node.cpp revision 222:2a1a77d3458f
1/*
2 * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_node.cpp.incl"
27
28class RegMask;
29// #include "phase.hpp"
30class PhaseTransform;
31class PhaseGVN;
32
33// Arena we are currently building Nodes in
34const uint Node::NotAMachineReg = 0xffff0000;
35
36#ifndef PRODUCT
37extern int nodes_created;
38#endif
39
40#ifdef ASSERT
41
42//-------------------------- construct_node------------------------------------
43// Set a breakpoint here to identify where a particular node index is built.
44void Node::verify_construction() {
45  _debug_orig = NULL;
46  int old_debug_idx = Compile::debug_idx();
47  int new_debug_idx = old_debug_idx+1;
48  if (new_debug_idx > 0) {
49    // Arrange that the lowest five decimal digits of _debug_idx
50    // will repeat thos of _idx.  In case this is somehow pathological,
51    // we continue to assign negative numbers (!) consecutively.
52    const int mod = 100000;
53    int bump = (int)(_idx - new_debug_idx) % mod;
54    if (bump < 0)  bump += mod;
55    assert(bump >= 0 && bump < mod, "");
56    new_debug_idx += bump;
57  }
58  Compile::set_debug_idx(new_debug_idx);
59  set_debug_idx( new_debug_idx );
60  assert(Compile::current()->unique() < (uint)MaxNodeLimit, "Node limit exceeded");
61  if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
62    tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
63    BREAKPOINT;
64  }
65#if OPTO_DU_ITERATOR_ASSERT
66  _last_del = NULL;
67  _del_tick = 0;
68#endif
69  _hash_lock = 0;
70}
71
72
73// #ifdef ASSERT ...
74
75#if OPTO_DU_ITERATOR_ASSERT
76void DUIterator_Common::sample(const Node* node) {
77  _vdui     = VerifyDUIterators;
78  _node     = node;
79  _outcnt   = node->_outcnt;
80  _del_tick = node->_del_tick;
81  _last     = NULL;
82}
83
84void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
85  assert(_node     == node, "consistent iterator source");
86  assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
87}
88
89void DUIterator_Common::verify_resync() {
90  // Ensure that the loop body has just deleted the last guy produced.
91  const Node* node = _node;
92  // Ensure that at least one copy of the last-seen edge was deleted.
93  // Note:  It is OK to delete multiple copies of the last-seen edge.
94  // Unfortunately, we have no way to verify that all the deletions delete
95  // that same edge.  On this point we must use the Honor System.
96  assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
97  assert(node->_last_del == _last, "must have deleted the edge just produced");
98  // We liked this deletion, so accept the resulting outcnt and tick.
99  _outcnt   = node->_outcnt;
100  _del_tick = node->_del_tick;
101}
102
103void DUIterator_Common::reset(const DUIterator_Common& that) {
104  if (this == &that)  return;  // ignore assignment to self
105  if (!_vdui) {
106    // We need to initialize everything, overwriting garbage values.
107    _last = that._last;
108    _vdui = that._vdui;
109  }
110  // Note:  It is legal (though odd) for an iterator over some node x
111  // to be reassigned to iterate over another node y.  Some doubly-nested
112  // progress loops depend on being able to do this.
113  const Node* node = that._node;
114  // Re-initialize everything, except _last.
115  _node     = node;
116  _outcnt   = node->_outcnt;
117  _del_tick = node->_del_tick;
118}
119
120void DUIterator::sample(const Node* node) {
121  DUIterator_Common::sample(node);      // Initialize the assertion data.
122  _refresh_tick = 0;                    // No refreshes have happened, as yet.
123}
124
125void DUIterator::verify(const Node* node, bool at_end_ok) {
126  DUIterator_Common::verify(node, at_end_ok);
127  assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
128}
129
130void DUIterator::verify_increment() {
131  if (_refresh_tick & 1) {
132    // We have refreshed the index during this loop.
133    // Fix up _idx to meet asserts.
134    if (_idx > _outcnt)  _idx = _outcnt;
135  }
136  verify(_node, true);
137}
138
139void DUIterator::verify_resync() {
140  // Note:  We do not assert on _outcnt, because insertions are OK here.
141  DUIterator_Common::verify_resync();
142  // Make sure we are still in sync, possibly with no more out-edges:
143  verify(_node, true);
144}
145
146void DUIterator::reset(const DUIterator& that) {
147  if (this == &that)  return;  // self assignment is always a no-op
148  assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
149  assert(that._idx          == 0, "assign only the result of Node::outs()");
150  assert(_idx               == that._idx, "already assigned _idx");
151  if (!_vdui) {
152    // We need to initialize everything, overwriting garbage values.
153    sample(that._node);
154  } else {
155    DUIterator_Common::reset(that);
156    if (_refresh_tick & 1) {
157      _refresh_tick++;                  // Clear the "was refreshed" flag.
158    }
159    assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
160  }
161}
162
163void DUIterator::refresh() {
164  DUIterator_Common::sample(_node);     // Re-fetch assertion data.
165  _refresh_tick |= 1;                   // Set the "was refreshed" flag.
166}
167
168void DUIterator::verify_finish() {
169  // If the loop has killed the node, do not require it to re-run.
170  if (_node->_outcnt == 0)  _refresh_tick &= ~1;
171  // If this assert triggers, it means that a loop used refresh_out_pos
172  // to re-synch an iteration index, but the loop did not correctly
173  // re-run itself, using a "while (progress)" construct.
174  // This iterator enforces the rule that you must keep trying the loop
175  // until it "runs clean" without any need for refreshing.
176  assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
177}
178
179
180void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
181  DUIterator_Common::verify(node, at_end_ok);
182  Node** out    = node->_out;
183  uint   cnt    = node->_outcnt;
184  assert(cnt == _outcnt, "no insertions allowed");
185  assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
186  // This last check is carefully designed to work for NO_OUT_ARRAY.
187}
188
189void DUIterator_Fast::verify_limit() {
190  const Node* node = _node;
191  verify(node, true);
192  assert(_outp == node->_out + node->_outcnt, "limit still correct");
193}
194
195void DUIterator_Fast::verify_resync() {
196  const Node* node = _node;
197  if (_outp == node->_out + _outcnt) {
198    // Note that the limit imax, not the pointer i, gets updated with the
199    // exact count of deletions.  (For the pointer it's always "--i".)
200    assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
201    // This is a limit pointer, with a name like "imax".
202    // Fudge the _last field so that the common assert will be happy.
203    _last = (Node*) node->_last_del;
204    DUIterator_Common::verify_resync();
205  } else {
206    assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
207    // A normal internal pointer.
208    DUIterator_Common::verify_resync();
209    // Make sure we are still in sync, possibly with no more out-edges:
210    verify(node, true);
211  }
212}
213
214void DUIterator_Fast::verify_relimit(uint n) {
215  const Node* node = _node;
216  assert((int)n > 0, "use imax -= n only with a positive count");
217  // This must be a limit pointer, with a name like "imax".
218  assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
219  // The reported number of deletions must match what the node saw.
220  assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
221  // Fudge the _last field so that the common assert will be happy.
222  _last = (Node*) node->_last_del;
223  DUIterator_Common::verify_resync();
224}
225
226void DUIterator_Fast::reset(const DUIterator_Fast& that) {
227  assert(_outp              == that._outp, "already assigned _outp");
228  DUIterator_Common::reset(that);
229}
230
231void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
232  // at_end_ok means the _outp is allowed to underflow by 1
233  _outp += at_end_ok;
234  DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
235  _outp -= at_end_ok;
236  assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
237}
238
239void DUIterator_Last::verify_limit() {
240  // Do not require the limit address to be resynched.
241  //verify(node, true);
242  assert(_outp == _node->_out, "limit still correct");
243}
244
245void DUIterator_Last::verify_step(uint num_edges) {
246  assert((int)num_edges > 0, "need non-zero edge count for loop progress");
247  _outcnt   -= num_edges;
248  _del_tick += num_edges;
249  // Make sure we are still in sync, possibly with no more out-edges:
250  const Node* node = _node;
251  verify(node, true);
252  assert(node->_last_del == _last, "must have deleted the edge just produced");
253}
254
255#endif //OPTO_DU_ITERATOR_ASSERT
256
257
258#endif //ASSERT
259
260
261// This constant used to initialize _out may be any non-null value.
262// The value NULL is reserved for the top node only.
263#define NO_OUT_ARRAY ((Node**)-1)
264
265// This funny expression handshakes with Node::operator new
266// to pull Compile::current out of the new node's _out field,
267// and then calls a subroutine which manages most field
268// initializations.  The only one which is tricky is the
269// _idx field, which is const, and so must be initialized
270// by a return value, not an assignment.
271//
272// (Aren't you thankful that Java finals don't require so many tricks?)
