterator source");
96  assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
97}
98
99void DUIterator_Common::verify_resync() {
100  // Ensure that the loop body has just deleted the last guy produced.
101  const Node* node = _node;
102  // Ensure that at least one copy of the last-seen edge was deleted.
103  // Note:  It is OK to delete multiple copies of the last-seen edge.
104  // Unfortunately, we have no way to verify that all the deletions delete
105  // that same edge.  On this point we must use the Honor System.
106  assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
107  assert(node->_last_del == _last, "must have deleted the edge just produced");
108  // We liked this deletion, so accept the resulting outcnt and tick.
109  _outcnt   = node->_outcnt;
110  _del_tick = node->_del_tick;
111}
112
113void DUIterator_Common::reset(const DUIterator_Common& that) {
114  if (this == &that)  return;  // ignore assignment to self
115  if (!_vdui) {
116    // We need to initialize everything, overwriting garbage values.
117    _last = that._last;
118    _vdui = that._vdui;
119  }
120  // Note:  It is legal (though odd) for an iterator over some node x
121  // to be reassigned to iterate over another node y.  Some doubly-nested
122  // progress loops depend on being able to do this.
123  const Node* node = that._node;
124  // Re-initialize everything, except _last.
125  _node     = node;
126  _outcnt   = node->_outcnt;
127  _del_tick = node->_del_tick;
128}
129
130void DUIterator::sample(const Node* node) {
131  DUIterator_Common::sample(node);      // Initialize the assertion data.
132  _refresh_tick = 0;                    // No refreshes have happened, as yet.
133}
134
135void DUIterator::verify(const Node* node, bool at_end_ok) {
136  DUIterator_Common::verify(node, at_end_ok);
137  assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
138}
139
140void DUIterator::verify_increment() {
141  if (_refresh_tick & 1) {
142    // We have refreshed the index during this loop.
143    // Fix up _idx to meet asserts.
144    if (_idx > _outcnt)  _idx = _outcnt;
145  }
146  verify(_node, true);
147}
148
149void DUIterator::verify_resync() {
150  // Note:  We do not assert on _outcnt, because insertions are OK here.
151  DUIterator_Common::verify_resync();
152  // Make sure we are still in sync, possibly with no more out-edges:
153  verify(_node, true);
154}
155
156void DUIterator::reset(const DUIterator& that) {
157  if (this == &that)  return;  // self assignment is always a no-op
158  assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
159  assert(that._idx          == 0, "assign only the result of Node::outs()");
160  assert(_idx               == that._idx, "already assigned _idx");
161  if (!_vdui) {
162    // We need to initialize everything, overwriting garbage values.
163    sample(that._node);
164  } else {
165    DUIterator_Common::reset(that);
166    if (_refresh_tick & 1) {
167      _refresh_tick++;                  // Clear the "was refreshed" flag.
168    }
169    assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
170  }
171}
172
173void DUIterator::refresh() {
174  DUIterator_Common::sample(_node);     // Re-fetch assertion data.
175  _refresh_tick |= 1;                   // Set the "was refreshed" flag.
176}
177
178void DUIterator::verify_finish() {
179  // If the loop has killed the node, do not require it to re-run.
180  if (_node->_outcnt == 0)  _refresh_tick &= ~1;
181  // If this assert triggers, it means that a loop used refresh_out_pos
182  // to re-synch an iteration index, but the loop did not correctly
183  // re-run itself, using a "while (progress)" construct.
184  // This iterator enforces the rule that you must keep trying the loop
185  // until it "runs clean" without any need for refreshing.
186  assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
187}
188
189
190void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
191  DUIterator_Common::verify(node, at_end_ok);
192  Node** out    = node->_out;
193  uint   cnt    = node->_outcnt;
194  assert(cnt == _outcnt, "no insertions allowed");
195  assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
196  // This last check is carefully designed to work for NO_OUT_ARRAY.
197}
198
199void DUIterator_Fast::verify_limit() {
200  const Node* node = _node;
201  verify(node, true);
202  assert(_outp == node->_out + node->_outcnt, "limit still correct");
203}
204
205void DUIterator_Fast::verify_resync() {
206  const Node* node = _node;
207  if (_outp == node->_out + _outcnt) {
208    // Note that the limit imax, not the pointer i, gets updated with the
209    // exact count of deletions.  (For the pointer it's always "--i".)
210    assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
211    // This is a limit pointer, with a name like "imax".
212    // Fudge the _last field so that the common assert will be happy.
213    _last = (Node*) node->_last_del;
214    DUIterator_Common::verify_resync();
215  } else {
216    assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
217    // A normal internal pointer.
218    DUIterator_Common::verify_resync();
219    // Make sure we are still in sync, possibly with no more out-edges:
220    verify(node, true);
221  }
222}
223
224void DUIterator_Fast::verify_relimit(uint n) {
225  const Node* node = _node;
226  assert((int)n > 0, "use imax -= n only with a positive count");
227  // This must be a limit pointer, with a name like "imax".
228  assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
229  // The reported number of deletions must match what the node saw.
230  assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
231  // Fudge the _last field so that the common assert will be happy.
232  _last = (Node*) node->_last_del;
233  DUIterator_Common::verify_resync();
234}
235
236void DUIterator_Fast::reset(const DUIterator_Fast& that) {
237  assert(_outp              == that._outp, "already assigned _outp");
238  DUIterator_Common::reset(that);
239}
240
241void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
242  // at_end_ok means the _outp is allowed to underflow by 1
243  _outp += at_end_ok;
244  DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
245  _outp -= at_end_ok;
246  assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
247}
248
249void DUIterator_Last::verify_limit() {
250  // Do not require the limit address to be resynched.
251  //verify(node, true);
252  assert(_outp == _node->_out, "limit still correct");
253}
254
255void DUIterator_Last::verify_step(uint num_edges) {
256  assert((int)num_edges > 0, "need non-zero edge count for loop progress");
257  _outcnt   -= num_edges;
258  _del_tick += num_edges;
259  // Make sure we are still in sync, possibly with no more out-edges:
260  const Node* node = _node;
261  verify(node, true);
262  assert(node->_last_del == _last, "must have deleted the edge just produced");
263}
264
265#endif //OPTO_DU_ITERATOR_ASSERT
266
267
268#endif //ASSERT
269
270
271// This constant used to initialize _out may be any non-null value.
272// The value NULL is reserved for the top node only.
273#define NO_OUT_ARRAY ((Node**)-1)
274
275// This funny expression handshakes with Node::operator new
276// to pull Compile::current out of the new node's _out field,
277// and then calls a subroutine which manages most field
278// initializations.  The only one which is tricky is the
279// _idx field, which is const, and so must be initialized
280// by a return value, not an assignment.
281//
282// (Aren't you thankful that Java finals don't require so many tricks?)
283#define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
284#ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
285#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
286#endif
287
288// Out-of-line code from node constructors.
289// Executed only when extra debug info. is being passed around.
290static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
291  C->set_node_notes_at(idx, nn);
292}
293
294// Shared initialization code.
295inline int Node::Init(int req, Compile* C) {
296  assert(Compile::current() == C, "must use operator new(Compile*)");
297  int idx = C->next_unique();
298
299  // If there are default notes floating around, capture them:
300  Node_Notes* nn = C->default_node_notes();
301  if (nn != NULL)  init_node_notes(C, idx, nn);
302
303  // Note:  At this point, C is dead,
304  // and we begin to initialize the new Node.
305
306  _cnt = _max = req;
307  _outcnt = _outmax = 0;
308  _class_id = Class_Node;
309  _flags = 0;
310  _out = NO_OUT_ARRAY;
311  return idx;
312}
313
314//------------------------------Node-------------------------------------------
315// Create a Node, with a given number of required edges.