273#define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
274#ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
275#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
276#endif
277
278// Out-of-line code from node constructors.
279// Executed only when extra debug info. is being passed around.
280static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
281  C->set_node_notes_at(idx, nn);
282}
283
284// Shared initialization code.
285inline int Node::Init(int req, Compile* C) {
286  assert(Compile::current() == C, "must use operator new(Compile*)");
287  int idx = C->next_unique();
288
289  // If there are default notes floating around, capture them:
290  Node_Notes* nn = C->default_node_notes();
291  if (nn != NULL)  init_node_notes(C, idx, nn);
292
293  // Note:  At this point, C is dead,
294  // and we begin to initialize the new Node.
295
296  _cnt = _max = req;
297  _outcnt = _outmax = 0;
298  _class_id = Class_Node;
299  _flags = 0;
300  _out = NO_OUT_ARRAY;
301  return idx;
302}
303
304//------------------------------Node-------------------------------------------
305// Create a Node, with a given number of required edges.
306Node::Node(uint req)
307  : _idx(IDX_INIT(req))
308{
309  assert( req < (uint)(MaxNodeLimit - NodeLimitFudgeFactor), "Input limit exceeded" );
310  debug_only( verify_construction() );
311  NOT_PRODUCT(nodes_created++);
312  if (req == 0) {
313    assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
314    _in = NULL;
315  } else {
316    assert( _in[req-1] == this, "Must pass arg count to 'new'" );
317    Node** to = _in;
318    for(uint i = 0; i < req; i++) {
319      to[i] = NULL;
320    }
321  }
322}
323
324//------------------------------Node-------------------------------------------
325Node::Node(Node *n0)
326  : _idx(IDX_INIT(1))
327{
328  debug_only( verify_construction() );
329  NOT_PRODUCT(nodes_created++);
330  // Assert we allocated space for input array already
331  assert( _in[0] == this, "Must pass arg count to 'new'" );
332  assert( is_not_dead(n0), "can not use dead node");
333  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
334}
335
336//------------------------------Node-------------------------------------------
337Node::Node(Node *n0, Node *n1)
338  : _idx(IDX_INIT(2))
339{
340  debug_only( verify_construction() );
341  NOT_PRODUCT(nodes_created++);
342  // Assert we allocated space for input array already
343  assert( _in[1] == this, "Must pass arg count to 'new'" );
344  assert( is_not_dead(n0), "can not use dead node");
345  assert( is_not_dead(n1), "can not use dead node");
346  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
347  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
348}
349
350//------------------------------Node-------------------------------------------
351Node::Node(Node *n0, Node *n1, Node *n2)
352  : _idx(IDX_INIT(3))
353{
354  debug_only( verify_construction() );
355  NOT_PRODUCT(nodes_created++);
356  // Assert we allocated space for input array already
357  assert( _in[2] == this, "Must pass arg count to 'new'" );
358  assert( is_not_dead(n0), "can not use dead node");
359  assert( is_not_dead(n1), "can not use dead node");
360  assert( is_not_dead(n2), "can not use dead node");
361  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
362  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
363  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
364}
365
366//------------------------------Node-------------------------------------------
367Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
368  : _idx(IDX_INIT(4))
369{
370  debug_only( verify_construction() );
371  NOT_PRODUCT(nodes_created++);
372  // Assert we allocated space for input array already
373  assert( _in[3] == this, "Must pass arg count to 'new'" );
374  assert( is_not_dead(n0), "can not use dead node");
375  assert( is_not_dead(n1), "can not use dead node");
376  assert( is_not_dead(n2), "can not use dead node");
377  assert( is_not_dead(n3), "can not use dead node");
378  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
379  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
380  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
381  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
382}
383
384//------------------------------Node-------------------------------------------
385Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
386  : _idx(IDX_INIT(5))
387{
388  debug_only( verify_construction() );
389  NOT_PRODUCT(nodes_created++);
390  // Assert we allocated space for input array already
391  assert( _in[4] == this, "Must pass arg count to 'new'" );
392  assert( is_not_dead(n0), "can not use dead node");
393  assert( is_not_dead(n1), "can not use dead node");
394  assert( is_not_dead(n2), "can not use dead node");
395  assert( is_not_dead(n3), "can not use dead node");
396  assert( is_not_dead(n4), "can not use dead node");
397  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
398  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
399  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
400  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
401  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
402}
403
404//------------------------------Node-------------------------------------------
405Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
406                     Node *n4, Node *n5)
407  : _idx(IDX_INIT(6))
408{
409  debug_only( verify_construction() );
410  NOT_PRODUCT(nodes_created++);
411  // Assert we allocated space for input array already
412  assert( _in[5] == this, "Must pass arg count to 'new'" );
413  assert( is_not_dead(n0), "can not use dead node");
414  assert( is_not_dead(n1), "can not use dead node");
415  assert( is_not_dead(n2), "can not use dead node");
416  assert( is_not_dead(n3), "can not use dead node");
417  assert( is_not_dead(n4), "can not use dead node");
418  assert( is_not_dead(n5), "can not use dead node");
419  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
420  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
421  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
422  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
423  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
424  _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
425}
426
427//------------------------------Node-------------------------------------------
428Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
429                     Node *n4, Node *n5, Node *n6)
430  : _idx(IDX_INIT(7))
431{
432  debug_only( verify_construction() );
433  NOT_PRODUCT(nodes_created++);
434  // Assert we allocated space for input array already
435  assert( _in[6] == this, "Must pass arg count to 'new'" );
436  assert( is_not_dead(n0), "can not use dead node");
437  assert( is_not_dead(n1), "can not use dead node");
438  assert( is_not_dead(n2), "can not use dead node");
439  assert( is_not_dead(n3), "can not use dead node");
440  assert( is_not_dead(n4), "can not use dead node");
441  assert( is_not_dead(n5), "can not use dead node");
442  assert( is_not_dead(n6), "can not use dead node");
443  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
444  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
445  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
446  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
447  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
448  _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
449  _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
450}
451
452
453//------------------------------clone------------------------------------------
454// Clone a Node.
455Node *Node::clone() const {
456  Compile *compile = Compile::current();
457  uint s = size_of();           // Size of inherited Node
458  Node *n = (Node*)compile->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
459  Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
460  // Set the new input pointer array
461  n->_in = (Node**)(((char*)n)+s);
462  // Cannot share the old output pointer array, so kill it
463  n->_out = NO_OUT_ARRAY;
464  // And reset the counters to 0
465  n->_outcnt = 0;
466  n->_outmax = 0;
467  // Unlock this guy, since he is not in any hash table.
468  debug_only(n->_hash_lock = 0);
469  // Walk the old node's input list to duplicate its edges
470  uint i;
471  for( i = 0; i < len(); i++ ) {
472    Node *x = in(i);
473    n->_in[i] = x;
474    if (x != NULL) x->add_out(n);
475  }
476  if (is_macro())
477    compile->add_macro_node(n);
478
479  n->set_idx(compile->next_unique()); // Get new unique index as well
480  debug_only( n->verify_construction() );
481  NOT_PRODUCT(nodes_created++);
482  // Do not patch over the debug_idx of a clone, because it makes it
483  // impossible to break on the clone's moment of creation.
484  //debug_only( n->set_debug_idx( debug_idx() ) );
485
486  compile->copy_node_notes_to(n, (Node*) this);
487
488  // MachNode clone
489  uint nopnds;
490  if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
491    MachNode *mach  = n->as_Mach();
492    MachNode *mthis = this->as_Mach();
493    // Get address of _opnd_array.
494    // It should be the same offset since it is the clone of this node.
495    MachOper **from = mthis->_opnds;
496    MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
497                    pointer_delta((const void*)from,
498                                  (const void*)(&mthis->_opnds), 1));
499    mach->_opnds = to;
500    for ( uint i = 0; i < nopnds; ++i ) {
501      to[i] = from[i]->clone(compile);
502    }
503  }
504  // cloning CallNode may need to clone JVMState
505  if (n->is_Call()) {
506    CallNode *call = n->as_Call();
507    call->clone_jvms();
508  }
509  return n;                     // Return the clone
510}
511
512//---------------------------setup_is_top--------------------------------------
513// Call this when changing the top node, to reassert the invariants
514// required by Node::is_top.  See Compile::set_cached_top_node.
515void Node::setup_is_top() {
516  if (this == (Node*)Compile::current()->top()) {
517    // This node has just become top.  Kill its out array.
518    _outcnt = _outmax = 0;
519    _out = NULL;                           // marker value for top
520    assert(is_top(), "must be top");
521  } else {
522    if (_out == NULL)  _out = NO_OUT_ARRAY;
523    assert(!is_top(), "must not be top");
524  }
525}
526
527
528//------------------------------~Node------------------------------------------
529// Fancy destructor; eagerly attempt to reclaim Node numberings and storage
530extern int reclaim_idx ;
531extern int reclaim_in  ;
532extern int reclaim_node;
533void Node::destruct() {
534  // Eagerly reclaim unique Node numberings
535  Compile* compile = Compile::current();
536  if ((uint)_idx+1 == compile->unique()) {
537    compile->set_unique(compile->unique()-1);
538#ifdef ASSERT
539    reclaim_idx++;
540#endif
541  }
542  // Clear debug info:
543  Node_Notes* nn = compile->node_notes_at(_idx);
544  if (nn != NULL)  nn->clear();
545  // Walk the input array, freeing the corresponding output edges
546  _cnt = _max;  // forget req/prec distinction
547  uint i;
548  for( i = 0; i < _max; i++ ) {
549    set_req(i, NULL);
550    //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
551  }
552  assert(outcnt() == 0, "deleting a node must not leave a dangling use");
553  // See if the input array was allocated just prior to the object
554  int edge_size = _max*sizeof(void*);
555  int out_edge_size = _outmax*sizeof(void*);
556  char *edge_end = ((char*)_in) + edge_size;
557  char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
558  char *out_edge_end = out_array + out_edge_size;
559  int node_size = size_of();
560
561  // Free the output edge array
562  if (out_edge_size > 0) {
563#ifdef ASSERT
564    if( out_edge_end == compile->node_arena()->hwm() )
565      reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
566#endif
567    compile->node_arena()->Afree(out_array, out_edge_size);
568  }
569
570  // Free the input edge array and the node itself
571  if( edge_end == (char*)this ) {
572#ifdef ASSERT
573    if( edge_end+node_size == compile->node_arena()->hwm() ) {
574      reclaim_in  += edge_size;
575      reclaim_node+= node_size;
576    }
577#else
578    // It was; free the input array and object all in one hit
579    compile->node_arena()->Afree(_in,edge_size+node_size);
580#endif
581  } else {
582
583    // Free just the input array
584#ifdef ASSERT
585    if( edge_end == compile->node_arena()->hwm() )
586      reclaim_in  += edge_size;
587#endif
588    compile->node_arena()->Afree(_in,edge_size);
589
590    // Free just the object
591#ifdef ASSERT
592    if( ((char*)this) + node_size == compile->node_arena()->hwm() )
593      reclaim_node+= node_size;
594#else
595    compile->node_arena()->Afree(this,node_size);
596#endif
597  }
598  if (is_macro()) {
599    compile->remove_macro_node(this);
600  }
601#ifdef ASSERT
602  // We will not actually delete the storage, but we'll make the node unusable.
603  *(address*)this = badAddress;  // smash the C++ vtbl, probably
604  _in = _out = (Node**) badAddress;
605  _max = _cnt = _outmax = _outcnt = 0;
606#endif
607}
608
609//------------------------------grow-------------------------------------------
610// Grow the input array, making space for more edges
611void Node::grow( uint len ) {
612  Arena* arena = Compile::current()->node_arena();
613  uint new_max = _max;
614  if( new_max == 0 ) {
615    _max = 4;
616    _in = (Node**)arena->Amalloc(4*sizeof(Node*));
617    Node** to = _in;
618    to[0] = NULL;
619    to[1] = NULL;
620    to[2] = NULL;
621    to[3] = NULL;
622    return;
623  }
624  while( new_max <= len ) new_max <<= 1; // Find next power-of-2
625  // Trimming to limit allows a uint8 to handle up to 255 edges.
626  // Previously I was using only powers-of-2 which peaked at 128 edges.
627  //if( new_max >= limit ) new_max = limit-1;
628  _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
629  Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
630  _max = new_max;               // Record new max length
631  // This assertion makes sure that Node::_max is wide enough to
632  // represent the numerical value of new_max.
633  assert(_max == new_max && _max > len, "int width of _max is too small");
634}
635
636//-----------------------------out_grow----------------------------------------
637// Grow the input array, making space for more edges
638void Node::out_grow( uint len ) {
639  assert(!is_top(), "cannot grow a top node's out array");
640  Arena* arena = Compile::current()->node_arena();
641  uint new_max = _outmax;
642  if( new_max == 0 ) {
643    _outmax = 4;
644    _out = (Node **)arena->Amalloc(4*sizeof(Node*));
645    return;
646  }
647  while( new_max <= len ) new_max <<= 1; // Find next power-of-2
648  // Trimming to limit allows a uint8 to handle up to 255 edges.
649  // Previously I was using only powers-of-2 which peaked at 128 edges.
650  //if( new_max >= limit ) new_max = limit-1;
651  assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
652  _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
653  //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
654  _outmax = new_max;               // Record new max length
655  // This assertion makes sure that Node::_max is wide enough to
656  // represent the numerical value of new_max.
657  assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
658}
659
660#ifdef ASSERT
661//------------------------------is_dead----------------------------------------
662bool Node::is_dead() const {
663  // Mach and pinch point nodes may look like dead.
664  if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
665    return false;
666  for( uint i = 0; i < _max; i++ )
667    if( _in[i] != NULL )
668      return false;
669  dump();
670  return true;
671}
672#endif
673
674//------------------------------add_req----------------------------------------
675// Add a new required input at the end
676void Node::add_req( Node *n ) {
677  assert( is_not_dead(n), "can not use dead node");
678
679  // Look to see if I can move precedence down one without reallocating
680  if( (_cnt >= _max) || (in(_max-1) != NULL) )
681    grow( _max+1 );
682
683  // Find a precedence edge to move
684  if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
685    uint i;
686    for( i=_cnt; i<_max; i++ )
687      if( in(i) == NULL )       // Find the NULL at end of prec edge list
688        break;                  // There must be one, since we grew the array
689    _in[i] = in(_cnt);          // Move prec over, making space for req edge
690  }
691  _in[_cnt++] = n;            // Stuff over old prec edge
692  if (n != NULL) n->add_out((Node *)this);
693}
694
695//---------------------------add_req_batch-------------------------------------
696// Add a new required input at the end
697void Node::add_req_batch( Node *n, uint m ) {
698  assert( is_not_dead(n), "can not use dead node");
699  // check various edge cases
700  if ((int)m <= 1) {
701    assert((int)m >= 0, "oob");
702    if (m != 0)  add_req(n);
703    return;
704  }
705
706  // Look to see if I can move precedence down one without reallocating
707  if( (_cnt+m) > _max || _in[_max-m] )
708    grow( _max+m );
709
710  // Find a precedence edge to move
711  if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
712    uint i;
713    for( i=_cnt; i<_max; i++ )
714      if( _in[i] == NULL )      // Find the NULL at end of prec edge list
715        break;                  // There must be one, since we grew the array
716    // Slide all the precs over by m positions (assume #prec << m).
717    Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
718  }
719
720  // Stuff over the old prec edges
721  for(uint i=0; i<m; i++ ) {
722    _in[_cnt++] = n;
723  }
724
725  // Insert multiple out edges on the node.
726  if (n != NULL && !n->is_top()) {
727    for(uint i=0; i<m; i++ ) {
728      n->add_out((Node *)this);
729    }
730  }
731}
732
733//------------------------------del_req----------------------------------------
734// Delete the required edge and compact the edge array
735void Node::del_req( uint idx ) {
736  // First remove corresponding def-use edge
737  Node *n = in(idx);
738  if (n != NULL) n->del_out((Node *)this);
739  _in[idx] = in(--_cnt);  // Compact the array
740  _in[_cnt] = NULL;       // NULL out emptied slot
741}
742
743//------------------------------ins_req----------------------------------------
744// Insert a new required input at the end
745void Node::ins_req( uint idx, Node *n ) {
746  assert( is_not_dead(n), "can not use dead node");
747  add_req(NULL);                // Make space
748  assert( idx < _max, "Must have allocated enough space");
749  // Slide over
750  if(_cnt-idx-1 > 0) {
751    Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
752  }
753  _in[idx] = n;                            // Stuff over old required edge
754  if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
755}
756
757//-----------------------------find_edge---------------------------------------
758int Node::find_edge(Node* n) {
759  for (uint i = 0; i < len(); i++) {
760    if (_in[i] == n)  return i;
761  }
762  return -1;
763}
764
765//----------------------------replace_edge-------------------------------------
766int Node::replace_edge(Node* old, Node* neww) {
767  if (old == neww)  return 0;  // nothing to do
768  uint nrep = 0;
769  for (uint i = 0; i < len(); i++) {
770    if (in(i) == old) {
771      if (i < req())
772        set_req(i, neww);
773      else
774        set_prec(i, neww);
775      nrep++;
776    }
777  }
778  return nrep;
779}
780
781//-------------------------disconnect_inputs-----------------------------------
782// NULL out all inputs to eliminate incoming Def-Use edges.