316Node::Node(uint req)
317  : _idx(IDX_INIT(req))
318{
319  assert( req < (uint)(MaxNodeLimit - NodeLimitFudgeFactor), "Input limit exceeded" );
320  debug_only( verify_construction() );
321  NOT_PRODUCT(nodes_created++);
322  if (req == 0) {
323    assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
324    _in = NULL;
325  } else {
326    assert( _in[req-1] == this, "Must pass arg count to 'new'" );
327    Node** to = _in;
328    for(uint i = 0; i < req; i++) {
329      to[i] = NULL;
330    }
331  }
332}
333
334//------------------------------Node-------------------------------------------
335Node::Node(Node *n0)
336  : _idx(IDX_INIT(1))
337{
338  debug_only( verify_construction() );
339  NOT_PRODUCT(nodes_created++);
340  // Assert we allocated space for input array already
341  assert( _in[0] == this, "Must pass arg count to 'new'" );
342  assert( is_not_dead(n0), "can not use dead node");
343  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
344}
345
346//------------------------------Node-------------------------------------------
347Node::Node(Node *n0, Node *n1)
348  : _idx(IDX_INIT(2))
349{
350  debug_only( verify_construction() );
351  NOT_PRODUCT(nodes_created++);
352  // Assert we allocated space for input array already
353  assert( _in[1] == this, "Must pass arg count to 'new'" );
354  assert( is_not_dead(n0), "can not use dead node");
355  assert( is_not_dead(n1), "can not use dead node");
356  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
357  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
358}
359
360//------------------------------Node-------------------------------------------
361Node::Node(Node *n0, Node *n1, Node *n2)
362  : _idx(IDX_INIT(3))
363{
364  debug_only( verify_construction() );
365  NOT_PRODUCT(nodes_created++);
366  // Assert we allocated space for input array already
367  assert( _in[2] == this, "Must pass arg count to 'new'" );
368  assert( is_not_dead(n0), "can not use dead node");
369  assert( is_not_dead(n1), "can not use dead node");
370  assert( is_not_dead(n2), "can not use dead node");
371  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
372  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
373  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
374}
375
376//------------------------------Node-------------------------------------------
377Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
378  : _idx(IDX_INIT(4))
379{
380  debug_only( verify_construction() );
381  NOT_PRODUCT(nodes_created++);
382  // Assert we allocated space for input array already
383  assert( _in[3] == this, "Must pass arg count to 'new'" );
384  assert( is_not_dead(n0), "can not use dead node");
385  assert( is_not_dead(n1), "can not use dead node");
386  assert( is_not_dead(n2), "can not use dead node");
387  assert( is_not_dead(n3), "can not use dead node");
388  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
389  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
390  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
391  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
392}
393
394//------------------------------Node-------------------------------------------
395Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
396  : _idx(IDX_INIT(5))
397{
398  debug_only( verify_construction() );
399  NOT_PRODUCT(nodes_created++);
400  // Assert we allocated space for input array already
401  assert( _in[4] == this, "Must pass arg count to 'new'" );
402  assert( is_not_dead(n0), "can not use dead node");
403  assert( is_not_dead(n1), "can not use dead node");
404  assert( is_not_dead(n2), "can not use dead node");
405  assert( is_not_dead(n3), "can not use dead node");
406  assert( is_not_dead(n4), "can not use dead node");
407  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
408  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
409  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
410  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
411  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
412}
413
414//------------------------------Node-------------------------------------------
415Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
416                     Node *n4, Node *n5)
417  : _idx(IDX_INIT(6))
418{
419  debug_only( verify_construction() );
420  NOT_PRODUCT(nodes_created++);
421  // Assert we allocated space for input array already
422  assert( _in[5] == this, "Must pass arg count to 'new'" );
423  assert( is_not_dead(n0), "can not use dead node");
424  assert( is_not_dead(n1), "can not use dead node");
425  assert( is_not_dead(n2), "can not use dead node");
426  assert( is_not_dead(n3), "can not use dead node");
427  assert( is_not_dead(n4), "can not use dead node");
428  assert( is_not_dead(n5), "can not use dead node");
429  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
430  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
431  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
432  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
433  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
434  _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
435}
436
437//------------------------------Node-------------------------------------------
438Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
439                     Node *n4, Node *n5, Node *n6)
440  : _idx(IDX_INIT(7))
441{
442  debug_only( verify_construction() );
443  NOT_PRODUCT(nodes_created++);
444  // Assert we allocated space for input array already
445  assert( _in[6] == this, "Must pass arg count to 'new'" );
446  assert( is_not_dead(n0), "can not use dead node");
447  assert( is_not_dead(n1), "can not use dead node");
448  assert( is_not_dead(n2), "can not use dead node");
449  assert( is_not_dead(n3), "can not use dead node");
450  assert( is_not_dead(n4), "can not use dead node");
451  assert( is_not_dead(n5), "can not use dead node");
452  assert( is_not_dead(n6), "can not use dead node");
453  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
454  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
455  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
456  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
457  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
458  _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
459  _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
460}
461
462
463//------------------------------clone------------------------------------------
464// Clone a Node.
465Node *Node::clone() const {
466  Compile *compile = Compile::current();
467  uint s = size_of();           // Size of inherited Node
468  Node *n = (Node*)compile->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
469  Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
470  // Set the new input pointer array
471  n->_in = (Node**)(((char*)n)+s);
472  // Cannot share the old output pointer array, so kill it
473  n->_out = NO_OUT_ARRAY;
474  // And reset the counters to 0
475  n->_outcnt = 0;
476  n->_outmax = 0;
477  // Unlock this guy, since he is not in any hash table.
478  debug_only(n->_hash_lock = 0);
479  // Walk the old node's input list to duplicate its edges
480  uint i;
481  for( i = 0; i < len(); i++ ) {
482    Node *x = in(i);
483    n->_in[i] = x;
484    if (x != NULL) x->add_out(n);
485  }
486  if (is_macro())
487    compile->add_macro_node(n);
488
489  n->set_idx(compile->next_unique()); // Get new unique index as well
490  debug_only( n->verify_construction() );
491  NOT_PRODUCT(nodes_created++);
492  // Do not patch over the debug_idx of a clone, because it makes it
493  // impossible to break on the clone's moment of creation.
494  //debug_only( n->set_debug_idx( debug_idx() ) );
495
496  compile->copy_node_notes_to(n, (Node*) this);
497
498  // MachNode clone
499  uint nopnds;
500  if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
501    MachNode *mach  = n->as_Mach();
502    MachNode *mthis = this->as_Mach();
503    // Get address of _opnd_array.
504    // It should be the same offset since it is the clone of this node.
505    MachOper **from = mthis->_opnds;
506    MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
507                    pointer_delta((const void*)from,
508                                  (const void*)(&mthis->_opnds), 1));
509    mach->_opnds = to;
510    for ( uint i = 0; i < nopnds; ++i ) {
511      to[i] = from[i]->clone(compile);
512    }
513  }
514  // cloning CallNode may need to clone JVMState
515  if (n->is_Call()) {
516    CallNode *call = n->as_Call();
517    call->clone_jvms();
518  }
519  return n;                     // Return the clone
520}
521
522//---------------------------setup_is_top--------------------------------------
523// Call this when changing the top node, to reassert the invariants
524// required by Node::is_top.  See Compile::set_cached_top_node.
525void Node::setup_is_top() {
526  if (this == (Node*)Compile::current()->top()) {
527    // This node has just become top.  Kill its out array.
528    _outcnt = _outmax = 0;
529    _out = NULL;                           // marker value for top
530    assert(is_top(), "must be top");
531  } else {
532    if (_out == NULL)  _out = NO_OUT_ARRAY;
533    assert(!is_top(), "must not be top");
534  }
535}
536
537
538//------------------------------~Node------------------------------------------
539// Fancy destructor; eagerly attempt to reclaim Node numberings and storage
540extern int reclaim_idx ;
541extern int reclaim_in  ;
542extern int reclaim_node;
543void Node::destruct() {
544  // Eagerly reclaim unique Node numberings
545  Compile* compile = Compile::current();
546  if ((uint)_idx+1 == compile->unique()) {
547    compile->set_unique(compile->unique()-1);
548#ifdef ASSERT
549    reclaim_idx++;
550#endif
551  }
552  // Clear debug info:
553  Node_Notes* nn = compile->node_notes_at(_idx);
554  if (nn != NULL)  nn->clear();
555  // Walk the input array, freeing the corresponding output edges
556  _cnt = _max;  // forget req/prec distinction
557  uint i;
558  for( i = 0; i < _max; i++ ) {
559    set_req(i, NULL);
560    //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
561  }
562  assert(outcnt() == 0, "deleting a node must not leave a dangling use");
563  // See if the input array was allocated just prior to the object
564  int edge_size = _max*sizeof(void*);
565  int out_edge_size = _outmax*sizeof(void*);
566  char *edge_end = ((char*)_in) + edge_size;
567  char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
568  char *out_edge_end = out_array + out_edge_size;
569  int node_size = size_of();
570
571  // Free the output edge array
572  if (out_edge_size > 0) {
573#ifdef ASSERT
574    if( out_edge_end == compile->node_arena()->hwm() )
575      reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
576#endif
577    compile->node_arena()->Afree(out_array, out_edge_size);
578  }
579
580  // Free the input edge array and the node itself
581  if( edge_end == (char*)this ) {
582#ifdef ASSERT
583    if( edge_end+node_size == compile->node_arena()->hwm() ) {
584      reclaim_in  += edge_size;
585      reclaim_node+= node_size;
586    }
587#else
588    // It was; free the input array and object all in one hit
589    compile->node_arena()->Afree(_in,edge_size+node_size);
590#endif
591  } else {
592
593    // Free just the input array
594#ifdef ASSERT
595    if( edge_end == compile->node_arena()->hwm() )
596      reclaim_in  += edge_size;
597#endif
598    compile->node_arena()->Afree(_in,edge_size);
599
600    // Free just the object
601#ifdef ASSERT
602    if( ((char*)this) + node_size == compile->node_arena()->hwm() )
603      reclaim_node+= node_size;
604#else
605    compile->node_arena()->Afree(this,node_size);
606#endif
607  }
608  if (is_macro()) {
609    compile->remove_macro_node(this);
610  }
611#ifdef ASSERT
612  // We will not actually delete the storage, but we'll make the node unusable.