783// Return the number of edges between 'n' and 'this'
784int Node::disconnect_inputs(Node *n) {
785  int edges_to_n = 0;
786
787  uint cnt = req();
788  for( uint i = 0; i < cnt; ++i ) {
789    if( in(i) == 0 ) continue;
790    if( in(i) == n ) ++edges_to_n;
791    set_req(i, NULL);
792  }
793  // Remove precedence edges if any exist
794  // Note: Safepoints may have precedence edges, even during parsing
795  if( (req() != len()) && (in(req()) != NULL) ) {
796    uint max = len();
797    for( uint i = 0; i < max; ++i ) {
798      if( in(i) == 0 ) continue;
799      if( in(i) == n ) ++edges_to_n;
800      set_prec(i, NULL);
801    }
802  }
803
804  // Node::destruct requires all out edges be deleted first
805  // debug_only(destruct();)   // no reuse benefit expected
806  return edges_to_n;
807}
808
809//-----------------------------uncast---------------------------------------
810// %%% Temporary, until we sort out CheckCastPP vs. CastPP.
811// Strip away casting.  (It is depth-limited.)
812Node* Node::uncast() const {
813  // Should be inline:
814  //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
815  if (is_ConstraintCast() || is_CheckCastPP())
816    return uncast_helper(this);
817  else
818    return (Node*) this;
819}
820
821//---------------------------uncast_helper-------------------------------------
822Node* Node::uncast_helper(const Node* p) {
823  uint max_depth = 3;
824  for (uint i = 0; i < max_depth; i++) {
825    if (p == NULL || p->req() != 2) {
826      break;
827    } else if (p->is_ConstraintCast()) {
828      p = p->in(1);
829    } else if (p->is_CheckCastPP()) {
830      p = p->in(1);
831    } else {
832      break;
833    }
834  }
835  return (Node*) p;
836}
837
838//------------------------------add_prec---------------------------------------
839// Add a new precedence input.  Precedence inputs are unordered, with
840// duplicates removed and NULLs packed down at the end.
841void Node::add_prec( Node *n ) {
842  assert( is_not_dead(n), "can not use dead node");
843
844  // Check for NULL at end
845  if( _cnt >= _max || in(_max-1) )
846    grow( _max+1 );
847
848  // Find a precedence edge to move
849  uint i = _cnt;
850  while( in(i) != NULL ) i++;
851  _in[i] = n;                                // Stuff prec edge over NULL
852  if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
853}
854
855//------------------------------rm_prec----------------------------------------
856// Remove a precedence input.  Precedence inputs are unordered, with
857// duplicates removed and NULLs packed down at the end.
858void Node::rm_prec( uint j ) {
859
860  // Find end of precedence list to pack NULLs
861  uint i;
862  for( i=j; i<_max; i++ )
863    if( !_in[i] )               // Find the NULL at end of prec edge list
864      break;
865  if (_in[j] != NULL) _in[j]->del_out((Node *)this);
866  _in[j] = _in[--i];            // Move last element over removed guy
867  _in[i] = NULL;                // NULL out last element
868}
869
870//------------------------------size_of----------------------------------------
871uint Node::size_of() const { return sizeof(*this); }
872
873//------------------------------ideal_reg--------------------------------------
874uint Node::ideal_reg() const { return 0; }
875
876//------------------------------jvms-------------------------------------------
877JVMState* Node::jvms() const { return NULL; }
878
879#ifdef ASSERT
880//------------------------------jvms-------------------------------------------
881bool Node::verify_jvms(const JVMState* using_jvms) const {
882  for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
883    if (jvms == using_jvms)  return true;
884  }
885  return false;
886}
887
888//------------------------------init_NodeProperty------------------------------
889void Node::init_NodeProperty() {
890  assert(_max_classes <= max_jushort, "too many NodeProperty classes");
891  assert(_max_flags <= max_jushort, "too many NodeProperty flags");
892}
893#endif
894
895//------------------------------format-----------------------------------------
896// Print as assembly
897void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
898//------------------------------emit-------------------------------------------
899// Emit bytes starting at parameter 'ptr'.
900void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
901//------------------------------size-------------------------------------------
902// Size of instruction in bytes
903uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
904
905//------------------------------CFG Construction-------------------------------
906// Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
907// Goto and Return.
908const Node *Node::is_block_proj() const { return 0; }
909
910// Minimum guaranteed type
911const Type *Node::bottom_type() const { return Type::BOTTOM; }
912
913
914//------------------------------raise_bottom_type------------------------------
915// Get the worst-case Type output for this Node.
916void Node::raise_bottom_type(const Type* new_type) {
917  if (is_Type()) {
918    TypeNode *n = this->as_Type();
919    if (VerifyAliases) {
920      assert(new_type->higher_equal(n->type()), "new type must refine old type");
921    }
922    n->set_type(new_type);
923  } else if (is_Load()) {
924    LoadNode *n = this->as_Load();
925    if (VerifyAliases) {
926      assert(new_type->higher_equal(n->type()), "new type must refine old type");
927    }
928    n->set_type(new_type);
929  }
930}
931
932//------------------------------Identity---------------------------------------
933// Return a node that the given node is equivalent to.
934Node *Node::Identity( PhaseTransform * ) {
935  return this;                  // Default to no identities
936}
937
938//------------------------------Value------------------------------------------
939// Compute a new Type for a node using the Type of the inputs.
940const Type *Node::Value( PhaseTransform * ) const {
941  return bottom_type();         // Default to worst-case Type
942}
943
944//------------------------------Ideal------------------------------------------
945//
946// 'Idealize' the graph rooted at this Node.
947//
948// In order to be efficient and flexible there are some subtle invariants
949// these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
950// these invariants, although its too slow to have on by default.  If you are
951// hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
952//
953// The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
954// pointer.  If ANY change is made, it must return the root of the reshaped
955// graph - even if the root is the same Node.  Example: swapping the inputs
956// to an AddINode gives the same answer and same root, but you still have to
957// return the 'this' pointer instead of NULL.
958//
959// You cannot return an OLD Node, except for the 'this' pointer.  Use the
960// Identity call to return an old Node; basically if Identity can find
961// another Node have the Ideal call make no change and return NULL.
962// Example: AddINode::Ideal must check for add of zero; in this case it
963// returns NULL instead of doing any graph reshaping.
964//
965// You cannot modify any old Nodes except for the 'this' pointer.  Due to
966// sharing there may be other users of the old Nodes relying on their current
967// semantics.  Modifying them will break the other users.
968// Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
969// "X+3" unchanged in case it is shared.
970//
971// If you modify the 'this' pointer's inputs, you must use 'set_req' with
972// def-use info.  If you are making a new Node (either as the new root or
973// some new internal piece) you must NOT use set_req with def-use info.
974// You can make a new Node with either 'new' or 'clone'.  In either case,
975// def-use info is (correctly) not generated.
976// Example: reshape "(X+3)+4" into "X+7":
977//    set_req(1,in(1)->in(1) /* grab X */, du /* must use DU on 'this' */);
978//    set_req(2,phase->intcon(7),du);
979//    return this;
980// Example: reshape "X*4" into "X<<1"
981//    return new (C,3) LShiftINode( in(1), phase->intcon(1) );
982//
983// You must call 'phase->transform(X)' on any new Nodes X you make, except
984// for the returned root node.  Example: reshape "X*31" with "(X<<5)-1".
985//    Node *shift=phase->transform(new(C,3)LShiftINode(in(1),phase->intcon(5)));
986//    return new (C,3) AddINode(shift, phase->intcon(-1));
987//
988// When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
989// These forms are faster than 'phase->transform(new (C,1) ConNode())' and Do
990// The Right Thing with def-use info.
991//
992// You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
993// graph uses the 'this' Node it must be the root.  If you want a Node with
994// the same Opcode as the 'this' pointer use 'clone'.
995//
996Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
997  return NULL;                  // Default to being Ideal already
998}
999
1000// Some nodes have specific Ideal subgraph transformations only if they are
1001// unique users of specific nodes. Such nodes should be put on IGVN worklist
1002// for the transformations to happen.
1003bool Node::has_special_unique_user() const {
1004  assert(outcnt() == 1, "match only for unique out");
1005  Node* n = unique_out();
1006  int op  = Opcode();
1007  if( this->is_Store() ) {
1008    // Condition for back-to-back stores folding.
1009    return n->Opcode() == op && n->in(MemNode::Memory) == this;
1010  } else if( op == Op_AddL ) {
1011    // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1012    return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1013  } else if( op == Op_SubI || op == Op_SubL ) {
1014    // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1015    return n->Opcode() == op && n->in(2) == this;
1016  }
1017  return false;
1018};
1019
1020//--------------------------find_exact_control---------------------------------
1021// Skip Proj and CatchProj nodes chains. Check for Null and Top.
1022Node* Node::find_exact_control(Node* ctrl) {
1023  if (ctrl == NULL && this->is_Region())
1024    ctrl = this->as_Region()->is_copy();
1025
1026  if (ctrl != NULL && ctrl->is_CatchProj()) {
1027    if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1028      ctrl = ctrl->in(0);
1029    if (ctrl != NULL && !ctrl->is_top())
1030      ctrl = ctrl->in(0);
1031  }
1032
1033  if (ctrl != NULL && ctrl->is_Proj())
1034    ctrl = ctrl->in(0);
1035
1036  return ctrl;
1037}
1038
1039//--------------------------dominates------------------------------------------
1040// Helper function for MemNode::all_controls_dominate().
1041// Check if 'this' control node dominates or equal to 'sub' control node.
1042// We already know that if any path back to Root or Start reaches 'this',
1043// then all paths so, so this is a simple search for one example,
1044// not an exhaustive search for a counterexample.
1045bool Node::dominates(Node* sub, Node_List &nlist) {
1046  assert(this->is_CFG(), "expecting control");
1047  assert(sub != NULL && sub->is_CFG(), "expecting control");
1048
1049  // detect dead cycle without regions
1050  int iterations_without_region_limit = DominatorSearchLimit;
1051
1052  Node* orig_sub = sub;
1053  Node* dom      = this;
1054  bool  met_dom  = false;
1055  nlist.clear();
1056
1057  // Walk 'sub' backward up the chain to 'dom', watching for regions.
1058  // After seeing 'dom', continue up to Root or Start.
1059  // If we hit a region (backward split point), it may be a loop head.
1060  // Keep going through one of the region's inputs.  If we reach the
1061  // same region again, go through a different input.  Eventually we
1062  // will either exit through the loop head, or give up.
1063  // (If we get confused, break out and return a conservative 'false'.)
1064  while (sub != NULL) {
1065    if (sub->is_top())  break; // Conservative answer for dead code.
1066    if (sub == dom) {
1067      if (nlist.size() == 0) {
1068        // No Region nodes except loops were visited before and the EntryControl
1069        // path was taken for loops: it did not walk in a cycle.
1070        return true;
1071      } else if (met_dom) {
1072        break;          // already met before: walk in a cycle
1073      } else {
1074        // Region nodes were visited. Continue walk up to Start or Root
1075        // to make sure that it did not walk in a cycle.
1076        met_dom = true; // first time meet
1077        iterations_without_region_limit = DominatorSearchLimit; // Reset
1078     }
1079    }
1080    if (sub->is_Start() || sub->is_Root()) {
1081      // Success if we met 'dom' along a path to Start or Root.
1082      // We assume there are no alternative paths that avoid 'dom'.
1083      // (This assumption is up to the caller to ensure!)
1084      return met_dom;
1085    }
1086    Node* up = sub->in(0);
1087    // Normalize simple pass-through regions and projections:
1088    up = sub->find_exact_control(up);
1089    // If sub == up, we found a self-loop.  Try to push past it.
1090    if (sub == up && sub->is_Loop()) {
1091      // Take loop entry path on the way up to 'dom'.
1092      up = sub->in(1); // in(LoopNode::EntryControl);
1093    } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1094      // Always take in(1) path on the way up to 'dom' for clone regions
1095      // (with only one input) or regions which merge > 2 paths
1096      // (usually used to merge fast/slow paths).
1097      up = sub->in(1);
1098    } else if (sub == up && sub->is_Region()) {
1099      // Try both paths for Regions with 2 input paths (it may be a loop head).
1100      // It could give conservative 'false' answer without information
1101      // which region's input is the entry path.
1102      iterations_without_region_limit = DominatorSearchLimit; // Reset
1103
1104      bool region_was_visited_before = false;
1105      // Was this Region node visited before?
1106      // If so, we have reached it because we accidentally took a
1107      // loop-back edge from 'sub' back into the body of the loop,
1108      // and worked our way up again to the loop header 'sub'.
1109      // So, take the first unexplored path on the way up to 'dom'.
1110      for (int j = nlist.size() - 1; j >= 0; j--) {
1111        intptr_t ni = (intptr_t)nlist.at(j);
1112        Node* visited = (Node*)(ni & ~1);
1113        bool  visited_twice_already = ((ni & 1) != 0);
1114        if (visited == sub) {
1115          if (visited_twice_already) {
1116            // Visited 2 paths, but still stuck in loop body.  Give up.
1117            return false;
1118          }
1119          // The Region node was visited before only once.
1120          // (We will repush with the low bit set, below.)
1121          nlist.remove(j);
1122          // We will find a new edge and re-insert.
1123          region_was_visited_before = true;
1124          break;
1125        }
1126      }
1127
1128      // Find an incoming edge which has not been seen yet; walk through it.
1129      assert(up == sub, "");
1130      uint skip = region_was_visited_before ? 1 : 0;
1131      for (uint i = 1; i < sub->req(); i++) {
1132        Node* in = sub->in(i);
1133        if (in != NULL && !in->is_top() && in != sub) {
1134          if (skip == 0) {
1135            up = in;
1136            break;
1137          }
1138          --skip;               // skip this nontrivial input
1139        }
1140      }
1141
1142      // Set 0 bit to indicate that both paths were taken.
1143      nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1144    }
1145
1146    if (up == sub) {
1147      break;    // some kind of tight cycle
1148    }
1149    if (up == orig_sub && met_dom) {
1150      // returned back after visiting 'dom'
1151      break;    // some kind of cycle
1152    }
1153    if (--iterations_without_region_limit < 0) {
1154      break;    // dead cycle
1155    }
1156    sub = up;
1157  }
1158
1159  // Did not meet Root or Start node in pred. chain.
1160  // Conservative answer for dead code.
1161  return false;
1162}
1163
1164//------------------------------remove_dead_region-----------------------------
1165// This control node is dead.  Follow the subgraph below it making everything
1166// using it dead as well.  This will happen normally via the usual IterGVN
1167// worklist but this call is more efficient.  Do not update use-def info
1168// inside the dead region, just at the borders.
1169static bool kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1170  // Con's are a popular node to re-hit in the hash table again.
1171  if( dead->is_Con() ) return false;
1172
1173  // Can't put ResourceMark here since igvn->_worklist uses the same arena
1174  // for verify pass with +VerifyOpto and we add/remove elements in it here.
1175  Node_List  nstack(Thread::current()->resource_area());
1176
1177  Node *top = igvn->C->top();
1178  bool progress = false;
1179  nstack.push(dead);
1180
1181  while (nstack.size() > 0) {
1182    dead = nstack.pop();
1183    if (dead->outcnt() > 0) {
1184      // Keep dead node on stack until all uses are processed.
1185      nstack.push(dead);
1186      // For all Users of the Dead...    ;-)
1187      for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1188        Node* use = dead->last_out(k);
1189        igvn->hash_delete(use);       // Yank from hash table prior to mod
1190        if (use->in(0) == dead) {     // Found another dead node
1191          assert (!use->is_Con(), "Control for Con node should be Root node.")
1192          use->set_req(0, top);       // Cut dead edge to prevent processing
1193          nstack.push(use);           // the dead node again.
1194        } else {                      // Else found a not-dead user
1195          for (uint j = 1; j < use->req(); j++) {
1196            if (use->in(j) == dead) { // Turn all dead inputs into TOP
1197              use->set_req(j, top);
1198            }
1199          }
1200          igvn->_worklist.push(use);
1201        }
1202        // Refresh the iterator, since any number of kills might have happened.
1203        k = dead->last_outs(kmin);
1204      }
1205    } else { // (dead->outcnt() == 0)
1206      // Done with outputs.
1207      igvn->hash_delete(dead);
1208      igvn->_worklist.remove(dead);
1209      igvn->set_type(dead, Type::TOP);
1210      if (dead->is_macro()) {
1211        igvn->C->remove_macro_node(dead);
1212      }
1213      // Kill all inputs to the dead guy
1214      for (uint i=0; i < dead->req(); i++) {
1215        Node *n = dead->in(i);      // Get input to dead guy
1216        if (n != NULL && !n->is_top()) { // Input is valid?
1217          progress = true;
1218          dead->set_req(i, top);    // Smash input away
1219          if (n->outcnt() == 0) {   // Input also goes dead?
1220            if (!n->is_Con())
1221              nstack.push(n);       // Clear it out as well
1222          } else if (n->outcnt() == 1 &&
1223                     n->has_special_unique_user()) {
1224            igvn->add_users_to_worklist( n );
1225          } else if (n->outcnt() <= 2 && n->is_Store()) {
1226            // Push store's uses on worklist to enable folding optimization for
1227            // store/store and store/load to the same address.
1228            // The restriction (outcnt() <= 2) is the same as in set_req_X()
1229            // and remove_globally_dead_node().