613  *(address*)this = badAddress;  // smash the C++ vtbl, probably
614  _in = _out = (Node**) badAddress;
615  _max = _cnt = _outmax = _outcnt = 0;
616#endif
617}
618
619//------------------------------grow-------------------------------------------
620// Grow the input array, making space for more edges
621void Node::grow( uint len ) {
622  Arena* arena = Compile::current()->node_arena();
623  uint new_max = _max;
624  if( new_max == 0 ) {
625    _max = 4;
626    _in = (Node**)arena->Amalloc(4*sizeof(Node*));
627    Node** to = _in;
628    to[0] = NULL;
629    to[1] = NULL;
630    to[2] = NULL;
631    to[3] = NULL;
632    return;
633  }
634  while( new_max <= len ) new_max <<= 1; // Find next power-of-2
635  // Trimming to limit allows a uint8 to handle up to 255 edges.
636  // Previously I was using only powers-of-2 which peaked at 128 edges.
637  //if( new_max >= limit ) new_max = limit-1;
638  _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
639  Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
640  _max = new_max;               // Record new max length
641  // This assertion makes sure that Node::_max is wide enough to
642  // represent the numerical value of new_max.
643  assert(_max == new_max && _max > len, "int width of _max is too small");
644}
645
646//-----------------------------out_grow----------------------------------------
647// Grow the input array, making space for more edges
648void Node::out_grow( uint len ) {
649  assert(!is_top(), "cannot grow a top node's out array");
650  Arena* arena = Compile::current()->node_arena();
651  uint new_max = _outmax;
652  if( new_max == 0 ) {
653    _outmax = 4;
654    _out = (Node **)arena->Amalloc(4*sizeof(Node*));
655    return;
656  }
657  while( new_max <= len ) new_max <<= 1; // Find next power-of-2
658  // Trimming to limit allows a uint8 to handle up to 255 edges.
659  // Previously I was using only powers-of-2 which peaked at 128 edges.
660  //if( new_max >= limit ) new_max = limit-1;
661  assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
662  _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
663  //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
664  _outmax = new_max;               // Record new max length
665  // This assertion makes sure that Node::_max is wide enough to
666  // represent the numerical value of new_max.
667  assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
668}
669
670#ifdef ASSERT
671//------------------------------is_dead----------------------------------------
672bool Node::is_dead() const {
673  // Mach and pinch point nodes may look like dead.
674  if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
675    return false;
676  for( uint i = 0; i < _max; i++ )
677    if( _in[i] != NULL )
678      return false;
679  dump();
680  return true;
681}
682#endif
683
684//------------------------------add_req----------------------------------------
685// Add a new required input at the end
686void Node::add_req( Node *n ) {
687  assert( is_not_dead(n), "can not use dead node");
688
689  // Look to see if I can move precedence down one without reallocating
690  if( (_cnt >= _max) || (in(_max-1) != NULL) )
691    grow( _max+1 );
692
693  // Find a precedence edge to move
694  if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
695    uint i;
696    for( i=_cnt; i<_max; i++ )
697      if( in(i) == NULL )       // Find the NULL at end of prec edge list
698        break;                  // There must be one, since we grew the array
699    _in[i] = in(_cnt);          // Move prec over, making space for req edge
700  }
701  _in[_cnt++] = n;            // Stuff over old prec edge
702  if (n != NULL) n->add_out((Node *)this);
703}
704
705//---------------------------add_req_batch-------------------------------------
706// Add a new required input at the end
707void Node::add_req_batch( Node *n, uint m ) {
708  assert( is_not_dead(n), "can not use dead node");
709  // check various edge cases
710  if ((int)m <= 1) {
711    assert((int)m >= 0, "oob");
712    if (m != 0)  add_req(n);
713    return;
714  }
715
716  // Look to see if I can move precedence down one without reallocating
717  if( (_cnt+m) > _max || _in[_max-m] )
718    grow( _max+m );
719
720  // Find a precedence edge to move
721  if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
722    uint i;
723    for( i=_cnt; i<_max; i++ )
724      if( _in[i] == NULL )      // Find the NULL at end of prec edge list
725        break;                  // There must be one, since we grew the array
726    // Slide all the precs over by m positions (assume #prec << m).
727    Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
728  }
729
730  // Stuff over the old prec edges
731  for(uint i=0; i<m; i++ ) {
732    _in[_cnt++] = n;
733  }
734
735  // Insert multiple out edges on the node.
736  if (n != NULL && !n->is_top()) {
737    for(uint i=0; i<m; i++ ) {
738      n->add_out((Node *)this);
739    }
740  }
741}
742
743//------------------------------del_req----------------------------------------
744// Delete the required edge and compact the edge array
745void Node::del_req( uint idx ) {
746  assert( idx < _cnt, "oob");
747  assert( !VerifyHashTableKeys || _hash_lock == 0,
748          "remove node from hash table before modifying it");
749  // First remove corresponding def-use edge
750  Node *n = in(idx);
751  if (n != NULL) n->del_out((Node *)this);
752  _in[idx] = in(--_cnt);  // Compact the array
753  _in[_cnt] = NULL;       // NULL out emptied slot
754}
755
756//------------------------------ins_req----------------------------------------
757// Insert a new required input at the end
758void Node::ins_req( uint idx, Node *n ) {
759  assert( is_not_dead(n), "can not use dead node");
760  add_req(NULL);                // Make space
761  assert( idx < _max, "Must have allocated enough space");
762  // Slide over
763  if(_cnt-idx-1 > 0) {
764    Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
765  }
766  _in[idx] = n;                            // Stuff over old required edge
767  if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
768}
769
770//-----------------------------find_edge---------------------------------------
771int Node::find_edge(Node* n) {
772  for (uint i = 0; i < len(); i++) {
773    if (_in[i] == n)  return i;
774  }
775  return -1;
776}
777
778//----------------------------replace_edge-------------------------------------
779int Node::replace_edge(Node* old, Node* neww) {
780  if (old == neww)  return 0;  // nothing to do
781  uint nrep = 0;
782  for (uint i = 0; i < len(); i++) {
783    if (in(i) == old) {
784      if (i < req())
785        set_req(i, neww);
786      else
787        set_prec(i, neww);
788      nrep++;
789    }
790  }
791  return nrep;
792}
793
794//-------------------------disconnect_inputs-----------------------------------
795// NULL out all inputs to eliminate incoming Def-Use edges.
796// Return the number of edges between 'n' and 'this'
797int Node::disconnect_inputs(Node *n) {
798  int edges_to_n = 0;
799
800  uint cnt = req();
801  for( uint i = 0; i < cnt; ++i ) {
802    if( in(i) == 0 ) continue;
803    if( in(i) == n ) ++edges_to_n;
804    set_req(i, NULL);
805  }
806  // Remove precedence edges if any exist
807  // Note: Safepoints may have precedence edges, even during parsing
808  if( (req() != len()) && (in(req()) != NULL) ) {
809    uint max = len();
810    for( uint i = 0; i < max; ++i ) {
811      if( in(i) == 0 ) continue;
812      if( in(i) == n ) ++edges_to_n;
813      set_prec(i, NULL);
814    }
815  }
816
817  // Node::destruct requires all out edges be deleted first
818  // debug_only(destruct();)   // no reuse benefit expected
819  return edges_to_n;
820}
821
822//-----------------------------uncast---------------------------------------
823// %%% Temporary, until we sort out CheckCastPP vs. CastPP.
824// Strip away casting.  (It is depth-limited.)