1230            igvn->add_users_to_worklist( n );
1231          }
1232        }
1233      }
1234    } // (dead->outcnt() == 0)
1235  }   // while (nstack.size() > 0) for outputs
1236  return progress;
1237}
1238
1239//------------------------------remove_dead_region-----------------------------
1240bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1241  Node *n = in(0);
1242  if( !n ) return false;
1243  // Lost control into this guy?  I.e., it became unreachable?
1244  // Aggressively kill all unreachable code.
1245  if (can_reshape && n->is_top()) {
1246    return kill_dead_code(this, phase->is_IterGVN());
1247  }
1248
1249  if( n->is_Region() && n->as_Region()->is_copy() ) {
1250    Node *m = n->nonnull_req();
1251    set_req(0, m);
1252    return true;
1253  }
1254  return false;
1255}
1256
1257//------------------------------Ideal_DU_postCCP-------------------------------
1258// Idealize graph, using DU info.  Must clone result into new-space
1259Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
1260  return NULL;                 // Default to no change
1261}
1262
1263//------------------------------hash-------------------------------------------
1264// Hash function over Nodes.
1265uint Node::hash() const {
1266  uint sum = 0;
1267  for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1268    sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1269  return (sum>>2) + _cnt + Opcode();
1270}
1271
1272//------------------------------cmp--------------------------------------------
1273// Compare special parts of simple Nodes
1274uint Node::cmp( const Node &n ) const {
1275  return 1;                     // Must be same
1276}
1277
1278//------------------------------rematerialize-----------------------------------
1279// Should we clone rather than spill this instruction?
1280bool Node::rematerialize() const {
1281  if ( is_Mach() )
1282    return this->as_Mach()->rematerialize();
1283  else
1284    return (_flags & Flag_rematerialize) != 0;
1285}
1286
1287//------------------------------needs_anti_dependence_check---------------------
1288// Nodes which use memory without consuming it, hence need antidependences.
1289bool Node::needs_anti_dependence_check() const {
1290  if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1291    return false;
1292  else
1293    return in(1)->bottom_type()->has_memory();
1294}
1295
1296
1297// Get an integer constant from a ConNode (or CastIINode).
1298// Return a default value if there is no apparent constant here.
1299const TypeInt* Node::find_int_type() const {
1300  if (this->is_Type()) {
1301    return this->as_Type()->type()->isa_int();
1302  } else if (this->is_Con()) {
1303    assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1304    return this->bottom_type()->isa_int();
1305  }
1306  return NULL;
1307}
1308
1309// Get a pointer constant from a ConstNode.
1310// Returns the constant if it is a pointer ConstNode
1311intptr_t Node::get_ptr() const {
1312  assert( Opcode() == Op_ConP, "" );
1313  return ((ConPNode*)this)->type()->is_ptr()->get_con();
1314}
1315
1316// Get a narrow oop constant from a ConNNode.
1317intptr_t Node::get_narrowcon() const {
1318  assert( Opcode() == Op_ConN, "" );
1319  return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1320}
1321
1322// Get a long constant from a ConNode.
1323// Return a default value if there is no apparent constant here.
1324const TypeLong* Node::find_long_type() const {
1325  if (this->is_Type()) {
1326    return this->as_Type()->type()->isa_long();
1327  } else if (this->is_Con()) {
1328    assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1329    return this->bottom_type()->isa_long();
1330  }
1331  return NULL;
1332}
1333
1334// Get a double constant from a ConstNode.
1335// Returns the constant if it is a double ConstNode
1336jdouble Node::getd() const {
1337  assert( Opcode() == Op_ConD, "" );
1338  return ((ConDNode*)this)->type()->is_double_constant()->getd();
1339}
1340
1341// Get a float constant from a ConstNode.
1342// Returns the constant if it is a float ConstNode
1343jfloat Node::getf() const {
1344  assert( Opcode() == Op_ConF, "" );
1345  return ((ConFNode*)this)->type()->is_float_constant()->getf();
1346}
1347
1348#ifndef PRODUCT
1349
1350//----------------------------NotANode----------------------------------------
1351// Used in debugging code to avoid walking across dead or uninitialized edges.
1352static inline bool NotANode(const Node* n) {
1353  if (n == NULL)                   return true;
1354  if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1355  if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1356  return false;
1357}
1358
1359
1360//------------------------------find------------------------------------------
1361// Find a neighbor of this Node with the given _idx
1362// If idx is negative, find its absolute value, following both _in and _out.
1363static void find_recur( Node* &result, Node *n, int idx, bool only_ctrl,
1364                        VectorSet &old_space, VectorSet &new_space ) {
1365  int node_idx = (idx >= 0) ? idx : -idx;
1366  if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1367  // Contained in new_space or old_space?
1368  VectorSet *v = Compile::current()->node_arena()->contains(n) ? &new_space : &old_space;
1369  if( v->test(n->_idx) ) return;
1370  if( (int)n->_idx == node_idx
1371      debug_only(|| n->debug_idx() == node_idx) ) {
1372    if (result != NULL)
1373      tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1374                 (uintptr_t)result, (uintptr_t)n, node_idx);
1375    result = n;
1376  }
1377  v->set(n->_idx);
1378  for( uint i=0; i<n->len(); i++ ) {
1379    if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1380    find_recur( result, n->in(i), idx, only_ctrl, old_space, new_space );
1381  }
1382  // Search along forward edges also:
1383  if (idx < 0 && !only_ctrl) {
1384    for( uint j=0; j<n->outcnt(); j++ ) {
1385      find_recur( result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1386    }
1387  }
1388#ifdef ASSERT
1389  // Search along debug_orig edges last:
1390  for (Node* orig = n->debug_orig(); orig != NULL && n != orig; orig = orig->debug_orig()) {
1391    if (NotANode(orig))  break;
1392    find_recur( result, orig, idx, only_ctrl, old_space, new_space );
1393  }
1394#endif //ASSERT
1395}
1396
1397// call this from debugger:
1398Node* find_node(Node* n, int idx) {
1399  return n->find(idx);
1400}
1401
1402//------------------------------find-------------------------------------------
1403Node* Node::find(int idx) const {
1404  ResourceArea *area = Thread::current()->resource_area();
1405  VectorSet old_space(area), new_space(area);
1406  Node* result = NULL;
1407  find_recur( result, (Node*) this, idx, false, old_space, new_space );
1408  return result;
1409}
1410
1411//------------------------------find_ctrl--------------------------------------
1412// Find an ancestor to this node in the control history with given _idx
1413Node* Node::find_ctrl(int idx) const {
1414  ResourceArea *area = Thread::current()->resource_area();
1415  VectorSet old_space(area), new_space(area);
1416  Node* result = NULL;
1417  find_recur( result, (Node*) this, idx, true, old_space, new_space );
1418  return result;
1419}
1420#endif
1421
1422
1423
1424#ifndef PRODUCT
1425int Node::_in_dump_cnt = 0;
1426
1427// -----------------------------Name-------------------------------------------
1428extern const char *NodeClassNames[];
1429const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1430
1431static bool is_disconnected(const Node* n) {
1432  for (uint i = 0; i < n->req(); i++) {
1433    if (n->in(i) != NULL)  return false;
1434  }
1435  return true;
1436}
1437
1438#ifdef ASSERT
1439static void dump_orig(Node* orig) {
1440  Compile* C = Compile::current();
1441  if (NotANode(orig))  orig = NULL;
1442  if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
1443  if (orig == NULL)  return;
1444  tty->print(" !orig=");
1445  Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1446  if (NotANode(fast))  fast = NULL;
1447  while (orig != NULL) {
1448    bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1449    if (discon)  tty->print("[");
1450    if (!Compile::current()->node_arena()->contains(orig))
1451      tty->print("o");
1452    tty->print("%d", orig->_idx);
1453    if (discon)  tty->print("]");
1454    orig = orig->debug_orig();
1455    if (NotANode(orig))  orig = NULL;
1456    if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
1457    if (orig != NULL)  tty->print(",");
1458    if (fast != NULL) {
1459      // Step fast twice for each single step of orig:
1460      fast = fast->debug_orig();
1461      if (NotANode(fast))  fast = NULL;
1462      if (fast != NULL && fast != orig) {
1463        fast = fast->debug_orig();
1464        if (NotANode(fast))  fast = NULL;
1465      }
1466      if (fast == orig) {
1467        tty->print("...");
1468        break;
1469      }
1470    }
1471  }
1472}
1473
1474void Node::set_debug_orig(Node* orig) {
1475  _debug_orig = orig;
1476  if (BreakAtNode == 0)  return;
1477  if (NotANode(orig))  orig = NULL;
1478  int trip = 10;
1479  while (orig != NULL) {
1480    if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1481      tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1482                    this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1483      BREAKPOINT;
1484    }
1485    orig = orig->debug_orig();
1486    if (NotANode(orig))  orig = NULL;
1487    if (trip-- <= 0)  break;
1488  }
1489}
1490#endif //ASSERT
1491
1492//------------------------------dump------------------------------------------
1493// Dump a Node
1494void Node::dump() const {
1495  Compile* C = Compile::current();
1496  bool is_new = C->node_arena()->contains(this);
1497  _in_dump_cnt++;
1498  tty->print("%c%d\t%s\t=== ",
1499             is_new ? ' ' : 'o', _idx, Name());
1500
1501  // Dump the required and precedence inputs
1502  dump_req();
1503  dump_prec();
1504  // Dump the outputs
1505  dump_out();
1506
1507  if (is_disconnected(this)) {
1508#ifdef ASSERT
1509    tty->print("  [%d]",debug_idx());
1510    dump_orig(debug_orig());
1511#endif
1512    tty->cr();
1513    _in_dump_cnt--;
1514    return;                     // don't process dead nodes
1515  }
1516
1517  // Dump node-specific info
1518  dump_spec(tty);
1519#ifdef ASSERT
1520  // Dump the non-reset _debug_idx
1521  if( Verbose && WizardMode ) {
1522    tty->print("  [%d]",debug_idx());
1523  }
1524#endif
1525
1526  const Type *t = bottom_type();
1527
1528  if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1529    const TypeInstPtr  *toop = t->isa_instptr();
1530    const TypeKlassPtr *tkls = t->isa_klassptr();
1531    ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1532    if( klass && klass->is_loaded() && klass->is_interface() ) {
1533      tty->print("  Interface:");
1534    } else if( toop ) {
1535      tty->print("  Oop:");
1536    } else if( tkls ) {
1537      tty->print("  Klass:");
1538    }
1539    t->dump();
1540  } else if( t == Type::MEMORY ) {
1541    tty->print("  Memory:");
1542    MemNode::dump_adr_type(this, adr_type(), tty);
1543  } else if( Verbose || WizardMode ) {
1544    tty->print("  Type:");
1545    if( t ) {
1546      t->dump();
1547    } else {
1548      tty->print("no type");
1549    }
1550  }
1551  if (is_new) {
1552    debug_only(dump_orig(debug_orig()));
1553    Node_Notes* nn = C->node_notes_at(_idx);
1554    if (nn != NULL && !nn->is_clear()) {
1555      if (nn->jvms() != NULL) {
1556        tty->print(" !jvms:");
1557        nn->jvms()->dump_spec(tty);
1558      }
1559    }
1560  }
1561  tty->cr();
1562  _in_dump_cnt--;
1563}
1564
1565//------------------------------dump_req--------------------------------------
1566void Node::dump_req() const {
1567  // Dump the required input edges
1568  for (uint i = 0; i < req(); i++) {    // For all required inputs
1569    Node* d = in(i);
1570    if (d == NULL) {
1571      tty->print("_ ");
1572    } else if (NotANode(d)) {
1573      tty->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1574    } else {
1575      tty->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1576    }
1577  }
1578}
1579
1580
1581//------------------------------dump_prec-------------------------------------
1582void Node::dump_prec() const {
1583  // Dump the precedence edges
1584  int any_prec = 0;
1585  for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1586    Node* p = in(i);
1587    if (p != NULL) {
1588      if( !any_prec++ ) tty->print(" |");
1589      if (NotANode(p)) { tty->print("NotANode "); continue; }
1590      tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1591    }
1592  }
1593}
1594
1595//------------------------------dump_out--------------------------------------
1596void Node::dump_out() const {
1597  // Delimit the output edges
1598  tty->print(" [[");
1599  // Dump the output edges
1600  for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1601    Node* u = _out[i];
1602    if (u == NULL) {
1603      tty->print("_ ");
1604    } else if (NotANode(u)) {
1605      tty->print("NotANode ");
1606    } else {
1607      tty->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1608    }
1609  }
1610  tty->print("]] ");
1611}
1612
1613//------------------------------dump_nodes-------------------------------------
1614static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1615  Node* s = (Node*)start; // remove const
1616  if (NotANode(s)) return;
1617
1618  uint depth = (uint)ABS(d);
1619  int direction = d;
1620  Compile* C = Compile::current();
1621  GrowableArray <Node *> nstack(C->unique());
1622
1623  nstack.append(s);
1624  int begin = 0;
1625  int end = 0;
1626  for(uint i = 0; i < depth; i++) {
1627    end = nstack.length();
1628    for(int j = begin; j < end; j++) {
1629      Node* tp  = nstack.at(j);
1630      uint limit = direction > 0 ? tp->len() : tp->outcnt();
1631      for(uint k = 0; k < limit; k++) {
1632        Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1633
1634        if (NotANode(n))  continue;
1635        // do not recurse through top or the root (would reach unrelated stuff)
1636        if (n->is_Root() || n->is_top())  continue;
1637        if (only_ctrl && !n->is_CFG()) continue;
1638
1639        bool on_stack = nstack.contains(n);
1640        if (!on_stack) {
1641          nstack.append(n);
1642        }
1643      }
1644    }
1645    begin = end;
1646  }
1647  end = nstack.length();
1648  if (direction > 0) {
1649    for(int j = end-1; j >= 0; j--) {
1650      nstack.at(j)->dump();
1651    }
1652  } else {
1653    for(int j = 0; j < end; j++) {
1654      nstack.at(j)->dump();
1655    }
1656  }
1657}
1658
1659//------------------------------dump-------------------------------------------
1660void Node::dump(int d) const {
1661  dump_nodes(this, d, false);
1662}
1663
1664//------------------------------dump_ctrl--------------------------------------
1665// Dump a Node's control history to depth
1666void Node::dump_ctrl(int d) const {
1667  dump_nodes(this, d, true);
1668}
1669
1670// VERIFICATION CODE
1671// For each input edge to a node (ie - for each Use-Def edge), verify that
1672// there is a corresponding Def-Use edge.
1673//------------------------------verify_edges-----------------------------------
1674void Node::verify_edges(Unique_Node_List &visited) {
1675  uint i, j, idx;
1676  int  cnt;
1677  Node *n;
1678
1679  // Recursive termination test
1680  if (visited.member(this))  return;
1681  visited.push(this);
1682
1683  // Walk over all input edges, checking for correspondance
1684  for( i = 0; i < len(); i++ ) {
1685    n = in(i);
1686    if (n != NULL && !n->is_top()) {
1687      // Count instances of (Node *)this
1688      cnt = 0;
1689      for (idx = 0; idx < n->_outcnt; idx++ ) {
1690        if (n->_out[idx] == (Node *)this)  cnt++;
1691      }
1692      assert( cnt > 0,"Failed to find Def-Use edge." );
1693      // Check for duplicate edges
1694      // walk the input array downcounting the input edges to n
1695      for( j = 0; j < len(); j++ ) {
1696        if( in(j) == n ) cnt--;
1697      }
1698      assert( cnt == 0,"Mismatched edge count.");
1699    } else if (n == NULL) {
1700      assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
1701    } else {
1702      assert(n->is_top(), "sanity");
1703      // Nothing to check.
1704    }
1705  }
1706  // Recursive walk over all input edges
1707  for( i = 0; i < len(); i++ ) {
1708    n = in(i);
1709    if( n != NULL )
1710      in(i)->verify_edges(visited);
1711  }
1712}
1713
1714//------------------------------verify_recur-----------------------------------
1715static const Node *unique_top = NULL;
1716
1717void Node::verify_recur(const Node *n, int verify_depth,
1718                        VectorSet &old_space, VectorSet &new_space) {
1719  if ( verify_depth == 0 )  return;
1720  if (verify_depth > 0)  --verify_depth;
1721
1722  Compile* C = Compile::current();
1723
1724  // Contained in new_space or old_space?
1725  VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
1726  // Check for visited in the proper space.  Numberings are not unique
1727  // across spaces so we need a seperate VectorSet for each space.