825Node* Node::uncast() const {
826  // Should be inline:
827  //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
828  if (is_ConstraintCast() || is_CheckCastPP())
829    return uncast_helper(this);
830  else
831    return (Node*) this;
832}
833
834//---------------------------uncast_helper-------------------------------------
835Node* Node::uncast_helper(const Node* p) {
836#ifdef ASSERT
837  uint depth_count = 0;
838  const Node* orig_p = p;
839#endif
840
841  while (true) {
842#ifdef ASSERT
843    if (depth_count >= K) {
844      orig_p->dump(4);
845      if (p != orig_p)
846        p->dump(1);
847    }
848    assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
849#endif
850    if (p == NULL || p->req() != 2) {
851      break;
852    } else if (p->is_ConstraintCast()) {
853      p = p->in(1);
854    } else if (p->is_CheckCastPP()) {
855      p = p->in(1);
856    } else {
857      break;
858    }
859  }
860  return (Node*) p;
861}
862
863//------------------------------add_prec---------------------------------------
864// Add a new precedence input.  Precedence inputs are unordered, with
865// duplicates removed and NULLs packed down at the end.
866void Node::add_prec( Node *n ) {
867  assert( is_not_dead(n), "can not use dead node");
868
869  // Check for NULL at end
870  if( _cnt >= _max || in(_max-1) )
871    grow( _max+1 );
872
873  // Find a precedence edge to move
874  uint i = _cnt;
875  while( in(i) != NULL ) i++;
876  _in[i] = n;                                // Stuff prec edge over NULL
877  if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
878}
879
880//------------------------------rm_prec----------------------------------------
881// Remove a precedence input.  Precedence inputs are unordered, with
882// duplicates removed and NULLs packed down at the end.
883void Node::rm_prec( uint j ) {
884
885  // Find end of precedence list to pack NULLs
886  uint i;
887  for( i=j; i<_max; i++ )
888    if( !_in[i] )               // Find the NULL at end of prec edge list
889      break;
890  if (_in[j] != NULL) _in[j]->del_out((Node *)this);
891  _in[j] = _in[--i];            // Move last element over removed guy
892  _in[i] = NULL;                // NULL out last element
893}
894
895//------------------------------size_of----------------------------------------
896uint Node::size_of() const { return sizeof(*this); }
897
898//------------------------------ideal_reg--------------------------------------
899uint Node::ideal_reg() const { return 0; }
900
901//------------------------------jvms-------------------------------------------
902JVMState* Node::jvms() const { return NULL; }
903
904#ifdef ASSERT
905//------------------------------jvms-------------------------------------------
906bool Node::verify_jvms(const JVMState* using_jvms) const {
907  for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
908    if (jvms == using_jvms)  return true;
909  }
910  return false;
911}
912
913//------------------------------init_NodeProperty------------------------------
914void Node::init_NodeProperty() {
915  assert(_max_classes <= max_jushort, "too many NodeProperty classes");
916  assert(_max_flags <= max_jushort, "too many NodeProperty flags");
917}
918#endif
919
920//------------------------------format-----------------------------------------
921// Print as assembly
922void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
923//------------------------------emit-------------------------------------------
924// Emit bytes starting at parameter 'ptr'.
925void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
926//------------------------------size-------------------------------------------
927// Size of instruction in bytes
928uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
929
930//------------------------------CFG Construction-------------------------------
931// Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
932// Goto and Return.
933const Node *Node::is_block_proj() const { return 0; }
934
935// Minimum guaranteed type
936const Type *Node::bottom_type() const { return Type::BOTTOM; }
937
938
939//------------------------------raise_bottom_type------------------------------
940// Get the worst-case Type output for this Node.
941void Node::raise_bottom_type(const Type* new_type) {
942  if (is_Type()) {
943    TypeNode *n = this->as_Type();
944    if (VerifyAliases) {
945      assert(new_type->higher_equal(n->type()), "new type must refine old type");
946    }
947    n->set_type(new_type);
948  } else if (is_Load()) {
949    LoadNode *n = this->as_Load();
950    if (VerifyAliases) {
951      assert(new_type->higher_equal(n->type()), "new type must refine old type");
952    }
953    n->set_type(new_type);
954  }
955}
956
957//------------------------------Identity---------------------------------------
958// Return a node that the given node is equivalent to.
959Node *Node::Identity( PhaseTransform * ) {
960  return this;                  // Default to no identities
961}
962
963//------------------------------Value------------------------------------------
964// Compute a new Type for a node using the Type of the inputs.
965const Type *Node::Value( PhaseTransform * ) const {
966  return bottom_type();         // Default to worst-case Type
967}
968
969//------------------------------Ideal------------------------------------------
970//
971// 'Idealize' the graph rooted at this Node.
972//
973// In order to be efficient and flexible there are some subtle invariants
974// these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
975// these invariants, although its too slow to have on by default.  If you are
976// hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
977//
978// The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
979// pointer.  If ANY change is made, it must return the root of the reshaped
980// graph - even if the root is the same Node.  Example: swapping the inputs
981// to an AddINode gives the same answer and same root, but you still have to
982// return the 'this' pointer instead of NULL.
983//
984// You cannot return an OLD Node, except for the 'this' pointer.  Use the
985// Identity call to return an old Node; basically if Identity can find
986// another Node have the Ideal call make no change and return NULL.
987// Example: AddINode::Ideal must check for add of zero; in this case it
988// returns NULL instead of doing any graph reshaping.
989//
990// You cannot modify any old Nodes except for the 'this' pointer.  Due to
991// sharing there may be other users of the old Nodes relying on their current
992// semantics.  Modifying them will break the other users.
993// Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
994// "X+3" unchanged in case it is shared.
995//
996// If you modify the 'this' pointer's inputs, you should use
997// 'set_req'.  If you are making a new Node (either as the new root or
998// some new internal piece) you may use 'init_req' to set the initial
999// value.  You can make a new Node with either 'new' or 'clone'.  In
1000// either case, def-use info is correctly maintained.
1001//
1002// Example: reshape "(X+3)+4" into "X+7":
1003//    set_req(1, in(1)->in(1));
1004//    set_req(2, phase->intcon(7));
1005//    return this;
1006// Example: reshape "X*4" into "X<<2"
1007//    return new (C,3) LShiftINode(in(1), phase->intcon(2));
1008//
1009// You must call 'phase->transform(X)' on any new Nodes X you make, except
1010// for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1011//    Node *shift=phase->transform(new(C,3)LShiftINode(in(1),phase->intcon(5)));
1012//    return new (C,3) AddINode(shift, in(1));
1013//
1014// When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1015// These forms are faster than 'phase->transform(new (C,1) ConNode())' and Do
1016// The Right Thing with def-use info.
1017//
1018// You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1019// graph uses the 'this' Node it must be the root.  If you want a Node with
1020// the same Opcode as the 'this' pointer use 'clone'.
1021//
1022Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1023  return NULL;                  // Default to being Ideal already
1024}
1025
1026// Some nodes have specific Ideal subgraph transformations only if they are
1027// unique users of specific nodes. Such nodes should be put on IGVN worklist
1028// for the transformations to happen.
1029bool Node::has_special_unique_user() const {
1030  assert(outcnt() == 1, "match only for unique out");
1031  Node* n = unique_out();
1032  int op  = Opcode();
1033  if( this->is_Store() ) {
1034    // Condition for back-to-back stores folding.
1035    return n->Opcode() == op && n->in(MemNode::Memory) == this;
1036  } else if( op == Op_AddL ) {
1037    // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1038    return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1039  } else if( op == Op_SubI || op == Op_SubL ) {
1040    // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1041    return n->Opcode() == op && n->in(2) == this;
1042  }
1043  return false;
1044};
1045
1046//--------------------------find_exact_control---------------------------------
1047// Skip Proj and CatchProj nodes chains. Check for Null and Top.
1048Node* Node::find_exact_control(Node* ctrl) {
1049  if (ctrl == NULL && this->is_Region())
1050    ctrl = this->as_Region()->is_copy();
1051
1052  if (ctrl != NULL && ctrl->is_CatchProj()) {
1053    if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1054      ctrl = ctrl->in(0);
1055    if (ctrl != NULL && !ctrl->is_top())
1056      ctrl = ctrl->in(0);
1057  }
1058
1059  if (ctrl != NULL && ctrl->is_Proj())
1060    ctrl = ctrl->in(0);
1061
1062  return ctrl;
1063}
1064
1065//--------------------------dominates------------------------------------------
1066// Helper function for MemNode::all_controls_dominate().
1067// Check if 'this' control node dominates or equal to 'sub' control node.
1068// We already know that if any path back to Root or Start reaches 'this',
1069// then all paths so, so this is a simple search for one example,
1070// not an exhaustive search for a counterexample.