1728  if( v->test_set(n->_idx) ) return;
1729
1730  if (n->is_Con() && n->bottom_type() == Type::TOP) {
1731    if (C->cached_top_node() == NULL)
1732      C->set_cached_top_node((Node*)n);
1733    assert(C->cached_top_node() == n, "TOP node must be unique");
1734  }
1735
1736  for( uint i = 0; i < n->len(); i++ ) {
1737    Node *x = n->in(i);
1738    if (!x || x->is_top()) continue;
1739
1740    // Verify my input has a def-use edge to me
1741    if (true /*VerifyDefUse*/) {
1742      // Count use-def edges from n to x
1743      int cnt = 0;
1744      for( uint j = 0; j < n->len(); j++ )
1745        if( n->in(j) == x )
1746          cnt++;
1747      // Count def-use edges from x to n
1748      uint max = x->_outcnt;
1749      for( uint k = 0; k < max; k++ )
1750        if (x->_out[k] == n)
1751          cnt--;
1752      assert( cnt == 0, "mismatched def-use edge counts" );
1753    }
1754
1755    verify_recur(x, verify_depth, old_space, new_space);
1756  }
1757
1758}
1759
1760//------------------------------verify-----------------------------------------
1761// Check Def-Use info for my subgraph
1762void Node::verify() const {
1763  Compile* C = Compile::current();
1764  Node* old_top = C->cached_top_node();
1765  ResourceMark rm;
1766  ResourceArea *area = Thread::current()->resource_area();
1767  VectorSet old_space(area), new_space(area);
1768  verify_recur(this, -1, old_space, new_space);
1769  C->set_cached_top_node(old_top);
1770}
1771#endif
1772
1773
1774//------------------------------walk-------------------------------------------
1775// Graph walk, with both pre-order and post-order functions
1776void Node::walk(NFunc pre, NFunc post, void *env) {
1777  VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
1778  walk_(pre, post, env, visited);
1779}
1780
1781void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
1782  if( visited.test_set(_idx) ) return;
1783  pre(*this,env);               // Call the pre-order walk function
1784  for( uint i=0; i<_max; i++ )
1785    if( in(i) )                 // Input exists and is not walked?
1786      in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
1787  post(*this,env);              // Call the post-order walk function
1788}
1789
1790void Node::nop(Node &, void*) {}
1791
1792//------------------------------Registers--------------------------------------
1793// Do we Match on this edge index or not?  Generally false for Control
1794// and true for everything else.  Weird for calls & returns.
1795uint Node::match_edge(uint idx) const {
1796  return idx;                   // True for other than index 0 (control)
1797}
1798
1799// Register classes are defined for specific machines
1800const RegMask &Node::out_RegMask() const {
1801  ShouldNotCallThis();
1802  return *(new RegMask());
1803}
1804
1805const RegMask &Node::in_RegMask(uint) const {
1806  ShouldNotCallThis();
1807  return *(new RegMask());
1808}
1809
1810//=============================================================================
1811//-----------------------------------------------------------------------------
1812void Node_Array::reset( Arena *new_arena ) {
1813  _a->Afree(_nodes,_max*sizeof(Node*));
1814  _max   = 0;
1815  _nodes = NULL;
1816  _a     = new_arena;
1817}
1818
1819//------------------------------clear------------------------------------------
1820// Clear all entries in _nodes to NULL but keep storage
1821void Node_Array::clear() {
1822  Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
1823}
1824
1825//-----------------------------------------------------------------------------
1826void Node_Array::grow( uint i ) {
1827  if( !_max ) {
1828    _max = 1;
1829    _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
1830    _nodes[0] = NULL;
1831  }
1832  uint old = _max;
1833  while( i >= _max ) _max <<= 1;        // Double to fit
1834  _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
1835  Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
1836}
1837
1838//-----------------------------------------------------------------------------
1839void Node_Array::insert( uint i, Node *n ) {
1840  if( _nodes[_max-1] ) grow(_max);      // Get more space if full
1841  Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
1842  _nodes[i] = n;
1843}
1844
1845//-----------------------------------------------------------------------------
1846void Node_Array::remove( uint i ) {
1847  Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
1848  _nodes[_max-1] = NULL;
1849}
1850
1851//-----------------------------------------------------------------------------
1852void Node_Array::sort( C_sort_func_t func) {
1853  qsort( _nodes, _max, sizeof( Node* ), func );
1854}
1855
1856//-----------------------------------------------------------------------------
1857void Node_Array::dump() const {
1858#ifndef PRODUCT
1859  for( uint i = 0; i < _max; i++ ) {
1860    Node *nn = _nodes[i];
1861    if( nn != NULL ) {
1862      tty->print("%5d--> ",i); nn->dump();
1863    }
1864  }
1865#endif
1866}
1867
1868//--------------------------is_iteratively_computed------------------------------
1869// Operation appears to be iteratively computed (such as an induction variable)
1870// It is possible for this operation to return false for a loop-varying
1871// value, if it appears (by local graph inspection) to be computed by a simple conditional.
1872bool Node::is_iteratively_computed() {
1873  if (ideal_reg()) { // does operation have a result register?
1874    for (uint i = 1; i < req(); i++) {
1875      Node* n = in(i);
1876      if (n != NULL && n->is_Phi()) {
1877        for (uint j = 1; j < n->req(); j++) {
1878          if (n->in(j) == this) {
1879            return true;
1880          }
1881        }
1882      }
1883    }
1884  }
1885  return false;
1886}
1887
1888//--------------------------find_similar------------------------------
1889// Return a node with opcode "opc" and same inputs as "this" if one can
1890// be found; Otherwise return NULL;
1891Node* Node::find_similar(int opc) {
1892  if (req() >= 2) {
1893    Node* def = in(1);
1894    if (def && def->outcnt() >= 2) {
1895      for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
1896        Node* use = def->fast_out(i);
1897        if (use->Opcode() == opc &&
1898            use->req() == req()) {
1899          uint j;
1900          for (j = 0; j < use->req(); j++) {
1901            if (use->in(j) != in(j)) {
1902              break;
1903            }
1904          }
1905          if (j == use->req()) {
1906            return use;
1907          }
1908        }
1909      }
1910    }
1911  }
1912  return NULL;
1913}
1914
1915
1916//--------------------------unique_ctrl_out------------------------------
1917// Return the unique control out if only one. Null if none or more than one.
1918Node* Node::unique_ctrl_out() {
1919  Node* found = NULL;
1920  for (uint i = 0; i < outcnt(); i++) {
1921    Node* use = raw_out(i);
1922    if (use->is_CFG() && use != this) {
1923      if (found != NULL) return NULL;
1924      found = use;
1925    }
1926  }
1927  return found;
1928}
1929
1930//=============================================================================
1931//------------------------------yank-------------------------------------------
1932// Find and remove
1933void Node_List::yank( Node *n ) {
1934  uint i;
1935  for( i = 0; i < _cnt; i++ )
1936    if( _nodes[i] == n )
1937      break;
1938
1939  if( i < _cnt )
1940    _nodes[i] = _nodes[--_cnt];
1941}
1942
1943//------------------------------dump-------------------------------------------
1944void Node_List::dump() const {
1945#ifndef PRODUCT
1946  for( uint i = 0; i < _cnt; i++ )
1947    if( _nodes[i] ) {
1948      tty->print("%5d--> ",i);
1949      _nodes[i]->dump();
1950    }
1951#endif
1952}
1953
1954//=============================================================================
1955//------------------------------remove-----------------------------------------
1956void Unique_Node_List::remove( Node *n ) {
1957  if( _in_worklist[n->_idx] ) {
1958    for( uint i = 0; i < size(); i++ )
1959      if( _nodes[i] == n ) {
1960        map(i,Node_List::pop());
1961        _in_worklist >>= n->_idx;
1962        return;
1963      }
1964    ShouldNotReachHere();
1965  }
1966}
1967
1968//-----------------------remove_useless_nodes----------------------------------
1969// Remove useless nodes from worklist
1970void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
1971
1972  for( uint i = 0; i < size(); ++i ) {
1973    Node *n = at(i);
1974    assert( n != NULL, "Did not expect null entries in worklist");
1975    if( ! useful.test(n->_idx) ) {
1976      _in_worklist >>= n->_idx;
1977      map(i,Node_List::pop());
1978      // Node *replacement = Node_List::pop();
1979      // if( i != size() ) { // Check if removing last entry
1980      //   _nodes[i] = replacement;
1981      // }
1982      --i;  // Visit popped node
1983      // If it was last entry, loop terminates since size() was also reduced
1984    }
1985  }
1986}
1987
1988//=============================================================================
1989void Node_Stack::grow() {
1990  size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
1991  size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
1992  size_t max = old_max << 1;             // max * 2
1993  _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
1994  _inode_max = _inodes + max;
1995  _inode_top = _inodes + old_top;        // restore _top
1996}
1997
1998//=============================================================================
1999uint TypeNode::size_of() const { return sizeof(*this); }
2000#ifndef PRODUCT
2001void TypeNode::dump_spec(outputStream *st) const {
2002  if( !Verbose && !WizardMode ) {
2003    // standard dump does this in Verbose and WizardMode
2004    st->print(" #"); _type->dump_on(st);
2005  }
2006}
2007#endif
2008uint TypeNode::hash() const {
2009  return Node::hash() + _type->hash();
2010}
2011uint TypeNode::cmp( const Node &n ) const
2012{ return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2013const Type *TypeNode::bottom_type() const { return _type; }
2014const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
2015
2016//------------------------------ideal_reg--------------------------------------
2017uint TypeNode::ideal_reg() const {
2018  return Matcher::base2reg[_type->base()];
2019}
2020