1071bool Node::dominates(Node* sub, Node_List &nlist) {
1072  assert(this->is_CFG(), "expecting control");
1073  assert(sub != NULL && sub->is_CFG(), "expecting control");
1074
1075  // detect dead cycle without regions
1076  int iterations_without_region_limit = DominatorSearchLimit;
1077
1078  Node* orig_sub = sub;
1079  Node* dom      = this;
1080  bool  met_dom  = false;
1081  nlist.clear();
1082
1083  // Walk 'sub' backward up the chain to 'dom', watching for regions.
1084  // After seeing 'dom', continue up to Root or Start.
1085  // If we hit a region (backward split point), it may be a loop head.
1086  // Keep going through one of the region's inputs.  If we reach the
1087  // same region again, go through a different input.  Eventually we
1088  // will either exit through the loop head, or give up.
1089  // (If we get confused, break out and return a conservative 'false'.)
1090  while (sub != NULL) {
1091    if (sub->is_top())  break; // Conservative answer for dead code.
1092    if (sub == dom) {
1093      if (nlist.size() == 0) {
1094        // No Region nodes except loops were visited before and the EntryControl
1095        // path was taken for loops: it did not walk in a cycle.
1096        return true;
1097      } else if (met_dom) {
1098        break;          // already met before: walk in a cycle
1099      } else {
1100        // Region nodes were visited. Continue walk up to Start or Root
1101        // to make sure that it did not walk in a cycle.
1102        met_dom = true; // first time meet
1103        iterations_without_region_limit = DominatorSearchLimit; // Reset
1104     }
1105    }
1106    if (sub->is_Start() || sub->is_Root()) {
1107      // Success if we met 'dom' along a path to Start or Root.
1108      // We assume there are no alternative paths that avoid 'dom'.
1109      // (This assumption is up to the caller to ensure!)
1110      return met_dom;
1111    }
1112    Node* up = sub->in(0);
1113    // Normalize simple pass-through regions and projections:
1114    up = sub->find_exact_control(up);
1115    // If sub == up, we found a self-loop.  Try to push past it.
1116    if (sub == up && sub->is_Loop()) {
1117      // Take loop entry path on the way up to 'dom'.
1118      up = sub->in(1); // in(LoopNode::EntryControl);
1119    } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1120      // Always take in(1) path on the way up to 'dom' for clone regions
1121      // (with only one input) or regions which merge > 2 paths
1122      // (usually used to merge fast/slow paths).
1123      up = sub->in(1);
1124    } else if (sub == up && sub->is_Region()) {
1125      // Try both paths for Regions with 2 input paths (it may be a loop head).
1126      // It could give conservative 'false' answer without information
1127      // which region's input is the entry path.
1128      iterations_without_region_limit = DominatorSearchLimit; // Reset
1129
1130      bool region_was_visited_before = false;
1131      // Was this Region node visited before?
1132      // If so, we have reached it because we accidentally took a
1133      // loop-back edge from 'sub' back into the body of the loop,
1134      // and worked our way up again to the loop header 'sub'.
1135      // So, take the first unexplored path on the way up to 'dom'.
1136      for (int j = nlist.size() - 1; j >= 0; j--) {
1137        intptr_t ni = (intptr_t)nlist.at(j);
1138        Node* visited = (Node*)(ni & ~1);
1139        bool  visited_twice_already = ((ni & 1) != 0);
1140        if (visited == sub) {
1141          if (visited_twice_already) {
1142            // Visited 2 paths, but still stuck in loop body.  Give up.
1143            return false;
1144          }
1145          // The Region node was visited before only once.
1146          // (We will repush with the low bit set, below.)
1147          nlist.remove(j);
1148          // We will find a new edge and re-insert.
1149          region_was_visited_before = true;
1150          break;
1151        }
1152      }
1153
1154      // Find an incoming edge which has not been seen yet; walk through it.
1155      assert(up == sub, "");
1156      uint skip = region_was_visited_before ? 1 : 0;
1157      for (uint i = 1; i < sub->req(); i++) {
1158        Node* in = sub->in(i);
1159        if (in != NULL && !in->is_top() && in != sub) {
1160          if (skip == 0) {
1161            up = in;
1162            break;
1163          }
1164          --skip;               // skip this nontrivial input
1165        }
1166      }
1167
1168      // Set 0 bit to indicate that both paths were taken.
1169      nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1170    }
1171
1172    if (up == sub) {
1173      break;    // some kind of tight cycle
1174    }
1175    if (up == orig_sub && met_dom) {
1176      // returned back after visiting 'dom'
1177      break;    // some kind of cycle
1178    }
1179    if (--iterations_without_region_limit < 0) {
1180      break;    // dead cycle
1181    }
1182    sub = up;
1183  }
1184
1185  // Did not meet Root or Start node in pred. chain.
1186  // Conservative answer for dead code.
1187  return false;
1188}
1189
1190//------------------------------remove_dead_region-----------------------------
1191// This control node is dead.  Follow the subgraph below it making everything
1192// using it dead as well.  This will happen normally via the usual IterGVN
1193// worklist but this call is more efficient.  Do not update use-def info
1194// inside the dead region, just at the borders.
1195static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1196  // Con's are a popular node to re-hit in the hash table again.
1197  if( dead->is_Con() ) return;
1198
1199  // Can't put ResourceMark here since igvn->_worklist uses the same arena
1200  // for verify pass with +VerifyOpto and we add/remove elements in it here.
1201  Node_List  nstack(Thread::current()->resource_area());
1202
1203  Node *top = igvn->C->top();
1204  nstack.push(dead);
1205
1206  while (nstack.size() > 0) {
1207    dead = nstack.pop();
1208    if (dead->outcnt() > 0) {
1209      // Keep dead node on stack until all uses are processed.
1210      nstack.push(dead);
1211      // For all Users of the Dead...    ;-)
1212      for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1213        Node* use = dead->last_out(k);
1214        igvn->hash_delete(use);       // Yank from hash table prior to mod
1215        if (use->in(0) == dead) {     // Found another dead node
1216          assert (!use->is_Con(), "Control for Con node should be Root node.");
1217          use->set_req(0, top);       // Cut dead edge to prevent processing
1218          nstack.push(use);           // the dead node again.
1219        } else {                      // Else found a not-dead user
1220          for (uint j = 1; j < use->req(); j++) {
1221            if (use->in(j) == dead) { // Turn all dead inputs into TOP
1222              use->set_req(j, top);
1223            }
1224          }
1225          igvn->_worklist.push(use);
1226        }
1227        // Refresh the iterator, since any number of kills might have happened.
1228        k = dead->last_outs(kmin);
1229      }
1230    } else { // (dead->outcnt() == 0)
1231      // Done with outputs.
1232      igvn->hash_delete(dead);
1233      igvn->_worklist.remove(dead);
1234      igvn->set_type(dead, Type::TOP);
1235      if (dead->is_macro()) {
1236        igvn->C->remove_macro_node(dead);
1237      }
1238      // Kill all inputs to the dead guy
1239      for (uint i=0; i < dead->req(); i++) {
1240        Node *n = dead->in(i);      // Get input to dead guy
1241        if (n != NULL && !n->is_top()) { // Input is valid?
1242          dead->set_req(i, top);    // Smash input away
1243          if (n->outcnt() == 0) {   // Input also goes dead?
1244            if (!n->is_Con())
1245              nstack.push(n);       // Clear it out as well
1246          } else if (n->outcnt() == 1 &&
1247                     n->has_special_unique_user()) {
1248            igvn->add_users_to_worklist( n );
1249          } else if (n->outcnt() <= 2 && n->is_Store()) {
1250            // Push store's uses on worklist to enable folding optimization for
1251            // store/store and store/load to the same address.
1252            // The restriction (outcnt() <= 2) is the same as in set_req_X()
1253            // and remove_globally_dead_node().
1254            igvn->add_users_to_worklist( n );
1255          }
1256        }
1257      }
1258    } // (dead->outcnt() == 0)
1259  }   // while (nstack.size() > 0) for outputs
1260  return;
1261}
1262
1263//------------------------------remove_dead_region-----------------------------
1264bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1265  Node *n = in(0);
1266  if( !n ) return false;
1267  // Lost control into this guy?  I.e., it became unreachable?
1268  // Aggressively kill all unreachable code.
1269  if (can_reshape && n->is_top()) {
1270    kill_dead_code(this, phase->is_IterGVN());
1271    return false; // Node is dead.
1272  }
1273
1274  if( n->is_Region() && n->as_Region()->is_copy() ) {
1275    Node *m = n->nonnull_req();
1276    set_req(0, m);
1277    return true;
1278  }
1279  return false;
1280}
1281
1282//------------------------------Ideal_DU_postCCP-------------------------------
1283// Idealize graph, using DU info.  Must clone result into new-space
1284Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
1285  return NULL;                 // Default to no change
1286}
1287
1288//------------------------------hash-------------------------------------------
1289// Hash function over Nodes.
1290uint Node::hash() const {
1291  uint sum = 0;
1292  for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1293    sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1294  return (sum>>2) + _cnt + Opcode();
1295}
1296
1297//------------------------------cmp--------------------------------------------
1298// Compare special parts of simple Nodes
1299uint Node::cmp( const Node &n ) const {
1300  return 1;                     // Must be same
1301}
1302
1303//------------------------------rematerialize-----------------------------------
1304// Should we clone rather than spill this instruction?
1305bool Node::rematerialize() const {
1306  if ( is_Mach() )
1307    return this->as_Mach()->rematerialize();
1308  else
1309    return (_flags & Flag_rematerialize) != 0;
1310}
1311
1312//------------------------------needs_anti_dependence_check---------------------
1313// Nodes which use memory without consuming it, hence need antidependences.
1314bool Node::needs_anti_dependence_check() const {
1315  if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1316    return false;
1317  else
1318    return in(1)->bottom_type()->has_memory();
1319}
1320
1321
1322// Get an integer constant from a ConNode (or CastIINode).
1323// Return a default value if there is no apparent constant here.
1324const TypeInt* Node::find_int_type() const {
1325  if (this->is_Type()) {
1326    return this->as_Type()->type()->isa_int();
1327  } else if (this->is_Con()) {
1328    assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1329    return this->bottom_type()->isa_int();
1330  }
1331  return NULL;
1332}
1333
1334// Get a pointer constant from a ConstNode.
1335// Returns the constant if it is a pointer ConstNode
1336intptr_t Node::get_ptr() const {
1337  assert( Opcode() == Op_ConP, "" );
1338  return ((ConPNode*)this)->type()->is_ptr()->get_con();
1339}
1340
1341// Get a narrow oop constant from a ConNNode.
1342intptr_t Node::get_narrowcon() const {
1343  assert( Opcode() == Op_ConN, "" );
1344  return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1345}
1346
1347// Get a long constant from a ConNode.
1348// Return a default value if there is no apparent constant here.
1349const TypeLong* Node::find_long_type() const {
1350  if (this->is_Type()) {
1351    return this->as_Type()->type()->isa_long();
1352  } else if (this->is_Con()) {
1353    assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1354    return this->bottom_type()->isa_long();
1355  }
1356  return NULL;
1357}
1358
1359// Get a double constant from a ConstNode.
1360// Returns the constant if it is a double ConstNode
1361jdouble Node::getd() const {
1362  assert( Opcode() == Op_ConD, "" );
1363  return ((ConDNode*)this)->type()->is_double_constant()->getd();
1364}
1365
1366// Get a float constant from a ConstNode.
1367// Returns the constant if it is a float ConstNode
1368jfloat Node::getf() const {
1369  assert( Opcode() == Op_ConF, "" );
1370  return ((ConFNode*)this)->type()->is_float_constant()->getf();
1371}
1372
1373#ifndef PRODUCT
1374
1375//----------------------------NotANode----------------------------------------
1376// Used in debugging code to avoid walking across dead or uninitialized edges.
1377static inline bool NotANode(const Node* n) {
1378  if (n == NULL)                   return true;
1379  if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1380  if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1381  return false;
1382}
1383
1384
1385//------------------------------find------------------------------------------
1386// Find a neighbor of this Node with the given _idx
1387// If idx is negative, find its absolute value, following both _in and _out.
1388static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1389                        VectorSet* old_space, VectorSet* new_space ) {
1390  int node_idx = (idx >= 0) ? idx : -idx;
1391  if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1392  // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1393  VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1394  if( v->test(n->_idx) ) return;
1395  if( (int)n->_idx == node_idx
1396      debug_only(|| n->debug_idx() == node_idx) ) {
1397    if (result != NULL)
1398      tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1399                 (uintptr_t)result, (uintptr_t)n, node_idx);
1400    result = n;
1401  }
1402  v->set(n->_idx);
1403  for( uint i=0; i<n->len(); i++ ) {
1404    if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1405    find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1406  }
1407  // Search along forward edges also:
1408  if (idx < 0 && !only_ctrl) {
1409    for( uint j=0; j<n->outcnt(); j++ ) {
1410      find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1411    }
1412  }
1413#ifdef ASSERT
1414  // Search along debug_orig edges last, checking for cycles
1415  Node* orig = n->debug_orig();
1416  if (orig != NULL) {
1417    do {
1418      if (NotANode(orig))  break;
1419      find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1420      orig = orig->debug_orig();
1421    } while (orig != NULL && orig != n->debug_orig());
1422  }
1423#endif //ASSERT
1424}
1425
1426// call this from debugger:
1427Node* find_node(Node* n, int idx) {
1428  return n->find(idx);
1429}
1430
1431//------------------------------find-------------------------------------------
1432Node* Node::find(int idx) const {
1433  ResourceArea *area = Thread::current()->resource_area();
1434  VectorSet old_space(area), new_space(area);
1435  Node* result = NULL;
1436  find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1437  return result;
1438}
1439
1440//------------------------------find_ctrl--------------------------------------
1441// Find an ancestor to this node in the control history with given _idx
1442Node* Node::find_ctrl(int idx) const {
1443  ResourceArea *area = Thread::current()->resource_area();
1444  VectorSet old_space(area), new_space(area);
1445  Node* result = NULL;
1446  find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1447  return result;
1448}
1449#endif
1450
1451
1452
1453#ifndef PRODUCT
1454int Node::_in_dump_cnt = 0;
1455
1456// -----------------------------Name-------------------------------------------
1457extern const char *NodeClassNames[];
1458const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1459
1460static bool is_disconnected(const Node* n) {
1461  for (uint i = 0; i < n->req(); i++) {
1462    if (n->in(i) != NULL)  return false;
1463  }
1464  return true;
1465}
1466
1467#ifdef ASSERT
1468static void dump_orig(Node* orig) {
1469  Compile* C = Compile::current();
1470  if (NotANode(orig))  orig = NULL;
1471  if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
1472  if (orig == NULL)  return;
1473  tty->print(" !orig=");
1474  Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1475  if (NotANode(fast))  fast = NULL;
1476  while (orig != NULL) {
1477    bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1478    if (discon)  tty->print("[");
1479    if (!Compile::current()->node_arena()->contains(orig))
1480      tty->print("o");
1481    tty->print("%d", orig->_idx);
1482    if (discon)  tty->print("]");
1483    orig = orig->debug_orig();
1484    if (NotANode(orig))  orig = NULL;
1485    if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
1486    if (orig != NULL)  tty->print(",");
1487    if (fast != NULL) {
1488      // Step fast twice for each single step of orig:
1489      fast = fast->debug_orig();
1490      if (NotANode(fast))  fast = NULL;
1491      if (fast != NULL && fast != orig) {
1492        fast = fast->debug_orig();
1493        if (NotANode(fast))  fast = NULL;
1494      }
1495      if (fast == orig) {
1496        tty->print("...");
1497        break;
1498      }
1499    }
1500  }
1501}
1502
1503void Node::set_debug_orig(Node* orig) {
1504  _debug_orig = orig;
1505  if (BreakAtNode == 0)  return;
1506  if (NotANode(orig))  orig = NULL;
1507  int trip = 10;
1508  while (orig != NULL) {
1509    if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1510      tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1511                    this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1512      BREAKPOINT;
1513    }
1514    orig = orig->debug_orig();
1515    if (NotANode(orig))  orig = NULL;
1516    if (trip-- <= 0)  break;
1517  }
1518}
1519#endif //ASSERT
1520
1521//------------------------------dump------------------------------------------
1522// Dump a Node
1523void Node::dump() const {
1524  Compile* C = Compile::current();
1525  bool is_new = C->node_arena()->contains(this);
1526  _in_dump_cnt++;
1527  tty->print("%c%d\t%s\t=== ",
1528             is_new ? ' ' : 'o', _idx, Name());
1529
1530  // Dump the required and precedence inputs
1531  dump_req();
1532  dump_prec();
1533  // Dump the outputs
1534  dump_out();
1535
1536  if (is_disconnected(this)) {
1537#ifdef ASSERT
1538    tty->print("  [%d]",debug_idx());
1539    dump_orig(debug_orig());
1540#endif
1541    tty->cr();
1542    _in_dump_cnt--;
1543    return;                     // don't process dead nodes
1544  }
1545
1546  // Dump node-specific info
1547  dump_spec(tty);
1548#ifdef ASSERT
1549  // Dump the non-reset _debug_idx
1550  if( Verbose && WizardMode ) {
1551    tty->print("  [%d]",debug_idx());
1552  }
1553#endif
1554
1555  const Type *t = bottom_type();
1556
1557  if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1558    const TypeInstPtr  *toop = t->isa_instptr();
1559    const TypeKlassPtr *tkls = t->isa_klassptr();
1560    ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1561    if( klass && klass->is_loaded() && klass->is_interface() ) {
1562      tty->print("  Interface:");
1563    } else if( toop ) {
1564      tty->print("  Oop:");
1565    } else if( tkls ) {
1566      tty->print("  Klass:");
1567    }
1568    t->dump();
1569  } else if( t == Type::MEMORY ) {
1570    tty->print("  Memory:");
1571    MemNode::dump_adr_type(this, adr_type(), tty);
1572  } else if( Verbose || WizardMode ) {
1573    tty->print("  Type:");
1574    if( t ) {
1575      t->dump();
1576    } else {
1577      tty->print("no type");
1578    }
1579  } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1580    // Dump MachSpillcopy vector type.
1581    t->dump();
1582  }
1583  if (is_new) {
1584    debug_only(dump_orig(debug_orig()));
1585    Node_Notes* nn = C->node_notes_at(_idx);
1586    if (nn != NULL && !nn->is_clear()) {
1587      if (nn->jvms() != NULL) {
1588        tty->print(" !jvms:");
1589        nn->jvms()->dump_spec(tty);
1590      }
1591    }
1592  }
1593  tty->cr();
1594  _in_dump_cnt--;
1595}
1596
1597//------------------------------dump_req--------------------------------------
1598void Node::dump_req() const {
1599  // Dump the required input edges
1600  for (uint i = 0; i < req(); i++) {    // For all required inputs
1601    Node* d = in(i);
1602    if (d == NULL) {
1603      tty->print("_ ");
1604    } else if (NotANode(d)) {
1605      tty->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1606    } else {
1607      tty->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1608    }
1609  }
1610}
1611
1612
1613//------------------------------dump_prec-------------------------------------
1614void Node::dump_prec() const {
1615  // Dump the precedence edges
1616  int any_prec = 0;
1617  for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1618    Node* p = in(i);
1619    if (p != NULL) {
1620      if( !any_prec++ ) tty->print(" |");
1621      if (NotANode(p)) { tty->print("NotANode "); continue; }
1622      tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1623    }
1624  }
1625}
1626
1627//------------------------------dump_out--------------------------------------
1628void Node::dump_out() const {
1629  // Delimit the output edges
1630  tty->print(" [[");
1631  // Dump the output edges
1632  for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1633    Node* u = _out[i];
1634    if (u == NULL) {
1635      tty->print("_ ");
1636    } else if (NotANode(u)) {
1637      tty->print("NotANode ");
1638    } else {
1639      tty->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1640    }
1641  }
1642  tty->print("]] ");
1643}
1644
1645//------------------------------dump_nodes-------------------------------------
1646static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1647  Node* s = (Node*)start; // remove const
1648  if (NotANode(s)) return;
1649
1650  uint depth = (uint)ABS(d);
1651  int direction = d;
1652  Compile* C = Compile::current();
1653  GrowableArray <Node *> nstack(C->unique());
1654
1655  nstack.append(s);
1656  int begin = 0;
1657  int end = 0;
1658  for(uint i = 0; i < depth; i++) {
1659    end = nstack.length();
1660    for(int j = begin; j < end; j++) {
1661      Node* tp  = nstack.at(j);
1662      uint limit = direction > 0 ? tp->len() : tp->outcnt();
1663      for(uint k = 0; k < limit; k++) {
1664        Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1665
1666        if (NotANode(n))  continue;
1667        // do not recurse through top or the root (would reach unrelated stuff)
1668        if (n->is_Root() || n->is_top())  continue;
1669        if (only_ctrl && !n->is_CFG()) continue;
1670
1671        bool on_stack = nstack.contains(n);
1672        if (!on_stack) {
1673          nstack.append(n);
1674        }
1675      }
1676    }
1677    begin = end;
1678  }
1679  end = nstack.length();
1680  if (direction > 0) {
1681    for(int j = end-1; j >= 0; j--) {
1682      nstack.at(j)->dump();
1683    }
1684  } else {
1685    for(int j = 0; j < end; j++) {
1686      nstack.at(j)->dump();
1687    }
1688  }
1689}
1690
1691//------------------------------dump-------------------------------------------
1692void Node::dump(int d) const {
1693  dump_nodes(this, d, false);
1694}
1695
1696//------------------------------dump_ctrl--------------------------------------
1697// Dump a Node's control history to depth
1698void Node::dump_ctrl(int d) const {
1699  dump_nodes(this, d, true);
1700}
1701
1702// VERIFICATION CODE
1703// For each input edge to a node (ie - for each Use-Def edge), verify that
1704// there is a corresponding Def-Use edge.
1705//------------------------------verify_edges-----------------------------------
1706void Node::verify_edges(Unique_Node_List &visited) {
1707  uint i, j, idx;
1708  int  cnt;
1709  Node *n;
1710
1711  // Recursive termination test
1712  if (visited.member(this))  return;
1713  visited.push(this);
1714
1715  // Walk over all input edges, checking for correspondence
1716  for( i = 0; i < len(); i++ ) {
1717    n = in(i);
1718    if (n != NULL && !n->is_top()) {
1719      // Count instances of (Node *)this
1720      cnt = 0;
1721      for (idx = 0; idx < n->_outcnt; idx++ ) {
1722        if (n->_out[idx] == (Node *)this)  cnt++;
1723      }
1724      assert( cnt > 0,"Failed to find Def-Use edge." );
1725      // Check for duplicate edges
1726      // walk the input array downcounting the input edges to n
1727      for( j = 0; j < len(); j++ ) {
1728        if( in(j) == n ) cnt--;
1729      }
1730      assert( cnt == 0,"Mismatched edge count.");
1731    } else if (n == NULL) {
1732      assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
1733    } else {
1734      assert(n->is_top(), "sanity");
1735      // Nothing to check.
1736    }
1737  }
1738  // Recursive walk over all input edges
1739  for( i = 0; i < len(); i++ ) {
1740    n = in(i);
1741    if( n != NULL )
1742      in(i)->verify_edges(visited);
1743  }
1744}
1745
1746//------------------------------verify_recur-----------------------------------
1747static const Node *unique_top = NULL;
1748
1749void Node::verify_recur(const Node *n, int verify_depth,
1750                        VectorSet &old_space, VectorSet &new_space) {
1751  if ( verify_depth == 0 )  return;
1752  if (verify_depth > 0)  --verify_depth;
1753
1754  Compile* C = Compile::current();
1755
1756  // Contained in new_space or old_space?
1757  VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
1758  // Check for visited in the proper space.  Numberings are not unique
1759  // across spaces so we need a separate VectorSet for each space.
1760  if( v->test_set(n->_idx) ) return;
1761
1762  if (n->is_Con() && n->bottom_type() == Type::TOP) {
1763    if (C->cached_top_node() == NULL)
1764      C->set_cached_top_node((Node*)n);
1765    assert(C->cached_top_node() == n, "TOP node must be unique");
1766  }
1767
1768  for( uint i = 0; i < n->len(); i++ ) {
1769    Node *x = n->in(i);
1770    if (!x || x->is_top()) continue;
1771
1772    // Verify my input has a def-use edge to me
1773    if (true /*VerifyDefUse*/) {
1774      // Count use-def edges from n to x
1775      int cnt = 0;
1776      for( uint j = 0; j < n->len(); j++ )
1777        if( n->in(j) == x )
1778          cnt++;
1779      // Count def-use edges from x to n
1780      uint max = x->_outcnt;
1781      for( uint k = 0; k < max; k++ )
1782        if (x->_out[k] == n)
1783          cnt--;
1784      assert( cnt == 0, "mismatched def-use edge counts" );
1785    }
1786
1787    verify_recur(x, verify_depth, old_space, new_space);
1788  }
1789
1790}
1791
1792//------------------------------verify-----------------------------------------
1793// Check Def-Use info for my subgraph
1794void Node::verify() const {
1795  Compile* C = Compile::current();
1796  Node* old_top = C->cached_top_node();
1797  ResourceMark rm;
1798  ResourceArea *area = Thread::current()->resource_area();
1799  VectorSet old_space(area), new_space(area);
1800  verify_recur(this, -1, old_space, new_space);
1801  C->set_cached_top_node(old_top);
1802}
1803#endif
1804
1805
1806//------------------------------walk-------------------------------------------
1807// Graph walk, with both pre-order and post-order functions
1808void Node::walk(NFunc pre, NFunc post, void *env) {
1809  VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
1810  walk_(pre, post, env, visited);
1811}
1812
1813void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
1814  if( visited.test_set(_idx) ) return;
1815  pre(*this,env);               // Call the pre-order walk function
1816  for( uint i=0; i<_max; i++ )
1817    if( in(i) )                 // Input exists and is not walked?
1818      in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
1819  post(*this,env);              // Call the post-order walk function
1820}
1821
1822void Node::nop(Node &, void*) {}
1823
1824//------------------------------Registers--------------------------------------
1825// Do we Match on this edge index or not?  Generally false for Control
1826// and true for everything else.  Weird for calls & returns.
1827uint Node::match_edge(uint idx) const {
1828  return idx;                   // True for other than index 0 (control)
1829}
1830
1831// Register classes are defined for specific machines
1832const RegMask &Node::out_RegMask() const {
1833  ShouldNotCallThis();
1834  return *(new RegMask());
1835}
1836
1837const RegMask &Node::in_RegMask(uint) const {
1838  ShouldNotCallThis();
1839  return *(new RegMask());
1840}
1841
1842//=============================================================================
1843//-----------------------------------------------------------------------------
1844void Node_Array::reset( Arena *new_arena ) {
1845  _a->Afree(_nodes,_max*sizeof(Node*));
1846  _max   = 0;
1847  _nodes = NULL;
1848  _a     = new_arena;
1849}
1850
1851//------------------------------clear------------------------------------------
1852// Clear all entries in _nodes to NULL but keep storage
1853void Node_Array::clear() {
1854  Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
1855}
1856
1857//-----------------------------------------------------------------------------
1858void Node_Array::grow( uint i ) {
1859  if( !_max ) {
1860    _max = 1;
1861    _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
1862    _nodes[0] = NULL;
1863  }
1864  uint old = _max;
1865  while( i >= _max ) _max <<= 1;        // Double to fit
1866  _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
1867  Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
1868}
1869
1870//-----------------------------------------------------------------------------
1871void Node_Array::insert( uint i, Node *n ) {
1872  if( _nodes[_max-1] ) grow(_max);      // Get more space if full
1873  Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
1874  _nodes[i] = n;
1875}
1876
1877//-----------------------------------------------------------------------------
1878void Node_Array::remove( uint i ) {
1879  Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
1880  _nodes[_max-1] = NULL;
1881}
1882
1883//-----------------------------------------------------------------------------
1884void Node_Array::sort( C_sort_func_t func) {
1885  qsort( _nodes, _max, sizeof( Node* ), func );
1886}
1887
1888//-----------------------------------------------------------------------------
1889void Node_Array::dump() const {
1890#ifndef PRODUCT
1891  for( uint i = 0; i < _max; i++ ) {
1892    Node *nn = _nodes[i];
1893    if( nn != NULL ) {
1894      tty->print("%5d--> ",i); nn->dump();
1895    }
1896  }
1897#endif
1898}
1899
1900//--------------------------is_iteratively_computed------------------------------
1901// Operation appears to be iteratively computed (such as an induction variable)
1902// It is possible for this operation to return false for a loop-varying
1903// value, if it appears (by local graph inspection) to be computed by a simple conditional.
1904bool Node::is_iteratively_computed() {
1905  if (ideal_reg()) { // does operation have a result register?
1906    for (uint i = 1; i < req(); i++) {
1907      Node* n = in(i);
1908      if (n != NULL && n->is_Phi()) {
1909        for (uint j = 1; j < n->req(); j++) {
1910          if (n->in(j) == this) {
1911            return true;
1912          }
1913        }
1914      }
1915    }
1916  }
1917  return false;
1918}
1919
1920//--------------------------find_similar------------------------------
1921// Return a node with opcode "opc" and same inputs as "this" if one can
1922// be found; Otherwise return NULL;
1923Node* Node::find_similar(int opc) {
1924  if (req() >= 2) {
1925    Node* def = in(1);
1926    if (def && def->outcnt() >= 2) {
1927      for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
1928        Node* use = def->fast_out(i);
1929        if (use->Opcode() == opc &&
1930            use->req() == req()) {
1931          uint j;
1932          for (j = 0; j < use->req(); j++) {
1933            if (use->in(j) != in(j)) {
1934              break;
1935            }
1936          }
1937          if (j == use->req()) {
1938            return use;
1939          }
1940        }
1941      }
1942    }
1943  }
1944  return NULL;
1945}
1946
1947
1948//--------------------------unique_ctrl_out------------------------------
1949// Return the unique control out if only one. Null if none or more than one.
1950Node* Node::unique_ctrl_out() {
1951  Node* found = NULL;
1952  for (uint i = 0; i < outcnt(); i++) {
1953    Node* use = raw_out(i);
1954    if (use->is_CFG() && use != this) {
1955      if (found != NULL) return NULL;
1956      found = use;
1957    }
1958  }
1959  return found;
1960}
1961
1962//=============================================================================
1963//------------------------------yank-------------------------------------------
1964// Find and remove
1965void Node_List::yank( Node *n ) {
1966  uint i;
1967  for( i = 0; i < _cnt; i++ )
1968    if( _nodes[i] == n )
1969      break;
1970
1971  if( i < _cnt )
1972    _nodes[i] = _nodes[--_cnt];
1973}
1974
1975//------------------------------dump-------------------------------------------
1976void Node_List::dump() const {
1977#ifndef PRODUCT
1978  for( uint i = 0; i < _cnt; i++ )
1979    if( _nodes[i] ) {
1980      tty->print("%5d--> ",i);
1981      _nodes[i]->dump();
1982    }
1983#endif
1984}
1985
1986//=============================================================================
1987//------------------------------remove-----------------------------------------
1988void Unique_Node_List::remove( Node *n ) {
1989  if( _in_worklist[n->_idx] ) {
1990    for( uint i = 0; i < size(); i++ )
1991      if( _nodes[i] == n ) {
1992        map(i,Node_List::pop());
1993        _in_worklist >>= n->_idx;
1994        return;
1995      }
1996    ShouldNotReachHere();
1997  }
1998}
1999
2000//-----------------------remove_useless_nodes----------------------------------
2001// Remove useless nodes from worklist
2002void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2003
2004  for( uint i = 0; i < size(); ++i ) {
2005    Node *n = at(i);
2006    assert( n != NULL, "Did not expect null entries in worklist");
2007    if( ! useful.test(n->_idx) ) {
2008      _in_worklist >>= n->_idx;
2009      map(i,Node_List::pop());
2010      // Node *replacement = Node_List::pop();
2011      // if( i != size() ) { // Check if removing last entry
2012      //   _nodes[i] = replacement;
2013      // }
2014      --i;  // Visit popped node
2015      // If it was last entry, loop terminates since size() was also reduced
2016    }
2017  }
2018}
2019
2020//=============================================================================
2021void Node_Stack::grow() {
2022  size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2023  size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2024  size_t max = old_max << 1;             // max * 2
2025  _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2026  _inode_max = _inodes + max;
2027  _inode_top = _inodes + old_top;        // restore _top
2028}
2029
2030// Node_Stack is used to map nodes.
2031Node* Node_Stack::find(uint idx) const {
2032  uint sz = size();
2033  for (uint i=0; i < sz; i++) {
2034    if (idx == index_at(i) )
2035      return node_at(i);
2036  }
2037  return NULL;
2038}
2039
2040//=============================================================================
2041uint TypeNode::size_of() const { return sizeof(*this); }
2042#ifndef PRODUCT
2043void TypeNode::dump_spec(outputStream *st) const {
2044  if( !Verbose && !WizardMode ) {
2045    // standard dump does this in Verbose and WizardMode
2046    st->print(" #"); _type->dump_on(st);
2047  }
2048}
2049#endif
2050uint TypeNode::hash() const {
2051  return Node::hash() + _type->hash();
2052}
2053uint TypeNode::cmp( const Node &n ) const
2054{ return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2055const Type *TypeNode::bottom_type() const { return _type; }
2056const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
2057
2058//------------------------------ideal_reg--------------------------------------
2059uint TypeNode::ideal_reg() const {
2060  return _type->ideal_reg();
2061}
2062